E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse
choisie. Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1.

a. Si le discriminant d’un polynôme du second degré est strictement positif, alors ce polynôme admet $2$ racines positives.
b. Si le discriminant d’un polynôme du second degré est strictement négatif, alors ce polynôme admet $2$ racines négatives.
c. Si un polynôme du second degré est toujours strictement positif, alors ce
polynôme n’admet pas de racine.
d. Si le discriminant d’un polynôme du second degré est nul, alors ce polynôme admet le nombre $0$ pour racine.

$\quad$

Correction Question 1

Si le discriminant est strictement positif alors le polynôme possède $2$ racines (mais pas nécessairement positives).
Si le discriminant est strictement négatif alors le polynôme n’admet pas de racines réelles.
Si le discriminant est nul alors le polynôme ne possède qu’une seule racine (qui n’est pas nécessairement $0$).

Si un polynôme du second degré est toujours strictement positif, alors ce
polynôme n’admet pas de racine.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

a. L’équation $\cos x = -\dfrac{1}{2}$ admet $2$ solutions dans
l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$.
b. L’équation $\cos x = -\dfrac{1}{2}$ admet $1$ solutions dans
l’intervalle $[0;\pi[$.
c. L’équation $\sin x = -\dfrac{1}{2}$ admet $1$ solutions dans
l’intervalle $[0;\pi[$.
d. L’équation $\sin x = -\dfrac{1}{2}$ admet $2$ solutions dans
l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$.

$\quad$

Correction Question 2

Sur l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$ on a $\cos x\pg 0$.
Sur l’intervalle $[0;\pi[$ on a $\sin x\pg 0$

$\cos \dfrac{2\pi}{3}=-\dfrac{1}{2}$ et $\dfrac{2\pi}{3}$ appartient à l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

La courbe représentative d’une fonction $f$, définie et dérivable sur l’ensemble des nombres réels, est donnée ci-dessous avec ses tangentes, aux points $A$
et $B$ d’abscisses respectives $2$ et $4$. On note $f’$ la fonction dérivée de $f$.

a. $f(0)=1$
b. $f'(2)=1$
c. $f'(2)=-2$
d. $f'(4)=0,5$

$\quad$

Correction Question 3

$f(0) \approx -3$.
$f'(2)$ est le coefficient directeur de la tangente à la courbe au point $A$. Donc $f'(2)=1$ (graphiquement).
$f'(4)$ est le coefficient directeur de la tangente à la courbe au point $B$. Donc $f'(4)<0$.

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $g$ définie sur l’ensemble des nombres réels $\R$ par :
$g(x)=x^3-0,0012x+1$

a. $g$ est strictement croissante sur $\R$.
b. $g$ est croissante sur $\R$.
c. $g$ est constante sur l’intervalle $[-0,02 ; 0,02]$.
d. $g$ est décroissante sur l’intervalle $[-0,02 ; 0,02]$.

$\quad$

Correction Question 4

La fonction $g$ est dérivable sur $\R$ en tant que fonction polynôme.
Pour tout réel $x$ on a $g'(x)=3x^2-0,0012$.
$g'(x)\pp 0 \ssi 3x^2-0,0012\pp 0 \ssi x^2\pp 0,0004 \ssi x\in[-0,02;0,02]$

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

a. L’équation $\left(\e^x\right)^2$ admet deux solutions dans $\R$.
b. L’ensemble de définition de la fonction exponentielle est $]0;+\infty[$.
c. La fonction dérivée de la fonction $x\mapsto \e^{-x}$ est la fonction $x\mapsto \e^{-x}$.
d. L’ensemble de définition de la fonction exponentielle est $\R$.

$\quad$

Correction Question 5

La fonction exponentielle est définie sur $\R$.

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence