E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point

Question 1

La courbe ci-contre $C_f$ est la représentation graphique, dans un repère orthonormé, d’une fonction $f$. Les droites $d$ et $d’$ sont respectivement les tangentes à la courbe $C_f$ aux points d’abscisses $1$ et $2$.
Les équations réduites de $d$ et $d’$ sont respectivement :
$d : y = 2x-2$ et $d’ : y = -x+ 2$.

Parmi les propositions suivantes, laquelle est juste?

a. $f'(1)=0$
b. $f'(2)=2$
c. $f'(2)=-1$
d. $f'(1)=-2$

$\quad$

Correction Question 1

$f'(1)$ est le coefficient directeur de la droite $d$ et $f'(2)$ est le coefficient directeur de la droite $d’$.
Ainsi $f(1)=2$ et $f'(2)=-1$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Soit $x\in \left[\dfrac{\pi}{2};\dfrac{3\pi}{2}\right]$ tel que $\sin x=\dfrac{1}{2}$.
Parmi les propositions suivantes, laquelle est juste?

a. $\cos x=-\dfrac{\sqrt{3}}{2}$
b. $x=\dfrac{\pi}{6}$
c. $\cos x=\dfrac{\sqrt{3}}{2}$
d. $x=-\dfrac{7\pi}{6}$

$\quad$

Correction Question 2

$x\in \left[\dfrac{\pi}{2};\dfrac{3\pi}{2}\right]$ ce qui exclut les propositions b. et d.
Cela implique également que $\cos x<0$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

Soit $(O, I, J)$ un repère orthonormé du plan.
Soit $A$ et $B$ deux points de coordonnées respectives $(3 ; 4)$ et $(4 ; 0)$.

Parmi les propositions suivantes, laquelle est juste?

a. $\vect{OA}.\vect{OB}=20$
b. $\sin\left(\widehat{AOB}\right)=\dfrac{\sqrt{17}}{5}$
c. $\cos\left(\widehat{AOB}\right)=\dfrac{4}{5}$
d. $\sin\left(\widehat{AOB}\right)=\dfrac{4}{5}$

$\quad$

Correction Question 3

$\widehat{AOB}=\widehat{AOH}$

Dans le triangle $AOH$, rectangle en $H$ on a :
$\begin{align*} \sin \widehat{AOB}&=\dfrac{AH}{OA}\\
&=\dfrac{4}{5}\end{align*}$

Réponse D

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $(O, I, J)$ un repère orthonormé du plan.
Soit $d$ une droite dont une équation cartésienne est : $3x + 2y-10 = 0$.
Une équation cartésienne de la droite $d’$ perpendiculaire à la droite $d$ et passant par le point $A$ de coordonnées $(1 ; 2)$ est :

a. $3x+2y-7=0$
b. $2x+3y-8=0$
c. $2x-3y+4=0$
d. $3x-2y+1=0$

$\quad$

Correction Question 4

Un vecteur directeur de la droite $d$ est $\vec{u}\begin{pmatrix}-2\\3\end{pmatrix}$.
C’est donc un vecteur normal à la droite $d’$. Une équation cartésienne de la droite $d’$ est alors $-2x+3y+c=0$.
Le point $A(1;2)$ appartient à la droite $d’$.
Par conséquent $-2+6+c=0 \ssi c=-4$.
Une équation cartésienne de la droite $d’$ est alors $-2x+3y-4=0$ ou encore $2x-3y+4=0$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

Soit $(O, I, J)$ un repère orthonormé du plan.
Soit $A$ et $B$ deux points de coordonnées respectives $(1 ; 2)$ et $(5 ;-2)$.
Une équation cartésienne du cercle $C$ de diamètre $[AB]$ est :

a. $x^2+y^2-8x-2y+7=0$
b. $(x-1)^2+(y-2)^2=32$
c. $x^2+y^2-4x+2y-5=0$
d. $x^2+y^2-6x+1=0$

$\quad$

Correction Question 5

Le diamètre du cercle $C$ est :
$\begin{align*} AB&=\sqrt{(5-1)^2+(-2-2)^2}\\
&=\sqrt{16+16}\\
&=\sqrt{32}\end{align*}$

Le rayon du cercle $C$ est :
$\begin{align*} R&=\dfrac{AB}{2} \\
&=\sqrt{8}\end{align*}$

Le centre du cercle $C$ est le milieu $M$ du segment $[AB]$.
$M$ a donc pour coordonnées $\left(\dfrac{1+5}{2};\dfrac{2+(-2)}{2}\right)$ soit $(3;0)$.

Une équation cartésienne du cercle $C$ est par conséquent :
$\begin{align*} &(x-3)^2+(y-0)^2=8 \\
\ssi~& x^2-6x+9+y^2-8=0\\
\ssi~&x^2-6x+y^2+1=0\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence