E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Camille et Dominique ont été embauchés au même moment dans une entreprise et ont négocié leur contrat à des conditions différentes :

  • Camille a commencé en 2010 avec un salaire annuel de $14~400$ €, alors que le salaire de Dominique était, cette même année, de $13~200$ €.
  • Le salaire de Camille augmente de $600$ € par an alors que celui de Dominique augmente de $4 \%$ par an.
  1. Quels étaient les salaires annuels de Camille et de Dominique en 2012 ?
    $\quad$
  2. On modélise les salaires de Camille et de Dominique à l’aide de suites.
    a. On note $u_n$ le salaire de Camille en l’année 2010 $+n$. On a donc $u_0 = 14~400$.
    Quelle est la nature de la suite $\left(u_n\right)$ ?
    $\quad$
    b. Déterminer en quelle année le salaire de Camille dépassera $20~000$ €.
    $\quad$
    c. On note $v_n$ le salaire de Dominique en l’année 2010$+n$.
    Exprimer $v_{n+1}$ en fonction de $v_n$.
    $\quad$
    d. Calculer le salaire de Dominique en 2020. On arrondira le résultat à l’euro.
    $\quad$
  3. On veut déterminer à partir de quelle année le salaire de Dominique dépassera celui de Camille. Pour cela, on dispose du programme incomplet ci-dessous écrit en langage Python.
    Recopier et compléter les quatre parties en pointillé du programme ci-dessous :
    $$\begin{array}{|l|}
    \hline
    \text{def algo( ) :}\\
    \hspace{1cm}\text{A=14400}\\
    \hspace{1cm}\text{B=13200}\\
    \hspace{1cm}\text{n=0}\\
    \hspace{1cm}\text{while $\ldots\ldots\ldots$:}\\
    \hspace{2cm}\text{A=$\ldots\ldots\ldots$}\\
    \hspace{2cm}\text{B=$\ldots\ldots\ldots$}\\
    \hspace{2cm}\text{n=$\ldots\ldots\ldots$}\\
    \hspace{1cm}\text{return(n)}\\
    \hline
    \end{array}$$
    $\quad$

$\quad$

Correction Exercice

  1. Salaires en 2011
    Camille : $14~400+600=15~000$ €
    Dominique : $13~200\times \left(1+\dfrac{4}{100}\right)=13~728$ €
    Salaires en 2012
    Camille : $15~000+600=15~600$ €
    Dominique : $13~728\times \left(1+\dfrac{4}{100}\right)=14~277,12$ €
    $\quad$
  2. a. Pour tout entier naturel $n$ on a : $u_{n+1}=u_n+600$.
    La suite $\left(u_n\right)$ est donc arithmétique de raison $600$ et de premier terme $u_0=14~400$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$ on a $u_n=14~400+600n$.
    On veut donc résoudre dans $\N$:
    $\begin{align*} u_n>20~000 &\ssi 14~400+600n>20~000 \\
    &\ssi 600n>5~600 \\
    &\ssi n>\dfrac{28}{3}\end{align*}$
    Or $\dfrac{28}{3}\approx 9,3$.
    Par conséquent $n\pg 10$.
    C’est donc à partir de l’année $2020$ que le salaire de Camille dépassera $20~000$ €.
    $\quad$
    c.  Pour tout entier naturel $n$ on a :
    $\begin{align*} v_{n+1}&=v_n\times \left(1+\dfrac{4}{100}\right)\\
    &=1,04v_n\end{align*}$
    $\quad$
    d. La suite $\left(v_n\right)$ est donc géométrique de raison $1,04$ et de premier terme $v_0=13~200$.
    Ainsi, pour tout entier naturel $n$, on a $v_n=13~200\times 1,04^n$.
    On a :
    $\begin{align*} v_{10}&=13~200\times 1,04^{10} \\
    &\approx 19~539\end{align*}$
    Le salaire annuel de Dominique en 2020 sera environ égal à $19~539$ €.
    $\quad$
  3. On obtient le programme suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def algo( ) :}\\
    \hspace{1cm}\text{A=14400}\\
    \hspace{1cm}\text{B=13200}\\
    \hspace{1cm}\text{n=0}\\
    \hspace{1cm}\text{while A>=B:}\\
    \hspace{2cm}\text{A= A+600}\\
    \hspace{2cm}\text{B= B*1.04}\\
    \hspace{2cm}\text{n= n+1}\\
    \hspace{1cm}\text{return(n)}\\
    \hline
    \end{array}$$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence