E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

En 2012, un artisan batelier a transporté $300$ tonnes de marchandises sur sa péniche.
Il augmente sa cargaison chaque année de $11 \%$ par rapport à l’année précédente.

On modélise alors la quantité en tonnes de marchandises transportées par l’artisan batelier par une suite $\left(u_n\right)$ où pour tout entier naturel $n$, $u_n$ est la quantité en tonnes de marchandises transportées en (2012 $+n$). Ainsi $u_0 = 300$.

  1. a. Donner la nature de la suite $\left(u_n\right)$ et préciser sa raison.
    $\quad$
    b. Pour tout entier naturel $n$, exprimer $u_n$ en fonction de $n$.
    $\quad$
  2. Le batelier décide qu’à partir de $1~000$ tonnes transportées dans l’année, il achètera une péniche plus grande.
    a. Recopier et compléter l’algorithme suivant, écrit en langage Python, afin de déterminer en quelle année il devra changer de péniche :$$\begin{array}{|l|}
    \hline
    \text{u=300}\\
    \text{n=0}\\
    \text{while $\ldots$ :}\\
    \hspace{1cm}\text{u=$\ldots$}\hspace{1cm}\\
    \hspace{1cm}\text{n=n+1}\\
    \hline
    \end{array}$$
    $\quad$
    b. En quelle année changera-t-il de péniche ?
    $\quad$
  3. Une tonne transportée est payée au batelier $15$ €.
    La proposition : « Le chiffre d’affaires total entre 2012 et 2019 de l’artisan batelier sera supérieur à $70~000$ € » est-elle vraie ? Justifier la réponse.
    $\quad$

$\quad$

Correction Exercice

  1. a. Pour tout entier naturel $n$ on a :
    $\begin{align*} u_{n+1}&=\left(1+\dfrac{11}{100}\right) u_n\\
    &=1,1u_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,1$ et de premier terme $u_0=300$.
    $\quad$
    b. Par conséquent, pour tout entier naturel $n$, on a $u_n=300\times 1,1^n$.
    $\quad$
  2. a. On obtient le programme suivant :
    $$\begin{array}{|l|}
    \hline
    \text{u=300}\\
    \text{n=0}\\
    \text{while u<1000 :}\\
    \hspace{1cm}\text{u=u*1.1}\hspace{1cm}\\
    \hspace{1cm}\text{n=n+1}\\
    \hline
    \end{array}$$
    $\quad$
    b. $1,1>1$ et $u_0>0$.
    La suite $\left(u_n\right)$ est donc strictement croissante.
    On a
    $\begin{align*} u_{12}&=300\times 1,1^{12} \\
    &\approx 942\\
    &<1~000\end{align*}$ $\quad$ et $\quad$ $\begin{align*} u_{13}&=300\times 1.1^{13}\\
    &\approx 1~036\\
    &>1~000\end{align*}$
    Par conséquent, le batelier changera de péniche en 2025.
    $\quad$
  3. Le chiffre d’affaires total entre 2012 et 2019 est :
    $\begin{align*} C&=15\left(u_0+u_1+\ldots+u_7\right)\\
    &=15\times 300\times \dfrac{1-1,1^{8}}{1-1,1}\\
    &\approx 51~461\\
    &<70~000\end{align*}$
    La proposition est donc fausse.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence