E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Une balle en caoutchouc est lâchée sans vitesse initiale d’une hauteur de $2$ mètres au-dessus du sol.
Le choc n’étant pas parfaitement élastique, la balle rebondit jusqu’à une hauteur de $1,60$ mètre et continue à rebondir, en atteignant après chaque rebond une hauteur égale au $\dfrac{4}{5}$ de la hauteur du rebond précédent.

On modélise les hauteurs atteintes par la balle par une suite $\left(h_n\right)$ où pour tout entier naturel $n$, $h_n$ est la hauteur, exprimée en mètres, atteinte par la balle au $n$-ième rebond. On a alors $h_0=2$.

  1. a. Donner $h_1$ et $h_2$ .
    $\quad$
    b. Pour tout entier naturel $n$, exprimer $h_{n+1}$ en fonction de $h_n$.
    $\quad$
    c. En déduire la nature de la suite $\left(h_n\right)$. On précisera sa raison et son premier terme.
    $\quad$
    d. Déterminer le sens de variation de la suite $\left(h_n\right)$.
    $\quad$
  2. Déterminer le nombre minimal $N$ de rebonds à partir duquel la hauteur atteinte par la balle est inférieure à $20$ cm. Expliquer la démarche employée.
    $\quad$

$\quad$

Correction Exercice

  1. a. On a :
    $\begin{align*} h_1&=\dfrac{4}{5}u_0 \\
    &=0,8\times 2\\
    &=1,6\end{align*}$ $\quad$ et $\quad$ $\begin{align*} h_2&=\dfrac{4}{5}u_1 \\
    &=0,8\times 1,6\\
    &=1,28\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ on a $h_{n+1}=0,8h_n$.
    $\quad$
    c. La suite $\left(h_n\right)$ est donc géométrique de raison $0,8$ et de premier terme $u_0=2$.
    $\quad$
    d. On a $0<0,8<1$ et $u_0>0$.
    La suite $\left(h_n\right)$ est donc décroissante.
    $\quad$
  2. On veut déterminer le plus petit entier naturel $n$ tel que $u_n<0,2$.
    D’après la question précédente, la suite $\left(h_n\right)$ est donc décroissante.
    On a $u_{10}\approx 0,21$ et $u_{11}\approx 0,17$.
    Il faut donc au minimum $11$ rebonds pour que la hauteur atteinte par la balle soit inférieure à $20$ cm.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence