E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

La population d’une ville A augmente chaque année de $2\%$. La ville A avait $4~600$ habitants en 2010.
La population d’une ville B augmente de $110$ habitants par année. La ville B avait $5~100$ habitants en 2010.

Pour tout entier $n$, on note $u_n$ le nombre d’habitants de la ville A et $v_n$ le nombre d’habitants de la ville B à la fin de l’année 2010 $+n$.

  1. Calculer le nombre d’habitants de la ville A et le nombre d’habitants de la ville B à la fin de l’année 2011.
    $\quad$
  2. Quelle est la nature des suites $\left(u_n\right)$ et $\left(v_n\right)$ ?
    $\quad$
  3. Donner l’expression de $u_n$ en fonction de $n$, pour tout entier naturel $n$ et calculer le nombre d’habitants de la ville A en 2020.
    $\quad$
  4. Donner l’expression de $v_n$ en fonction de $n$, pour tout entier naturel $n$ et calculer le nombre d’habitants de la ville B en 2020.
    $\quad$
  5. Reproduire et compléter sur la copie l’algorithme ci-dessous qui permet de déterminer au bout de combien d’années la population de la ville A dépasse celle de la ville B.
    $$\begin{array}{l}
    \text{def année ():}\\
    \hspace{0.5cm}\text{u=4600}\\
    \hspace{0.5cm}\text{v=5100}\\
    \hspace{0.5cm}\text{n=0}\\
    \hspace{0.5cm}\text{while $\ldots$:}\\
    \hspace{1cm}\text{u=$\ldots$}\\
    \hspace{1cm}\text{v=$\ldots$}\\
    \hspace{1cm}\text{n=$\ldots$}\\
    \hspace{0.5cm}\text{return n}
    \end{array}$$
    $\quad$

$\quad$

Correction Exercice

  1. En 2011, le nombre d’habitants de la ville A est :
    $\begin{align*} u_1&=\left(1+\dfrac{2}{100}\right)u_0\\
    &=1,02\times 4~600\\
    &=4~692\end{align*}$
    et celui de la ville B est :
    $\begin{align*} v_1&=v_0+110\\
    &=5~100+110\\
    &=5~210\end{align*}$
    $\quad$
  2. Pour tout entier naturel $n$ on a :
    $\begin{align*} u_{n+1}&=\left(1+\dfrac{2}{100}\right)u_n\\
    &=1,02u_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,02$ et de premier terme $u_0=4~600$.
    $v_{n+1}=v_n+110$
    La suite $\left(v_n\right)$ est donc arithmétique de raison $110$ et de premier terme $v_0=5~100$.
    $\quad$
  3. Ainsi, pour tout entier naturel $n$ on a $u_n=4~600\times 1,02^n$
    En 2020, on a $n=10$
    $u_{10}=4~600\times 1,02^{10} \approx 5~607$.
    En 2020, la ville A compte $5~607$ habitants.
    $\quad$
  4. Pour tout entier naturel $n$ on a $v_n=5~100+110n$
    $v_{10}=5~100+110\times 10=6~200$
    En 2020, la ville B compte $6~200$ habitants.
    $\quad$
  5. On obtient l’algorithme suivant :
    $$\begin{array}{l}
    \text{def année ():}\\
    \hspace{0.5cm}\text{u=4600}\\
    \hspace{0.5cm}\text{v=5100}\\
    \hspace{0.5cm}\text{n=0}\\
    \hspace{0.5cm}\text{while u<=v :}\\
    \hspace{1cm}\text{u=1.02*u}\\
    \hspace{1cm}\text{v=v+110}\\
    \hspace{1cm}\text{n=n+1}\\
    \hspace{0.5cm}\text{return n}
    \end{array}$$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence