E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Un complexe cinématographique a ouvert ses portes en 2018 en périphérie d’une ville.
En 2018, le complexe a accueilli $180$ mille spectateurs. La gestionnaire du complexe prévoit une augmentation de $4 \%$ par an de la fréquentation du complexe.

Soit $n$ un entier naturel. On note $u_n$ le nombre de spectateurs, en milliers, du complexe cinématographique pour l’année (2018 $+n$). On a donc $u_0 = 180$.

  1. Étude de la suite $\left(u_n\right)$.
    a. Calculer le nombre de spectateurs en 2019.
    $\quad$
    b. Justifier que la suite $\left(u_n\right)$ est géométrique. Préciser sa raison.
    $\quad$
    c. Exprimer $u_n$ en fonction de $n$, pour tout entier naturel $n$.
    $\quad$
  2. Un cinéma était déjà installé au centre-ville.
    En 2018, il a accueilli $260~000$ spectateurs. Avec l’ouverture du complexe, le cinéma du centre-ville prévoit de perdre $10~000$ spectateurs par an.
    Pour $n$, entier naturel, on note $v_n$ le nombre de spectateurs, en milliers, accueillis dans le
    cinéma du centre-ville l’année (2018 $+n$). On a donc $v_0 = 260$.
    a. Quelle est la nature de la suite $\left(v_n\right)$ ?
    $\quad$
    b. On donne le programme ci-dessous, écrit en Python.
    $$\begin{array}{|l|}
    \hline
    \text{def cinema() :}\\
    \hspace{1cm}\text{n = 0}\\
    \hspace{1cm}\text{u = 180}\\
    \hspace{1cm}\text{v = 260}\\
    \hspace{1cm}\text{while u < v :}\\
    \hspace{2cm}\text{n = n + 1}\\
    \hspace{2cm}\text{u = 1.04*u}\\
    \hspace{2cm}\text{v = v – 10}\\
    \hspace{1cm}\text{return n}\\
    \hline
    \end{array}$$
    Quelle est la valeur renvoyée lors de l’exécution de la fonction $\text{cinema()}$ ?
    L’interpréter dans le contexte de l’exercice.
    $\quad$

$\quad$

Correction Exercice

  1. a. On a :
    $\begin{align*} u_1&=\left(1+\dfrac{4}{100}\right)u_0\\
    &=1,04\times 180\\
    &=187,2\end{align*}$
    En 2019 le cinéma a accueilli $187~200$ spectateurs.
    $\quad$
    b. Pour tout entier naturel $n$ on a :
    $\begin{align*} u_{n+1}&=\left(1+\dfrac{4}{100}\right)u_n\\
    &=1,04u_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,04$ et de premier terme $u_0=180$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $u_n=180\times 1,04^n$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on a $v_{n+1}=v_n-10$.
    La suite $\left(v_n\right)$ est donc arithmétique de raison $10$ et de premier terme $v_0=260$.
    $\quad$
    b. La fonction $\text{cinema()}$ détermine le plus petite entier naturel $n$ tel que $u_n \pg v_n$.
    Voici les premières valeurs prises, arrondies au millième si nécessaire, par les termes des deux suites.
    $\begin{array}{|c|c|c|c|c|c|c|}
    \hline
    n& 0& 1& 2& 3& 4& 5\\
    \hline
    u_n& 180& 187,2& 194,688& 202,476& 210,575& 218,998\\
    \hline
    ~~v_n~~& ~~~~260~~~~& ~~~~250~~~~& ~~240~~& ~~230~~& ~~220~~& ~~210~~\\
    \hline
    \end{array}$
    La fonction $\text{cinema()}$  renvoie donc la valeur $5$.
    Cela signifie que c’est au bout de $5$ ans que la fréquentation du complexe sera supérieure pour la première fois à celle du cinéma de centre-ville.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence