E3C2-Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

On considère les deux suites suivantes :

  •  la suite $\left(u_n\right)$ définie pour tout entier $n$ par : $$u_n=\dfrac{8n-4}{n+1}$$
  • la suite $\left(v_n\right)$ définie par $v_0=0$ et $v_{n+1}=0,5v_n+3,5$ pour tout entier $n$.
  1. Calculer les termes d’indice 3 des suites $\left(u_n\right)$ et $\left(v_n\right)$.
    $\quad$
  2. On s’intéresse aux variations de la suite $\left(u_n\right)$.
    Pour cela, on considère la fonction $f$ définie sur $[0; +\infty[$ par : $$f(x)=\dfrac{8x-4}{x+1}$$
    a. Démontrer que la fonction $f$ est croissante sur $[0; +\infty[$.
    $\quad$
    b. En déduire la monotonie de la suite $\left(u_n\right)$.
    $\quad$
  3. On considère l’affirmation suivante :
    $\hspace{3cm}$« pour tout entier $n$, $u_n<v_n$ ».
    Camille pense que cette affirmation est vraie alors que Dominique pense le contraire.
    Pour les départager, on réalise le programme suivant écrit en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def algo( ) :}\\
    \hspace{1cm}\text{n = 0}\\
    \hspace{1cm}\text{u = – 4}\\
    \hspace{1cm}\text{v = 0}\\
    \hspace{1cm}\text{while u < v :}\\
    \hspace{2cm}\text{n = n+1}\\
    \hspace{2cm}\text{u = (8*n – 4)/(n+1)}\hspace{2cm}\\
    \hspace{2cm}\text{v = 0.5*v + 3.5}\\
    \hspace{1cm}\text{return(n)}\\
    \hline
    \end{array}$$
    Le programme renvoie la valeur $11$. Qui de Camille ou Dominique a raison ?
    Expliquer.
    $\quad$

$\quad$


$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} u_3&=\dfrac{8\times 3-4}{3+1} \\
    &=5\end{align*}$
    $\begin{align*} v_1&=0,5v_0+3,5\\
    &=0,5\times 0+3,5\\
    &=3,5\end{align*}$
    $\begin{align*} v_2&=0,5v_1+3,5\\
    &=0,5\times 3,5+3,5\\
    &=5,25\end{align*}$
    $\begin{align*} v_3&=0,5v_2+3,5\\
    &=0,5\times 5,25+3,5\\
    &=6,125\end{align*}$
    $\quad$
  2. a. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=\dfrac{8\times(x+1)-1\times(8x-4)}{(x+1)^2} \\
    &=\dfrac{8x+8-8x+4}{(x+1)^2} \\
    &=\dfrac{12}{(x+1)^2}\end{align*}$
    $(x+1)^2>0$ sur l’intervalle $[0;+\infty[$.
    Par conséquent $f'(x)>0$ sur l’intervalle $[0;+\infty[$.
    La fonction $f$ est donc strictement croissante sur l’intervalle $[0;+\infty[$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $0\pp n<n+1$
    La fonction $f$ est strictement croissante sur l’intervalle $[0;+\infty[$.
    Donc $f(n)<f(n+1)$.
    Or $u_n=f(n)$ et $u_{n+1}=f(n+1)$.
    Par conséquent $u_n<u_{n+1}$
    La suite $\left(u_n\right)$ est donc croissante.
    $\quad$
  3. L’algorithme détermine le plus petit entier naturel $n$, s’il existe, tel que $u_n>v_n$.
    On a donc $u_{11}>v_{11}$.
    Dominique a donc raison.
    $\quad$
    Remarque : Si un programme de ce type ne renvoie pas de réponse au bout d’un certain temps on ne peut rien conclure mais seulement émettre une conjecture, qui n’est pas une preuve. Il se peut, en effet, que le rang cherché soit excessivement grand et que nous ne soyons pas suffisamment patient.
    $\quad$

[collapse]

Les sujets proviennent de la banque nationale de sujets sous licence