solution-E3C2 – Spécialité maths – Vrai Faux – 2020

Vrai / Faux

E3C2 – 1ère

Pour chacune des cinq affirmations suivantes, dire si elle est vraie ou fausse. Chaque réponse devra être justifiée.
Toute démarche de justification même non aboutie sera prise en compte.

  1. Dans le plan muni d’un repère orthonormé, on donne les points :
    $$𝐴(2 ; -2) , \quad B(4 ; 0) ,\quad C(0 ; −5) ,\quad D(-7 ; 1)$$
    Affirmation 1 : Les droites $(AB)$ et $(CD)$ sont perpendiculaires.
    $\quad$
    Affirmation 2 : Une équation de la droite perpendiculaire à $(AB)$ passant par $C$ est : $$y = x- 5$$
    $\quad$
    Affirmation 3 : Une équation du cercle de centre $A$ passant par $B$ est : $$(x-2)^2+(y+2)^2=8$$
    $\quad$
  2. Soit $f$ la fonction définie pour tout $x\in]0;+\infty[$ par : $$f(x)=\dfrac{\e^x}{x}$$ On note $f’$ sa fonction dérivée.
    Affirmation 4 : $f'(1)=0$
    $\quad$
  3. On donne $\cos\left(\dfrac{2\pi}{5}\right)=\dfrac{-1+\sqrt{5}}{4}$
    Affirmation 5 : $\sin\left(\dfrac{2\pi}{5}\right)<0$
    $\quad$

$\quad$

Correction Exercice

Affirmation 1 fausse

On a $\vect{AB}\begin{pmatrix}2\\2\end{pmatrix}$ et $\vect{CD}\begin{pmatrix}-7\\6\end{pmatrix}$
Ainsi :
$\begin{align*} \vect{AB}.\vect{CD}&=2\times (-7)+2\times 6\\
&=-2\\
&\neq 0\end{align*}$
Les vecteurs ne sont pas orthogonaux. Les droites $(AB)$ et $(CD)$ ne sont pas perpendiculaires.

$\quad$

Affirmation 2 fausse

On appelle $d$ la droite perpendiculaire à $(AB)$ passant par $C$
$\vect{AB}$ est un vecteur normal à droite $d$.
Une équation cartésienne de $d$ est donc de la forme $2x+2y+c=0$.
$C(0;-5)$ appartient à $d$ donc $0-10+c=0 \ssi c=10$.
Une équation cartésienne de $d$ est donc $2x+2y+10=0$ ou encore $x+y+5=0$
Par conséquent $y=-5-x$

$\quad$

Affirmation 3 vraie

$AB$ est un rayon de ce cercle. On a $\vect{AB}\begin{pmatrix}2\\2\end{pmatrix}$.
$\begin{align*} AB^2&=2^2+2^2\\
&=8\end{align*}$
Une équation du cercle de centre $A$ passant par $B$ est donc :
$(x-2)^2+\left(y-(-2)\right)^2=8$ soit $(x-2)^2+(y+2)^2=8$.

$\quad$

Affirmation 4 vraie

$f$ est dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]0;+\infty[$.
Pour tout réel $x>0$ on a :
$\begin{align*} f'(x)&=\dfrac{\e^x\times x-\e^x\times 1}{x^2} \\
&=\dfrac{(x-1)\e^x}{x^2}\end{align*}$
Par conséquent $f'(1)=0$

$\quad$

Affirmation 5 fausse

$\dfrac{2\pi}{5}\in ]0;\pi[$ donc $\sin\left(\dfrac{2\pi}{5}\right)>0$

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence