E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

On considère les points $E(3 ; −4)$ et $F(7 ; 2)$.
La droite $(EF)$ passe par le point :

a. $A(0;8)$
b. $B(5,5;0)$
c. $C(13;11)$
d. $D(-25;45)$

$\quad$

Correction Question 1

On a $\vect{EF}\begin{pmatrix}4\\6\end{pmatrix}$
On va déterminer les coordonnées des vecteurs $\vect{EA}$, $\vect{EB}$, $\vect{EC}$ et $\vect{ED}$ et tester leur colinéarité avec le vecteur $\vect{EF}$.

$\vect{EA}\begin{pmatrix}-3\\12\end{pmatrix}$ ,  $\vect{EB}\begin{pmatrix}2,5\\4\end{pmatrix}$ ,  $\vect{EC}\begin{pmatrix}10\\15\end{pmatrix}$ ,  $\vect{ED}\begin{pmatrix}-28\\49\end{pmatrix}$

On constate que $10\times 6-4\times 45=0$. Donc $\vect{EC}$ et $\vect{EF}$ sont colinéaires. Le point $C$ appartient à la droite $(EF)$.

Réponse C

$\quad$

[collapse]

$\quad$

Question 2

On considère la droite $D$ qui a pour équation réduite $y=-2x+4$
Parmi les vecteurs suivants, déterminer celui qui est un vecteur normal de la droite $D$ :

a. $\vec{n_1}(2;1)$
b. $\vec{n_2}(-1;2)$
c. $\vec{n_3}(1;-2)$
d. $\vec{n_4}(-2;1)$

$\quad$

Correction Question 2

Une équation cartésienne de la droite $d$ est donc $2x+y-4=0$.
Un vecteur normal à cette droite est par conséquent $\vec{n}(2;1)$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3
Soit $ABCD$ un carré de côté $6$ et $I$ le milieu de $[BC]$. Alors le produit scalaire $\vect{AD};\vect{AI}$ vaut :

a. $-18$
b. $18$
c. $36$
d. $9\sqrt{5}$

$\quad$

Correction Question 3

On appelle $J$ le projeté orthogonal du point $I$ sur la droite $(AD)$. $J$ est alors le milieu du segment $[AD]$.
Ainsi $\vect{AD}.\vect{AI}=\vect{AD}.\vect{AJ}$.
Les vecteurs $\vect{AD}$ et $\vect{AJ}$ sont colinéaires et de même sens.
Ainsi
$\begin{align*} \vect{AD}.\vect{AI}&=\vect{AD}.\vect{AJ} \\
&=AD\times AJ \\
&=6\times 3\\
&=18\end{align*}$

Autre méthode

$\begin{align*} \vect{AD}.\vect{AI}&=\vect{AD}.\left(\vect{AB}+\vect{BI}\right)\\
&=\vect{AD}.\vect{AB}+\vect{AD}.\vect{BI} \\
&=0+\dfrac{1}{2}\vect{AD}.\vect{BC}\\
&=\dfrac{1}{2}\times 6\times 6 \\
&=18\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Sur le cercle trigonométrique ci-dessous, le nombre $\dfrac{14\pi}{3}$ a pour image le point :

a. $E$
b. $F$
c. $G$
d. $H$

$\quad$

Correction Question 4

$\begin{align*} \dfrac{14\pi}{3}&=\dfrac{12+2\pi}{3} \\
&=\dfrac{12\pi}{3}+\dfrac{2\pi}{3}\\
&=4\pi+\dfrac{2\pi}{3} \\
&=2\times 2\pi+\dfrac{2\pi}{3}\end{align*}$
Le nombre $\dfrac{14\pi}{3}$ a donc pour image $F$

Autre méthode :

À l’aide de la calculatrice, on obtient :
$\cos \left(\dfrac{14\pi}{3}\right)=-\dfrac{1}{2}$ et $\sin \left(\dfrac{14\pi}{3}\right)=\dfrac{\sqrt{3}}{2}$. L’image de $\dfrac{14\pi}{3}$ appartient donc au quadrant supérieur gauche; c’est le point $F$.

Réponse F

$\quad$

[collapse]

$\quad$

Soit le réel $x$ appartenant à l’intervalle $\left[\dfrac{\pi}{2};\pi\right]$ tel que $\sin x=0,8$. Alors :

a. $\cos(x)=0,6$
b. $\cos(x)=-0,6$
c. $\cos(x)=0,2$
d. $\cos(x)=-0,2$

$\quad$

Correction Question 5

Pour tout réel $x$ on a $\cos^2(x)+\sin^2(x)=1$
Ainsi
$\begin{align*} &\cos^2(x)+\sin^2(x)=1 \\
\ssi~&\cos^2(x)+0,8^2=1 \\
\ssi~&\cos^2(x)+0,64=1\\
\ssi~&\cos^2(x)=0,36\\
\ssi~&\cos(x)=0,6 \text{ ou }\cos(x)=-0,6\end{align*}$
On sait que $x$ appartient à l’intervalle $\left[\dfrac{\pi}{2};\pi\right]$. Donc $\cos(x)<0$.
Par conséquent $\cos(x)=-0,6$.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence