Bac – Spécialité mathématiques – Métropole – sujet 2 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(S\cap I)&=p(S)\times p_S(I) \\
    &=0,08\times 0,9\\
    &=0,072\end{align*}$
    La probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. $\left(S,\conj{S}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(I)&=p(S)p_S(I)+p\left(\conj{S}\right)p_{\conj{S}}(I) \\
    &=0,08\times 0,9+0,92\times 0,01 \\
    &=0,0812\end{align*}$
    La probabilité que le message soit classé indésirable est $0,0812$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} p_I(S)&=\dfrac{p(S)\times p_S(I)}{p(I)} \\
    &=\dfrac{0,08\times 0,9}{0,0812} \\
    &\approx 0,89\end{align*}$
    La probabilité que le message soit du spam sachant qu’il est classé comme indésirable est environ égale à $0,89$.
    $\quad$
  3. a. On effectue $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $S$ et $\conj{S}$.
    Ainsi $Z$ suit la loi binomiale de paramètres $n=50$ et $p=0,08$.
    $\quad$
    b. On a :
    $\begin{align*} p(Z\pg 2)&=1-p(Z=0)-p(Z=1) \\
    &=1-0,92^{50}-\dbinom{50}{1}0,08\times 0,92^{49} \\
    &=1-0,92^{50}-50\times 0,08\times 0,92^{49} \\
    &\approx 0,92\end{align*}$
    La probabilité qu’au moins deux courriels choisis soient du spam est environ égale à $0,92$.
    $\quad$

 

Ex 2

Exercice 2 (5 points)

  1. Si $t=-2$ on obtient alors $\begin{cases} x=-3\\y=-4\\z=6\end{cases}$
    Le point $N(-3;-4;6)$ appartient donc à la droite $\Delta$.
    Réponse B
    $\quad$
  2. $\vect{AB}$ a pour coordonnées $\begin{pmatrix} 2-1\\1-0\\0-2\end{pmatrix}$ soit $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse C
    $\quad$
  3. La droite $(AB)$ passe par le point $B(2;1;0)$ et a pour vecteur directeur $\vect{AB}\begin{pmatrix} 1\\1\\-2\end{pmatrix}$ mais également le vecteur $-\vect{AB}\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Ainsi, une représentation paramétrique de $(AB)$ est $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases}\quad, t\in \R$.
    Réponse B
    $\quad$
  4. Un vecteur directeur de $\Delta$ est $\vec{n}\begin{pmatrix}2\\1\\-1\end{pmatrix}$
    Ainsi une équation cartésienne de ce plan est de la forme $2x+y-z+d=0$.
    Le point $C(0;1;2)$ appartient à ce plan.
    Donc $0+1-2+d=0 \ssi d=1$.
    Une équation cartésienne du plan est $2x+y-z+1=0$.
    Réponse B
    $\quad$
  5. On a
    $\begin{align*} \vect{AD}&=\vect{AO}+\vect{OD} \\
    &=\vect{AO}+3\vect{OA}-\vect{OB}-\vect{OC} \\
    &=2\vect{OA}-\vect{OB}-\vect{OC} \\
    &=\vect{BO}+\vect{OA}+\vect{CO}+\vect{OA} \\
    &=\vect{BA}+\vect{CA}\end{align*}$
    Ainsi les vecteurs $\vect{AD}$, $\vect{AB}$ et $\vect{AC}$ sont coplanaires.
    Réponse A
    $\quad$

 

 

Ex 3

Exercice 3 (6 points)

Partie 1

  1. $\lim\limits_{x\to -\infty} -2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to -\infty} -\e^{-2x}=-\infty$
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$
    $\lim\limits_{x\to +\infty} -2x=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to +\infty} -\e^{-2x}=0$
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. La fonction $f$ est dérivable sur $\R$ en tant que somme et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1-(-2)\e^{-2x} \\
    &=1+2\e^{-2x}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $\R$.
    On obtient le tableau de variation suivant :
    $\quad$

    $\quad$
  3. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\R$.
    De plus $\lim\limits_{x\to -\infty} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $\R$.
    D’après la calculatrice $\alpha \approx 0,43$.
    $\quad$
  4. La fonction $f$ est strictement croissante sur $\R$ et s’annule en $\alpha$.
    Donc :
    – $f(x)<0$ sur $]-\infty;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. a. La fonction $t\mapsto t^2+\e^{-2t}$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$. Cette fonction est de plus positive en tant que somme de fonctions positives.
    La fonction $h$ est donc dérivable sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} h'(t)&=\dfrac{2t-2\e^{-2t}}{2\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{t-\e^{-t}}{\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{f(t)}{\sqrt{t^2+\e^{-2t}}}\end{align*}$
    $\quad$
    b. $h'(x)$ a donc le même signe que $f(x)$ pour tout réel $x$.
    D’après la question I.4. on a donc :
    – $h'(x)<0$ sur $]-\infty;\alpha[$;
    – $h'(\alpha)=0$;
    – $h(x)>0$ sur $]\alpha;+\infty[$.
    Ainsi $h$ admet un minimum en $\alpha$.
    Le point $A\left(\alpha,g(\alpha)\right)$, c’est-à-dire $A\left(\alpha,\e^{-\alpha}\right)$, est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    $\quad$
  2. a. Le coefficient directeur de la tangente $T$ est $g'(\alpha)=-\e^{-\alpha}$.
    $\quad$
    b. Le produit des deux coefficients directeurs est :
    $\begin{align*} -\e^{-\alpha}\times \dfrac{\e^{-\alpha}}{\alpha}&=-\dfrac{\e^{-2\alpha}}{\alpha} \\
    &=-\dfrac{\alpha}{\alpha} \quad \text{car }f(\alpha)=0 \ssi \e^{-2\alpha}=\alpha  \\
    &=-1\end{align*}$
    Les droites $(OA)$ et $T$ sont donc perpendiculaires.
    $\quad$

$\quad$

Ex A

Exercice A (5 points)

  1. On a $u_1=\dfrac{3\times 16+2\times 5}{5}=11,6$.
    et $v_1=\dfrac{16+5}{2}=10,5$
    $\quad$
  2. a. Soit $n\in \N$.
    $\begin{align*} w_{n+1}&=u_{n+1}-v_{n+1} \\
    &=\dfrac{3u_n+2v_n}{5}-\dfrac{u_n+v_n}{2} \\
    &=\dfrac{6u_n+4v_n-5u_n-5v_n}{10} \\
    &=\dfrac{u_n-v_n}{10} \\
    &=0,1 w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $0,1$ et de premier terme $w_0=u_0-v_0=11$.
    Ainsi, pour tout $n\in \N$ on a $w_n=11\times 0,1^n$.
    $\quad$
    b. Pour tout $n\in \N$ on a $w_n\pg 0$ en tant que produit de facteurs positifs.
    De plus $-1<0,1<1$ donc $\lim\limits_{n\to +\infty} w_n=0$.
    $\quad$
  3. a. Soit $n\in \N$. On a
    $\begin{align*} u_{n+1}-u_n&=\dfrac{3u_n+2v_n}{5}-u_n \\
    &=\dfrac{3u_n+2v_n-5u_n}{5} \\
    &=\dfrac{-2u_n+2v_n}{5} \\
    &=-\dfrac{2}{5} \times \left(u_n-v_n\right) \\
    &=-0,4w_n\end{align*}$
    $\quad$
    b. $w_n\pg 0$ et $u_{n+1}-u_n=-0,4w_n$ pour tout $n\in \N$.
    Ainsi $u_{n+1}-u_n \pp 0$ pour tout $n\in \N$.
    La suite $\left(u_n\right)$ est donc décroissante.
    On admet que la suite $\left(v_n\right)$ est croissante et on sait que $v_0=5$.
    Ainsi, pour tout $n\in \N$ on a $v_n\pg v_0$ soit $v_n\pg 5$.
    $\quad$
    c. Initialisation : On a $u_0=16$ donc $u_0\pg 5$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$.
    $\begin{align*} u_{n+1}&=\dfrac{3u_n+2v_n}{5} \\
    &\pg \dfrac{3\times 5+2\times 5}{5} \\
    &\pg 5\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout $n\in \N$ on a $u_n \pg 5$.
    $\quad$
    La suite $\left(u_n\right)$ est donc décroissante et minorée par $5$. Elle est par conséquent convergente.
    $\quad$
  4. a. Pour tout $n\in \N$ on a $w_n=u_n-v_n$ et $\lim\limits_{n\to +\infty} w_n=0$.
    Or $\lim\limits_{n\to +\infty} u_n-v_n=\ell-\ell’$
    Ainsi $\ell-\ell’=0 \ssi \ell=\ell’$.
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} c_{n+1}&=5u_{n+1}+4v_{n+1} \\
    &=3u_n+2v_n+2\left(u_n+v_n\right) \\
    &=3u_n+2v_n+2u_n+2v_n\\
    &=5u_n+4v_n\\
    &=c_n\end{align*}$
    La suite $\left(c_n\right)$ est donc constante.
    Or $c_0=5u_0+4v_0=100$.
    Ainsi, pour tout $n\in \N$ on a $c_n=100$.
    $\quad$
    c. Or $\lim\limits_{n\to +\infty} c_n=5\ell+4\ell’$ soit $\lim\limits_{n\to +\infty} c_n=9\ell$ puisque $\ell=\ell’$.
    Par conséquent $9\ell=100 \ssi \ell=\dfrac{100}{9}$.
    $\quad$

Remarque : On dit que les suites $\left(u_n\right)$ et $\left(v_n\right)$ sont adjacentes.

Ex B

Exercice B (5 points)

Partie 1

  1. $f(x)=0\ssi 2\ln(x)-1=0 \ssi \ln(x)=\dfrac{1}{2}\ssi x=\e^{1/2}$.
    Ainsi l’équation $f(x)=0$ possède une unique solution $\alpha=\e^{1/2}\approx 1,65$.
    $\quad$
  2. Graphiquement :
    – $f(x)<0$ sur $]0;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$
    $\quad$

Partie II

  1. a. Pour tout $x>0$ on a $g(x)=\ln(x)\left(\ln(x)-1\right)$
    Or $\lim\limits_{x\to 0^-} \ln(x)=-\infty$ donc $\lim\limits_{x\to 0^-} \ln(x)-1=-\infty$.
    Ainsi $\lim\limits_{x\to 0^-} g(x)=+\infty$.
    $\quad$
    b. $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} \ln(x)-1=+\infty$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    $\quad$
  2. La fonction $g$ est dérivable sur $]0;+\infty[$ comme produit et somme de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} g'(x)&=2\dfrac{1}{x}\times \ln(x)-\dfrac{1}{x} \\
    &=\dfrac{2\ln(x)-1}{x} \\
    &=f(x)\end{align*}$
    $\quad$
  3. On obtient le tableau de variations suivant :
    $\quad$

    On a en effet $\alpha=\e^{1/2}$ donc $g(\alpha)=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}$
    $\quad$
  4. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $]0;\alpha[$.
    De plus $\lim\limits_{x\to 0^+} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]0;\alpha[$.
    $\quad$
    La fonction $g$ est continue (car dérivable) et strictement croissante sur $]\alpha;+\infty[$.
    De plus $\lim\limits_{x\to +\infty} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]\alpha;+\infty[$.
    $\quad$
    De plus $g(\alpha)\neq m$.
    L’équation $g(x)=m$ possède donc exactement deux solutions sur $\R$ pour tout $m>-0,25$.
    $\quad$
    Autre méthode :
    $\begin{align*} g(x)=m &\ssi \left(\ln(x)\right)^2 – \ln(x)-m=0 \\
    &\ssi \begin{cases} X=\ln(x) \\ X^2-X-m=0\end{cases}\end{align*}$Le discriminant de $X^2-X-m$ est $\Delta = 1+4m$.
    Si $m>-0,25$ alors $\Delta>0$ et l’équation $X^2-X-m=0$ possède deux solutions réelles distinctes $\lambda$ et $\mu$.

    $\ln(x)=\lambda \ssi x=\e^{\lambda}$ et $\ln(x)=\mu \ssi x=\e^{\mu}$.

    L’équation $g(x)=m$ possède donc exactement deux solutions sur $\R$ pour tout $m>-0,25$.

    $\quad$

  5. $g(x)=0 \ssi \ln(x)\left(\ln(x)-1\right)=0 \ssi \ln(x)=0$ ou $\ln(x)=1$
    Ainsi $g(x)=0 \ssi x=1$ ou $x=\e$
    Les solutions de l’équation $g(x)=0$ sont donc $1$ et $\e$.
    $\quad$

 

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Une entreprise reçoit quotidiennement de nombreux courriels (courriers électroniques).
Parmi ces courriels, $8 \%$ sont du « spam », c’est-à-dire des courriers à intention publicitaire, voire malveillante, qu’il est souhaitable de ne pas ouvrir.
On choisit au hasard un courriel reçu par l’entreprise.
Les propriétés du logiciel de messagerie utilisé dans l’entreprise permettent d’affirmer que :

  • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que c’est un spam est égale à $0,9$.
    • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que ce n’est pas un spam est égale à $0,01$.

On note :

  • $S$ l’évènement « le courriel choisi est un spam »;
  • $I$ l’évènement « le courriel choisi est classé comme indésirable par le logiciel de messagerie ».
  • $\conj{S}$ et $\conj{I}$ les évènements contraires de $S$ et $I$ respectivement.
  1. Modéliser la situation étudiée par un arbre pondéré, sur lequel on fera apparaître les probabilités associées à chaque branche.
    $\quad$
  2. a. Démontrer que la probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. Calculer la probabilité que le message choisi soit classé indésirable.
    $\quad$
    c. Le message choisi est classé comme indésirable. Quelle est la probabilité que ce soit effectivement un message de spam ? On donnera un résultat arrondi au centième.
    $\quad$
  3. On choisit au hasard $50$ courriels parmi ceux reçus par l’entreprise. On admet que ce choix se ramène à un tirage au hasard avec remise de $50$ courriels parmi l’ensemble des courriels reçus par l’entreprise.
    On appelle $Z$ la variable aléatoire dénombrant les courriels de spam parmi les $50$ choisis.
    a. Quelle est la loi de probabilité suivie par la variable aléatoire $Z$, et quels sont ses paramètres ?
    $\quad$
    b. Quelle est la probabilité que, parmi les $50$ courriels choisis, deux au moins soient du spam ? On donnera un résultat arrondi au centième.
    $\quad$

$\quad$

Exercice 2     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points $A(1; 0; 2)$, $B(2; 1; 0)$, $C(0; 1; 2)$ et la droite $\Delta$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=-2+t\\z=4-t\end{cases} \quad,t\in \R$.

  1. Parmi les points suivants, lequel appartient à la droite $\Delta$?
    Réponse A : $M(2 ; 1 ; -1)$;
    Réponse B : $N(-3 ; -4 ; 6)$;
    Réponse C : $P(-3 ; -4 ; 2)$;
    Réponse D : $Q(-5 ; -5 ; 1)$.
    $\quad$
  2. Le vecteur $\vect{AB}$ admet pour coordonnées :
    Réponse A : $\begin{pmatrix} 1,5\\0,5\\1\end{pmatrix}$
    Réponse B : $\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Réponse C : $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse D : $\begin{pmatrix} 3\\1\\2\end{pmatrix}$
    $\quad$
  3. Une représentation paramétrique de la droite $(AB)$ est :
    Réponse A : $\begin{cases} x=1+2t\\y=t\\z=2\end{cases} \quad,t\in\R$
    Réponse B : $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases} \quad,t\in\R$
    Réponse C : $\begin{cases} x=2+t\\y=1+t\\z=2t\end{cases} \quad,t\in\R$
    Réponse D : $\begin{cases} x=1+t\\y=1+t\\z=2-2t\end{cases} \quad,t\in\R$
    $\quad$
  4. Une équation cartésienne du plan passant par le point $C$ et orthogonal à la droite $\Delta$ est :
    Réponse A : $x-2y +4z -6 = 0$;
    Réponse B : $2x + y – z +1 = 0$;
    Réponse C : $2x + y – z -1 = 0$;
    Réponse D : $y +2z -5 = 0$.
    $\quad$
  5. On considère le point $D$ défini par la relation vectorielle $\vect{OD}=3\vect{OA}-\vect{OB}-\vect{OC}$.
    Réponse A : $\vect{AD}$, $\vect{AB}$, $\vect{AC}$ sont coplanaires;
    Réponse B : $\vect{AD} =\vect{BC}$;
    Réponse C : $D$ a pour coordonnées $(3 ; -1 ; -1)$;
    Réponse D : les points $A$, $B$, $C$ et $D$ sont alignés.
    $\quad$

$\quad$

Exercice 3     6 points

Partie I

On considère la fonction $f$ définie sur $\R$ par $$f (x) = x -\e^{-2x}$$
On appelle $\Gamma$ la courbe représentative de la fonction $f$ dans un repère orthonormé $\Oij$.

  1. Déterminer les limites de la fonction $f$ en $-\infty$ et en $+\infty$.
    $\quad$
  2. Étudier le sens de variation de la fonction $f$ sur $\R$ et dresser son tableau de variation.
    $\quad$
  3. Montrer que l’équation $f (x) = 0$ admet une unique solution $\alpha$ sur $\R$, dont on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
  4. Déduire des questions précédentes le signe de $f(x)$ suivant les valeurs de $x$.
    $\quad$

 

Partie II

Dans le repère orthonormé $\Oij$, on appelle $\mathscr{C}$ la courbe représentative de la fonction $g$ définie sur $\R$ par : $$g(x) = \e^{-x}$$
La courbe $\mathscr{C}$ et la courbe $\Gamma$ (qui représente la fonction $f$ de la Partie I) sont tracées sur le graphique donné en annexe qui est à compléter et à rendre avec la copie.
Le but de cette partie est de déterminer le point de la courbe $\mathscr{C}$ le plus proche de l’origine $O$ du repère et d’étudier la tangente à $\mathscr{C}$ en ce point.

  1. Pour tout nombre réel $t$, on note $M$ le point de coordonnées $\left(t,\e^{-t}\right)$ de la courbe $\mathscr{C}$.
    On considère la fonction $h$ qui, au nombre réel $t$, associe la distance $OM$.
    On a donc : $h(t) = OM$, c’est-à-dire : $$h(t) =\sqrt{t^2+\e^{-2t}}$$
    a. Montrer que, pour tout nombre réel $t$, $$h'(t) =\dfrac{f(t)}{\sqrt{t^2+\e^{-2t}}}$$
    où $f$ désigne la fonction étudiée dans la Partie I.
    $\quad$
    b. Démontrer que le point $A$ de coordonnées $\left(\alpha ; \e^{-\alpha}\right)$ est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    Placer ce point sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$
  2. On appelle $T$ la tangente en $A$ à la courbe $\mathscr{C}$.
    a. Exprimer en fonction de $\alpha$ le coefficient directeur de la tangente $T$.
    On rappelle que le coefficient directeur de la droite $(OA)$ est égal à $\dfrac{\e^{-\alpha}}{\alpha}$.
    On rappelle également le résultat suivant qui pourra être utilisé sans démonstration :
    Dans un repère orthonormé du plan, deux droites $D$ et $D’$ de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si, et seulement si le produit $mm’$ est égal à $-1$.
    $\quad$
    b. Démontrer que la droite $(OA)$ et la tangente $T$ sont perpendiculaires.
    Tracer ces droites sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$

ANNNEXE

$\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.

Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Suites numériques; raisonnement par récurrence.

On considère les suites $\left(u_n\right)$ et $\left(v_n\right)$ définies par : $$u_0 = 16 ; v_0 = 5 ;$$
et pour tout entier naturel $n$ : $$\begin{cases} u_{n+1}=\dfrac{3u_n+2v_n}{5}\\v_{n+1}=\dfrac{u_n+v_n}{2}\end{cases}$$

  1. Calculer $u_1$ et $v_1$.
    $\quad$
  2. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par : $w_n = u_n-v_n$.
    a. Démontrer que la suite $\left(w_n\right)$ est géométrique de raison $0,1$.
    En déduire, pour tout entier naturel $n$, l’expression de $w_n$ en fonction de $n$.
    $\quad$
    b. Préciser le signe de la suite $\left(w_n\right)$ et la limite de cette suite.
    $\quad$
  3. a. Démontrer que, pour tout entier naturel $n$, on a : $u_{n+1}-u_n = -0,4w_n$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est croissante. On admet ce
    résultat, et on remarque qu’on a alors : pour tout entier naturel $n$, $vn \pg v_0 = 5$.
    $\quad$
    c. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pg 5$.
    En déduire que la suite $\left(u_n\right)$ est convergente. On appelle $\ell$ la limite de $\left(u_n\right)$.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est convergente. On admet ce
    résultat, et on appelle $\ell’$ la limite de $\left(v_n\right)$.
    $\quad$
  4. a. Démontrer que $\ell=\ell’$.
    $\quad$
    b. On considère la suite $\left(c_n\right)$ définie pour tout entier naturel $n$ par : $c_n = 5u_n +4v_n$.
    Démontrer que la suite $\left(c_n\right)$ est constante, c’est-à-dire que pour tout entier naturel $n$, on a : $c_{n+1} = c_n$.
    En déduire que, pour tout entier naturel $n$ , $c_n = 100$.
    $\quad$
    c. Déterminer la valeur commune des limites $\ell$ et $\ell’$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme, limites, dérivation.

Partie 1

Le graphique ci-dessous donne la représentation graphique dans un repère orthonormé de la fonction $f$ définie sur l’intervalle $]0 ; +\infty[$ par : $$f (x) =\dfrac{2\ln(x)-1}{x}$$

 

  1. Déterminer par le calcul l’unique solution $\alpha$ de l’équation $f(x) = 0$.
    On donnera la valeur exacte de $\alpha$ ainsi que la valeur arrondie au centième.
    $\quad$
  2. Préciser, par lecture graphique, le signe de $f(x)$ lorsque $x$ varie dans l’intervalle $]0 ; +\infty[$.
    $\quad$

Partie II

On considère la fonction $g$ définie sur l’intervalle $]0 ; +\infty[$ par : $$g(x) = \left[\ln(x)\right]^2-\ln(x)$$

  1. a. Déterminer la limite de la fonction $g$ en $0$.
    $\quad$
    b. Déterminer la limite de la fonction $g$ en $+\infty$.
    $\quad$
  2. On note $g’$ la fonction dérivée de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $g'(x)=f(x)$, où $f$ désigne la fonction définie dans la partie I.
    $\quad$
  3. Dresser le tableau de variations de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    On fera figurer dans ce tableau les limites de la fonction $g$ en $0$ et en $+\infty$, ainsi que la valeur du minimum de $g$ sur $]0 ; +\infty[$.
    $\quad$
  4. Démontrer que, pour tout nombre réel $m > -0,25$, l’équation $g(x) = m$ admet exactement deux solutions.
    $\quad$
  5. Déterminer par le calcul les deux solutions de l’équation $g(x) = 0$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. $f'(0)$ est le coefficient directeur de la droite $(AB)$ tangente à $\mathscr{C}_f$ en $A$.
    Ainsi,
    $\begin{align*} f'(0)&=\dfrac{20-5}{1-0} \\
    &=15\end{align*}$
    Réponse c
    $\quad$
  2. $A(0;5)$ appartient à $\mathscr{C}_f$. Donc $f(0)=5 \ssi b=5$.
    Donc $f(x)=(ax+5)\e^x$.
    Le point de coordonnées $(-0,5;0)$ appartient à $\mathscr{C}_f$.
    Donc $f(-0,5)=0 \ssi (-0,5a+5)\e^{-0,5}=0 \ssi -0,5a+5=0 \ssi a=10$
    (La fonction exponentielle est, en effet, strictement positive.)
    Réponse a
    $\quad$
  3. La fonction exponentielle est, en effet, strictement positive. Le signe de $f\dsec(x)$ ne dépend donc que de celui de $10x+25$.
    Or $10x+25>0 \ssi 10x>-25 \ssi x>-2,5$
    Et $10x+25=0 \ssi 10x=-25\ssi x=-2,5$
    Ainsi $f\dsec(x)$ change de signe en s’annulant en $-2,5$.
    Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$.
    Réponse c
    $\quad$
  4. Si on prend $U_n=-n$ et $V_n=2$ pour tout $n\in \N$ alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$. Mais $\lim\limits_{n\to +\infty} U_n=-\infty$. La réponse a est donc fausse.
    Si on prend $V_n=2+\dfrac{1}{n}$ et $U_n=V_n-1$ pour tout $n\in \N$. alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$ mais $V_n >2$ pour tout $n\in \N$ et $\lim\limits_{n\to +\infty} U_n=1$. Les reponses b et c sont fausses.
    Réponse d
    $\quad$
    Remarque : On pouvait également montrer que la réponse d était la bonne directement de la façon suivante :
    $\lim\limits_{n\to +\infty} V_n=2$. Il existe donc un entier naturel $n_0$ tel que, pour tout $n\pg n_0$, $\abs{V_n-2}<1$ (On peut remplacer $1$ par n’importe quel réel strictement positif).
    Ainsi, pour tout $n\pg n_0$ on a $-1< V_n-2<1$ soit $1<V_n<3$.
    Or, pour tout $n\in N$, on a $U_n\pp V_n$ donc, pour tout $n\pg n_0$, $U_n<3$.
    Ainsi, pour tout $n\in \N$, $U_n \pp \max\left(U_0,U_1,\ldots, U_{n_0},3\right)$ et la suite $\left(U_n\right)$ est majorée (mais on ne connaît pas le majorant).
    $\quad$

 

 

 

Ex 2

Exercice 2 (5 points)

  1. On a
    $\begin{align*} u_1&=f\left(u_0\right) \\
    &=f\left(\dfrac{1}{2}\right) \\
    &=\dfrac{2}{1+\dfrac{3}{2}} \\
    &=\dfrac{4}{5}\end{align*}$
    $\quad$
  2. a. Initialisation : On a $u_0=\dfrac{1}{2}$ et $u_1=\dfrac{4}{5}$ donc $\dfrac{1}{2} \pp u_0 \pp u_1 \pp 2$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$, c’est-à-dire $\dfrac{1}{2} \pp u_n\pp u_{n+1} \pp 2$.
    La fonction $f$ est croissante sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$.
    Ainsi $f\left(\dfrac{1}{2}\right) \pp f\left(u_n\right)\pp f\left(u_{n+1}\right) \pp f(2)$
    Soit $\dfrac{4}{5} \pp u_{n+1} \pp u_{n+2} \pp \dfrac{8}{7}$
    Donc $\dfrac{1}{2} \pp u_{n+1} \pp u_{n+2} \pp 2$.
    La propriété est, par conséquent, vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout $n\in \N$, on a $\dfrac{1}{2} \pp u_n \pp u_{n+1} \pp 2$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $2$. Elle est donc convergente.
    $\quad$
    c. La fonction $f$ est continue sur $\left[\dfrac{1}{2};2\right]$ comme quotient de fonctions continues dont le dénominateur ne s’annule pas.
    Ainsi $\ell$ est solution de l’équation, définie sur $\left[\dfrac{1}{2};2\right]$ :
    $\begin{align*} f(x)=x&\ssi \dfrac{4x}{1+3x}=x \\
    &\ssi 4x=x+3x^2\\
    &\ssi 3x^2-3x=0\\
    &\ssi 3x(x-1)=0\end{align*}$
    Les solutions de cette équation sont $0$ et $1$.
    $1$ est la seule valeur appartenant à $\left[\dfrac{1}{2};2\right]$.
    Par conséquent $\ell=1$.
    $\quad$
  3. a. On peut écrire
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E):} \\
    \quad \text{u = 0.5} \\
    \quad \text{n = 0} \\
    \quad \text{while 1 – u >= E :} \\
    \qquad \text{u = 4 * u / (1 + 3 * u)} \\
    \qquad \text{n = n + 1} \\
    \quad \text{return n} \\
    \hline
    \end{array}$$
    $\quad$
    b. Si $E = 10^{-4}$
    Voici les premières valeurs (approchées pour certaines) de $u_n$ et de $1-u_n$
    $\begin{array}{|c|c|c|}
    \hline
    n& u_n &1-u_n \\ \hline
    0& 0,5& 0,5\\ \hline
    1& 0,8& 0,2\\ \hline
    2& 0,9411764706& 0,05882352941\\ \hline
    3& 0,9846153846& 0,01538461538\\ \hline
    4& 0,9961089494& 0,003891050584\\ \hline
    5& 0,9990243902& 0,0009756097561\\ \hline
    6& 0,999755919& 0,0002440810349\\ \hline
    7& 0,9999389686& 0,00006103143119\\ \hline
    \end{array}$
    Le programme renvoie donc $7$.
    $\quad$
  4. a. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\dfrac{u_{n+1}}{1-u_{n+1}} \\
    &=\dfrac{\dfrac{4u_n}{1+3u_n}}{1-\dfrac{4u_n}{1+3u_n}} \\
    &=\dfrac{4u_n}{1+3u_n-4u_n} \\
    &=\dfrac{4u_n}{1-u_n} \\
    &=4v_n\end{align*}$.
    La suite $\left(v_n\right)$ est donc géométrique de raison $4$ et de premier terme $v_0=\dfrac{u_0}{1-u_0}=1$.
    Ainsi, pour tout $n\in \N$, on a $v_n=4^n$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} v_n=\dfrac{u_n}{1-u_n} &\ssi v_n\left(1-u_n\right)=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n-u_nv_n=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n+u_nv_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n\left(1+v_n\right) \text{  et } u_n\neq 1\end{align*}$
    Ainsi $u_n=\dfrac{v_n}{1+v_n}$.
    $\quad$
    c. Soit $n\in \N$ on a
    $\begin{align*} u_n&=\dfrac{v_n}{1+v_n} \\
    &=\dfrac{4^n}{1+4^n} \\
    &=\dfrac{4^n}{4^n\left(0,25^n+1\right)} \\
    &=\dfrac{1}{1+0,25^n}\end{align*}$
    On a $-1<0,25<1$ donc $\lim\limits_{n\to +\infty} 0,25^n=0$ et $\lim\limits_{n\to +\infty} u_n=1$.

 

 

Ex 3

Exercice 3 (6 points)

Partie I : Effet de l’introduction d’une nouvelle espèce

  1. On a $f(0)=440$.
    Il y avait donc $440$ crapauds dans le lac lors de l’introduction des truites.
    $\quad$
  2. Pour tout $t\in [0;120]$ on a
    $\begin{align*} f'(t)&=(0,08t-8)\e^{\frac{t}{50}}+\left(0,04t^2-8t+400\right)\times \dfrac{1}{50}\e^{\frac{t}{50}} \\
    &=\left(0,08t-8+0,0008t^2-0,16t+8\right)\e^{\frac{t}{50}} \\
    &=\left(0,0008t^2-0,08t\right)\e^{\frac{t}{50}} \\
    &=0,0008t(t-100)\e^{\frac{t}{50}} \\
    &=8\times 10^{-4}t(t-100)\e^{\frac{t}{50}} \end{align*}$
    $\quad$
  3. La fonction exponentielle est strictement positive sur $\R$.
    Sur $[0;120]$ on a $t\pg 0$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $t-100$.
    Or $t-100=0 \ssi t=100$ et $t-100>0 \ssi t>100$.
    On obtient donc le tableau de variations suivant :
    $\quad$
  4. a. D’après le tableau de variations, la fonction $f$ atteint son minimum pour $t=100$.
    Ainsi, le nombre de crapauds atteint son minimum au bout de $100$ jours. Il y a alors $40$ crapauds dans le lac.
    $\quad$
    b. La fonction $f$ est strictement croissante sur l’intervalle $[100;120]$ et $f(120)\approx 216,37 > 140$.
    Ainsi, le nombre de crapauds dépassera un jour $140$ individus après avoir atteint son minimum.
    $\quad$
    c. D’après la calculatrice, $f(t)=140$ pour $t\approx 115,72$.
    C’est donc à partir du $116$ ième jour que le nombre de crapauds dépassera $140$ individus.
    $\quad$

 

Partie II : Effet de la Chytridiomycose sur une population de têtards

  1. On obtient l’arbre de probabilité suivant :
    $\quad$$\quad$
  2. $\left(L,\conj{L}\right)$ est un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(T)&=P(L)\times P_L(T)+P\left(\conj{L}\right)P_{\conj{L}}(T) \\
    &=0,25 \times 0,74+0\\
    &=0,185\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_{\conj{T}}(L)&=\dfrac{P(L)\times P_L\left(\conj{T}\right)}{1-P(T)} \\
    &=\dfrac{0,25 \times 0,26}{1-0,185} \\
    &\approx 0,080\end{align*}$
    La probabilité que le lac soit infecté sachant que le tétard n’est pas contaminé est environ égale à $0,08$.
    $\quad$

 

Ex A

Exercice A (5 points)

  1. On a $I\left(0;\dfrac{1}{4};1\right)$, $J\left(\dfrac{1}{4};0;1\right)$ et $K\left(1;0;\dfrac{1}{4}\right)$.
    $\quad$
  2. On a $\vect{AG}\begin{pmatrix}1\\1\\1\end{pmatrix}$, $\vect{IJ}\begin{pmatrix} \dfrac{1}{4}\\[2mm] -\dfrac{1}{4}\\[2mm]0\end{pmatrix}$ et $\vect{IK}\begin{pmatrix} 1\\-\dfrac{1}{4} \\[2mm]-\dfrac{3}{4}\end{pmatrix}$
    Ainsi $\vect{AG}.\vect{IJ}=\dfrac{1}{4}-\dfrac{1}{4}+0=0$ et $\vect{AG}.\vect{IK}=1-\dfrac{1}{4}-\dfrac{3}{4}=0$
    Le vecteur $\vect{AG}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(IJK)$. Il est par conséquent normal à celui-ci.
    $\quad$
  3. Une équation cartésienne du plan $(IJK)$ est donc de la forme $x+y+z+d=0$.
    Le point $I\left(\dfrac{1}{4};0;1\right)$ appartient à ce plan.
    Ainsi $\dfrac{1}{4}+0+1+d=0 \ssi d=-\dfrac{5}{4}$
    Une équation cartésienne du plan $(IJK)$ est donc $x+y+z-\dfrac{5}{4}=0$ soit $4x+4y+4z-5=0$.
    $\quad$
  4. On a $\vect{BC}\begin{pmatrix} 0\\1\\0\end{pmatrix}$
    Une représentation paramétrique de $(BC)$ est donc $\begin{cases} x=1\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  5. On résout le système
    $\begin{align*} \begin{cases} x=1\\y=t\\z=0\\4x+4y+4z-5=0 \end{cases} &\ssi \begin{cases} x=1\\y=t\\z=0\\4+4t-5=0 \end{cases} \\
    &\ssi \begin{cases}x=1\\y=t\\z=0\\t=\dfrac{1}{4}\end{cases}\end{align*}$
    Ainsi les coordonnées du point $L$ sont $\left(1;\dfrac{1}{4};0\right)$.
    $\quad$
  6. On obtient la figure suivante :
    $\quad$

    $\quad$
  7. On a $\vect{LM}\begin{pmatrix} -\dfrac{3}{4} \\[2mm]\dfrac{3}{4}\\[2mm]0\end{pmatrix}$
    Ainsi $\vect{LM}=-3\vect{IJ}$
    Les vecteurs $\vect{LM}$ et $\vect{IJ}$ sont colinéaires. Les points $I,J,L$ et $M$ sont donc coplanaires.
    $\quad$

 

 

 

Ex B

Exercice B (5 points)

Partie I

  1. On a $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{x\to 0^+} h(x)=-\infty$.
    $\quad$
  2. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\quad$
  3. La fonction $h$ est dérivable sur $]0;+\infty[$ en tant que somme et quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]0;+\infty[$.
    Ainsi, pour tout $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)\times 1}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
  4. Le signe de $h'(x)$ ne dépend que de celui de $1-\ln(x)$.
    Or $1-\ln(x)=0 \ssi \ln(x)=1 \ssi x=\e$ et $1-\ln(x)>0 \ssi -\ln(x)>-1 \ssi \ln(x)<1 \ssi x< \e$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$
  5. Sur l’intervalle $[\e;+\infty[$ on a $h(x)>1$. L’équation $h(x)=0$ ne possède donc pas de solution sur cet intervalle.
    Sur l’intervalle $]0;\e[$, la fonction $h$ est continue (car dérivable) et strictement croissante.
    De plus, $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h(\e)=\dfrac{1+\e}{\e}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une unique solution sur $]0;+\e[$.
    Ainsi, l’équation $h(x)=0$ possède une unique solution sur $]0;+\infty[$.
    De plus $h(0,5) \approx -0,39<0$ et $h(0,6)\approx 0,15>0$
    La fonction $h$ est strictement croissante sur $]0;\e[$ donc $0,5<\alpha<0,6$.
    $\quad$

Partie II

  1. Le coefficient directeur de $D_a$ au point d’abscisse $a$ est $g'(a)=\dfrac{1}{a}$.
    $\quad$
  2. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=x\times \dfrac{1}{x}+1\times \ln(x)-1 \\
    &=1+\ln(x)-1\\
    &=\ln(x)\end{align*}$
    Ainsi, le coefficient directeur de $T_a$ est $f'(a)=\ln(a)$.
    $\quad$
  3. $T_a$ et $D_a$ sont perpendiculaires
    $\ssi \dfrac{1}{a}\ln(a)=-1 $
    $\ssi 1+\dfrac{\ln(a)}{a}=0$
    $\ssi h(a)=0$
    $\ssi a=\alpha$
    Il existe donc une unique valeur de $a$ pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires. Il s’agit de $a=\alpha$.
    $\quad$

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Le graphique ci-dessous donne la représentation graphique $\mathscr{C}_f$ dans un repère orthogonal d’une fonction $f$ définie et dérivable sur $\R$.
On notera $f’$ la fonction dérivée de $f$ .
On donne les points $A$ de coordonnées $(0; 5)$ et $B$ de coordonnées $(1; 20)$. Le point $C$ est le point de la courbe $\mathscr{C}_f$ ayant pour abscisse $-2,5$. La droite $(AB)$ est la
tangente à la courbe $\mathscr{C}_f$ au point $A$.
Les questions 1 à 3 se rapportent à cette même fonction $f$.

  1. On peut affirmer que :
    a. $f'(-0,5)=0$
    b. si $x\in]-\infty ; -0,5[$, alors $f'(x)< 0$
    c. $f'(0) = 15$
    d. la fonction dérivée $f’$ ne change pas de signe sur $\R$.
    $\quad$
  2. On admet que la fonction $f$ représentée ci-dessus est définie sur $\R$ par $f(x) = (ax +b)\e^x$, où $a$ et $b$ sont deux nombres réels et que sa courbe coupe l’axe des abscisses en son point de coordonnées $(-0,5 ; 0)$.
    On peut affirmer que :
    a. $a = 10$ et $b = 5$
    b. $a = 2,5$ et $b = -0,5$
    c. $a = -1,5$ et $b = 5$
    d. $a=0$ et $b=5$
    $\quad$
  3. . On admet que la dérivée seconde de la fonction $f$ est définie sur $\R$ par : $f\dsec(x)= (10x +25)\e^x$.
    On peut affirmer que :
    a. La fonction $f$ est convexe sur $\R$
    b. La fonction $f$ est concave sur $\R$
    c. Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$
    d. $\mathscr{C}_f$ n’admet pas de point d’inflexion
    $\quad$
  4. On considère deux suites $\left(U_n\right)$ et $\left(V_n\right)$ définies sur $\N$ telles que :
    $\bullet$ pour tout entier naturel $n$, $U_n \pp V_n$ ;
    $\bullet$  $\lim\limits_{n\to +\infty} V_n=2$.
    On peut affirmer que :
    a. la suite $\left(U_n\right)$ converge
    b. pour tout entier naturel $n$, $V_n \pp 2$
    c. la suite $\left(U_n\right)$ diverge
    d. la suite $\left(U_n\right)$ est majorée
    $\quad$

$\quad$

Exercice 2     5 points

Soit $f$ la fonction définie sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$ par $$f(x)=\dfrac{4x}{1+3x}$$

On considère la suite $\left(u_n\right)$ définie par : $u_0=\dfrac{1}{2}$ et, pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$.

  1. Calculer $u_1$.
    $\quad$
  2. On admet que la fonction f est croissante sur l’intervalle ¸$\left]-\dfrac{1}{3};+\infty\right[$.
    a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $\dfrac{1}{2} \pp u_n \pp u_{n+1}\pp 2$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    c. On appelle $\ell$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $\ell$.
    $\quad$
  3. a. Recopier et compléter la fonction Python ci-dessous qui, pour tout réel positif $E$, détermine la plus petite valeur $P$ tel que : $1-u_P < E$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E) :}\\
    \quad \text{u = 0.5}\\
    \quad \text{n = 0}\\
    \quad \text{while . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{u = . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. Donner la valeur renvoyée par ce programme dans le cas où $E = 10^{-4}$.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par : $$v_n =\dfrac{u_n}{1-u_n}$$
    a. Montrer que la suite $\left(v_n\right)$ est géométrique de raison $4$.
    En déduire, pour tout entier naturel $n$, l’expression de $v_n$ en fonction de $n$.
    $\quad$
    b. Démontrer que, pour tout entier naturel $n$, on a : $u_n = \dfrac{v_n}{v_n+1}$.
    $\quad$
    c. Montrer alors que, pour tout entier naturel $n$ , on a :
    $$u_n =\dfrac{1}{1+0,25^n}$$
    Retrouver par le calcul la limite de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 3     5 points

Dans le parc national des Pyrénées, un chercheur travaille sur le déclin d’une espèce protégée dans les lacs de haute-montagne : le «crapaud accoucheur».
Les parties I et II peuvent être abordées de façon indépendante.

Partie I : Effet de l’introduction d’une nouvelle espèce.

Dans certains lacs des Pyrénées, des truites ont été introduites par l’homme afin de permettre des activités de pêche en montagne. Le chercheur a étudié l’impact de cette introduction sur la population de crapauds accoucheurs d’un lac.
Ses études précédentes l’amènent à modéliser l’évolution de cette population en fonction du temps par la fonction f suivante : $$f(t)=\left(0,04t^2-8t+400\right)\e^{\frac{t}{50}}+40 \text{ pour } t\in [0;120]$$

La variable $t$ représente le temps écoulé, en jour, à partir de l’introduction à l’instant $t = 0$ des truites dans le lac, et $f(t)$ modélise le nombre de crapauds à l’instant $t$.

  1. Déterminer le nombre de crapauds présents dans le lac lors de l’introduction des truites.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 120]$ et on note $f′$ sa fonction dérivée.
    Montrer, en faisant apparaitre les étapes du calcul, que pour tout nombre réel $t$ appartenant à l’intervalle $[0; 120]$ on a : $$f'(t)=t(t-100)\e^{\frac{t}{50}}\times 8\times 10^{-4}$$
    $\quad$
  3. Étudier les variations de la fonction $f$ sur l’intervalle $[0; 120]$, puis dresser le tableau de variations de $f$ sur cet intervalle (on donnera des valeurs approchées au centième).
    $\quad$
  4. Selon cette modélisation :
    a. Déterminer le nombre de jours $J$ nécessaires afin que le nombre de crapauds atteigne son minimum. Quel est ce nombre minimum ?
    $\quad$
    b. Justifier que, après avoir atteint son minimum, le nombre de crapauds dépassera un jour $140$ individus.
    $\quad$
    c. À l’aide de la calculatrice, déterminer la durée en jour à partir de laquelle le nombre de crapauds dépassera $140$ individus.
    $\quad$

Partie II : Effet de la Chytridiomycose sur une population de têtards

Une des principales causes du déclin de cette espèce de crapaud en haute montagne est une maladie, la « Chytridiomycose », provoquée par un champignon.
Le chercheur considère que :

  • Les trois quarts des lacs de montagne des Pyrénées ne sont pas infectés par le champignon, c’est-à-dire qu’ils ne contiennent aucun têtard (larve du crapaud) contaminé.
  • Dans les lacs restants, la probabilité qu’un têtard soit contaminé est de $0,74$.

Le chercheur choisit au hasard un lac des Pyrénées, et y procède à des prélèvements.
Pour la suite de l’exercice, les résultats seront arrondis au millième lorsque cela est nécessaire.
Le chercheur prélève au hasard un têtard du lac choisi afin d’effectuer un test avant de le relâcher.
On notera $T$ l’évènement « Le têtard est contaminé par la maladie » et $L$ l’évènement « Le lac est infecté par le champignon ».
On notera $\conj{L}$ l’évènement contraire de $L$ et $\conj{T}$ l’évènement contraire de $T$.

  1. Recopier et compléter l’arbre de probabilité suivant en utilisant les données de l’énoncé :$\quad$
  2. Montrer que la probabilité $P(T )$ que le têtard prélevé soit contaminé est de $0,185$.
    $\quad$
  3. Le têtard n’est pas contaminé. Quelle est la probabilité que le lac soit infecté ?
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Géométrie de l’espace rapporté à un repère orthonormé.

On considère le cube $ABCDEFGH$ donné en annexe.
On donne trois points $I$, $J$ et $K$ vérifiant : $$\vect{EI}=\dfrac{1}{4}\vect{EH}, \quad \vect{EJ}=\dfrac{1}{4}\vect{EF},\quad \vect{BK}=\dfrac{1}{4}\vect{BF}$$
Les points $I$, $J$ et $K$ sont représentés sur la figure donnée en annexe, à compléter et à rendre avec la copie.
On se place dans le repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. Donner sans justification les coordonnées des points $I$, $J$ et $K$.
    $\quad$
  2. Démontrer que le vecteur $\vect{AG}$ est normal au plan $(IJK)$.
    $\quad$
  3. Montrer qu’une équation cartésienne du plan $(IJK)$ est $4x +4y +4z -5 = 0$.
    $\quad$
  4. Déterminer une représentation paramétrique de la droite $(BC)$.
    $\quad$
  5. En déduire les coordonnées du point $L$, point d’intersection de la droite $(BC)$ avec le plan $(IJK)$.
    $\quad$
  6. Sur la figure en annexe, placer le point $L$ et construire  l’intersection du plan $(IJK)$ avec la face $(BCGF)$.
    $\quad$
  7. Soit $M\left(\dfrac{1}{4};1;0\right)$. Montrer que les points $I$, $J$, $L$ et $M$ sont coplanaires.
    $\quad$

ANNEXE

$\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme.

Partie I

On considère la fonction h définie sur l’intervalle $]0 ; +\infty[$ par : $$h(x) = 1+\dfrac{\ln(x)}{x}$$

  1. Déterminer la limite de la fonction $h$ en $0$.
    $\quad$
  2. Déterminer la limite de la fonction $h$ en $+\infty$.
    $\quad$
  3. On note $h’$ la fonction dérivée de $h$. Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $$h'(x) =\dfrac{1-\ln(x)}{x^2}$$
    $\quad$
  4. Dresser le tableau de variations de la fonction $h$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  5. Démontrer que l’équation $h(x) = 0$ admet une unique solution $\alpha$ dans $]0 ; +\infty[$.
    Justifier que l’on a : $0,5 < \alpha < 0,6$.$\quad$

Partie II

Dans cette partie, on considère les fonctions $f$ et $g$ définies sur $]0 ; +\infty[$ par : $$f (x) = x \ln(x)− x;\quad g(x) = \ln(x)$$
On note $\mathscr{C}_f$ et $\mathscr{C_g}$ les courbes représentant respectivement les fonctions $f$ et $g$ dans un repère orthonormé $\Oij$.
Pout tout nombre réel $a$ strictement positif, on appelle :

  • $T_a$ la tangente à $\mathscr{C}_f$ en son point d’abscisse $a$ ;
  • $D_a$ la tangente à $\mathscr{C}_g$ en son point d’abscisse $a$.

Les courbes $\mathscr{C}_f$ et $\mathscr{C}g$ ainsi que deux tangentes $T_a$ et $D_a$ sont représentées ci-dessous.

On recherche d’éventuelles valeurs de $a$ pour lesquelles les droites $T_a$ et $D_a$ sont perpendiculaires.
Soit $a$ un nombre réel appartenant à l’intervalle $]0 ; +\infty[$.

  1. Justifier que la droite $D_a$ a pour coefficient directeur $\dfrac{1}{a}$.
    $\quad$
  2. Justifier que la droite $T_a$ a pour coefficient directeur $\ln(a)$.

On rappelle que dans un repère orthonormé, deux droites de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si et seulement si $mm’ = -1$.

  1. Démontrer qu’il existe une unique valeur de $a$, que l’on identifiera, pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Asie – sujet 2 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    f'(x)&=(2x-2)\e^x+\left(x^2-2x-1\right)\e^x \\
    &=\left(2x-2+x^2-2x-1\right)\e^x \\
    &=\left(x^2-3\right)\e^x\end{align*}$
    L’affirmation A est donc fausse.
    $f'(2)>0$ et $f(0)<0$ : l’affirmation B est donc fausse
    Réponse C
    $\quad$
  2. $\lim\limits_{x\to +\infty} \e^x=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=0$
    La droite d’équation $y=0$ est donc asymptote à la courbe représentant la fonction $f$.
    $\lim\limits_{x\to -\infty} \e^x=-\infty$ donc $\lim\limits_{x\to -\infty} f(x)=\dfrac{3}{5}$
    La droite d’équation $y=\dfrac{3}{5}$ est donc asymptote à la courbe représentant la fonction $f$.
    Réponse C
    $\quad$
  3. La fonction $f\dsec$ s’annule en changeant de signe à trois reprise.
    La courbe représentant la fonction $f$ possède donc trois points d’inflexion.
    Réponse B
    $\quad$
  4. $\left(u_n\right)$ est une suite définie de manière explicite par un polynôme du second degré dont le coefficient principal est $a=1>0$.
    La fonction du second degré associée possède un minimum, d’abscisse $\dfrac{17}{2}$.
    $\left(u_n\right)$ est donc minorée.
    Réponse A
    $\quad$
  5. Cette fonction renvoie le plus entier naturel $n$ tel que $u_n\pg 45$.
    Réponse ARemarque :dans les faits cette fonction ne renvoie aucun résultat car la suite $\left(u_n\right)$ est croissante et majorée par $20$. Il est donc impossible que $u_n\pg 45$ !
    $\quad$

Ex 2

Exercice 2 (5 points)

  1. On a $A(0;0;0)$, $C(1;1;0)$ et $D(0;1;0)$
    Par conséquent $K\left(\dfrac{1}{2};1;0\right)$
    Donc $\vect{AK}\left(\dfrac{1}{2};1;0\right)$ et $\vect{AL}\left(0;1;\dfrac{3}{2}\right)$.
    $\quad$
  2. a. On a $\vec{n}.\vect{AK}=3-3+0=0$ et $\vec{n}.\vect{AL}=0-3+3=0$.
    $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AKL)$.
    C’est par conséquent un vecteur normal au plan $(AKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(AKL)$ est donc de la forme $6x-3y+2z+d=0$.
    Le point $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Une équation cartésienne du plan $(AKL)$ est alors $6x-3y+2z=0$.
    $\quad$
    c. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Ainsi une représentation paramétrique de la droite $\Delta$ est $$\begin{cases} x=6t\\y=1-3t\\z=2t\end{cases} \quad,t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{3}{49}$, on constate que le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient à la droite $\Delta$.
    De plus
    $\begin{align*} 6\times \dfrac{18}{49}-3\dfrac{40}{49}+2\dfrac{6}{49}&=\dfrac{108}{49}-\dfrac{120}{49}+\dfrac{12}{49} \\
    &=0\end{align*}$
    Le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient donc également au plan $(AKL)$.
    Par conséquent $N$ a pour coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$.
    $\quad$
  3. a. L’aire de la base $ADK$ est
    $\begin{align*} \mathcal{A}&=\dfrac{AD\times DK}{2} \\
    &=\dfrac{1\times \dfrac{1}{2}}{2} \\
    &=\dfrac{1}{4}\end{align*}$
    Ainsi
    $\begin{align*} \mathcal{V}&=\dfrac{\mathcal{A}\times DL}{3} \\
    &=\dfrac{\dfrac{1}{4}\times \dfrac{3}{2}}{3} \\
    &=\dfrac{1}{8}\end{align*}$
    $\quad$
    b. La distance du point $D$ au plan $(AKL)$ est
    $\begin{align*} DN&=\sqrt{\left(\dfrac{18}{49}\right)^2+\left(\dfrac{40}{49}-1\right)^2+\left(\dfrac{6}{49}\right)^2} \\
    &=\sqrt{\dfrac{9}{49}} \\
    &=\dfrac{3}{7}\end{align*}$
    $\quad$
    c. On a
    $\begin{align*} \mathcal{V}=\dfrac{1}{8}&\ssi \dfrac{\mathcal{A}_{AKL}\times DN}{3}=\dfrac{1}{8} \\
    &\ssi \dfrac{3}{7}\mathcal{A}_{AKL}=\dfrac{3}{8} \\
    &\ssi \mathcal{A}_{AKL}=\dfrac{7}{8}\end{align*}$
    L’aire du triangle $AKL$ est donc $\dfrac{7}{8}$.
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. Il y a $\dbinom{9}{3}=84$ façons différentes de positionner les trois cœurs.
    $\quad$
  2. Il y a $3$ façons de placer les cœurs sur une ligne pour gagner.
    Il y a $3$ façons de placer les cœurs sur une colonne pour gagner.
    Il y a $2$ façons de placer les cœurs sur une diagonale pour gagner.
    La probabilité qu’un ticket soit gagnant est donc $\dfrac{3+3+2}{84}=\dfrac{2}{21}$.
    $\quad$
  3. On appelle $G$ la variable aléatoire égale au gain algébrique du joeur.
    $G$ ne prend donc que $2$ valeurs $4$ et $-1$.
    $p(G=4)=\dfrac{2}{21}$ et $p(G=-1)=\dfrac{19}{21}$.
    L’espérance de $G$ est :
    $\begin{align*} E(G)&=4\times \dfrac{2}{21}+(-1)\times \dfrac{19}{21} \\
    &=-\dfrac{11}{21}\\
    &<0\end{align*}$
    Le jeu est donc défavorable au joueur.
    $\quad$
  4. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : le joueur gagne ou le joueur perd.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{21}$.
    $\quad$
    b. $p(X=5)=\dbinom{20}{5}\left(\dfrac{2}{21}\right)^5\left(\dfrac{19}{21}\right)^{15} \approx 0,027$.
    $\quad$
    c. On a
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-\left(\dfrac{19}{21}\right)^{20} \\
    & \approx 0,865\end{align*}$
    La probabilité qu’il y ait au moins un gagnant est environ égale à $0,865$.
    $\quad$

 

 

Ex A

Exercice A (5 points)

Partie I : modèle discret

  1. On a
    $\begin{align*} u_1&=u_0+0,05\left(20-u_0\right) \\
    &=1+0,05\times 19\\
    &=1,95\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}&=u_n+0,05\left(20-u_n\right) \\
    &=u_n+1-0,05u_n \\
    &=0,95u_n+1\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ on a $v_n=20-u_n$ soit $u_n=20-v_n$.
    $\begin{align*} v_{n+1}&=20-u_{n+1} \\
    &=20-0,95u_n-1 \\
    &=19-0,95u_n \\
    &=19-0,95\left(20-v_n\right) \\
    &=19-19+0,95v_n\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=20-1=19$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $v_n=19\times 0,95^n$.
    Par conséquent $u_n=20-19\times 0,95^n$.
    $\quad$
  3. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 0,95^n=0$ et $\lim\limits_{n\to +\infty}u_n=20$.
    $\quad$

Partie II : modèle continu

  1. La fonction $L$ est dérivable sur $[0;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $t\pg 0$ on a d’une part :
    $\begin{align*} L'(t)&=-19\times (-0,05)\e^{-0,05t}\\
    &=0,95\e^{-0,05t}\end{align*}$
    D’autre part :
    $\begin{align*} 0,05\left(20-L(t)\right)&=0,05\left(20-20+19\e^{-0,05t}\right) \\
    &=0,05 \times 19\e^{-0,05t} \\
    &=0,95\e^{-0,05t}\end{align*}$
    Ainsi $L$ est solution de $(E)$.
    De plus $L(0)=20-19=1$.
    $\quad$
  2. a. On a $L'(0)=0,95$ et $L'(5)=0,95\e^{-0,25} \approx 0,74$.
    Ainsi $L'(0)>L'(5)$
    $\quad$
    b. $\lim\limits_{t\to +\infty} -0,05t=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{t\to +\infty} L'(t)=0$.
    Ce résultat est cohérent avec la description du modèle de croissance exposé au début de l’exercice : le bambou croît de moins en moins rapidement et atteint finalement une taille de $20$ mètres. Au début de l’observation il mesure bien $1$ mètre.
    $\quad$

Ex B

Exercice B (5 points)

Partie I

  1. On a pu saisir la formule $=B2-\ln(B2-1)$.
    $\quad$
  2. Il semblerait que la suite $\left(u_n\right)$ soit décroissante et converge vers $2$.
    $\quad$

Partie II

  1. $\lim\limits_{x\to 1} x-1=0$ et $\lim\limits_{X\to 0} \ln(X)=-\infty$
    Donc $\lim\limits_{x\to 1} f(x)=+\infty$.
    $\quad$
  2. a. $f$ est dérivable sur $]1;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $x>1$ on a
    $\begin{align*} f'(x)&=1-\dfrac{1}{x-1} \\
    &=\dfrac{x-1-1}{x-1} \\
    &=\dfrac{x-2}{x-1}\end{align*}$
    $\quad$
    b. Le signe de $f'(x)$ ne dépend que de celui de $x-2$.
    Or $x-2=0 \ssi x=2$ et $x-2>0 \ssi x>2$.
    On obtient donc le tableau de signes suivant :
    $\quad$$\quad$
    c. D’après la question précédente, la fonction $f$ admet $2$ pour minimum atteint pour $x=2$.
    Ainsi, pour tout réel $x\pg 2, ~f(x)\pg 2$.
    $\quad$

Partie III

  1. Initialisation : Si $n=0$ alors $u_0=10\pg 2$. La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n\in \N$.
    Donc $u_n\pg 2$.
    D’après la question précédente $u_{n+1}=f\left(u_n\right) \pg 2$.
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n\pg 2$.
    $\quad$
  2. Soit $n\in \N$
    $\begin{align*} u_{n+1}-u_n&= u_n-\ln\left(u_n-1\right)-u_n \\
    &=-\ln\left(u_n-1\right)\end{align*}$
    Or $u_n\pg 2$ donc $u_n-1\pg 1$ et $\ln\left(u_n-1\right)\pg 0$.
    Donc $u_{n+1}-u_n \pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $2$. Elle converge donc.
    $\quad$
  4. $\ell$ est donc solution de l’équation $f(x)=x$.
    Or
    $\begin{align*} f(x)=x&\ssi x-\ln(x-1)=x\\
    &\ssi -\ln(x-1)=0\\
    &\ssi x-1=1 \\
    &\ssi x=2\end{align*}$
    Par conséquent $\ell=2$.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

Cet exercice est un questionnaire à choix multiples (QCM)

Pour chaque question, trois affirmations sont proposées, une seule de ces affirmations est exacte.
Le candidat recopiera sur sa copie le numéro de chaque question et la lettre de la réponse choisie pour celle-ci.
AUCUNE JUSTIFICATION n’est demandée. Une réponse fausse ou l’absence de réponse n’enlève aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par $$f(x) = \left(x^2-2x-1\right)\e^x$$
    A. La fonction dérivée de $f$ est la fonction définie par $f'(x) = (2x-2)\e^x$.
    B. La fonction $f$ est décroissante sur l’intervalle $]-\infty;2]$.
    C. $\ds\lim\limits_{x \to -\infty} f(x) = 0$.
    $\quad$
  2. On considère la fonction $f$ définie sur $\R$ par $f(x) = \dfrac{3}{5 + \e^x}$.
    Sa courbe représentative dans un repère admet :
    A. une seule asymptote horizontale;
    B. une asymptote horizontale et une asymptote verticale;
    C. deux asymptotes horizontales.
    $\quad$
  3. On donne ci-dessous la courbe $\mathcal{C}_{f”}$ représentant la fonction dérivée seconde $f”$ d’une fonction $f$ définie et deux fois dérivable sur l’intervalle $[-3,5;6]$.
    $\quad$A.

    La fonction $f$ est convexe sur l’intervalle $[-3;3]$.
    B. La fonction $f$ admet trois points d’inflexion.
    C. La fonction dérivée $f’$ de $f$ est décroissante sur l’intervalle $[0;2]$.
    $\quad$

  4. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n = n^2-17n+20$.
    A. La suite $\left(u_n\right)$ est minorée.
    B. La suite $\left(u_n\right)$ est décroissante.
    C. L’un des termes de la suite $\left(u_n\right)$ est égal à $2~021$.
    $\quad$
  5. On considère la suite $\left(u_n\right)$ définie par $u_0 = 2$ et, pour tout entier naturel $n$, $u_{n+1} = 0,75u_n +5$.
    On considère la fonction « seuil » suivante écrite en Python :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() }:\\
    \quad \text{u} = 2\\
    \quad \text{n} = 0\\
    \quad \text{while u} < 45 :\\
    \qquad \text{u} = 0.75*u + 5\\
    \qquad \text{n} = \text{n} + 1\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Cette fonction renvoie :
    A. la plus petite valeur de $n$ telle que $u_n \pg 45$ ;
    B. la plus petite valeur de $n$ telle que $u_n < 45$ ;
    C. la plus grande valeur de $n$ telle que $u_n \pg 45$.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un pavé droit $ABCDEFGH$ tel que $AB = AD = 1$ et $AE = 2$, représenté ci- dessous.
Le point $I$ est le milieu du segment $[AE]$. Le point $K$ est le milieu du segment $[DC]$.
Le point $L$ est défini par: $\vect{DL} = \dfrac{3}{2}\vect{AI}$. $N$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.

 

 

On se place dans le repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AI}\right)$.
On admet que le point $L$ a pour coordonnées $\left(0;1;\dfrac{3}{2}\right)$.

  1. Déterminer les coordonnées des vecteurs $\vect{AK}$ et $\vect{AL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vect{n}$ de coordonnées $(6;-3;2)$ est un vecteur normal au plan $(AKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(AKL)$.
    $\quad$
    c. Déterminer un système d’équations paramétriques de la droite $\Delta$ passant par $D$ et perpendiculaire au plan $(AKL)$.
    $\quad$
    d. En déduire que le point $N$ de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.
    $\quad$

On rappelle que le volume $\mathcal{V}$ d’un tétraèdre est donné par la formule : $$\mathcal{V} = \dfrac{1}{3}\times (\text{aire de la base}) \times \text{hauteur}$$

  1. a. Calculer le volume du tétraèdre $ADKL$ en utilisant le triangle $ADK$ comme base.
    $\quad$
    b. Calculer la distance du point $D$ au plan $(AKL)$.
    $\quad$
    c. Déduire des questions précédentes l’aire du triangle $AKL$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Une société de jeu en ligne propose une nouvelle application pour smartphone nommée « Tickets coeurs! ».
Chaque participant génère sur son smartphone un ticket comportant une grille de taille $3 \times 3$ sur laquelle sont placés trois cœurs répartis au hasard, comme par exemple ci-dessous.

 

 

Le ticket est gagnant si les trois cœurs sont positionnés côte à côte sur une même ligne, sur une même colonne ou sur une même diagonale.

  1. Justifier qu’il y a exactement $84$ façons différentes de positionner les trois cœurs sur une grille.
    $\quad$
  2. Montrer que la probabilité qu’un ticket soit gagnant est égale à $\dfrac{2}{21}$.
    $\quad$
  3. Lorsqu’un joueur génère un ticket, la société prélève $1$ € sur son compte en banque. Si le ticket est gagnant, la société verse alors au joueur $5$ €. Le jeu est-il favorable au joueur?
    $\quad$
  4. Un joueur décide de générer $20$ tickets sur cette application. On suppose que les générations des tickets sont indépendantes entre elles.
    a. Donner la loi de probabilité de la variable aléatoire $X$ qui compte le nombre de tickets gagnants parmi les $20$ tickets générés.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X = 5)$.
    $\quad$
    c. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X \pg 1)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • Suites
  • Équations différentielles

Dans cet exercice, on s’intéresse à la croissance du bambou Moso de taille maximale $20$ mètres.
Le modèle de croissance de Ludwig von Bertalanffy suppose que la vitesse de croissance pour un tel bambou est proportionnelle à l’écart entre sa taille et la taille maximale.

Partie I : modèle discret

Dans cette partie, on observe un bambou de taille initiale $1$ mètre.
Pour tout entier naturel $n$, on note $u_n$ la taille, en mètre, du bambou $n$ jours après le début de l’observation. On a ainsi $u_0 = 1$.
Le modèle de von Bertalanffy pour la croissance du bambou entre deux jours consécutifs se traduit par l’égalité : $$u_{n+1} = u_n + 0,05\left(20-u_n\right)~~ \text{pour tout entier naturel } n$$

  1. Vérifier que $u_1 = 1,95$.
    $\quad$
  2. a. Montrer que pour tout entier naturel $n$, $u_{n+1} = 0,95u_n + 1$.
    $\quad$
    b. On pose pour tout entier naturel $n$, $v_n = 20-u_n$.
    Démontrer que la suite $\left(v_n\right)$ est une suite géométrique dont on précisera le terme initial $v_0$ et la raison.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $u_n = 20-19 \times 0,95^n$.
    $\quad$
  3. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II : modèle continu

Dans cette partie, on souhaite modéliser la taille du même bambou Moso par une fonction donnant sa taille, en mètre, en fonction du temps $t$ exprimé en jour.
D’après le modèle de von Bertalanffy, cette fonction est solution de l’équation différentielle $$(E) \qquad y’ = 0,05(20-y)$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0;+\infty[$ et $y’$ désigne sa fonction dérivée.
Soit la fonction $L$ définie sur l’intervalle $[0;+\infty[$ par $$L(t) = 20-19\e^{-0,05t}$$

  1. Vérifier que la fonction $L$ est une solution de $(E)$ et qu’on a également $L(0) = 1$.
    $\quad$
  2. On prend cette fonction $L$ comme modèle et on admet que, si on note $L’$ sa fonction dérivée, $L'(t)$ représente la vitesse de croissance du bambou à l’instant $t$.
    a. Comparer $L'(0)$ et $L'(5)$.
    $\quad$
    b. Calculer la limite de la fonction dérivée $L’$ en $+\infty$.
    Ce résultat est-il en cohérence avec la description du modèle de croissance exposé au début de l’exercice ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Suites, étude de fonction
  • Fonction logarithme

Soit la fonction $f$ définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$
On considère la suite $\left(u_n\right)$ de terme initial $u_0 = 10$ et telle que $u_{n+1} = f\left(u_n\right)$ pour tout entier naturel $n$.

Partie I :

La feuille de calcul ci-dessous a permis d’obtenir des valeurs approchées des premiers termes de la suite $\left(u_n\right)$.

$$\begin{array}{|c|c|c|}
\hline
&\phantom{12345}A\phantom{12345} &B\\
\hline
1 &n&u_n\\
\hline
2 &0&10\\
\hline
3& 1&7,802~775~42\\
\hline
4& 2&5,885~444~74\\
\hline
5& 3&4,299~184~42\\
\hline
6& 4&3,105~509~13\\
\hline
7& 5&2,360~951~82\\
\hline
8& 6&2,052~767~5\\
\hline
9& 7&2,001~345~09\\
\hline
10& 8&2,000~000~9\\
\hline
\end{array}$$

  1. Quelle formule a été saisie dans la cellule B3 pour permettre le calcul des valeurs approchées de $\left(u_n\right)$ par recopie vers le bas ?
    $\quad$
  2. À l’aide de ces valeurs, conjecturer le sens de variation et la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II :

On rappelle que la fonction $f$ est définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$

  1. Calculer $\lim\limits_{x \to 1} f(x)$. On admettra que $\lim\limits_{x \to + \infty} f(x) = +\infty$.
    $\quad$
  2. a. Soit $f’$ la fonction dérivée de $f$. Montrer que pour tout $x \in ]1; +\infty[$, $f'(x) = \dfrac{x-2}{x-1}$.
    $\quad$
    b. En déduire le tableau des variations de $f$ sur l’intervalle $]1;+\infty[$, complété par les limites.
    $\quad$
    c. Justifier que pour tout $x\pg 2$, $f(x) \pg 2$.
    $\quad$

Partie III :

  1. En utilisant les résultats de la partie II, démontrer par récurrence que $u_n \pg 2$ pour tout entier naturel $n$.
    $\quad$
  2. Montrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
  4. On admet que $\ell$ vérifie $f(\ell) = \ell$. Donner la valeur de $\ell$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Asie – sujet 1 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. On a
    $\begin{align*} u_1&=\left(1-\dfrac{10}{100}\right)\times u_0+250 \\
    &=0,9\times 1~000+250 \\
    &= 1~150\end{align*}$
    $\quad$
  2. Chaque année elle ne conserve que $90\%$ de ses abonnés soit $0,9u_n$. De plus $250$ nouveaux abonnés s’ajoutent chaque année à ceux conservés.
    Ainsi, pour tout entier naturel $n$ on a $u_{n+1}=0,9u_n+250$.
    $\quad$
  3. L’instruction suite(10) renvoie la valeur de $u_{10}$ c’est-à-dire le nombre d’abonnés à son profil en 2030.
    $\quad$
  4. a. Initialisation : $u_0=1~000 \pp 2~500$
    La propriété est donc vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} u_{n+1}&=0,9u_n+250 \\
    &\pp 0,9\times 2~500+250 \\
    &\pp 2~250+250\\
    &\pp 2~500\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n \pp 2~500$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} u_{n+1}-u_n&=0,9u_n+250-u_n \\
    &=-0,1u_n+250 \\
    &=-0,1\left(u_n-2~500\right) \end{align*}$
    Or $u_n-2~500    \pp 0$ d’après la question précédente.
    Ainsi $u_{n+1}-u_n\pg 0$ et la suite $\left(u_n\right)$ est croissante.
    $\quad$
    c. La suite $\left(u_n\right)$ est croissante et majorée par $2~500$. Elle converge donc.
    $\quad$
  5. a. Soit $n\in \N$. On a $v_n=u_n-2~500$ donc $u_n=v_n+2~500$.
    $\begin{align*} v_{n+1}&=u_{n+1}-2~500 \\
    &=0,9u_n+250-2~500 \\
    &=0,9\left(v_n+2~500\right)-2~250 \\
    &=0,9v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,9$ et de premier terme $v_0=u_0-2~500=-1~500$.
    $\quad$
    b. Ainsi, pour tout $n\in \N$, on a $v_n=-1~500\times 0,9^n$
    Donc $u_n=v_n+2~500=-1~500\times 0,9^n+2~500$.
    $\quad$
  6. On peut écrire $$\begin{array}{|l|}
    \hline
    \text{u} = 1000 \\
    \text{n} = 2020 \\
    \text{while u} <= 2200 \\
    \quad \text{u} = 0,9 * \text{u} + 250 \\
    \quad \text{n} = \text{n} + 1\\
    \text{disp(n)}\\
    \hline
    \end{array}$$
    $\quad$
    On veut déterminer le plus petit entier naturel $n$ tel que:
    $\begin{align*} u_n > 2~200&\ssi -1~500 \times 0,9^n + 2~500>2~200 \\
    &\ssi -1~500\times 0,9^n > -300 \\
    &\ssi 0,9^n < 0,2 \\
    &\ssi n\ln(0,9) < \ln(0,2) \\
    &\ssi n>\dfrac{\ln(0,2)}{\ln(0,9)}\end{align*}$
    Or $\dfrac{\ln(0,2)}{\ln(0,9)} \approx 15,3$
    C’est donc en 2036 que le nombre d’abonnés dépassera $2~200$.
    $\quad$

Ex 2

Exercice 2 (5 points)

Partie I

  1. On a $P(6;0;0)$ et $Q(0;0;6)$.
    $\quad$
  2. $\vect{PQ}(-6;0;6)$ et $\vect{PR}(2;2;8)$.
    Donc $\vect{PQ}.\vec{n}=-6+0+6=0$ et $\vect{PR}.\vec{n}=2-10+8=0$.
    Par conséquent $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(PQR)$.
    C’est un vecteur normal au plan $(PQR)$.
    $\quad$
  3. Une équation cartésienne du plan $(PQR)$ est alors de la forme $x-5y+z+d=0$.
    Le point $P(6;0;0)$ appartient à ce plan.
    Donc $6+d=0 \ssi d=-6$.
    Une équation cartésienne du plan $(PQR)$ est donc $x-5y+z-6=0$.
    $\quad$

Partie II

  1. $\Omega$ est le milieu de $[EC]$
    Or $E(0;0;8)$ et $C(8;8;0)$
    Ainsi $\Omega\left(\dfrac{8+0}{2};\dfrac{0+8}{2};\dfrac{0+8}{2}\right)$ soit $\Omega(4;4;4)$.
    $\quad$
  2. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $d$.
    Une représentation paramétrique de cette droite est $$\begin{cases} x=4+t\\y=4-5t\\z=4+t\end{cases} \quad, t\in \R$$
    $\quad$
  3. Si on prend $t=\dfrac{2}{3}$ on a $4+t=\dfrac{14}{3}$, $4-5t=\dfrac{2}{3}$ donc le point de coordonnées $\left(\dfrac{14}{3};\dfrac{2}{3};\dfrac{14}{3}\right)$ appartient à $d$.
    De plus $\dfrac{14}{3}-\dfrac{5\times 2}{3}+\dfrac{14}{3}-6=\dfrac{18}{3}-6=0$ : le point de coordonnées $\left(\dfrac{14}{3};\dfrac{2}{3};\dfrac{14}{3}\right)$ appartient au plan $(PQR)$.
    Par conséquent $L$ a pour coordonnées $\left(\dfrac{14}{3};\dfrac{2}{3};\dfrac{14}{3}\right)$.
    $\quad$
  4. Cette distance est
    $\begin{align*} L\Omega&=\sqrt{\left(4-\dfrac{14}{3}\right)^2+\left(4-\dfrac{2}{3}\right)^2+\left(4-\dfrac{14}{3}\right)^2} \\
    &=\sqrt{12}\end{align*}$
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. a. Il y a $\dbinom{8}{2}=28$ tirages possibles .
    $\quad$
    b. Il y a $\dbinom{6}{1}\times \dbinom{2}{1}=12$ tirages permettant de gagner.
    La probabilités de gagner à ce jeu est donc $\dfrac{12}{28}=\dfrac{3}{7}$.
    $\quad$
  2. a. La variable aléatoire $G$ ne peut prendre que deux valeurs : $10-k$ et $-k$.
    $P(G=10-k)=\dfrac{3}{7}$ et $P(G=-k)=\dfrac{4}{7}$.
    $\quad$
    b. Le jeu est favorable au joueur si son espérance est positive.
    $\begin{align*} E(G)>0&\ssi \dfrac{3}{7}(10-k)-\dfrac{4}{7}k>0 \\
    &\ssi \dfrac{30}{7}-k>0 \\
    &\ssi k<\dfrac{30}{7}\end{align*}$
    Or $\dfrac{30}{7}\approx 4,2857$
    La somme maximale à payer est donc $4,28$ € pour que le jeu reste favorable au joueur.
    $\quad$
  3. a. On effectue $10$ tirages aléatoires, identiques et indépendants.
    À chaque tirage, il n’y a que deux issues : le joueur gagne ou le joueur perd.
    Ainsi $X$ suit la loi binomiale de paramètres $n=10$ et $p=\dfrac{3}{7}$.
    $\quad$
    b. On veut calculer
    $\begin{align*}P(X=4)&=\dbinom{10}{4}\left(\dfrac{3}{7}\right)^4\left(\dfrac{4}{7}\right)^6\\
    &\approx 0,247\end{align*}$
    La probabilité qu’il y ait exactement quatre joueurs gagnants est environ égale à $0,247$.
    $\quad$
    c. $P(X\pg 5)=1-P(X\pp 4) \approx 0,440$
    La probabilité qu’il y ait au moins $5$ gagnants est environ égale à $0,440$.
    $\quad$
    d. D’après la calculatrice on a $P(X\pp 5) \approx 0,78$ et $P(X\pp 6) \approx 0,92$.
    Ainsi le plus petit entier naturel $n$ tel que $P(X\pp n) \pg 0,9$ est $6$.
    $\quad$

 

Ex A

Exercice A (5 points)

Partie I – lectures graphiques

  1. Le coefficient directeur de la tangente à la courbe de la fonction $f$ en $0$ est $f'(0)$.
    Graphiquement $f'(0)=0,4$.
    Le coefficient directeur de la tangente à la courbe de la fonction $f$ en $0$ est graphiquement égal à $0,4$.
    $\quad$
  2. a. La fonction $f’$ semble décroissante sur $]-\infty;-2[$ et sur $[1;+\infty[$ et croissante sur $[-2;1]$.
    $\quad$
    b. La fonction $f$ semble donc convexe sur $[-2;1]$.
    $\quad$

 

Partie II : étude de fonction

  1. D’après la limite des termes de plus haut degré, $\lim\limits_{x\to +\infty} x^2+x+\dfrac{5}{2}=\lim\limits_{x\to +\infty} x^2=+\infty$ et $\lim\limits_{x\to -\infty} x^2+x+\dfrac{5}{2}=\lim\limits_{x\to -\infty} x^2=+\infty$
    Or $\lim\limits_{X\to +\infty} \ln(X)=+\infty$
    Par conséquent $\lim\limits_{x\to +\infty} f(x)=+\infty$ et $\lim\limits_{x\to -\infty} f(x)=+\infty$
    $\quad$
  2. Pour tout réel $x$ on a $f'(x)=\dfrac{2x+1}{x^2+x+\dfrac{5}{2}}$.
    $\quad$
  3. Le signe de $f'(x)$ ne dépend que de celui de $2x+1$.
    Or $2x+1=0 \ssi x=-\dfrac{1}{2}$ et $2x+1>0 \ssi x>-\dfrac{1}{2}$.
    On obtient alors le tableau de variations suivant :
    $\quad$
  4. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\left[-\dfrac{1}{2};+\infty\right[$.
    De plus $f\left(-\dfrac{1}{2}\right)=\ln\left(\dfrac{9}{4}\right)\approx 0,81<2$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=2$ possède une unique solution dans $\left[-\dfrac{1}{2};+\infty\right[$.
    $\quad$
    b. D’après la calculatrice $\alpha \approx 1,8$.
    $\quad$
  5. Le signe de $f\dsec(x)$ ne dépend que de celui de $-2x^2-2x+4$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=36>0$ et les racines sont $1$ et $-2$.
    Ainsi $f\dsec(x)$ s’annule en changeant de signe en $-2$ et $1$.
    La courbe représentative de $f$ possède donc deux points d’inflexion d’abscisse $-2$ et $1$.
    $\quad$

 

Ex B

Exercice B (5 points)

Partie I

  1. a. La fonction $f$ définie sur $\R$ par $f(t)=1$ est solution de cette équation.
    En effet $f'(t)=0$ pour tout réel $t$ et $-0,4\times 1+0,4=0$.
    Donc $f'(t)=-0,4f(t)+0,4$ pour tout réel $t$.
    $\quad$
    b. Soit $f$ une autre solution de cette équation différentielle.
    Ainsi, la fonction $g$ définie pour tout réel $t$ par $g(t)=f(t)+1$ est également solution de cette équation différentielle.
    Par conséquent :
    $f'(t)=-0,4\left(f(t)+1\right)+0,4 \ssi f'(t)=-0,4f(t)$
    Les solutions de l’équation différentielle $y=-0,4y$ sont les fonctions définies par $t\mapsto C\e^{-0,4t}$ où $C\in \R$.
    Les solutions de l’équation différentielle initiale sont donc les fonctions définies par $t\mapsto C\e^{-0,4t}+1$ pour tout $C\in \R$
    $\quad$
    c. $g(0)=10 \ssi C+1=10 \ssi C=9$
    Ainsi $g$ est la fonction définie sur $\R$ par $t\mapsto 9\e^{-0,4t}+1$.
    $\quad$

Partie II

  1. $\lim\limits_{t\to +\infty} -0,4t=-\infty$ or $\lim\limits_{X\to -\infty} \e^{X}=0$
    Par conséquent $\lim\limits_{t\to +\infty} p(t)=1$.
    $\quad$
  2. Pour tout réel $t\pg 0$ on a
    $\begin{align*} p'(t)&=-\dfrac{9\times (-0,4)\e^{-0,4t}}{\left(1+9\e^{-0,4t}\right)^2} \\
    &=\dfrac{3,6\e^{-0,4}}{\left(1+9\e^{-0,4t}\right)^2} \end{align*}$
    $\quad$
  3. a. On a
    $\begin{align*} p(t)=\dfrac{1}{2} &\ssi \dfrac{1}{1+9\e^{-0,4t}}=\dfrac{1}{2} \\
    &\ssi 2=1+9\e^{-0,4t} \\
    &\ssi \e^{-0,4t}=\dfrac{1}{9} \\
    &\ssi -0,4t=-\ln(9) \qquad \text{car } \ln\left(\dfrac{1}{9}\right)=-\ln(9)\\
    &\ssi t=\dfrac{\ln(9)}{0,4}\end{align*}$
    Or $\dfrac{\ln(9)}{0,4}>0$ car $9>1$
    L’équation $p(t)=\dfrac{1}{2}$ admet donc une unique solution solution sur $[0;+\infty[$.
    Remarque : On pouvait également utiliser le corollaire du théorème des valeurs intermédiaires (ou théorème de la bijection)
    $\quad$
    b. D’après la calculatrice $\alpha=\dfrac{\ln(9)}{0,4}\approx 5,5$.
    $\quad$

Partie III

  1. Soit $t\pg 0$
    $\begin{align*} 0,4p(t)\left(1-p(t)\right)&=\dfrac{0,4}{1+9\e^{-0,4t}}\left(1-\dfrac{1}{1+9\e^{-0,4t}}\right) \\
    &=\dfrac{0,4}{1+9\e^{-0,4t}}\times \dfrac{-9\e^{-0,4t}}{1+9\e^{-0,4t}} \\
    &=\dfrac{-3,6\e^{-0,4t}}{1+9\e^{-0,4t}} \\
    &=p'(t)\end{align*}$
    Par conséquent $p$ est solution de l’équation différentielle $y’=0,4y(1-y)$.
    De plus $p(0)=\dfrac{1}{1+9}=\dfrac{1}{10}$.
    $\quad$
  2. $\lim\limits_{t\to +\infty} p(t)=1$ signifie que sur le long terme toutes les écoles auront accès à internet.
    $p(\alpha)=\dfrac{1}{2}$ avec $\alpha\approx 5,5$ signifie qu’au milieu de l’année 2026, la moitié des écoles auront accès à internet.
    $p(0)=\dfrac{1}{10}$ signifie qu’en 2020 seulement $10\%$ des écoles ont accès à internet.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

En 2020, une influenceuse sur les réseaux sociaux compte $1~000$ abonnés à son profil. On modélise le nombre d’abonnés ainsi: chaque année, elle perd $10\%$ de ses abonnés auxquels s’ajoutent $250$ nouveaux abonnés.
Pour tout entier naturel $n$, on note $u_n$ le nombre d’abonnés à son profil en l’année (2020 $+n$), suivant cette modélisation. Ainsi $u_0 = 1~000$.

  1. Calculer $u_1$.
    $\quad$
  2. Justifier que pour tout entier naturel $n$, $u_{n+1} = 0,9u_n + 250$.
    $\quad$
  3. La fonction Python nommée « suite » est définie ci-dessous. Dans le contexte de l’exercice, interpréter la valeur renvoyée par suite(10).
    $$\begin{array}{|l|}
    \hline
    \text{def suite( n) }:\\
    \quad \text{u} = 1000\\
    \quad \text{for i in range(n)} :\\
    \qquad \text{u} = 0,9*\text{u} + 250\\
    \quad \text{return u}\\
    \hline
    \end{array}$$
    $\quad$
  4. a. Montrer, à l’aide d’un raisonnement par récurrence, que pour tout entier naturel $n$, $u_n \pp 2~500$.
    $\quad$
    b. Démontrer que la suite $\left(u_n\right)$ est croissante.
    $\quad$
    c. Déduire des questions précédentes que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  5. Soit $\left(v_n\right)$ la suite définie par $v_n = u_n – 2~500$ pour tout entier naturel $n$.
    a. Montrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,9$ et de terme initial $v_0 = -1~500$.
    $\quad$
    b. Pour tout entier naturel $n$, exprimer $v_n$ en fonction de $n$ et montrer que : $$u_n = – 1~500 \times 0,9^n + 2~500$$
    $\quad$
    c. Déterminer la limite de la suite $\left(u_n\right)$ et interpréter dans le contexte de l’exercice.
    $\quad$
  6. Écrire un programme qui permet de déterminer en quelle année le nombre d’abonnés dépassera $2~200$.
    Déterminer cette année.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un cube $ABCDEFGH$ d’arête $8$ cm et de centre $\Omega$.
Les points $P$, $Q$ et $R$ sont définis par $\vect{AP} = \dfrac{3}{4}\vect{AB}$, $ \vect{AQ} = \dfrac{3}{4}\vect{AE}$ et $\vect{FR} = \dfrac{1}{4}\vect{FG}$.
On se place dans le repère orthonormé  $\left(\text{A};\vec{i},\vec{j},\vec{k}\right)$ avec : $\vec{i} = \dfrac{1}{8}\vect{AB}$, $\vec{j}= \dfrac{1}{8}\vect{AD}$ et $\vec{k} = \dfrac{1}{8}\vect{AE}$.

 

 

Partie I

  1. Dans ce repère, on admet que les coordonnées du point $R$ sont $(8;2;8)$.
    Donner les coordonnées des points $P$ et $Q$.
    $\quad$
  2. Montrer que le vecteur $\vec{n}(1;-5;1)$ est un vecteur normal au plan $(PQR)$.
    $\quad$
  3. Justifier qu’une équation cartésienne du plan $(PQR)$ est $x-5y+z-6 = 0$.
    $\quad$

Partie II

On note $L$ le projeté orthogonal du point $\Omega$ sur le plan $(PQR)$.

  1. Justifier que les coordonnées du point $\Omega$ sont $(4;4;4)$.
    $\quad$
  2. Donner une représentation paramétrique de la droite $d$ perpendiculaire au plan $(PQR)$ et passant par $\Omega$.
    $\quad$
  3. Montrer que les coordonnées du point $L$ sont $\left(\dfrac{14}{3}; \dfrac{2}{3};\dfrac{14}{3}\right)$
    $\quad$
  4. Calculer la distance du point $\Omega$ au plan $(PQR)$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Un sac contient les huit lettres suivantes: A B C D E F G H ($2$ voyelles et $6$ consonnes).
Un jeu consiste à tirer simultanément au hasard deux lettres dans ce sac.
On gagne si le tirage est constitué d’une voyelle et d’une consonne.

  1. Un joueur extrait simultanément deux lettres du sac.
    a. Déterminer le nombre de tirages possibles.
    $\quad$
    b. Déterminer la probabilité que le joueur gagne à ce jeu.
    $\quad$

Les questions 2 et 3 de cet exercice sont indépendantes.
Pour la suite de l’exercice, on admet que la probabilité que le joueur gagne est égale à $\dfrac{3}{7}$.

  1. Pour jouer, le joueur doit payer $k$ euros, $k$ désignant un entier naturel non nul.
    Si le joueur gagne, il remporte la somme de $10$ euros, sinon il ne remporte rien.
    On note $G$ la variable aléatoire égale au gain algébrique d’un joueur (c’est-à-dire la somme remportée à laquelle on soustrait la somme payée).
    a. Déterminer la loi de probabilité de $G$.
    $\quad$
    b. Quelle doit être la valeur maximale de la somme payée au départ pour que le jeu reste favorable au joueur ?
    $\quad$
  2. Dix joueurs font chacun une partie. Les lettres tirées sont remises dans le sac après chaque partie.
    On note $X$ la variable aléatoire égale au nombre de joueurs gagnants.
    a. Justifier que $X$ suit une loi binomiale et donner ses paramètres.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, qu’il y ait exactement quatre joueurs gagnants.
    $\quad$
    c. Calculer $P(X \pg 5)$ en arrondissant à $10^{-3}$. Donner une interprétation du résultat obtenu.
    $\quad$
    d. Déterminer le plus petit entier naturel $n$ tel que $P(X \pp  n) \pg 0,9$.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi: exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • convexité
  • fonction logarithme

Partie I : lectures graphiques

$f$ désigne une fonction définie et dérivable sur $\R$.
On donne ci-dessous la courbe représentative de la fonction dérivée $f’$.

 

 

Avec la précision permise par le graphique, répondre aux questions suivantes

  1. Déterminer le coefficient directeur de la tangente à la courbe de la fonction $f$ en $O$.
    $\quad$
  2. a. Donner les variations de la fonction dérivée $f’$.
    $\quad$
    b. En déduire un intervalle sur lequel $f$ est convexe.
    $\quad$

Partie II : étude de fonction

La fonction $f$ est définie sur $\R$ par $$f(x) = \ln \left(x^2 + x + \dfrac{5}{2}\right)$$

  1. Calculer les limites de la fonction $f$ en $+\infty$ et en $-\infty$.
    $\quad$
  2. Déterminer une expression $f'(x)$ de la fonction dérivée de $f$ pour tout $x \in \R$.
    $\quad$
  3. En déduire le tableau des variations de $f$. On veillera à placer les limites dans ce tableau.
    $\quad$
  4. a. Justifier que l’équation $f(x) = 2$ a une unique solution $\alpha$ dans l’intervalle $\left[-\dfrac{1}{2};+ \infty\right[$.
    $\quad$
    b. Donner une valeur approchée de $\alpha$ à $10^{-1}$ près.
    $\quad$
  5. La fonction $f’$ est dérivable sur $\R$. On admet que, pour tout $x \in \R$, $f”(x) = \dfrac{-2x^2-2x+4}{\left(x^2+x+\dfrac{5}{2}\right)^2}$.
    Déterminer le nombre de points d’inflexion de la courbe représentative de $f$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Étude de fonction, fonction exponentielle
  • Équations différentielles

Partie I

Considérons l’équation différentielle $$y’= -0,4y + 0,4$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0; + \infty[$.

  1. a. Déterminer une solution particulière constante de cette équation différentielle.
    $\quad$
    b. En déduire l’ensemble des solutions de cette équation différentielle.
    $\quad$
    c. Déterminer la fonction $g$, solution de cette équation différentielle, qui vérifie $g(0) = 10$.
    $\quad$

$\quad$

Partie II

Soit $p$ la fonction définie et dérivable sur l’intervalle $[0;+ \infty[$ par $$p(t) = \dfrac{1}{g(t)} = \dfrac{1}{1 + 9\e^{-0,4t}}$$

  1. Déterminer la limite de $p$ en $+ \infty$.
    $\quad$
  2. Montrer que $p'(t) = \dfrac{3,6\e^{-0,4t}}{ \left(1 + 9\e^{-0,4t}\right)^2}$ pour tout $t \in [0;+ \infty[$.
    $\quad$
  3. a. Montrer que l’équation $p(t) = \dfrac{1}{2}$ admet une unique solution $\alpha$ sur $[0;+ \infty[$.
    $\quad$
    b. Déterminer une valeur approchée de $\alpha$ à $10^{-1}$ près à l’aide d’une calculatrice.
    $\quad$

Partie III

  1. $p$ désigne la fonction de la partie II.
    Vérifier que $p$ est solution de l’équation différentielle $y’ = 0,4y(1-y)$ avec la condition initiale $y(0) = \dfrac{1}{10}$ où $y$ désigne une fonction définie et dérivable sur $[0; + \infty[$.
    $\quad$
  2. Dans un pays en voie de développement, en l’année 2020, $10\%$ des écoles ont accès à internet.
    Une politique volontariste d’équipement est mise en œuvre et on s’intéresse à l’évolution de la proportion des écoles ayant accès à internet.
    On note $t$ le temps écoulé, exprimé en année, depuis l’année 2020.
    La proportion des écoles ayant accès à internet à l’instant $t$ est modélisée par $p(t)$.
    Interpréter dans ce contexte la limite de la question II.1 puis la valeur approchée de $\alpha$ de la question II 3. b. ainsi que la valeur $p(0)$.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Polynésie – sujet 2 – mars 2021

Polynésie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On a
    $\begin{align*} u_1&=0,95\times 10~000+200 \\
    &=9~700\end{align*}$
    $\quad$
    et
    $\begin{align*} u_2&=0,95\times 9~700+200 \\
    &=9~415\end{align*}$
    $\quad$
  2. a. Initialisation : Si $n=0$ alors $u_0=10~000>4~000$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n$.
    $\begin{align*}
    u_{n+1}&=0,95u_n+200 \\
    &>0,95 \times 4~000+200\\
    &>3~800+200\\
    &>4~000\end{align*}$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout $n\in \N$ on a $u_n>4~000$.
    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante et minorée par $4~000$. Elle converge donc.
    $\quad$
  3. a. $v_0=10~000-4~000=6~000$.
    $\quad$
    b. Soit $n\in \N$. $v_n=u_n-4~000 \ssi u_n=v_n+4~000$
    $\begin{align*} v_{n+1}&=u_{n+1}-4~000\\
    &=0,95u_n+200-4~000\\
    &=0,95u_n-3~800 \\
    &=0,95\left(v_n+4~000\right)-3~800\\
    &=0,95v_n+3~800-3~800\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=6~000$.
    $\quad$
    c. Pour tout $n\in \N$ on a donc $v_n=6~000\times 0,95^n$.
    Par conséquent :
    $\begin{align*} u_n&=v_n+4~000 \\
    &=6~000\times 0,95^n+4~000\end{align*}$
    $\quad$
    d. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 6~000\times 0,95^n=0$
    Par conséquent $\lim\limits_{n\to +\infty} u_n=4~000$.
    $\quad$
  4. La population de cette espèce baisse de $5\%$ chaque année. Il reste donc $95\%$ de la population d’une année sur l’autre.
    $200$ individus sont réintroduit chaque année.
    En 2020, il y avait $10~000$ individus.
    Par conséquent, la population de cette espèce peut être modélisée par la suite $\left(u_n\right)$ étudiée dans les questions précédentes.
    Sur le long terme, il restera $4~000$ individus.
    Or $4~000<\dfrac{10~000}{2}$
    L’affirmation est donc vraie.
    $\quad$

Ex 2

Exercice 2

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. On veut calculer
    $\begin{align*} p(M\cap T)&=p(M)\times p_M(T) \\
    &=0,07\times 0,8\\
    &=0,056\end{align*}$
    La probabilité pour que la personne soit infectée par la maladie et que son test soit positif est $0,056$.
    $\quad$
    b. $M$ et $\conj{M}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*}
    p(T)&=p(M\cap T)+p\left(\conj{M}\cap T\right)\\
    &=0,056+0,93\times 0,01 \\
    &=0,0653\end{align*}$
    La probabilité que son test soit positif est de $0,0653$.
    $\quad$
  3. On veut calculer
    $\begin{align*} p_T(M)&=\dfrac{p(T\cap M)}{p(T)} \\
    &=\dfrac{0,056}{0,0653} \\
    &\approx 0,86\end{align*}$
    La probabilité que la personne soit infectée sachant que son test est positif est environ égale à $0,86$.
    $\quad$
  4. a. On effectue $10$ tirages aléatoires, indépendants et identiques.
    À chaque tirage, il n’y a que deux issues  : $T$ et $\conj{T}$.
    La variable aléatoire $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,0653$.
    $\quad$
    b. On a
    $\begin{align*} p(X=2)&=\dbinom{10}{2}0,0653^2 \times (1-0,653)^8 \\
    &\approx 0,11\end{align*}$
    La probabilité pour qu’exactement deux personnes aient un test positif est environ égale à $0,11$.
    $\quad$
  5. On effectue $n$ tirages aléatoires, indépendants et identiques.
    À chaque tirage, il n’y a que deux issues  : $T$ et $\conj{T}$.
    On note $Y$ la variable aléatoire qui comptabilise le nombre d’individus ayant un test positif parmi les $n$ personnes.
    La variable aléatoire $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,0653$.
    On veut
    $\begin{align*} p(Y\pg 1)> 0,99 &\ssi 1-p(Y=0)>0,99 \\
    &\ssi p(Y=0)<0,01 \\
    &\ssi (1-0,0653)^n<0,01 \\
    &\ssi 0,9347^n<0,01 \\
    &\ssi n\ln(0,9347)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,9347)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,9347)} \approx 63,2$.
    Il faut donc tester au minimum $64$ personnes pour que la probabilité qu’au moins une de ces personnes ait un test positif soit supérieure à $99\%$.
    $\quad$

Ex 3

Exercice 3

  1. On a $B(1;0;0)$, $D(0;1;0)$, $E(0;0;1)$, $G(1;1;1)$ et $H(0;1;1)$.
    $\quad$
  2. a. $[EG]$, $[ED]$ et $[GD]$ sont des diagonales de carrés dont les côtés ont la même longueur.
    Par conséquent $EG=ED=GD$.
    Le triangle $EGD$ est donc équilatéral.
    $\quad$
    b. Dans le triangle $EGH$ rectangle en $H$ on applique le théorème de Pythagore.
    $\begin{align*} EG^2&=EH^2+GH^2 \\
    &=1+1\\
    &=2\end{align*}$
    Par conséquent l’aire du triangle $EGD$ est
    $\begin{align*} \mathscr{A}&=\dfrac{\sqrt{3}}{4}EG^2 \\
    &=\dfrac{\sqrt{3}}{4}\times 2\\
    &=\dfrac{\sqrt{3}}{2}\end{align*}$
    $\quad$
  3. On a $\vect{BH}\begin{pmatrix} -1\\1\\1\end{pmatrix}$.
    $\begin{align*} \vect{BM}=\dfrac{1}{3}\vect{BH}&\ssi \begin{cases} x_M-1=\dfrac{1}{3}\times (-1) \\
    y_M=\dfrac{1}{3}\times 1\\
    z_M=\dfrac{1}{3}\times 1\end{cases} \\
    &\ssi \begin{cases} x_M=\dfrac{2}{3} \\y_M=\dfrac{1}{3}\\z_M=\dfrac{1}{3}\end{cases}\end{align*}$
    Ainsi les coordonnées de $M$ sont bien $\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$.
    $\quad$
  4. a. On a $\vect{EG}\begin{pmatrix}1\\1\\0\end{pmatrix}$ et $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$
    Par conséquent :
    $\begin{align*} \vec{n}.\vect{EG}&=-1+1+0\\
    &=0\end{align*}$
    $\begin{align*} \vec{n}.\vect{ED}&=0+1-1\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(EGD)$.
    Ainsi $\vec{n}$ est normal au plan $(EGD)$.
    $\quad$
    b. Une équation cartésienne du plan $(EGD)$ est de la forme $-x+y+z+d=0$.
    Le point $E$ appartient au plan $(EGD)$ donc
    $0+0+1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(EGD)$ est donc $-x+y+z-1=0$.
    $\quad$
    c. $\vec{n}$ est un vecteur directeur de la droite $\mathcal{D}$.
    Une représentation paramétrique de cette droite est donc :
    $\begin{cases} x=\dfrac{2}{3}-t\\y=\dfrac{1}{3}+t\\z=\dfrac{1}{3}+t\end{cases}\quad, t\in \R$.
    $\quad$
  5. a. Si on prend $t=\dfrac{1}{3}$ dans la représentation paramétrique de la droite $\mathcal{D}$ on obtient les coordonnées $\left(\dfrac{1}{3};\dfrac{2}{3};\dfrac{2}{3}\right)$.
    $-\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{2}{3}-1=0$
    Le point de coordonnées $\left(\dfrac{1}{3};\dfrac{2}{3};\dfrac{2}{3}\right)$ appartient donc au plan $(EGD)$ et à la droite $\mathcal{D}$.
    Il s’agit par conséquent du point $K$.
    $\quad$
    b. On a
    $\begin{align*} MK^2&=\left(-\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2 \\
    &=\dfrac{1}{3} \end{align*}$
    Le volume de la pyramide $GEDM$ est donc
    $\begin{align*} V&=\dfrac{\mathscr{A}\times MK}{3} \\
    &=\dfrac{\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{3}}}{3} \\
    &=\dfrac{1}{6}\end{align*}$
    $\quad$

Ex A

Exercice A

Partie 1

  1. $A(0;2)$ appartient à $\mathcal{C}$ donc $f(0)=2$.
    $f'(0)$ est le coefficient directeur de la droite $(AB)$.
    Donc $f'(0)=\dfrac{0-2}{2-0}=-1$.
    $\quad$
  2. La fonction $f$ semble convexe sur l’intervalle $[0;3]$.
    $\quad$

Partie 2

  1. Les solutions de l’équation $(H)$ sont les fonctions $f$ définies sur $\R$ par $f(x)=k\e^{-x}$ où $k\in \R$.
    $\quad$
  2. Soit $f$ une solution de l’équation $(E)$.
    On a donc $f’=-f+\e^{-x}$ et $g’=-g+\e^{-x}$.
    Ainsi, par différence $(f-g)’=-(f-g)$
    Il existe donc $k\in \R$ tel que, pour tout réel $x$ on ait $(f-g)(x)=k\e^{-x}$ soit $f(x)=g(x)+k\e^{-x}$
    Les solutions de l’équation $(E)$ sont donc les fonctions $f$ définies sur $\R$ par $f(x)=x\e^{-x}+k\e^{-x}$.
    $\quad$
  3. $f(0)=2 \ssi k=2$
    Ainsi $f(x)=(x+2)\e^{-x}$ pour tout réel $x$.
    $\quad$

Partie 3

  1. a. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=\e^{-x}+(x+2)\times \left(-\e^{-x}\right)\\
    &=(1-x-2)\e^{-x} \\
    &=(-x-1)\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive.
    Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0 \ssi -x>1\ssi x<-1$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  2. a. La fonction $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=-\e^{-x}+(-x-1)\left(-\e^{-x}\right) \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $x$.
    Ainsi $f\dsec(x)\pg 0 \ssi x\pg 0$.
    La fonction $f$ est donc convexe sur l’intervalle $[0;+\infty[$.
    $\quad$

Ex B

Exercice B

Partie 1 : Étude d’une fonction auxiliaire

  1. a. La fonction $f$ est dérivable sur $[1;4]$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout $x\in [1;4]$ on a
    $\begin{align*} f'(x)&=-30+\dfrac{35}{x} \\
    &=\dfrac{-30x+35}{x} \\
    &=\dfrac{35-30x}{x}\end{align*}$
    $\quad$
    b. $35-30x=0 \ssi 30x=35 \ssi x=\dfrac{7}{6}$
    $35-30x>0 \ssi -30x>-35 \ssi x<\dfrac{7}{6}$
    On obtient le tableau de signes et de variations suivant :
    $\quad$$\quad$
    c. La fonction $f$ est donc strictement croissante sur l’intervalle $\left[1;\dfrac{7}{6}\right]$ et strictement décroissante sur l’intervalle $\left[\dfrac{7}{6};4\right]$.
    $\quad$
  2. Sur l’intervalle $\left[1;\dfrac{7}{6}\right]$ on a $f(x)\pg 20$.
    L’équation $f(x)=0$ ne possède donc pas de solution sur cet intervalle.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement décroissante sur l’intervalle $\left[\dfrac{7}{6};4\right]$.
    De plus $f\left(\dfrac{7}{6}\right) \approx 20,4 >0$ et $f(4)\approx -21,5<0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ possède donc une unique solution sur $\left[\dfrac{7}{6};4\right]$.
    $\quad$
    L’équation $f(x)=0$ possède donc une unique solution $\alpha$ sur l’intervalle $[1;4]$.
    D’après la calculatrice $\alpha \approx 2,915$.
    $\quad$
  3. D’après les questions précédentes on a donc le tableau de signes suivant :
    $\quad$

 

Partie 2 : Optimisation

  1. On a $B(2,5) \approx 23,925$
    Lorsque l’entreprise vend $2~500$ litres de jus de fruits son bénéfice est environ égal à $23~925$ euros.
    $\quad$
  2. La fonction $B$ est dérivable sur $[1;4]$ en  tant que somme et produits de fonctions dérivables sur cet intervalle.
    Pour tout réel $x$ on a
    $\begin{align*} B'(x)&=-15\times 2x+15+35\ln(x)+35x\times \dfrac{1}{x} \\
    &=-30x+15+35\ln(x)+35 \\
    &=-30x+50+35\ln(x)\\
    &=f(x)\end{align*}$
    $\quad$
  3. a. D’après la question 1.3. $B$ est donc strictement croissante sur l’intervalle $[1;\alpha]$ et strictement décroissante sur l’intervalle $[\alpha;4]$.
    $\quad$
    b. La fonction $B$ atteint donc son maximum en $\alpha$.
    L’entreprise doit donc vendre environ $2~915$ litres de jus de fruits pour réaliser un bénéfice maximal.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

On considère la suite $\left(u_{n}\right)$ définie par $u_{0}=10~000$ et pour tout entier naturel $n$ :
$$u_{n+1}=0,95 u_{n}+200$$

  1. Calculer $u_{1}$ et vérifier que $u_{2}=9415$.
    $\quad$
  2. a. Démontrer, à l’aide d’un raisonnement par récurrence, que pour tout entier naturel $n$ :
    $$u_{n}>4000$$
    $\quad$
    b. On admet que la suite $\left(u_{n}\right)$ est décroissante. Justifier qu’elle converge.
    $\quad$
  3. Pour tout entier naturel $n$, on considère la suite $\left(v_{n}\right)$ définie par : $v_{n}=u_{n}-4~000$.
    a. Calculer $v_{0}$.
    $\quad$
    b. Démontrer que la suite $\left(v_{n}\right)$ est géométrique de raison égale à $0,95$.
    $\quad$
    c. En déduire que pour tout entier naturel $n$ :
    $$u_{n}=4~000+6~000 \times 0,95^{n} $$
    $\quad$
    d. Quelle est la limite de la suite $\left(u_{n}\right)$ ? Justifier la réponse.
    $\quad$
  4. En 2020, une espèce animale comptait 10000 individus. L’évolution observée les années précédentes conduit à estimer qu’à partir de l’année 2021, cette population baissera de $5 \%$ chaque début d’année.
    Pour ralentir cette baisse, il a été décidé de réintroduire $200$ individus à la fin de chaque année, à partir de 2021.
    Une responsable d’une association soutenant cette stratégie affirme que : « l’espèce ne devrait pas s’éteindre, mais malheureusement, nous n’empêcherons pas une disparition de plus de la moitié de la population ». Que pensez-vous de cette affirmation ? Justifier la réponse.
    $\quad$

$\quad$

Exercice 2 (5 points)

Un test est mis au point pour détecter une maladie dans un pays.
Selon les autorités sanitaires de ce pays, $7 \%$ des habitants sont infectés par cette maladie. Parmi les individus infectés, $20 \%$ sont déclarés négatifs.
Parmi les individus sains, $1 \%$ sont déclarés positifs.
Une personne est choisie au hasard dans la population.
On note :

  • $M$ l’évènement: « la personne est infectée par la maladie » ;
  • $T$ l’évènement : « le test est positif ».
  1. Construire un arbre pondéré modélisant la situation proposée.
    $\quad$
  2. a. Quelle est la probabilité pour que la personne soit infectée par la maladie et que son test soit positif?
    $\quad$
    b. Montrer que la probabilité que son test soit positif est de $0,0653$.
    $\quad$
  3. On sait que le test de la personne choisie est positif.
    Quelle est la probabilité qu’elle soit infectée ?
    On donnera le résultat sous forme approchée à $10^{-2}$ près.
    $\quad$
  4. On choisit dix personnes au hasard dans la population. La taille de la population de ce pays permet d’assimiler ce prélèvement à un tirage avec remise.
    On note $X$ la variable aléatoire qui comptabilise le nombre d’individus ayant un test positif parmi les dix personnes.
    a. Quelle est la loi de probabilité suivie par $X$ ? Préciser ses paramètres.
    $\quad$
    b. Déterminer la probabilité pour qu’exactement deux personnes aient un test positif.
    On donnera le résultat sous forme approchée à $10^{-2}$ près.
    $\quad$
  5. Déterminer le nombre minimum de personnes à tester dans ce pays pour que la probabilité qu’au moins une de ces personnes ait un test positif, soit supérieure à $99 \%$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Dans l’espace, on considère le cube $ABCDEFGH$ d’arête de longueur égale à $1$
On munit l’espace du repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$. On considère le point $M$ tel que $\vect{BM}=\dfrac{1}{3} \vect{BH}$.

 

  1. Par lecture graphique, donner les coordonnées des points $B$, $D$, $E$, $G$ et $H$.
    $\quad$
  2. a. Quelle est la nature du triangle $EGD$ ? Justifier la réponse.
    $\quad$
    b. On admet que l’aire d’un triangle équilatéral de côté $c$ est égale à $\dfrac{\sqrt{3}}{4} c^{2}$.
    Montrer que l’aire du triangle $EGD$ est égale à $\dfrac{\sqrt{3}}{2}$.
    $\quad$
  3. Démontrer que les coordonnées de M sont $\left(\dfrac{2}{3} ; \dfrac{1}{3} ; \dfrac{1}{3}\right)$.
    $\quad$
  4. a. Justifier que le vecteur $\vec{n}(-1 ; 1 ; 1)$ est normal au plan $(EGD)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(EGD)$ est : $-x+y+z-1=0$.
    $\quad$
    c. Soit $\mathcal{D}$ la droite orthogonale au plan $(EGD)$ et passant par le point $M$.
    Montrer qu’une représentation paramétrique de cette droite est :
    $$\mathcal{D}:\begin{cases} x=\dfrac{2}{3}-t\\y=\dfrac{1}{3}+t\\z=\dfrac{1}{3}+t\end{cases}, \quad t\in \R$$
    $\quad$
  5. Le cube $ABCDEFGH$ est représenté ci-dessus selon une vue qui permet de mieux percevoir la pyramide $GEDM$, en gris sur la figure :Le but de cette question est de calculer le volume de la pyramide $GEDM$.
    a. Soit K, le pied de la hauteur de la pyramide $GEDM$ issue du point $M$.
    Démontrer que les coordonnées du point $K$ sont $\left(\dfrac{1}{3} ; \dfrac{2}{3} ; \dfrac{2}{3}\right)$.
    $\quad$
    b. En déduire le volume de la pyramide $GEDM$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule $V=\dfrac{b \times h}{3}$ $b$ désigne l’aire d’une base et $h$ la hauteur associée.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués dans un encadré.

Exercice A

Principaux domaines abordés :

  • Fonction exponentielle,
  • convexité,
  • dérivation,
  • équations différentielles.

Cet exercice est composé de trois parties indépendantes.
On a représenté ci-dessous, dans un repère orthonormé, une portion de la courbe représentative $\mathcal{C}$ d’une fonction $f$ définie sur $\R$ :

On considère les points $A(0 ; 2)$ et $B(2 ; 0)$.

Partie 1

Sachant que la courbe $\mathcal{C}$ passe par $A$ et que la droite $(AB)$ est la tangente à la courbe $\mathcal{C}$ au point $A$, donner par lecture graphique :

  1. La valeur de $f(0)$ et celle de $f'(0)$.
    $\quad$
  2. Un intervalle sur lequel la fonction $f$ semble convexe.
    $\quad$

Partie 2

On note $(E)$ l’équation différentielle $y’=-y+\e^{-x}$.
On admet que $g: x \mapsto x\e^{-x}$ est une solution particulière de $(E)$.

  1. Donner toutes les solutions sur $\R$ de l’équation différentielle $(H) ∶ y’ = -y$.
    $\quad$
  2. En déduire toutes les solutions sur $\R$ de l’équation différentielle $(E)$.
    $\quad$
  3. Sachant que la fonction $f$ est la solution particulière de $(E)$ qui vérifie $f(0) = 2$, déterminer une expression de $f(x)$ en fonction de $x$.
    $\quad$

Partie 3

On admet que pour tout nombre réel $x$, $f(x) = (x + 2) \e^{-𝑥}$.

  1. On rappelle que $f’$ désigne la fonction dérivée de la fonction $f$.
    a. Montrer que pour tout $x\in \R$, $f'(x)=(-x-1)\e^{-x}$.
    $\quad$
    b. Étudier le signe de $f'(x)$ pour tout $x\in \R$ et dresser le tableau des variations de $f$ sur $\R$.
    On ne précisera ni la limite de $f$ en $-\infty$ ni la limite de $f$ en $+\infty$.
    On calculera la valeur exacte de l’extremum de $f$ sur $\R$.
    $\quad$
  2. On rappelle que $f\dsec$ désigne la fonction dérivée seconde de la fonction $f$.
    a. Calculer pour tout $x\in \R$, $f\dsec(x)$.
    $\quad$
    b. Peut-on affirmer que $f$ est convexe sur l’intervalle $[0 ; +\infty[$ ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction logarithme népérien,
  • dérivation.

Cet exercice est composé de deux parties.
Certains résultats de la première partie seront utilisés dans la deuxième

Partie 1 : Étude d’une fonction auxiliaire

Soit la fonction $f$ définie sur l’intervalle $[1 ; 4]$ par $: f(x)=-30 x+50+35 \ln (x)$.

  1. On rappelle que $f’$ désigne la fonction dérivée de la fonction $f$.
    a. Pour tout nombre réel $x$ de l’intervalle $[1 ; 4]$, montrer que :
    $$f'(x)=\frac{35-30 x}{x}$$
    $\quad$
    b. Dresser le tableau de signe de $f'(x)$ sur l’intervalle $[1 ; 4]$.
    $\quad$
    c. En déduire les variations de $f$ sur ce même intervalle.
    $\quad$
  2. Justifier que l’équation $f(x)=0$ admet une unique solution, notée $\alpha$, sur l’intervalle $[1 ; 4]$ puis donner une valeur approchée de $\alpha$ à $10^{-3}$ près.
    $\quad$
  3. Dresser le tableau de signe de $f(x)$ pour $x \in[1 ; 4]$.
    $\quad$

$\quad$

Partie 2: Optimisation

Une entreprise vend du jus de fruits. Pour $x$ milliers de litres vendus, avec $x$ nombre réel de l’intervalle $[1;4]$, l’analyse des ventes conduit à modéliser le bénéfice $B(x)$ par l’expression donnée en milliers d’euros par :
$$B(x)=-15 x^{2}+15 x+35 x \ln (x) $$

  1. D’après le modèle, calculer le bénéfice réalisé par l’entreprise lorsqu’elle vend $2~500$ litres de jus de fruits.
    On donnera une valeur approchée à l’euro près de ce bénéfice.
    $\quad$
  2. Pour tout 𝑥 de l’intervalle $[1 ; 4]$, montrer que $B'(x)=f(x)$ où $B’$ désigne la fonction dérivée de $B$.
    $\quad$
  3. a. À l’aide des résultats de la partie 1, donner les variations de la fonction $B$ sur l’intervalle $[1 ; 4]$.
    $\quad$
    b. En déduire la quantité de jus de fruits, au litre près, que l’entreprise doit vendre afin de réaliser un bénéfice maximal.
    $\quad$

$\quad$

 

 

 

 

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – mars 2021

Centres étrangers – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Question 1 : La fonction $g$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
Pour tout réel $x\pg 0$, $g'(x)= 2x+2+\dfrac{3}{x^2}$.
Une équation de cette tangente est de la forme $y=g'(1)(x-1)+g(1)$.
Or $g(1)=0$ et $g'(1)=7$.
Une équation de cette tangente est donc $y=7(x-1)$.
Réponse a
$\quad$

Question 2 : Pour tout entier naturel $n$ on a $v_n=\dfrac{3}{1+\dfrac{2}{n}}$
Or $\lim\limits_{n\to +\infty} \dfrac{2}{n}=0$ donc $\lim\limits_{n\to +\infty} v_n=3$.
Remarque : On pouvait également utiliser la limite des termes de plus haut degré.
Réponse b
$\quad$

Question 3 : On appelle $X$ la variable comptant le nombre de boules noires tirées. On effectue $10$ tirages aléatoires, indépendants et identiques. À chaque tirage il n’y a que deux issues $N$ « La boule tirée est noire » et $\conj{N}$. De plus $p(N)=0,6$.
$X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,6$.
Ainsi $P(X=4) = \dbinom{10}{4} 0,6^4 \times 0,4^6 \approx 0,111~5$
Réponse c
$\quad$

Question 4 : Pour tout réel $x$ on a $f(x)=\e^{x}\left(3-\dfrac{x}{\e^x}\right)$.
Or, par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{e^x}=0$
De plus $\lim\limits_{x\to +\infty} \e^x=+\infty$
Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$
Réponse b
$\quad$

Question 5 : Il y a $36^8$ combinaisons possibles.
Il faut donc au maximum $\dfrac{36^8}{10^8} \approx 28~211$ secondes pour découvrir le code.
Cela correspond à environ $8$ heures.
Réponse b
$\quad$

 

 

Ex 2

Exercice 2

Partie A – Modélisation à l’aide d’une suite

  1. a. Si $2\%$ des panneaux se sont détériorés cela signifie que $98\%$ sont en état de fonctionner. Pour tout entier naturel $n$, cela correspond donc à $0,98u_n$ panneaux.
    Chaque année $250$ nouveaux panneaux sont installés.
    Par conséquent $u_{n+1}=0,98u_n+250$.
    En 2020, la société possédait $10~560$ panneaux. Donc $u_0=10~560$.
    $\quad$
    b. D’après la calculatrice, c’est-à-partir du rang $68$ que $u_n> 12~000$.
    Il faut $68$ ans pour que le nombre de panneaux solaires soit strictement supérieur à $12~000$.
    $\quad$
    c.
    $$\begin{array}{|l|}
    \hline
    \text{u = 10560} \\
    \text{n = 0} \\
    \textbf{while }\text{u  <= 12000 :} \\
    \quad \text{u =  0.98 * u + 250}\\
    \quad \text{n = n + 1}\\
    \hline
    \end{array}$$
    $\quad$
  2. Initialisation : On a $u_0 = 10~560 < 12~500$
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n \in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} u_{n+1} &= 0,98u_n +250 \\
    &< 0,98 \times 12~500+250 \\
    &< 12~250+250\\
    &< 12~500\end{align*}$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $u_n < 12~500$.
    $\quad$
  3. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}-u_n&=0,98u_n+250-u_n \\
    &=-0,02u_n+250 \\
    &=0,02\left(-u_n+12~500\right)\end{align*}$
    Or, pour tout entier naturel $n$, on a $u_n< 12~500$.
    Par conséquent $u_{n+1}-u_n> 0$.
    La suite $\left(u_n\right)$ est strictement croissante.
    $\quad$
  4. La suite $\left(u_n\right)$ est croissante et majorée par $12~500$. Elle converge donc.
    $\quad$
  5. a. Pour tout entier naturel $n$,
    $\begin{align*} v_{n+1}&=u_{n+1}-12~500 \\
    &=0,98u_n+250-12~500 \\
    &=0,98u_n-12~250 \\
    &=0,98\left(u_n-12~500\right)\\
    &=0,98v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $q=0,98$ et de premier terme $v_0=u_0-12~500=-1~940$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$ on a $v_n=-1~940\times 0,98^n$.
    $\quad$
    c. Donc, pour tout entier naturel $n$, $u_n=v_n+12~500=12~500-1~940\times 0,98^n$.
    $\quad$
    d. $-1<0,98<1$ donc $\lim\limits_{n\to +\infty} -1~940\times 0,98^n=0$.
    Donc $\lim\limits_{n\to +\infty} u_n=12~500$.
    Sur le long terme, la centra solaire Big Sun possèdera $12~500$ panneaux solaires.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que composée et somme de fonctions dérivables.
    Pour tout réel $x\pg 0$
    $\begin{align*} f'(x)&=-500\times (-0,02)\e^{-0,02x+1,4} \\
    &=10\e^{-0,02x+1,4}\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$ donc $f'(x)>0$.
    La fonction $f$ est par conséquent strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. $\lim\limits_{x\to +\infty} -0,02x+1,4=-\infty$ or $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{x\to +\infty} \e^{-0,02x+1,4}=0$ et $\lim\limits_{x\to +\infty} f(x)=12~500$.
    $\quad$
  3. On veut résoudre l’inéquation :
    $\begin{align*} f(x)>12~000 &\ssi 12~500-500\e^{-0,02x+1,4} > 12~000 \\
    &\ssi -500\e^{-0,02x+1,4} > -500 \\
    &\ssi \e^{-0,02x+1,4} < 1 \\
    &\ssi -0,02x+1,4< 0\\
    &\ssi -0,02x<-1,4 \\
    &\ssi x> 70\end{align*}$
    C’est donc au bout de $70$ ans, selon ce modèle, que le nombre de panneaux solaires dépassera $12~000$.
    $\quad$

 

 

 

Ex 3

Exercice 3

Partie A

  1. On a $F(1;0;1)$, $I(0;0,5;0,5)$ et $J\left(1;1;\dfrac{2}{3}\right)$
    $\quad$
  2. Ainsi $\vect{FJ}\begin{pmatrix} 0\\1\\-\dfrac{1}{3}\end{pmatrix}$
    Une représentation paramétrique de la droite $(d)$ est par conséquent $$\begin{cases} x=0\\y=0,5+t\\z=0,5-\dfrac{1}{3}t\end{cases} \quad, t\in \R$$
    $\quad$
  3. a. Le point de coordonnées $\left(0;0;\dfrac{2}{3}\right)$ appartient bien à la droite $(AE)$.
    En prenant $t=-0,5$, dans la représentation paramétrique de $(d)$, on trouve $\begin{cases} x=0\\y=0\\z=\dfrac{2}{3}\end{cases}$.
    Le point de coordonnées $\left(0;0;\dfrac{2}{3}\right)$ appartient aux droites $(d)$ et $(AE)$. C’est donc le point $K$.
    $\quad$
    b. Le point $L$ appartient à la droite $(DH)$. Ses coordonnées sont donc de la forme $(0;1;\gamma)$.
    En prenant $t=0,5$, dans la représentation paramétrique de $(d)$, on trouve $\begin{cases} x=0\\y=1\\z=\dfrac{1}{3}\end{cases}$.
    Ainsi, le point $L$ a pour coordonnées $\left(0;1;\dfrac{1}{3}\right)$.
    $\quad$
  4. a. On a $\vect{LK}\begin{pmatrix} 0\\1\\-\dfrac{1}{3}\end{pmatrix}$.
    Par conséquent $\vect{LK}=\vect{FJ}$ et $FJLK$ est un paralélogramme.
    $\quad$
    b. $FJ=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}}$
    $\vect{FK}\begin{pmatrix} -1\\0\\-\dfrac{1}{3}\end{pmatrix}$ donc $FK=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}}$
    Le parallélogramme $FJLK$ possède deux côtés consécutifs de même longueur. C’est donc un losange.
    $\quad$
    c. $\vect{FJ}.\vect{FK}=0+0+\dfrac{1}{9}\neq 0$
    Ces deux vecteurs ne sont pas orthogonaux. Par conséquent $FJLK$ n’est pas un carré.
    $\quad$

Partie B : Cas général

  1. On a $\vect{CG}\begin{pmatrix}0\\0\\1\end{pmatrix}$
    Donc
    $\begin{align*} \vect{CJ}=a\vect{CG}&\ssi \begin{cases} x_J-1=0\\y_J=1=0\\z_J-0=a\end{cases} \\
    &\ssi \begin{cases} x_j=1\\y_J=1\\z_J=a\end{cases}\end{align*}$
    $\quad$
  2. Ainsi $\vect{FJ}\begin{pmatrix} 0\\1\\a-1\end{pmatrix}$ et $\vect{KL}\begin{pmatrix} 0\\1\\a-1\end{pmatrix}$
    Donc $\vect{FJ}=\vect{KL}$ et $FJKL$ est un parallélogramme.
    $\quad$
  3. D’après la question A.4.b. si $a=\dfrac{2}{3}$ alors $FJKL$ est un losange.
    $\quad$
  4. On a $\vect{FK}\begin{pmatrix} -1\\0\\-\dfrac{a}{2}\end{pmatrix}$
    $\begin{align*} \vect{FK}.\vect{FJ}=0&\ssi 0+0-\dfrac{a}{2}(a-1)=0 \\
    &\ssi a=0\text{ ou } a=1\end{align*}$
    Ainsi, les deux seules valeurs de $a$ pour lesquelles $\vect{FK}$ et $\vect{FJ}$ soient orthogonaux sont $0$ et $1$.
    Or si $a=0$ alors $FJ=FC=\sqrt{2}$ (d’après le théorème de Pythagore) et $FK=FE=1$. $FJLK$ n’est pas un losange et donc pas un carré.
    Si $a=1$ alors $FJ=FG=1$ et $FK=FA=\sqrt{2}$ et ce n’est toujours pas un carré.
    Il n’existe donc pas de valeurs de $a$ telles que le quadrilatère $FJLK$ soit un carré.
    $\quad$

 

 

Ex A

Exercice A

Partie A

  1. Si le test du mélange est négatif alors on n’a fait qu’un seul test et $X_n$ prend la valeur $1$.
    Si le test est positif alors on teste tous les individus. On a donc fait $1+n$ tests au total et $X$ prend la valeur $n+1$.
    $\quad$
  2. Si l’événement $\left[X_n=1\right]$  est réalisé alors aucun individu n’est positif. La probabilité qu’un individu ne soit pas malade est égale à $0,95$.
    Par conséquent, la probabilité que tous les individus ne soient pas malade est $0,95^n$.
    Donc $P\left(X_n=n+1\right)=1-0,95^n$.
    On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|}
    \hline
    x_i&1&n+1\\
    \hline
    P\left(X_n=x_i\right)&0,95^n&1-0,95^n\\
    \hline
    \end{array}$$
    $\quad$
  3. L’espérance de $X_n$ indique le nombre moyen qu’on va réaliser.
    $\begin{align*}
    E\left(X_n\right)&=1\times 0,95^n+(n+1)\times \left(1-0,95^n\right)\\
    &=0,95^n +n+1 -(n+1)\times 0,95^n \\
    &=n+1-n\times 0,95^n\end{align*}$
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[20;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x\pg 20$, $f'(x)=\dfrac{1}{x}+\ln(0,95)$
    $\begin{align*} f(x)<0 &\ssi \dfrac{1}{x} < -\ln(0,95)\\
    &\ssi x>-\dfrac{1}{\ln(0,95)}\end{align*}$
    Or $-\dfrac{1}{\ln(0,95)} \approx 19,5<20$
    Donc $f'(x)<0$ sur $[20;+\infty[$.
    $f$ est strictement décroissante sur $[20;+\infty[$.
    $\quad$
  2. Pour tout réel $x$ on a $f(x)=x\left(\dfrac{\ln(x)}{x}+\ln(0,95)\right)$
    Or, par croissance comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}+\ln(0,95)=\ln(0,95)<0$
    Ainsi, $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. La fonction $f$ est strictement décroissante et continue (car dérivable) sur $[20;+\infty[$.
    De plus $f(20) \approx 1,97>0$ et $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $[20;+\infty[$.
    D’après la calculatrice, $87<\alpha \approx< 87,1$.
    $\quad$
  4. La fonction $f$ est strictement décroissante sur $[20;+\infty[$ et s’annule en $\alpha$.
    Par conséquent :
    $\bullet f(x)>0$ sur $[20;\alpha[$;
    $\bullet f(\alpha)=0$;
    $\bullet f(x)<0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie C

$\begin{align*} E\left(X_n\right)<n &\ssi n+1-n\times 0,95^n < n\\
&\ssi -n\times 0,95^n <-1 \\
&\ssi 0,95^n > \dfrac{1}{n} \\
&\ssi n\ln(0,95) > \ln\left(\dfrac{1}{n}\right) \\
&\ssi n\ln(0,95)> -\ln(n) \\
&\ssi n\ln(0,95)+\ln(n)>0\\
&\ssi f(n)>0\end{align*}$

D’après la partie B, cela signifie que $n<\alpha$.
La première méthode diminue le nombre d’analysés pour des échantillons comportant au maximum $87$ personnes.
$\quad$

 

 

 

Ex B

Exercice B

Partie A : : Détermination d’une fonction $\boldsymbol{f}$ et résolution d’une équation différentielle

  1. Graphiquement $f(0)=3$ et $f'(0)=-2$.
    $\quad$
  2. On a $f(0)=1+b$.
    Donc $1+b=3 \ssi b=2$.
    $\quad$
  3. a. Pour tout réel $x$ on a $f'(x)=\e^x+a-b\e^{-x}$.
    Soit $f'(x)=\e^x+a-2\e^{-x}$
    $\quad$
    b. Par conséquent $f'(0)=1+a-2=a-1$.
    $\quad$
    c. $f'(0)=-2 \ssi a-1=-2 \ssi a=-1$.
    Par conséquent, pour tout réel $x$, $f(x)=\e^x-x+2\e{-x}$.
    $\quad$
  4. a. La fonction $g$ est dérivable sur $\R$ en tant que somme de fonction dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    g'(x)+g(x)&=\left(e^x-1-2\e^{-x}\right)+\left(\e^x-x+2\e^{-x}\right)\\
    &=2e^x-1-x\end{align*}$
    La fonction $g$ est donc solution de l’équation $(E)$.
    $\quad$
    b. $y’+y=0 \ssi y’=-y$
    Les solutions de cette équation sont les fonctions $h$ définies sur $\R$ par $h(x)=K\e^{-x}$ où $K\in \R$.
    $\quad$
    c. Soit $j$ une solution de l’équation $(E)$.
    Ainsi $j-g$ est solution de l’équation différentielle homogène $y’-y=0$.
    Par conséquent, pour tout réel $x$ on a $j(x)-g(x)=K\e^{-x}$.
    Soit $j(x)=\e^x-x+(2+K)\e^{-x}$
    Les solutions de l’équation $(E)$ sont les fonctions $j$ définies sur $\R$ par $j(x)=\e^x-x+(2+K)\e^{-x}$ où $K\in \R$.
    $\quad$

Partie B : Étude de la fonction $\boldsymbol{g}$ sur $\boldsymbol{[1;+\infty[}$

  1. Pour tout réel $x$ on a
    $\begin{align*} \left(\e^x-2\right)\left(\e^x+1\right) &=\e^{2x}+\e^x-2\e^x-2 \\
    &=\e^{2x}-\e^x-2\end{align*}$
    $\quad$
  2. Pour tout réel $x$ on a
    $\begin{align*}
    g'(x)&=\e^x-2\e^{-x} \\
    &=\e^{-x}\left(\e^{2x}-2\e^x-2\right) \\
    &=\e^{-x}\left(\e^x-2\right)\left(\e^x+1\right)\end{align*}$
    $\quad$
  3. Pour tout réel $x$ on a $\e^x>0$ donc $e^x+1>0$.
    Par conséquent $g'(x)>0$ sur $[1;+\infty[$.
    La fonction $g$ est donc strictement croissante sur $[1;+\infty[$.
    $\quad$

 

Énoncé

Exercice 1     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des cinq questions, quatre réponses sont proposées ; une seule de ces réponses est exacte.

Indiquer sur la copie le numéro de la question et recopier la réponse exacte sans justifier le choix effectué.

Barème : une bonne réponse rapporte un point. Une réponse inexacte ou une absence de réponse n’apporte ni n’enlève aucun point.

Question 1 :

On considère la fonction $g$ définie sur $]0;+\infty[$ par $g(x)=x^2+2x-\dfrac{3}{x}$.
Une équation de la tangente à la courbe représentative de $g$ au point d’abscisse $1$ est :

a. $y=7(x-1)$
b. $y=x-1$
c. $y=7x+7$
d. $y=x+1$
$\quad$

Question 2 :

On considère la suite $\left(v_n\right)$ définie sur $\N$ par $v_n=\dfrac{3n}{n+2}$. On cherche à déterminer la limite de $v_n$ lorsque $n$ tend vers $+\infty$.

a. $\lim\limits_{n\to +\infty} v_n=1$
b. $\lim\limits_{n\to +\infty} v_n=3$
c. $\lim\limits_{n\to +\infty} v_n=\dfrac{3}{2}$
d. On ne peut pas la déterminer
$\quad$

Question 3 :

Dans une urne il y a $6$ boules noires et $4$ boules rouges. On effectue successivement $10$ tirages aléatoires avec remise. Quelle est la probabilité (à $10^{-4}$ près) d’avoir $4$ boules noires et $6$ boules rouges ?

a. $0,166~2$
b. $0,4$
c. $0,111~5$
d. $0,888~6$
$\quad$

Question 4 :

On considère la fonction $f$ définie sur $\R$ par $f(x)=3\e^x-x$.

a. $\lim\limits_{x\to +\infty} f(x)=3$
b. $\lim\limits_{x\to +\infty} f(x)=+\infty$
c. $\lim\limits_{x\to +\infty} f(x)=-\infty$
d. On ne peut pas déterminer la limite de la fonction $f$ lorsque $x$ tend vers $+\infty$.
$\quad$

Question 5 :

Un code inconnu est constitué de $8$ signes. Chaque signe peut être une lettre ou un chiffre. Il y a donc $36$ signes utilisables pour chacune des positions.
Un logiciel de cassage de code teste environ cent millions de codes par seconde.
En combien de temps au maximum le logiciel peut-il découvrir le code ?

a. environ $0,3$ seconde
b. environ $8$ heures
c. environ $3$ heures
d. environ $470$ heures
$\quad$

$\quad$

Exercice 2     5 points

Au 1$\ier$ janvier 2020, la centrale solaire de Big Sun possédait $10~560$ panneaux solaires. On observe, chaque année, que $2 \%$ des panneaux se sont détériorés et nécessitent d’être retirés tandis que $250$ nouveaux panneaux solaires sont installés.

Partie A – Modélisation à l’aide d’une suite

On modélise l’évolution du nombre de panneaux solaires par la suite $\left(u_n\right)$ définie par $u_0 = 10~560$ et, pour tout entier naturel $n$, $u{n+1}= 0,98u_n + 250$, où $u_n$ est le nombre de panneaux solaires au 1er janvier de l’année 2020 $+ n$.

  1. a. Expliquer en quoi cette modélisation correspond à la situation étudiée.
    $\quad$
    b. On souhaite savoir au bout de combien d’années le nombre de panneaux solaires sera strictement supérieur à $12~000$. À l’aide de la calculatrice, donner la réponse à ce problème.
    $\quad$
    c. Recopier et compléter le programme en Python ci-dessous de sorte que la valeur cherchée à la question précédente soit stockée dans la variable $\text{n}$ à l’issue de l’exécution de ce dernier.
    $$\begin{array}{|l|}
    \hline
    \text{u = 10560} \\
    \text{n = 0} \\
    \textbf{while } \text{……….} \\
    \quad \text{u = ……….}\\
    \quad \text{n = ……….}\\
    \hline
    \end{array}$$
  2. Démontrer par récurrence que, pour tout entier naturel $n$, on a $u_n < 12~500$.
    $\quad$
  3. Démontrer que la suite $\left(u_n\right)$ est croissante.
    $\quad$
  4. En déduire que la suite $\left(u_n\right)$ converge. Il n’est pas demandé, ici, de calculer sa limite.
    $\quad$
  5. On définit la suite $\left(v_n\right)$ par $v_n=u_n-12~500$, pour tout entier naturel $n$.
    a. Démontrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,98$ dont in précisera le premier terme.
    $\quad$
    b. Exprimer, pour tout entier naturel $n$, $v_n$ en fonction de $n$.
    $\quad$
    c. En déduire, pour tout entier naturel $n$, $u_n$ en fonction de $n$.
    $\quad$
    d. Déterminer la limite de la suite $\left(u_n\right)$. Interpréter ce résultat dans le contexte du modèle.
    $\quad$

Partie B – Modélisation à l’aide d’une fonction

Une modélisation plus précise a permis d’estimer le nombre de panneaux solaires de la centrale à l’aide de la fonction $f$ définie pour tout $x \in [0 ; +\infty[$ par $f(x) = 12~500-500\e^{-0,02x+1,4}$, où $x$ représente le nombre d’années écoulées depuis le 1$\ier$ janvier 2020.

  1. Étudier le sens de variation de la fonction $f$.
    $\quad$
  2. Déterminer la limite de la fonction $f$ en $+\infty$.
    $\quad$
  3. En utilisant ce modèle, déterminer au bout de combien d’années le nombre de panneaux solaires dépassera $12~000$.
    $\quad$

$\quad$

Exercice 3     5 points

$ABCDEFGH$ est un cube. $I$ est le centre de la face $ADHE$ et $J$ est un point du segment $[CG]$. Il existe donc $a \in [0 ; 1] $tel que $\vect{CJ}=a\vect{CG}$.

On note $(d)$ la droite passant par $I$ et parallèle à $(FJ)$.

On note $K$ et $L$ les points d’intersection de la droite $(d)$ et des droites $(AE)$ et $(DH)$.

On se place dans le repère $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

Partie A : Dans cette partie $a=\dfrac{2}{3}$

 

 

  1. Donner les coordonnées des points $F$, $I$ et $J$.
    $\quad$
  2. Déterminer une représentation paramétrique de la droite $(d)$.
    $\quad$
  3. a. Montrer que le point de coordonnées $\left(0;0;\dfrac{2}{3}\right)$ est le point $K$.
    $\quad$
    b. Déterminer les coordonnées du point $L$, intersection des droites $(d)$ et $(DH)$.
    $\quad$
  4. a. Démontrer que le quadrilatère $FJLK$ est un parallélogramme.
    $\quad$
    b. Démontrer que le quadrilatère $FJLK$ est un losange.
    $\quad$
    c. Le quadrilatère $FJLK$ est-il un carré?
    $\quad$

Partie B : Cas général

On admet que les coordonnées des points $K$ et $L$ sont : $K\left(0; 0; 1-\dfrac{a}{2}\right)$ et $L\left(0; 1; \dfrac{a}{2}\right)$.
On rappelle que $a \in [0 ; 1]$.

  1. Déterminer les coordonnées de $J$ en fonction de $a$.
    $\quad$
  2. Montrer que le quadrilatère $FJLK$ est un parallélogramme.
    $\quad$
  3. Existe-t-il des valeurs de $a$ telles que le quadrilatère $FJLK$ soit un losange ? Justifier.
    $\quad$
  4. Existe-t-il des valeurs de $a$ telles que le quadrilatère $FJLK$ soit un carré ? Justifier.
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Exercice A

Fonction $\boldsymbol{\ln}$

Partie A

Dans un pays, une maladie touche la population avec une probabilité de $0,05$. On possède un test de dépistage de cette maladie.
On considère un échantillon de $n$ personnes $(n \pg 20)$ prises au hasard dans la population assimilé à un tirage avec remise.

On teste l’échantillon suivant cette méthode : on mélange le sang de ces $n$ individus, on teste le mélange. Si le test est positif, on effectue une analyse individuelle de chaque personne.
Soit $X_n$ la variable aléatoire qui donne le nombre d’analyses effectuées.

  1.  Montrer $X_n$ prend les valeurs $1$ et $(n + 1)$.
    $\quad$
  2. Prouver que $P\left(X_n = 1\right) = 0,95^n$.
    Établir la loi de $X_n$ en recopiant sur la copie et en complétant le tableau suivant :
    $$\begin{array}{|c|c|c|}
    \hline
    x_i&1&n+1\\
    \hline
    P\left(X_n=x_i\right)&\phantom{123456}&\phantom{123456}\\
    \hline
    \end{array}$$
    $\quad$
  3.  Que représente l’espérance de $X_n$ dans le cadre de l’expérience ?
    Montrer que $E\left(X_ n\right) = n + 1-n \times 0,95^n$.
    $\quad$

Partie B

  1. On considère la fonction $f$ définie sur $[20;+\infty[$ par $f(x)=\ln(x)+x\ln(0,95)$.
    Montrer que $f$ est décroissante sur $[20;+\infty[$.
    $\quad$
  2. On rappelle que $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$. Montrer que $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. Montrer que $f(x)=0$ admet une unique solution $\alpha$ sur $[20;+\infty[$.
    Donner un encadrement à $0,1$ près de cette solution.
    $\quad$
  4. En déduire le signe de $f$ sur $[20;+\infty[$.
    $\quad$

Partie C

On cherche à comparer deux types de dépistages. La première méthode est décrite dans la partie A, la seconde, plus classique, consiste à tester tous les individus.
La première méthode permet de diminuer le nombre d’analyses dès que $E\left(X_n\right) < n$.

En utilisant la partie B, montrer que la première méthode diminue le nombre d’analyses pour des échantillons comportant $87$ personnes maximum.
$\quad$

$\quad$

Exercice B

Équation différentielle

Partie A : Détermination d’une fonction $\boldsymbol{f}$ et résolution d’une équation différentielle

On considère la fonction $f$ définie sur $\R$ par : $$f(x)=\e^x+ax+b\e^{-x}$$
où $a$ et $b$ sont des nombres réels que l’on propose de déterminer dans cette partie.

Dans le plan muni d’un repère d’origine $O$, on a représenté ci-dessous la courbe $\mathcal{C}$, représentant la fonction $f$, et la tangente $(T)$ à la courbe $\mathcal{C}$ au point d’abscisse $0$.

  1.  Par lecture graphique, donner les valeurs de $f(0)$ et de $f'(0)$.
    $\quad$
  2. En utilisant l’expression de la fonction $f$, exprimer $f(0)$ en fonction de $b$ et en déduire la valeur de $b$.
    $\quad$
  3. On admet que la fonction $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. Donner, pour tout réel $x$, l’expression de $f'(x)$.
    $\quad$
    b. Exprimer $f'(0)$ en fonction de $a$.
    $\quad$
    c. En utilisant les questions précédentes, déterminera, puis en déduire l’expression de $f(x)$.
    $\quad$
  4. On considère l’équation différentielle : $$(E) : y’ + y = 2\e^x-x-1$$
    a. Vérifier que la fonction $g$ définie sur $\R$ par : $$g(x) = \e^x-x+2\e^{-x}$$
    est solution de l’équation $(E)$.
    $\quad$
    b. Résoudre l’équation différentielle $y’ + y = 0$.
    $\quad$
    c. En déduire toutes les solutions de l’équation $(E)$.
    $\quad$

Partie B : Étude de la fonction $\boldsymbol{g}$ sur $\boldsymbol{[1 ; +oo[}$

  1. Vérifier que pour tout réel $x$, on a $$\e^{2x}-\e^x-2=\left(\e^x-2\right)\left(\e^x+1\right)$$
    $\quad$
  2. En déduire une epression factorisée de $g'(x)$, pour tout réel $x$.
    $\quad$
  3. On admettra que, pour tout $x\in [1;+\infty[$, $\e^x-2>0$.
    Étudier le sens de variation de la fonction $g$ sur $[1 ; +\infty[$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – mars 2021

Centres étrangers – mars 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\e^{-2x}+x\times \left(-2\e^{-2x}\right)\\
    &=(1-2x)\e^{-2x}\end{align*}$
    La fonction $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f\dsec(x)&=-2\e^{-2x}+(1-2x)\times \left(-2\e^{-2x}\right)\\
    &=\left(-2-2(1-2x)\right)\e^{-2x} \\
    &=(-4+4x)\e^{-2x} \\
    &=4(x-1)\e^{-2x}\end{align*}$
    Réponse b
    $\quad$
  2. Le nombre de combinaisons possibles est :
    $\begin{align*} N&=\dbinom{12}{3} \\
    &=220\end{align*}$
    Réponse c
    $\quad$
  3. $f'(x)>0$ sur $[2;5]$.
    Réponse b
    $\quad$
  4. On appelle $A$ l’événement « La puce possède le défaut A » et $B$ l’événement « La puce possède le défaut B ».
    Ainsi $p(A)=0,028$, $p(B)=0,022$ et $p\left(\conj{A\cup B}\right)=0,954$.
    Par conséquent $p(A\cup B)=1-0,954=0,046$.
    Or
    $\begin{align*} p(A\cap B)&=p(A)+p(B)-p(A\cap B) \\
    &=0,028+0,022-0,046\\
    &=0,004\end{align*}$
    Réponse b
    $\quad$
  5. La fonction $f$ est strictement croissante sur $]-\infty;-1]$ donc $f’$ est positive sur cet intervalle.
    Réponse b
    $\quad$

Ex 2

Exercice 2

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$$\quad$
  2. On a
    $\begin{align*} P(R\cap J)&=P(R)\times P_R(J) \\
    &=0,17\times 0,32\\
    &=0,0544\end{align*}$
    $\quad$
  3. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} &P(J)=P(R)\times P_R(J)+P\left(\conj{R}\cap J\right) \\
    \ssi&0,11=0,0544+P\left(\conj{R}\cap J\right) \\
    \ssi&0,0556=P\left(\conj{R}\cap J\right) \end{align*}$
    La probabilité que la personne interrogée soit un jeune de 18 à 24 ans n’utilisant pas régulièrement les transports en commun est $0,056$ à $10^{-3}$ près.
    $\quad$
  4. Ainsi :
    $\begin{align*} P_{\conj{R}}(J)&=\dfrac{P\left(\conj{R}\cap J\right) }{P\left(\conj{R}\right)} \\
    &\approx \dfrac{0,056}{1-0,17} \\
    &\approx 0,067\end{align*}$
    La proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun est environ égale à $0,067$.
    $\quad$

Partie B

  1. On réalise $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues $R$ et $\conj{R}$.
    Ainsi $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,17$.
    $\quad$
  2. On a
    $\begin{align*} P(X=5)&=\dbinom{50}{5}\times 0,17^5 \times 0,83^{45} \\
    &\approx 0,069\end{align*}$
    La probabilité d’avoir $5$ personnes utilisant les transports en commun parmi les $50$ interrogées est environ égale à $0,069$.
    $\quad$
  3. D’après la calculatrice $P(X\pp 13)\approx 0,964>0,95$
    L’affirmation est donc vraie.
    $\quad$
  4. L’espérance de $X$ est $E(X)=np=8,5$.
    Il y a donc en moyenne $8,5$ personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. On a
    $\begin{align*} a_1&=0,85\times 200+450 \\
    &=620\end{align*}$
    $\quad$
  2. Soit $n\in \N$.
    Chaque mois, depuis la mise en place de cette mesure, les dirigeants de l’entreprise constatent que $85 \%$ de ceux qui avaient choisi le télétravail le mois précédent choisissent de continuer. Cela représente donc $0,85a_n$.
    Chaque mois, $450$ collaborateurs supplémentaires choisissent le télétravail.
    Par conséquent $a_{n+1}=0,85a_n+450$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on a $v_n=a_n-3~000 \ssi a_n=v_n+3~000$.
    $\begin{align*} v_{n+1}&=a_{n+1}-3~000\\
    &=0,85a_n+450-3~000\\
    &=0,85a_n-2~550\\
    &=0,85\left(v_n+3~000\right)-2~550 \\
    &=0,85v_n+2~550-2~550\\
    &=0,85v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,85$ et de premier terme $v_0=200-3~000=-2~800$.
    $\quad$
    b. Pour tout entier naturel $n$, $v_n=-2~800\times 0,85^n$.
    $\quad$
    c. Par conséquent, pour tout entier naturel $n$ on a
    $\begin{align*} a_n&=v_n+3~000 \\
    &=-2~800\times 0,85^n+3~000\end{align*}$
    $\quad$
  4. On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} a_n>2~500 &\ssi -2~800\times 0,85^n+3~000>2~500 \\
    &\ssi -2~800 \times 0,85^n >-500 \\
    &\ssi 0,85^n <\dfrac{5}{28} \\
    &\ssi n\ln(0,85)<\ln\left(\dfrac{5}{28}\right) \\
    &\ssi n > \dfrac{\ln\left(\dfrac{5}{28}\right)}{\ln(0,85)} \end{align*}$
    Or $\dfrac{\ln\left(\dfrac{5}{28}\right)}{\ln(0,85)} \approx 10,6$
    C’est donc au bout du $11$ème mois que le nombre de télétravailleurs sera strictement supérieur à $2~500$, après la mise en place de cette mesure dans l’entreprise.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout réel $x>0$
    $\begin{align*} f'(x)&=\dfrac{5(x+2)-(5x+4)}{(x+2)^2} \\
    &=\dfrac{5x+10-5x-4}{(x+2)^2} \\
    &=\dfrac{6}{(x+2)^2} \\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. a. Initialisation : $u_0=1$ et $u_1=3$
    Ainsi $0\pp u_0 \pp u_1 \pp 4$ et la propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    Donc $0\pp u_n \pp u_{n+1} \pp 4$
    La fonction $f$ est strictement croissante sur $[0;+\infty[$.
    Par conséquent $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(4)$
    Soit $0\pp 2 \pp u_{n+1} \pp u_{n+2} \pp 4$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp u_n\pp _{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(u_n\right)$ est donc croissante et majorée par $4$. Elle converge.
    $\quad$
  3. $-1< \dfrac{1}{2}<1$ donc $\lim\limits_{n\to +\infty} 3\times \left(\dfrac{1}{2}\right)^n=0$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} 4-u_n=0$ soit $\lim\limits_{n\to +\infty} u_n=4$.
    Sur le long terme, $4~000$ collaborateurs seront satisfaits par cette mesure.
    $\quad$

Ex A

Exercice A

  1. $\vect{AB}\begin{pmatrix} 1\\0\\2\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}-2\\5\\1\end{pmatrix}$
    Par conséquent $\vect{AB}.\vect{AC}=-2+0+2=0$.
    Ces deux vecteurs sont donc orthogonaux et le triangle $ABC$ est rectangle en $A$.
    $\quad$
  2. a. $\vec{n}.\vect{AB}=2+0-2=0$ et $\vec{n}.\vect{AC}=-4+5-1=0$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$. Il est par conséquent normal au plan $(ABC)$.
    $\quad$
    b. Une équation cartésienne du plan $(ABC)$ est donc de la forme $2x+y-z+d=0$.
    Le point $A$ appartient au plan $(ABC)$
    Par conséquent $4-1+d=0 \ssi d=-3$.
    Une équation cartésienne du plan $(ABC)$ est donc $2x+y-z-3=0$.
    $\quad$
    c. $2\times 0+1-4-3=-6\neq 0$.
    Le point $S$ n’appartient donc pas au plan $(ABC)$.
    Les points $A$, $B$, $C$ et $S$ ne sont, par conséquent, pas coplanaires.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $(d)$.
    Une représentation paramétrique de la droite $(d)$ est donc $\begin{cases} x=2t\\y=1+t\\z=4-t\end{cases} \quad t\in \R$.
    $\quad$
    b. $2\times 2\times 2+2-3-3=0$ : le point de coordonnées $(2;2;3)$ appartient au plan $(ABC)$
    En prenant $t=1$ dans la représentation paramétrique de $(d)$ on retrouve le point de coordonnées $(2;2;3)$. Il appartient ainsi à la droite $(d)$.
    Les coordonnées du point $H$ sont donc $(2;2;3)$.
    $\quad$
  4. Aire de la base :
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2}\\
    &=\dfrac{\sqrt{1^2+0^2+2^2}\times \sqrt{(-2)^2+5^2+1^2}}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{30}}{2} \\
    &=\dfrac{\sqrt{150}}{2}\end{align*}$
    Hauteur :
    $\begin{align*} SH&=\sqrt{2^2+(2-1)^2+(3-4)$2} \\
    &=\sqrt{6}\end{align*}$
    Le volume du tétraèdre est donc
    $\begin{align*} V&=\dfrac{\dfrac{\sqrt{150}}{2}\times \sqrt{6}}{3}\\
    &=5\end{align*}$
    $\quad$
  5. a. $SA\begin{pmatrix}2\\-2\\-4\end{pmatrix}$
    $\begin{align*} SA&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    $\quad$
    b. $SB\begin{pmatrix}3\\-2\\-2\end{pmatrix}$
    D’une part $\vect{SA}.\vect{SB}=6+4+8=18$;
    D’autre part $\vect{SA}.\vect{SB}=SA\times SB\times \cos\widehat{ASB}$Donc $\sqrt{24}\times \sqrt{17} \cos\widehat{ASB}=18$
    D’où $ \cos\widehat{ASB}=\dfrac{18}{\sqrt{408}}$
    Donc $ \widehat{ASB} \approx 27,0$°
    $\quad$

 

Ex B

Exercice B

Partie A

  1. Pour tout réel $x$ on a
    $\begin{align*} g'(x)&=2\times \left(-\dfrac{1}{3}\e^{\frac{-1}{3}x}\right)+\dfrac{2}{3} \\
    &=-\dfrac{2}{3}\e^{\frac{-1}{3}x}+\dfrac{2}{3}\end{align*}$
    $\quad$
  2. On a $g'(x)=\dfrac{2}{3}\left(1-\e^{\frac{-1}{3}x}\right)$
    Ainsi $g'(x)=0 \ssi 1-\e^{\frac{-1}{3}x}=0 \ssi \dfrac{-1}{3}x=0 \ssi x=0$
    $g'(x)>0 \ssi 1-\e^{\frac{-1}{3}x}>0 \ssi \e^{\frac{-1}{3}x}<1 \ssi -\dfrac{1}{3}x<0\ssi x>0$
    La fonction $g$ est donc strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;+\infty[$.
    $\quad$
  3. Or $g(0)=2-2=0$.
    Ainsi $g(x)>0$ pour tout réel $x$ non nul et $g(0)=0$.
    $\quad$

Partie B

  1. $3y’+y=0 \ssi y’=-\dfrac{1}{3}y$
    Les solutions de cette équation sont donc les fonctions $f$ définies sur $\R$ par $f(x)=K\e^{\frac{-1}{3}x}$ où $K\in \R$.
    $\quad$
  2. On veut que $f(0)=2$ soit $K=2$.
    Par conséquent la fonction $f$ est définie sur $\R$ par $f(x)=2\e^{\frac{-1}{3}x}$.
    $\quad$
  3. a. Pour tout réel $x$ on a $f'(x)=-\dfrac{2}{3}\e^{\frac{-1}{3}x}$.
    Ainsi $f'(0)=-\dfrac{2}{3}$ et $f(0)=2$.
    Une équation de $\left(\Delta_0\right)$ est donc $y=-\dfrac{2}{3}x+2$.
    $\quad$
    b. Pour tout réel $x$ on a
    $\begin{align*} f(x)-\left(-\dfrac{2}{3}x+2\right) &=g(x) \\
    &\pg 0\end{align*}$
    La courbe $\mathcal{C}_f$ est donc toujours située au-dessus de la droite $\left(\Delta_0\right)$.
    $\quad$

Partie C

  1. Une équation de $\left(\Delta_a\right)$ est $y=-\dfrac{2}{3}\e^{\frac{-a}{3}}(x-a)+2\e^{\frac{-a}{3}}$
    Soit $y=2\e^{\frac{-a}{3}}\left(-\dfrac{1}{3}(x-a)+1\right)$.
    L’abscisse du point d’intersection de cette droite avec l’axe des abscisses vérifie donc
    $-\dfrac{1}{3}(x-a)+1=0\ssi x-a=3 \ssi x=a+3$.
    La tangente $\left(\Delta_a\right)$ coupe l’axe des abscisses au point $P$ d’abscisse $a+3$.
    $\quad$
  2. La droite $\left(\Delta_{-2}\right)$ coupe donc l’axe des abscisses au point d’abscisse $1$.
    Ainsi la droite $\left(\Delta_{-2}\right)$ passe par le point $B$ et le point de coordonnées $(1;0)$.
    $\quad$

 

Énoncé

Exercice 1     5 points

Ceci est un questionnaire à choix multiples (QCM). Pour chacune des questions, une
seule des quatre affirmations est exacte. Le candidat recopiera sur sa copie le numéro de la question et la réponse correspondante. Aucune justification n’est demandée.

Une réponse exacte rapporte un point, une réponse fausse ou une absence de réponse
ne rapporte ni n’enlève aucun point.

  1. On considère la fonction définie sur $\R$ par $f(x)=x\e^{-2x}$. On note $f\dsec$ la dérivée seconde de la fonction $f$.
    Quel que soit le réel $x$, $f\dsec(x)$ est égal à :
    a. $(1-2x)\e^{-2x}$
    b. $4(x-1)\e^{-2x}$
    c. $4\e^{-2x}$
    d. $(x+2)\e^{-2x}$
    $\quad$
  2. Un élève de première générale choisit trois spécialités parmi les douze proposées.
    Le nombre de combinaisons possibles est :
    a. $1~728$
    b. $1~320$
    c. $220$
    d. $33$
    $\quad$
  3. On donne ci-dessous la représentation graphique de $f’$ fonction dérivée d’une fonction $f$ définie sur $[0 ; 7]$.
    $\quad$
    Le tableau de variations de $f$ sur l’intervalle $[0;7]$ est :
    $\quad$
  4. Une entreprise fabrique des cartes à puces. Chaque puce peut présenter deux défauts notés A et B.
    Une étude statistique montre que $2,8 \%$ des puces ont le défaut A, $2,2 \%$ des puces ont le défaut B et, heureusement, $95,4 \%$ des puces n’ont aucun des deux défauts.
    La probabilité qu’une puce prélevée au hasard ait les deux défauts est :
    a. $0,05$
    b. $0,004$
    c. $0,046$
    d. On ne peut pas le savoir
    $\quad$
  5. On se donne une fonction $f$, supposée dérivable sur $\R$, et on note $f’$ sa fonction dérivée.
    On donne ci-dessous le tableau de variation de $f$ :
    $\quad$
    $\quad$
    D’après ce tableau de variation :
    a. $f’$ est positive sur $\R$
    b. $f’$ est positive sur $]-\infty;-1[$
    c. $f’$ est négative sur $\R$
    d. $f’$ est positive sur $[-1;+\infty[$.
    $\quad$

$\quad$

Exercice 2     5 points

Dans tout cet exercice, les probabilités seront arrondies, si nécessaire, à $10^{-3}$.

D’après une étude, les utilisateurs réguliers de transports en commun représentent $17 \%$ de la population française. Parmi ces utilisateurs réguliers, $32 \%$ sont des jeunes âgés de 18 à 24 ans.

(Source : TNS-Sofres)

Partie A

On interroge une personne au hasard et on note :

  • $R$ l’événement : « La personne interrogée utilise régulièrement les transports en commun ».
  • $J$ l’événement : « La personne interrogée est âgée de 18 à 24 ans ».
  1. Représentez la situation à l’aide de cet arbre pondéré, que vous recopierez sur votre copie, en y reportant les données de l’énoncé.
    $\quad$
    $\quad$
  2. Calculer la probabilité $P(R\cap J)$.
    $\quad$
  3. D’après cette même étude, les jeunes de 18 à 24 ans représentent $11 \%$ de la
    population française.
    Montrer que la probabilité que la personne interrogée soit un jeune de 18 à 24 ans n’utilisant pas régulièrement les transports en commun est $0,056$ à $10^{-3}$ près.
    $\quad$
  4. En déduire la proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun.
    $\quad$

Partie B :

Lors d’un recensement sur la population française, un recenseur interroge au hasard $50$ personnes en une journée sur leur pratique des transports en commun.
La population française est suffisamment importante pour assimiler ce recensement à un tirage avec remise.

Soit $X$ la variable aléatoire dénombrant les personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées.

  1. Déterminer, en justifiant, la loi de $X$ et préciser ses paramètres.
    $\quad$
  2. Calculer $P(X=5)$ et interpréter le résultat.
    $\quad$
  3. Le recenseur indique qu’il y a plus de $95 \%$ de chance pour que, parmi les $50$ personnes interrogées, moins de $13$ d’entre elles utilisent régulièrement les transports en commun.
    Cette affirmation est-elle vraie ? Justifier votre réponse.
    $\quad$
  4. Quel est le nombre moyen de personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées ?
    $\quad$

$\quad$

Exercice 3     5 points

En mai 2020, une entreprise fait le choix de développer le télétravail afin de s’inscrire dans une démarche écoresponsable.
Elle propose alors à ses $5~000$ collaborateurs en France de choisir entre le télétravail et le travail au sein des locaux de l’entreprise.
En mai 2020, seuls $200$ d’entre eux ont choisi le télétravail.
Chaque mois, depuis la mise en place de cette mesure, les dirigeants de l’entreprise constatent que $85 \%$ de ceux qui avaient choisi le télétravail le mois précédent choisissent de continuer, et que, chaque mois, $450$ collaborateurs supplémentaires choisissent le télétravail.

On modélise le nombre de collaborateurs de cette entreprise en télétravail par la suite $\left(a_n\right)$.

Le terme $a_n$ désigne ainsi une estimation du nombre de collaborateurs en télétravail le $n$-ième mois après le mois de mai 2020. Ainsi $a_0=200$.

Partie A :

  1. Calculer $a_1$.
    $\quad$
  2. Justifier que pour tout entier naturel $n$, $$a_{n+1}=0,85a_n+450$$
    $\quad$
  3. On considère la suite $\left(v_n\right)$ définie pour tout entier naturel $n$ par : $$v_n=a_n-3~000$$
    a. Démontrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,85$.
    $\quad$
    b. Exprimer $v_n$ en fonction de $n$ pour tout entier naturel $n$.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $$a_n=-2~800\times 0,85^n+3~000$$
    $\quad$
  4. Déterminer le nombre de mois au bout duquel le nombre de télétravailleurs sera strictement supérieur à $2~500$, après la mise en place de cette mesure dans l’entreprise.
    $\quad$

Partie B :

Afin d’évaluer l’impact de cette mesure sur son personnel, les dirigeants de l’entreprise sont parvenus à modéliser le nombre de collaborateurs satisfaits par ce dispositif à l’aide de la suite $\left(u_n\right)$ définie par $u_0 = 1$ et, pour tout entier naturel $n$, $$u_{n+1}=\dfrac{5u_n+4}{u_n+2}$$
où $u_n$ désigne le nombre de milliers de collaborateurs satisfaits par cette nouvelle mesure au bout de $n$ mois après le mois de mai 2020.

  1. Démontrer que la fonction $f$ définie pour tout $x\in [0;+\infty[$ par $f(x)=\dfrac{5x+4}{x+2}$ est strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. a. Démontrer par récurrence que pour tout entier naturel $n$, $$0\pp u_n\pp u_{n+1} \pp 4$$
    $\quad$
    b. Justifier que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  3. On admet que pour tout entier naturel $$0\pp 4-u_n\pp 3\times \left(\dfrac{1}{2}\right)^n$$
    En déduire la limite de la suite $\left(u_n\right)$ et l’interpréter dans le contexte de la modélisation.
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Exercice A

Géométrie dans l’espace

Dans un repère orthonormé de l’espace, on considère les points suivants : $$A(2;-1;0) ; B(3;-1;2) ; C(0;4;1) \text{ et } S(0;1;4)$$

  1. Montrer que le triangle $ABC$ est rectangle en $A$
    $\quad$
  2. a. Montrer que le vecteur$\vec{n}\begin{pmatrix} 2\\1\\-1\end{pmatrix}$ est orthogonal au plan $(ABC)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(ABC)$.
    $\quad$
    c. Montrer que les points $A$, $B$, $C$ et $S$ ne sont pas coplanaires.
    $\quad$
  3. Soit $(d)$ la droite orthogonale au plan $(ABC)$ passant par $S$. Elle coupe le plan
    $(ABC)$ en $H$.
    a. Déterminer une représentation paramétrique de la droite $(d)$.
    $\quad$
    b. Montrer que les coordonnées du point $H$ sont $H(2;2;3)$.
    $\quad$
  4. On rappelle que le volume $V$ d’un tétraèdre est $V =  \dfrac{\text{Aire de la base $\times$ hauteur}}{3}$.
    Calculer le volume du tétraèdre $SABC$.
    $\quad$
  5. a. Calculer la longueur $SA$.
    $\quad$
    b. On indique que $SB=\sqrt{17}$.
    En déduire une mesure de l’angle $\widehat{ASB}$ approchée au dixième de degré.
    $\quad$

$\quad$

Exercice B

Équations différentielles

Partie A :

Soit $g$ la fonction définie sur $\R$ par : $$g(x)=2\e^{\frac{-1}{3}x}+\dfrac{2}{3}x-2$$

  1. On admet que la fonction $g$ est dérivable sur $\R$ et on note $g’$ sa fonction dérivée. Montrer que, pour tout réel $x$ :$$g'(x)=\dfrac{-2}{3}\e^{\frac{-1}{3}x}+\dfrac{2}{3}$$
    $\quad$
  2. En déduire le sens de variations de la fonction $g$ sur $\R$.
    $\quad$
  3. Déterminer le signe de $g(x)$, pour tout $x$ réel.
    $\quad$

Partie B

  1. On considère l’équation différentielle $$(E): \quad 3y’+y=0$$
    Résoudre l’équation différentielle $(E)$.
    $\quad$
  2. Déterminer la solution particulière dont la courbe représentative, dans un repère du plan, passe par le point $M(0;2)$.
    $\quad$
  3. Soit $f$ la fonction définie sur $\R$ par : $$f(x)=2\e^{-\dfrac{1}{3}x}$$
    et $\mathcal{C}_f$ sa courbe représentative.
    a. Montrer que la tangente $\left(\Delta_0\right)$ à la courbe $\mathcal{C}_f$ au point $M(0;2)$ admet une équation de la forme : $$y=-\dfrac{2}{3}x+2$$
    $\quad$
    b. Étudier, sur $\R$, la position de cette courbe $\mathcal{C}_f$ par rapport à la tangente $\left(\Delta_0\right)$.
    $\quad$

Partie C :

  1. Soit $A$ le point de la courbe $\mathcal{C}_f$ d’abscisse $a$, $a$ réel quelconque.
    Montrer que la tangente $\left(\Delta_a\right)$ à la courbe $\mathcal{C}_f$ au point $a$ coupe l’axe des abscisses en un point $P$ d’abscisse $a+3$.
    $\quad$
  2. Expliquer la construction de la tangente $\left(\Delta_{-2}\right)$ à la courbe $\mathcal{C}_f$ au point $B$ d’abscisse $-2$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 2 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Question 1 :  Si $t=5$ alors $\begin{cases} x=-4+3\times 5\\y=6-3\times 5\\z=8-6\times 5\end{cases} \ssi \begin{cases} x=11\\y=-9\\z=-22\end{cases}$
Réponse b
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est $\vec{u}\begin{pmatrix} 3\\-3\\-6\end{pmatrix}$.
Réponse c
$\quad$

Question 3 : Un vecteur directeur de la droite $\mathcal{D}$ est $\vect{AB}\begin{pmatrix}-2\\2\\4\end{pmatrix}$.
On constate que $\vect{AB}=-\dfrac{3}{2}\vect{u_3}$.
Les deux droites sont donc parallèles.
En prenant $t=2$ on constate que le point $B$ appartient à la droite $\mathcal{D}’$.
Les deux droites sont donc confondues.
Réponse d
$\quad$

Question 4 : Un vecteur normal au plan $\mathcal{P}$ est $\vec{n}\begin{pmatrix}1\\m\\-2\end{pmatrix}$
La droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$
$\ssi$ $\vec{n}$ et $\vect{AB}$ sont orthogonaux
$\ssi \vec{n}.\vect{AB}=0$\\
$\ssi -2+2m-8=0$
$\ssi 2m=10$
$\ssi m=5$
Réponse c
$\quad$

Ex 2

Exercice 2

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$$\quad$
    b. On veut calculer :
    $\begin{align*} p(M\cap T)&=p(M)\times p_M(T)\\
    &=0,4\times 0,9\\
    &=0,36\end{align*}$
    La probabilité que le chat soit porteur de la maladie et que son test soit positif est égal à $0,36$.
    $\quad$
    c. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(M)\times p_M(T)+p\left(\conj{M}\right)\times p_{\conj{M}}(T)\\
    &=0,36+0,6\times 0,15\\
    &=0,45\end{align*}$
    La probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} p_T(M)&=\dfrac{p(T\cap M)}{p(T)} \\
    &=\dfrac{0,36}{0,45} \\
    &=0,8\end{align*}$
    La probabilité que le chat soit porteur de la maladie sachant que le test est positif est égale à $0,8$.
    $\quad$
  2. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,45$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} p(X=5)&=\dbinom{20}{5}0,45^5\times 0,55^{15} \\
    &\approx 0,036\end{align*}$
    La probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif est environ égale à $0,036$.
    $\quad$
    c. On veut calculer $p(X\pp 8) \approx 0,414$ d’après la calculatrice.
    La probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif est environ égale à $0,414$.
    $\quad$
    d. $E(X)=np=9$.
    En moyenne, $9$ chats présentent un test positif dans un échantillon de $20$ chats.
    $\quad$
  3. a. On effectue $n$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    La variable $Y$ donnant le nombre de chats présentant un test positif suit donc la loi binomiale de paramètre $n$ et $p=0,45$.
    Ainsi :
    $\begin{align*} p_n&=p(Y\pg 1) \\
    &=1-p(Y=0)\\
    &=1-0,55^n\end{align*}$
    $\quad$
    b. Le programme renvoie le plus petit entier naturel $n$ tel que $p_n\pg 0,99$.
    $\quad$
    c.
    $\begin{align*}
    p_n\pg 0,99 &\ssi 1-0,55^n \pg 0,99 \\
    &\ssi -0,55^n \pg -0,01 \\
    &\ssi 0,55^n \pp 0,01 \\
    &\ssi n\ln(0,55) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,55)}\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,55)}\approx7,7$
    Le programme renverra donc la valeur $8$.
    $\quad$

Ex 3

Exercice 3

  1. Il semblerait que $\dfrac{4}{u_n}=n+4$.
    $\quad$
  2. Initialisation : On a $u_0=1>0$.
    La propriété est donc vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose la propriété vraie au rang $n$.
    Ainsi $4u_n >0$ et $u_n+4>4>0$.
    Par conséquent $u_{n+1}>0$ en tant que quotient de nombres strictement positifs.
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, on a $u_n >0$.
    $\quad$
  3. Pour tout $n\in \N$.
    $\begin{align*}
    u_{n+1}-u_n&=\dfrac{4u_n}{u_n+4}-u_n\\
    &=\dfrac{4u_n-\left(u_n^2+4u_n\right)}{u_n+4}\\
    &=\dfrac{-u_n^2}{u_n+4}\\
    &<0\end{align*}$
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
  4. La suite $\left(u_n\right)$ est donc décroissante et minorée par $0$. Elle est par conséquent convergente.
    $\quad$
  5. Soit $n\in \N$
    $\begin{align*} v_{n+1}-v_n&=\dfrac{4}{~~\dfrac{4u_n}{u_n+4}~~}-\dfrac{4}{u_n} \\
    &=\dfrac{4\left(u_n+4\right)}{4u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n+4}{u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n}{u_n}\\
    &=1\end{align*}$
    La suite $\left(v_n\right)$ est donc arithmétique de raison $1$ et de premier terme $v_0=4$.
    Ainsi, pour tout entier naturel $n$, on a $v_n=4+n$.
    $\quad$
  6. Pour tout entier naturel $n$ on a donc
    $\begin{align*} v_n=\dfrac{4}{u_n}&\ssi 4+n=\dfrac{4}{u_n} \\
    &\ssi u_n=\dfrac{4}{4+n}\end{align*}$
    Or $\lim\limits_{n\to +\infty} 4+n=0$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$

 

 

Ex A

Exercice A

Partie I

  1. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} x^2=0^+$ donc $\lim\limits_{x\to 0^+} \dfrac{\ln(x)}{x^2}=-\infty$ et $\lim\limits_{x\to 0^+} h(x)=-\infty$
    $\quad$
  2. Pour tout réel $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x^2-2x\ln(x)}{x^4} \\
    &=\dfrac{x-2x\ln(x)}{x^4} \\
    &=\dfrac{1-2\ln(x)}{x^3}\end{align*}$
    $\quad$
  3. Le signe de $h'(x)$ sur $]0;+\infty[$ ne dépend donc que de celui de $1-2\ln(x)$.
    Or $1-2\ln(x)=0 \ssi \ln(x)=\dfrac{1}{2} \ssi x=\e^{1/2}$
    Et $1-2\ln(x)>0 \ssi -2\ln(x)>-1\ssi \ln(x)<\dfrac{1}{2} \ssi x<\e^{1/2}$
    Ainsi $h'(x) >0$ sur $\left]0;\e^{1/2}\right[$ et $h'(x)<0$ sur $\left]\e^{1/2};+\infty\right[$.
    La fonction $h$ est donc strictement croissante sur $\left]0;\e^{1/2}\right[$ et strictement décroissante sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
  4. La fonction $h$ est continue (car dérivable) et strictement croissante sur $\left]0;\e^{1/2}\right[$.
    De plus $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h\left(\e^{1/2}\right)=1+\dfrac{1}{2\e}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une solution sur l’intervalle $\left]0;\e^{1/2}\right[$.
    $\quad$
    La fonction $h$ est strictement décroissante sur $\left]\e^{1/2};+\infty\right[$ et $\lim\limits_{x\to +\infty} h(x)=0$.
    Par conséquent $h(x)>0$ sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
    Ainsi l’équation $h(x)=0$ possède une unique solution $\alpha$ solution sur $]0;+\infty[$.
    $\quad$
    $h\left(\dfrac{1}{2}\right) \approx -1,8<0$ et $h(1)=1>0$
    Par conséquent $h\left(\dfrac{1}{2}\right)<h(\alpha)<h(1)$.
    La fonction $h$ est strictement croissante sur $\left]0;\e^{1/2}\right[$. Donc $\dfrac{1}{2} <\alpha <1$.
    $\quad$
  5. D’après les question 3. et 4. :
    $\bullet$ $h(x)<0$ sur $]0;\alpha[$;
    $\bullet$ $h(\alpha)=0$;
    $\bullet$ $h(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. Pour tout $x>0$ on a
    $\begin{align*} f_1(x)-f_2(x)&=x-1-\dfrac{\ln(x)}{x^2}-\left(x-2-\dfrac{2\ln(x)}{x^2} \right)\\
    &=x-1-\dfrac{\ln(x)}{x^2}-x+2+\dfrac{2\ln(x)}{x^2} \\
    &=1+\dfrac{\ln(x)}{x^2}\\
    &=h(x)\end{align*}$
    $\quad$
  2. L’équation $h(x)=0$ possède une unique solution $\alpha$ sur $]0;+\infty[$.
    Les courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ n’ont donc qu’un seul point d’intersection d’abscisse $\alpha$
    $h(\alpha)=0 \ssi \dfrac{\ln(\alpha}{\alpha^2}=-1$
    Ainsi $f_1(\alpha)=\alpha-1-\dfrac{\ln(\alpha}{\alpha^2}=\alpha$.
    Le point d’intersection des courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ a donc pour coordonnées $(\alpha;\alpha)$.
    D’après la question I.5., $\mathcal{C}_1$ est au-dessous de $\mathcal{C}_2$ sur $]0;+\alpha[$ et au-dessus de $\mathcal{C}_2$ sur $]\alpha;+\infty[$.
    $\quad$

Ex B

Partie I

  1. La fonction $f’$ semble strictement positive sur $]-\infty;-1[$ et strictement négative sur $]-1;+\infty[$
    La fonction $f$ semble donc strictement croissante sur $]-\infty;-1]$ et strictement décroissante sur $[-1;+\infty[$.
    $\quad$
  2. La fonction $f’$semble changer de sens de variation en $0$. Elle semble décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$.
    La fonction $f$ semble donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$
    $\quad$

Partie II

  1. Pour tout réel $x$ on a
    $\begin{align*} f(x)&=(x+2)\e^{-x} \\
    &=x\e^{-x}+2\e^{-x} \\
    &=\dfrac{x}{\e^x}+2\e^{-x}\end{align*}$
    $\quad$
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    De plus $\lim\limits_{x\to +\infty} \e^{-x}=0$ donc $\lim\limits_{x\to +\infty} f(x)=0$.
    La droite d’équation $y=0$ est donc asymptote à la courbe $\mathcal{C}$ en $+\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1\times \e^{-x}+(x+2)\times \left(-\e^{-x}\right) \\
    &=(1-x-2)\e^{-x} \\
    &=(-x-1)\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$. Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0 \ssi -x>1 \ssi x<-1$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$
    c. La fonction $f$ est continue (car dérivable) et strictement croissante sur $[-2;-1]$.
    De plus $f(-2) = 0<2$ et $f(-1)=\e>2$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=2$ possède une unique solution $\alpha$.
    D’après la calculatrice $\alpha \approx -1,6$.
    $\quad$
  3. $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=-\e^{-x}-(-x-1)\e^{-x} \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    La fonction exponentielle étant strictement positive sur $\R$, le signe de $f\dsec(x)$ ne dépend que de celui de $x$.
    Ainsi :
    $\bullet$ $f\dsec(x)<0$ sur $]-\infty;0[$;
    $\bullet$ $f\dsec(0)=0$;
    $\bullet$ $f\dsec(x)>0$ sur $]0;+\infty[$.
    La fonction $f$ est donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$.
    Le point $A$, d’abscisse $0$, est un point d’inflexion pour la courbe $\mathcal{C}$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

L’espace est rapporté à un repère orthonormé $\Oijk$.
On considère :

  • La droite $\mathcal{D}$ passant par les points $A(1 ; 1 ;-2)$ et $B(-1 ; 3 ; 2)$.
  • La droite $\mathcal{D}’$ de représentation paramétrique : $\left\{\begin{array}{l}x=-4+3 t \\ y=6-3 t \\ z=8-6 t\end{array}\right. \quad \text { avec } t \in \R $.
  • Le plan $\mathcal{P}$ d’équation cartésienne $x+m y-2 z+8=0$ où $m$ est un nombre réel.

Question 1 : Parmi les points suivants, lequel appartient à la droite $\mathcal{D}’$ ?
a. $M_{1}(-1 ; 3 ;-2)$
b. $M_{2}(11 ;-9 ;-22)$
c. $M_{3}(-7 ; 9 ; 2)$
d. $M_{4}(-2 ; 3 ; 4)$
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est:
a. $\vect{u_{1}}\begin{pmatrix}-4 \\ 6 \\ 8\end{pmatrix}$
b. $\vect{u_{2}}\begin{pmatrix}3 \\ 3 \\ 6\end{pmatrix}$
c. $\vect{u_{3}}\begin{pmatrix}3 \\ -3 \\ -6\end{pmatrix}$
d. $\vect{u_{4}}\begin{pmatrix}-1 \\ 3 \\ 2\end{pmatrix}$
$\quad$

Question 3 : Les droites $\mathcal{D}$ et $\mathcal{D}’$ sont:
a. sécantes
b. strictement parallèles
c. non coplanaires
d. confondues
$\quad$

Question 4 : La valeur du réel $m$ pour laquelle la droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$ est:
a. $m=-1$
b. $m=1$
c. $m=5$
d. $m=-2$
$\quad$

$\quad$

Exercice 2 6 points

Dans cet exercice, les résultats des probabilités demandées seront, si nécessaire, arrondis au millième.
La leucose féline est une maladie touchant les chats; elle est provoquée par un virus. Dans un grand centre vétérinaire, on estime à $40 \%$ la proportion de chats porteurs de la maladie. On réalise un test de dépistage de la maladie parmi les chats présents dans ce centre vétérinaire. Ce test possède les caractéristiques suivantes.

  • Lorsque le chat est porteur de la maladie, son test est positif dans $90 \%$ des cas.
  • Lorsque le chat n’est pas porteur de la maladie, son test est négatif dans $85 \%$ des cas.

On choisit un chat au hasard dans le centre vétérinaire et on considère les événements suivants:

  • $M$ : « Le chat est porteur de la maladie » ;
  • $T$ : « Le test du chat est positif » ;
  • $\conj{M}$ et $\conj{T}$ désignent les événements contraires des événements $M$ et $T$ respectivement.
  1. a. Traduire la situation par un arbre pondéré.
    $\quad$
    b. Calculer la probabilité que le chat soit porteur de la maladie et que son test soit positif.
    $\quad$
    c. Montrer que la probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On choisit un chat parmi ceux dont le test est positif. Calculer la probabilité qu’il soit porteur de la maladie.
    $\quad$
  2. On choisit dans le centre vétérinaire un échantillon de $20$ chats au hasard. On admet que l’on peut assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de chats présentant un test positif dans l’échantillon choisi.
    a. Déterminer, en justifiant, la loi suivie par la variable aléatoire $X$.
    $\quad$
    b. Calculer la probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif.
    $\quad$
    c. Calculer la probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif.
    $\quad$
    d. Déterminer l’espérance de la variable aléatoire $X$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  3. Dans cette question, on choisit un échantillon de $n$ chats dans le centre, qu’on assimile encore à un tirage avec remise. On note $p_{n}$ la probabilité qu’il y ait au moins un chat présentant un test positif dans cet échantillon.
    a. Montrer que $p_{n}=1-0,55^{n}$.
    $\quad$
    b. Décrire le rôle du programme ci-dessous écrit en langage Python, dans lequel la variable $\text{n}$ est un entier naturel et la variable $\text{P}$ un. nombre réel.
    $$\begin{array}{|l|}
    \hline
    \hspace {1cm} \textbf{def seuil} ():\\
    \hspace {1.5 cm} \text{n = 0} \\
    \hspace {1.5 cm} \text{P = 0}\\
    \hspace {1.5 cm} \textbf {while }\text{P < 0.99:} \\
    \hspace {2 cm}\text{n = n + 1}\\
    \hspace {2 cm}\text{P = 1 – 0.55**n}\\
    \hspace {1.5 cm}\textbf{return }\text{n}\\
    \hline
    \end{array}$$
    $\quad$
    c. Déterminer, en précisant la méthode employée, la valeur renvoyée par ce programme.
    $\quad$

$\quad$

Exercice 3     5 points

On considère la suite $\left(u_{n}\right)$ définie par $: u_{0}=1$ et, pour tout entier naturel $n$,
$$u_{n+1}=\dfrac{4 u_{n}}{u_{n}+4}$$

  1. La copie d’écran ci-dessous présente les valeurs, calculées à l’aide d’un tableur, des termes de la suite $\left(u_{n}\right)$ pour $n$ variant de $0$ à $12$, ainsi que celles du quotient $\dfrac{4}{u_{n}}$ (avec, pour les valeurs de $u_{n}$, affichage de deux chiffres pour les parties décimales).
    $$\begin{array}{|c|c|c|}
    \hline n & u_{n} & \dfrac{4}{u_{n}} \\
    \hline 0 & 1,00 & 4 \\
    \hline 1 & 0,80 & 5 \\
    \hline 2 & 0,67 & 6 \\
    \hline 3 & 0,57 & 7 \\
    \hline 4 & 0,50 & 8 \\
    \hline 5 & 0,44 & 9 \\
    \hline 6 & 0,40 & 10 \\
    \hline 7 & 0,36 & 11 \\
    \hline 8 & 0,33 & 12 \\
    \hline 9 & 0,31 & 13 \\
    \hline 10 & 0,29 & 14 \\
    \hline 11 & 0,27 & 15 \\
    \hline 12 & 0,25 & 16 \\
    \hline
    \end{array}$$
    À l’aide de ces valeurs, conjecturer l’expression de $\dfrac{4}{u_{n}}$ en fonction de $n$.
    $\quad$
    Le but de cet exercice est de démontrer cette conjecture (question 5.), et d’en déduire la limite de la suite $\left(u_{n}\right)$ (question 6.).
    $\quad$
  2. Démontrer par récurrence que, pour tout entier naturel $n$, on a $: u_{n}>0$.
    $\quad$
  3. Démontrer que la suite $\left(u_{n}\right)$ est décroissante.
    $\quad$
  4. Que peut-on conclure des questions 2. et 3. concernant la suite $\left(u_{n}\right)$ ?
    $\quad$
  5. On considère la suite $\left(v_{n}\right)$ définie pour tout entier naturel $n$ par : $v_{n}=\dfrac{4}{u_{n}}$.
    Démontrer que $\left(v_{n}\right)$ est une suite arithmétique. Préciser sa raison et son premier terme.
    En déduire, pour tout entier naturel $n$, l’expression de $v_{n}$ en fonction de $n$.
    $\quad$
  6. Déterminer, pour tout entier naturel $n$, l’expression de $u_{n}$ en fonction de $n$.
    En déduire la limite de la suite $\left(u_{n}\right)$.
    $\quad$

$\quad$

EXERCICE au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués dans un encadré.

$\quad$

Exercice A

Principaux domaines abordés:

  • Fonction logarithme;
  • dérivation.

Partie I

On désigne par $h$ la fonction définie sur l’intervalle $] 0 ;+\infty[$ par :
$$h(x)=1+\dfrac{\ln (x)}{x^{2}}$$
On admet que la fonction $h$ est dérivable sur $] 0 ;+\infty[$ et on note $h’$ sa fonction dérivée.

  1. Déterminez les limites de $h$ en $0$ et en $+\infty$.
    $\quad$
  2. Montrer que, pour tout nombre réel $x$ de $] 0 ;+\infty[$, $h'(x)=\dfrac{1-2 \ln (x)}{x^{3}}$.
    $\quad$
  3. En déduire les variations de la fonction $h$ sur l’intervalle $]0 ;+\infty[$
    $\quad$
  4. Montrer que l’équation $h(x)=0$ admet une solution unique $\alpha$ appartenant à $] 0 ;+\infty[$ et vérifier que : $\dfrac{1}{2}<\alpha<1$.
    $\quad$
  5. Déterminer le signe de $h(x)$ pour $x$ appartenant à $] 0 ;+\infty[$.
    $\quad$

 

Partie II

On désigne par $f_{1}$ et $f_{2}$ les fonctions définies sur $] 0 ;+\infty[$ par :
$$
f_{1}(x)=x-1-\dfrac{\ln (x)}{x^{2}} \text { et } \quad f_{2}(x)=x-2-\dfrac{2 \ln (x)}{x^{2}}$$
On note $\mathcal{C}_{1}$ et $\mathcal{C}_{2}$ les représentations graphiques respectives de $f_{1}$ et $f_{2}$ dans un repère $\Oij$.

  1. Montrer que, pour tout nombre réel $x$ appartenant à $] 0 ;+\infty[$, on a :
    $$f_{1}(x)-f_{2}(x)=h(x)$$
    $\quad$
  2. Déduire des résultats de la Partie I la position relative des courbes $\mathcal{C}_{1}$ et $\mathcal{C}_{2} .$ On justifiera que leur unique point d’intersection a pour coordonnées $(\alpha ; \alpha)$.
    On rappelle que $\alpha$ est l’unique solution de l’équation $h(x)=0$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction exponentielle;
  • dérivation;
  • convexité.

PARTIE I

On donne ci-dessous, dans le plan rapporté à un repère orthonormé, la courbe représentant la fonction dérivée $f’$ d’une fonction $f$ dérivable sur $\R$. À l’aide de cette courbe, conjecturer, en justifiant les réponses:

  1. Le sens de variation de la fonction $f$ sur $\R$.
    $\quad$
  2. La convexité de la fonction $f$ sur $\R$.
    $\quad$

$\quad$

PARTIE II

On admet que la fonction $f$ mentionnée dans la Partie I est définie sur $\R$ par : $$f(x)=(x+2) \e^{-x}$$
On note $\mathcal{C}$ la courbe représentative de $f$ dans un repère orthonormé $\Oij$.
On admet que la fonction $f$ est deux fois dérivable sur $\R$, et on note $f’$ et $f\dsec$ les fonctions dérivées première et seconde de $f$ respectivement.

  1. Montrer que, pour tout nombre réel $x$, $$
    f(x)=\dfrac{x}{\e^{x}}+2 \e^{-x}$$
    En déduire la limite de $f$ en $+\infty$.
    Justifier que la courbe $\mathcal{C}$ admet une asymptote que l’on précisera. On admet que $\lim\limits_{x \to -\infty} f(x)=-\infty$.
    $\quad$
  2. a. Montrer que, pour tout nombre réel $x, f'(x)=(-x-1) \e^{-x}$.
    $\quad$
    b. Étudier les variations sur $\R$ de la fonction $f$ et dresser son tableau de variations.
    $\quad$
    c. Montrer que l’équation $f(x)=2$ admet une unique solution $\alpha$ sur l’intervalle $[-2 ;-1]$ dont on donnera une valeur approchée à $10^{-1}$ près.
    $\quad$
  3. Déterminer, pour tout nombre réel $x$, l’expression de $f\dsec(x)$ et étudier la convexité de la fonction $f$. Que représente pour la courbe $\mathcal{C}$ son point $A$ d’abscisse $0$ ?
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 1 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $f$ est dérivable sur $]0;+\infty [$ puisque $f\dsec$ existe.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=\dfrac{2\e^{2x}\times x-\e^{2x}}{x^2} \\
    &=\dfrac{(2x-1)\e^{2x}}{x^2}\end{align*}$
    Réponse c
    $\quad$
  2. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $2x-1$.
    Or $2x-1>0 \ssi x>\dfrac{1}{2}$
    Par conséquent $f$ est strictement décroissante sur $\left]0;\dfrac{1}{2}\right]$ et strictement croissante sur $\left[\dfrac{1}{2};+\infty\right[$.
    Elle admet donc un minimum en $\dfrac{1}{2}$.
    $\quad$
    Remarque : On pouvait répondre à cette question en traçant la courbe représentant la fonction sur la calculatrice.
    $\quad$
    Réponse c
    $\quad$
  3. Pour tout réel $x\neq 0$ on a $\dfrac{\e^{2x}}{x}=2\times \dfrac{\e^{2x}}{2x}$.
    Or $\lim\limits_{x\to +2\infty} 2x=+\infty$ et, par croissances comparées, $\lim\limits_{X\to +\infty} \dfrac{\e^X}{X}=+\infty$.

    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^{2x}}{x}=+\infty$
    Réponse a
    $\quad$

  4. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $2x^2-2x+1$.
    Son discriminant est :
    $\Delta=(-2)^2-2\times 4\times 1=-4<0$.
    Le coefficient principal est $a=2>0$.
    Par conséquent $f\dsec(x)>0$ sur $]0;+\infty[$ et $f$ est convexe sur $]0;+\infty[$.
    Réponse b
    $\quad$

Ex 2

Exercice 2

PARTIE I

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(D\cap T)&=p(D)\times p_D(T)\\
    &=0,05\times 0,98\\
    &=0,049\end{align*}$
    La probabilité qu’une pièce choisie au hasard dans la production de la
    chaîne soit défectueuse et présente un test positif est égale à $0,049$.
    $\quad$
    b. $D$ et $\conj{D}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(D)\times p_D(T)+p\left(\conj{D}\right)\times p_{\conj{D}}(T)\\
    &=0,05\times 0,98+0,95\times 0,03\\
    &=0,077~5\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} p_T(D)&=\dfrac{p(T\cap D)}{p(T)} \\
    &=\dfrac{0,049}{0,077~5}\\
    &\approx 0,63\end{align*}$
    La valeur prédictive positive de ce test est environ égale à $0,63<0,95$.
    Ce test n’est donc pas efficace.
    $\quad$

PARTIE II

  1. On effectue $20$ tirages aléatoires, indépendants et identiques. À chaque tirage il n’y a que deux issues : $D$ et $\conj{D}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,05$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-0,95^{20} \\
    &\approx 0,64\end{align*}$
    La probabilité pour que cet échantillon contienne au moins une pièce défectueuse est environ égale à $0,64$.
    $\quad$
  3. L’espérance est $E(X)=20 \times 0,05=1$.
    Cela signifie qu’en moyenne il y a une pièce défectueuse par échantillon de $20$ pièces.
    $\quad$

Ex 3

Exercice 3

I – Premier modèle

$1,3-(-19)=20,3$. Cela signifie qu’à chaque minute la température augmente de $2,03$ °C.
Au bout de $25$ minutes, selon ce modèle, la température des gâteaux serait donc de $-19+25\times 2,03=31,75$ °C.
La température ambiante est de $25$ °C. Les gâteaux ne peuvent pas avoir une température supérieure à la température ambiante.
Ce modèle n’est donc pas pertinent.
$\quad$

II – Second modèle 

  1. Pour tout entier naturel $n$ on a :
    $\begin{align*} T_{n+1}&=T_n-0,06\left(T_n-25\right) \\
    &=T_n-0,06T_n+1,5\\
    &=0,94T_n+1,5\end{align*}$
    $\quad$
  2. On a donc $T_1=0,94\times (-19)+1,5\approx -16,4$
    $T_2=0,94 \times T_1+1,5 \approx -13,9$
    $\quad$
  3. Initialisation : Si $n=0$ alors $T_0=-19 \pp 25$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} T_{n+1}&=0,94T_n+1,5\\
    &\pp 0,94 \times 25+1,5 \\
    &\pp 25\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, on a $T_n\pp 25$.
    $\quad$
    Ce résultat était prévisible dans la mesure où, en se réchauffant à température ambiante, les gâteaux ne peuvent pas avoir une température supérieure à celle de la pièce.
    $\quad$
  4. Pour tout entier naturel $n$, $T_{n+1}-T_n=-0,06\times \left(T_n-25\right)$
    Or $T_n-25 \pp 0$. Donc $T_{n+1}-T_n\pg 0$.
    La suite $\left(T_n\right)$ est par conséquent croissante.
    $\quad$
  5. La suite $\left(T_n\right)$ est croissante et majorée par $25$. Elle est donc convergente.
    $\quad$
  6. a. Pour tout entier naturel $n$ on a
    $\begin{align*} U_{n+1}&=T_{n+1}-25 \\
    &=0,94T_n+1,5-25 \\
    &=0,94T_n-23,5 \\
    &=0,94\left(U_n+25\right)-23,5 \\
    &=0,94U_n+23,5-23,5\\
    &=0,94U_n\end{align*}$
    La suite $\left(U_n\right)$ est donc géométrique de raison $0,94$ et de premier terme $U_0=T_0-25=-44$.
    $\quad$
    b. Pour tout entier naturel $n$ on a donc $U_n=-44 \times 0,94^n$.
    Donc $T_n=U_n+25=-44\times 0,94^n+25$.
    $\quad$
    c. $-1<0,94<1$ donc $\lim\limits_{n\to +\infty} 0,94^n =0$
    Par conséquent $\lim\limits_{n\to +\infty} T_n=25$.
    Sur le long terme la température des gâteaux sera donc de $25$°C.
    $\quad$
  7. a. On a $T_{30}\approx 18$.
    La température des gâteaux est donc environ égale à $18$ °C au bout d’une demi-heure.
    $\quad$
    b. À l’aide de la calculatrice on trouve que $T_{17} \approx 9,6$ et $T_{18} \approx 10,6$. De plus la suite $\left(T_n\right)$ est croissante.
    Cécile doit donc attendre entre $17$ et $18$ minutes pour déguster son gâteau.
    $\quad$
    Remarque : Si on veut retrouver ce résultat par le calcul.
    $\begin{align*} T_n=10&\ssi -44\times 0,94^n+25=10 \\
    &\ssi -44\times 0,94^n=-15 \\
    &\ssi 0,94^n =\dfrac{15}{44} \\
    &\ssi n\ln(0,94)=\ln\left(\dfrac{15}{44}\right) \\
    &\ssi n=\dfrac{\ln\left(\dfrac{15}{44}\right) }{\ln(0,94)}\end{align*}$
    Or $\dfrac{\ln\left(\dfrac{15}{44}\right) }{\ln(0,94)}\approx 17,4$.
    $\quad$
    c. On obtient le programme suivant :
    $$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = -19} \\
    \hspace{1.5cm} \textbf{while } \text{T < 10} : \hspace{1cm} \\
    \hspace{2cm} \text{T = 0.94 * T + 1.5}  \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$
    $\quad$

 

 

Ex A

Exercice A

  1. La droite $d$ a pour vecteur directeur le vecteur $\vec{u}$ et passe par le point $0$.
    Une représentation paramétrique de la droite $d$ est donc $\begin{cases} x=t\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  2. a. On a
    $\begin{align*} AM^2&=(t-1)^2+(t-3)^2+2^2 \\
    &=t^2-2t+1+t^2-6t+9+4\\
    &=2t^2-8t+14\end{align*}$
    $\quad$
    b. Le coefficient principal de l’expression du second degré $2t^2-8t+14$ est $2>0$.
    Elle admet donc un minimum atteint pour $t=\dfrac{8}{2\times 2}=2$.
    Ainsi le point $M_0(2;2;0)$ est le point de la droite $d$ pour lequel $AM^2$ est minimal et donc pour lequel la distance $AM$ est minimale.
    $\quad$
  3. $\vect{AM_0}\begin{pmatrix} 1\\-1\\2\end{pmatrix}$
    Donc $\vect{AM_0}.\vec{u}=1-1+0=0$
    Ces deux vecteurs sont donc orthogonaux et les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. Le vecteur $\vec{u}$ est orthogonal au plan d’équation $z=0$. Les points $A’$ et $M_0$ appartiennent à ce plan. Par conséquent $\vec{u}.\vect{A’M_0}=0$.
    Le vecteur $\vec{u}$ est donc orthogonal aux vecteurs (non colinéaires) $\vect{A’M_0}$ et $\vect{AM_0}$.
    La droite $d$ est par conséquent orthogonale au plan $\left(AA’M_0\right)$.
    $M_0$ appartient à la droite $d$, droite qui passe par le point $O$..
    Le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$.
    $\quad$
  5. On a $AA’=2$ et $M_0A’=\sqrt{(2-1)^2+(2-3)^2+0^2}=\sqrt{2}$.
    De plus $OM_0=\sqrt{2^2+2^2}=\sqrt{8}$
    Ainsi le volume de la pyramide $OM_0A’A$ est :
    $\begin{align*} V&=\dfrac{1}{3}\times \dfrac{2\times \sqrt{2}}{2}\times \sqrt{8} \\
    &=\dfrac{4}{3}\end{align*}$
    $\quad$

Ex B

Exercice B

  1. Pour tout réel $x$ on a :
    $\begin{align*} u'(x)&=2x\e^x+x^2\times \e^x \\
    &=2x\e^x+u(x)\end{align*}$
    Par conséquent $u$ est une solution particulière de $(E)$.
    $\quad$
  2. a. Si $f $est solution de l’équation différentielle $(E)$ alors $g$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$ et
    $\begin{align*} g'(x)&=f'(x)-u'(x) \\
    &=f(x)+2x\e^x-\left(u(x)+2x\e^x\right) \\
    &=f(x)+2x\e^x-u(x)-2x\e^x\\
    &=f(x)-u(x)\\
    &=g(x) \end{align*}$
    $g$ est donc solution de l’équation différentielle $y’=y$.
    $\quad$
    b. Une solution de l’équation $y’=y$ est la fonction $g$ définie sur $\R$ par $g(x)=\e^x$.
    Ainsi, pour tout réel $x$,
    $\begin{align*} f(x)&=g(x)+u(x) \\
    &=\e^x+x^2\e^x\end{align*}$
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. et b. Pour tout réel $x$, on a d’après les calculs faits à la question 1.,  $u'(x)=(2+x)x\e^x$.
    Or $2+x=0 \ssi x=-2$ et $2+x>0 \ssi x>-2$.
    La fonction exponentielle est strictement positive sur $\R$.
    On obtient donc le tableau de signes et de variations suivant :
    $\quad$
    c. $u’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $u'(x)=2x\e^x+x^2\e^x$ donc
    $\begin{align*} u\dsec(x)&=2\e^x+2x\e^x+2x\e^x +x^2\e^x \\
    &=\left(2+4x+x^2\right)\e^x \end{align*}$
    Le signe de $u\dsec(x)$ ne dépend que de celui de $x^2+4x+2$.
    Son discriminant est $\Delta=4^2-2\times 4=8>0$.
    Ses racines sont donc $x_1=\dfrac{-4-\sqrt{8}}{2}=-2-\sqrt{2}$ et $x_2=-2+\sqrt{2}$.
    Le coefficient principal est $a=1>0$.
    Par conséquent $u\dsec(x)<0$ sur $\left]-2-\sqrt{2};-2+\sqrt{2}\right[$.
    Le plus grand intervalle sur lequel la fonction $u$ est concave est $\left[-2-\sqrt{2};-2+\sqrt{2}\right]$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

Soit $f$ la fonction définie pour tout nombre réel $x$ de l’intervalle $]0 ;+\infty[$ par:
$$f(x)=\dfrac{\e^{2 x}}{x}$$
On donne l’expression de la dérivée seconde $f\dsec$ de $f$, définie sur l’intervalle $] 0 ;+\infty[$ par:
$$f\dsec(x)=\dfrac{2 \e^{2 x}\left(2 x^{2}-2 x+1\right)}{x^{3}}$$

  1. La fonction $f’$, dérivée de $f$, est définie sur l’intervalle $] 0 ;+\infty[$ par ;
    a. $f'(x)=2 e^{2 x}$
    b. $f'(x)=\dfrac{\e^{2 x}(x-1)}{x^{2}}$
    c. $f'(x)=\dfrac{\e^{2 x}(2 x-1)}{x^{2}}$
    d. $f'(x)=\dfrac{\e^{2 x}(1+2 x)}{x^{2}}$
    $\quad$
  2. La fonction $f$ :
    a. est décroissante sur $] 0 ;+\infty[$
    b. est monotone sur $] 0 ;+\infty[$
    c. admet un minimum en $\dfrac{1}{2}$
    d. admet un maximum en $\dfrac{1}{2}$
    $\quad$
  3. La fonction $f$ admet pour limite en $+\infty$ :
    a. $+\infty$
    b. $0$
    c. $1$
    d. $\e^{2 x}$
    $\quad$
  4. La fonction $f$ :
    a. est concave sur $] 0$; $+\infty[$
    b. est convexe sur $] 0 ;+\infty[$
    c. est concave sur $\left] 0 ; \dfrac{1}{2}\right]$
    d. est représentée par une courbe admettant un point d’inflexion
    $\quad$

$\quad$

Exercice 2     5 points

Une chaîne de fabrication produit des pièces mécaniques. On estime que $5\%$ des pièces produites par cette chaîne sont défectueuses.

Un ingénieur a mis au point un test à appliquer aux pièces. Ce test a deux résultats possibles: « positif » ou bien « négatif ».

On applique ce test à une pièce choisie au hasard dans la production de la chaîne.

On note $p(E)$ la probabilité d’un événement $E$.

On considère les événements suivants:

  •  $D$ : « la pièce est défectueuse »;
  •  $T$ : « la pièce présente un test positif »;
  •  $\conj{D}$ et $\conj{T}$ désignent respectivement les évènements contraires de $D$ et $T$.

Compte tenu des caractéristiques du test, on sait que :

  • La probabilité qu’une pièce présente un test positif sachant qu’elle défectueuse est égale à $0,98$ ;
  • La probabilité qu’une pièce présente un test négatif sachant qu’elle n’est pas défectueuse est égale à $0,97$ .

Les parties I et II peuvent être traitées de façon indépendante.

PARTIE I

  1. Traduire la situation à l’aide d’un arbre pondéré.
    $\quad$
  2. a. Déterminer la probabilité qu’une pièce choisie au hasard dans la production de la chaîne soit défectueuse et présente un test positif.
    $\quad$
    b. Démontrer que : $p(T)=0,077~5$.
    $\quad$
  3. On appelle valeur prédictive positive du test la probabilité qu’une pièce soit défectueuse sachant que le test est positif. On considère que pour être efficace, un test doit avoir une valeur prédictive positive supérieure à $0,95$ . Calculer la valeur prédictive positive de ce test et préciser s’il est efficace.
    $\quad$

PARTIE II

On choisit un échantillon de $20$ pièces dans la production de la chaîne, en assimilant ce choix à un tirage avec remise. On note $X$ la variable aléatoire qui donne le nombre de pièces défectueuses dans cet échantillon. On rappelle que: $p(D)=0,05$.

  1. Justifier que $X$ suit une loi binomiale et déterminer les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité que cet échantillon contienne au moins une pièce défectueuse. On donnera un résultat arrondi au centième.
    $\quad$
  3. Calculer l’espérance de la variable aléatoire $X$ et interpréter le résultat obtenu.
    $\quad$

$\quad$

Exercice 3     6 points

Cécile a invite des amis à déjeuner sur sa terrasse. Elle a prévu en dessert un assortiment de gâteaux individuels qu’elle a achetés surgelés.

Elle sort les gâteaux du congélateur à $-19$ °C et les apporte sur la terrasse où la température ambiante est de $25$ °C.

Au bout de $10$ minutes la température des gâteaux est de $1,3$ °C.

I – Premier modèle

On suppose que la vitesse de décongélation est constante, c’est-à-dire que l’augmentation de la température des gâteaux est la même minute après minute.

Selon ce modèle, déterminer quelle serait la température des gâteaux $25$ minutes après leur sortie du congélateur.

Ce modèle semble-t-il pertinent?
$\quad$

II – Second modèle

On note $T_{n}$ la température des gâteaux, en degré Celsius, au bout de $n$ minutes après leur sortie du congélateur; ainsi $T_{0}=-19$.

On admet que pour modéliser L’évolution de la température, on doit avoir la relation suivante:
pour tout entier naturel $n$, $T_{n+1}-T_{n}=-0,06 \times\left(T_{n}-25\right)$.

  1. Justifier que, pour tout entier naturel $n$, on a: $T_{n+1}=0,94 T_{n}+1,5$.
    $\quad$
  2. Calculer $T_{1}$ et $T_{2}$. On donnera des valeurs arrondies au dixième.
    $\quad$
  3. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $T_{n} \pp 25$. En revenant a la situation étudiée, ce résultat était-il prévisible?
    $\quad$
  4. Etudier le sens de variation de la suite $\left(T_{n}\right)$.
    $\quad$
  5. Démontrer que la suite $\left(T_{n}\right)$ est convergente.
    $\quad$
  6. On pose, pour tout entier naturel $n, U_{n}=T_{n}-25$.
    a. Montrer que la suite $\left(U_{n}\right)$ est une suite géométrique dont on précisera la raison et le premier terme $U_{0}$.
    $\quad$
    b. En déduire que pour tout entier naturel $n, T_{n}=-44 \times 0,94^{n}+25$.
    $\quad$
    c. En déduire la limite de la suite $\left(T_{n}\right)$. Interpréter ce résultat dans le contexte de la situation étudiée.
    $\quad$
  7. a. Le fabricant conseille de consommer les gâteaux au bout d’une demi-heure a température ambiante après leur sortie du congélateur. Quelle est alors la température atteinte par les gâteaux? On donnera une valeur arrondie à l’entier le plus proche.
    $\quad$
    b. Cécile est une habituée de ces gâteaux, qu’elle aime déguster lorsqu’ils sont encore frais, à la température de $10$ °C. Donner un encadrement entre deux entiers consécutifs du temps en minutes après lequel Cécile doit déguster son gâteau.
    $\quad$
    c. Le programme suivant, écrit en langage Python, doit renvoyer après son exécution la plus petite valeur de l’entier $n$ pour laquelle $T_{n} \pg  10$.$$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = } \ldots\ldots \\
    \hspace{1.5cm} \textbf{while } \text{T }\ldots\ldots : \hspace{1cm} \\
    \hspace{2cm} \text{T = } \ldots\ldots \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$Recopier ce programme sur la copie et compléter les lignes incomplètes afin que le programme renvoie la valeur attendue.
    $\quad$

$\quad$

Exercice au chois du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
II indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer le choix, les principaux domaines abordés sont indiqués en début de chaque exercice.

Exercice A

Principaux domaines abordés:

  • Géométrie de l’espace rapporté à un repère orthonormé;
  • orthogonalité dans l’espace.

Dans un repère orthonormé $\Oijk$ on considère :

  • le point $A$ de coordonnées $(1 ; 3 ; 2)$,
  • le vecteur $\vec{u}$ de coordonnées $\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}$,
  • la droite $d$ passant par l’origine $O$ du repère et admettant pour vecteur directeur $\vec{u}$.

 

Le but de cet exercice est de déterminer le point de $d$ le plus proche du point $A$ et d’étudier quelques propriétés de ce point.

On pourra s’appuyer sur la figure ci-contre pour raisonner au fur et à mesure des questions.

  1. Déterminer une représentation paramétrique de la droite $d$.
    $\quad$
  2. Soit $t$ un nombre réel quelconque, et $M$ un point de la droite $d$, le point $M$ ayant pour coordonnées $(t ; t ; 0)$.
    a. On note $AM$ la distance entre les points $A$ et $M$. Démontrer que :$$AM^2=2 t^{2}-8 t+14$$
    $\quad$
    b. Démontrer que le point $M_0$ de coordonnées $(2 ; 2 ; 0)$ est le point de la droite $d$ pour lequel la distance $AM$ est minimale. On admettra que la distance $AM$ est minimale lorsque son carré $AM^2$ est minimal.
    $\quad$
  3. Démontrer que les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. On appelle $A’$ le projeté orthogonal du point $A$ sur le plan d’équation cartésienne $z=0$. Le point $A’$ admet donc pour coordonnées $(1 ; 3 ; 0)$.
    Démontrer que le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$, origine du repère.
    $\quad$
  5. Calculer le volume de la pyramide $OM_0A’A$.
    On rappelle que le volume d’une pyramide est donné par: $V=\dfrac{1}{3} \mathcal{B} h$, où $\mathcal{B}$ est l’aire d’une base et $h$ est la hauteur de la pyramide correspondant à cette base.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés:

  • Équations différentielles;
  • fonction exponentielle.

On considère l’équation différentielle $(E): y’=y+2 x \e^{x}$.

On cherche l’ensemble des fonctions définies et dérivables sur l’ensemble $\R$ des nombres réels qui sont solutions de cette équation.

  1. Soit $u$ la fonction définie sur $\R$ par $u(x)=x^{2} \e^{x}$. On admet que $u$ est dérivable et on note $u’$ sa fonction dérivée. Démontrer que $u$ est une solution particulière de $(E)$.
    $\quad$
  2. Soit $f$ une fonction définie et dérivable sur $\R$. On note $g$ la fonction définie sur $\R$ par :$$g(x)=f(x)-u(x)$$
    a. Démontrer que si la fonction $f$ est solution de l’équation différentielle $(E)$ alors la fonction $g$ est solution de l’équation différentielle : $y’=y$. On admet que la réciproque de cette propriété est également vraie.
    $\quad$
    b. À l’aide de la résolution de l’équation différentielle $y’=y$, résoudre l’équation différentielle $(E)$.
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. Étudier le signe de $u'(x)$ pour $x$ variant dans $\R$.
    $\quad$
    b. Dresser le tableau de variations de la fonction $u$ sur $\R$ (les limites ne sont pas demandées).
    $\quad$
    c. Déterminer le plus grand intervalle sur lequel la fonction $u$ est concave.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Amérique du Nord – mai 2021

Amérique du Nord – Mars 2021

Spécialité maths – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. $\left(D,\conj{D}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    P(T)&=P(D)\times P_D(T)+P\left(\conj{D}\right)\times P_{\conj{D}}(T)\\
    &=0,08\times 0,98+0,92\times 0,005\\
    &=0,083\end{align*}$
    $\quad$
  3. a. On veut calculer
    $\begin{align*} P_T(D)&=\dfrac{P(T\cap D)}{P(T)}\\
    &=\dfrac{0,08\times 0,98}{0,083}\\
    &\approx 0,945\end{align*}$
    La probabilité qu’un athlète soit dopé sachant qu’il présente un test positif est environ égale à $0,945$.
    $\quad$
    b. $0,945<0,95$. Le test proposé par le laboratoire ne sera donc pas commercialisé.
    $\quad$

Partie B

  1. a. On effectue $5$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : « le test est positif », de probabilité $0,103$ et « le test est négatif ».
    La variable aléatoire $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,103$.
    $\quad$
    b. Ainsi, $E(X)=np=0,515$.
    En moyenne, sur $5$ athlètes testés, environ $0,5$ est positif. Cela peut se traduire par sur $10$ athlètes testés, environ $1$ est positif.
    $\quad$
    c. On veut calculer
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,103)^5 \\
    &\approx 0,419\end{align*}$
    La probabilité qu’au moins un des $5$ athlètes contrôlés présente un test positif est environ égale à $0,419$.
    $\quad$
  2. On appelle $n$ le nombre d’athlètes contrôlés et note $Y$ la variable aléatoire égale au nombre d’athlètes présentant un test
    positif parmi les $n$ athlètes contrôlés. Pour les mêmes raisons qu’à la question 1. $Y$ suit la loi binomiale de paramètres $n$ et $p=0,103$.
    On veut
    $\begin{align*} P(Y\pg 1)\pg 0,75& \ssi 1-P(Y=0)\pg 0,75 \\
    &\ssi 1-(1-0,103)^n \pg 0,75 \\
    &\ssi 0,897^n \pp 0,25\\
    &\ssi n\ln(0,897) \pp \ln(0,25) \qquad \text{($\ln$ est strictement croissante sur $\R_+^*$)}\\
    &\ssi n\pg \dfrac{\ln(0,25)}{\ln(0,897)}\end{align*}$
    Or $\dfrac{\ln(0,25)}{\ln(0,897)}\approx 12,75$
    Il faut donc contrôler au minimum $13$ personnes pour que la probabilité de l’événement « au moins un athlète contrôlé présente un test positif » soit supérieure ou égale à $0,75$.
    $\quad$

 

Ex 2

Exercice 2

  1. $u_1=0,75\times 0,6\times (1-0,15\times 0,6)=0,409~5$
    Il y avait donc $410$ individus sur l’île au début de l’année 2021.
    $u_2=0,75\times 0,409~5\times (1-0,15\times 0,409~5)\approx 0,288$
    Il y avait donc $288$ individus sur l’île au début de l’année 2021.
    $\quad$
  2. La fonction $f$ est dérivable sur $[0;1]$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout $x\in [0;1]$ on a
    $\begin{align*} f'(x)&=0,75(1-0,15x)-0,75x\times 0,15 \\
    &=0,75-0,225x\end{align*}$
    Or $0,75-0,225x>0 \ssi 0,75>0,225x\ssi \dfrac{10}{3}>x$
    Par conséquent $f'(x)>0$ sur $[0;1]$.
    La fonction $f$ est donc strictement croissante sur $[0;1]$.
    $\quad$
    On obtient le tableau de variations suivant :
    $\quad$
  3. On a
    $\begin{align*} f(x)=x&\ssi 0,75x(1-0,15x)=x \\
    &\ssi 0,75x(1-0,15x)-x=0 \\
    &\ssi x\left(0,75(1-0,15x)-1\right)=0\\
    &\ssi x(0,75-0,112~5x-1)=0\\
    &\ssi x(-0,25-0,112~5x)=0\\
    &\ssi x=0 \text{ ou } -0,25-0,112~5x=0 \\
    &\ssi x=0 \text{ ou } x=-\dfrac{20}{9} \end{align*}$
    Or $-\dfrac{20}{9} \notin [0;1]$
    $0$ est donc la seule solution appartenant à $[0;1]$ de l’équation $f(x)=x$.
    $\quad$
  4. a. Initialisation : $u_0=0,6$ et $u_1=0,409~5$.
    Par conséquent $0\pp u_1 \pp u_0\pp 1$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    Donc $0\pp u_{n+1} \pp u_n \pp 1$.
    La fonction $f$ est strictement croissante sur $[0;1]$. Par conséquent :
    $f(0) \pp f\left(u_{n+1}\right) \pp f\left(u_n\right) \pp f(1)$
    soit
    $0 \pp u_{n+2} \pp u_{n+1} \pp 0,637~5 \pp 1$.
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp u_{n+1} \pp u_n \pp 1$.
    $\quad$
    b. La suite $\left(u_n\right)$ est donc décroissante et minorée par $0$. Elle converge par conséquent vers un réel $\ell$.
    $\quad$
    c. La fonction $f$ est continue (car dérivable) sur $[0;1]$. $\ell$ est donc solution de l’équation $f(x)=x$.
    D’après la question 3. $\ell =0$.
    $\quad$
  5. a. La suite $\left(u_n\right)$ converge vers $0$. Selon ce modèle, le biologiste a effectivement raison.
    $\quad$
    b. La fonction menace() renvoie la valeur $11$.
    Cela signifie donc qu’il faut $11$ ans pour que l’espèce soit menacée d’extinction sur cette île selon le modèle étudié.
    $\quad$

Ex 3

Exercice 3

  1. Les points $K$ et $H$ appartiennent au plan $(AED)$. Pour qu’une droite passant par $A$ soit parallèle à la droite $(KH)$ il faut que tous ses points appartiennent au plan $(AED)$. Or $I$ n’appartient pas à ce plan.
    Les droites $(AI)$ et $(KH)$ ne sont donc pas parallèles.
    $\quad$
  2. a. $I$ a pour coordonnées $(0,5;0;1)$ et $J$ a pour coordonnées $(1;0,5;0)$.
    $\quad$
    b. Ainsi $\vect{IJ}\begin{pmatrix}0,5\\0,5\\-1\end{pmatrix}$, $\vect{AE}\begin{pmatrix}0\\0\\1\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}1\\1\\0\end{pmatrix}$
    On constate donc que $\vect{AC}=2\vect{IJ}+2\vect{AE}$.
    Cela signifie que les vecteurs $\vect{AC}$, $\vect{IJ}$ et $\vect{AE}$ sont coplanaires.
    $\quad$
  3. Un vecteur directeur de $d_1$ est $\vec{u_1}\begin{pmatrix}1\\-2\\3\end{pmatrix}$ et un vecteur directeur de $d_2$ est $\vec{u_2}\begin{pmatrix}1\\1\\2\end{pmatrix}$.
    $\dfrac{1}{1}\neq \dfrac{1}{-2}$ : par conséquent les vecteurs $\vec{u_1}$ et $\vec{u_2}$ ne sont pas colinéaires et les droites $d_1$ et $d_2$ ne sont pas parallèles.
    $\quad$
  4. Un vecteur normal au plan $P$ est $\vec{n}\begin{pmatrix}1\\3\\-2\end{pmatrix}$.
    $\vec{n}.\vec{u_2}=1+3-4=0$.
    Les vecteurs $\vec{n}$ et $\vec{u_2}$ sont donc orthogonaux.
    La droite $d_2$ est par conséquent parallèle au plan $P$.
    $\quad$
  5. $4+3\times 0-2\times 3+2=4-6+2=0$ donc $L$ appartient au plan $P$.
    $\vect{LM}\begin{pmatrix} 1\\3\\-2\end{pmatrix}=\vec{n}$.
    $\vect{LM}$ est donc normal au plan $P$.
    Par conséquent $L$ est le projeté orthogonal du point $M$ sur le plan $P$.
    $\quad$

Ex A

Exercice A

Affirmation 1 fausse:
Si $a=0$ et $b=0$ alors  :

  • $\left(\e^{a+b}\right)^2=\left(\e^0\right)^2=1^2=1$
  • $\e^{2a}+\e^{2b}=\e^0+\e^0=1+1=2$

Donc $\left(\e^{a+b}\right)^2\neq \e^{2a}+\e^{2b}$ si $a=0$ et $b=0$.

$\quad$

Affirmation 2 vraie:
La fonction $f$ est dérivable sur $\R$ en tant que somme et produit de fonctions dérivables sur $\R$.
Par conséquent, pour tout réel $x$ :
$\begin{align*} f'(x)&=-\e^x+(3-x)\e^x\\
&=(-1+3-x)\e^x\\
&=(2-x)\e^x\end{align*}$
Par conséquent $f'(0)=2$ et $f(0)=-2+3=1$
Une équation de la tangente au point $A$ à la courbe représentative de la fonction $f$ est $y=f'(0)x+f(0)$ soit $y=2x+1$.

$\quad$

Affirmation 3 fausse:
Pour tout réel $x$ $\e^{2x}-\e^{x}+\dfrac{3}{x}=\e^x\left(\e^x-1\right)+\dfrac{3}{x}$.
Or $\lim\limits_{x\to +\infty} \e^x=+\infty$ et $\lim\limits_{x\to +\infty} \dfrac{3}{x}=0$
Par conséquent $\lim\limits_{x\to +\infty} \left(\e^x-1\right)=+\infty$ et $\lim\limits_{x\to +\infty} \e^x\left(\e^x-1\right)+\dfrac{3}{x}=+\infty$

$\quad$

Affirmation 4 vraie:
On considère la fonction $f$ définie sur $[0;2]$ par $f(x)=1-x+\e^{-x}$.
$f$ est dérivable sur $[0;2]$ en tant que somme de fonctions dérivables sur cet intervalle.
Pour tout réel $x\in[0;2]$, $f'(x)=-1-\e^{-x}<0$ car la fonction exponentielle est strictement positive sur $\R$.
La fonction $f$ est continue (car dérivable) et strictement décroissante sur $[0;2]$.
De plus $f(0)=2>0$ et $f(2)=-1+\e^{-2}\approx -0,86<0$
D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ possède une unique solution.

$\quad$

Affirmation 5 vraie:
La fonction $g$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
Pour tout réel $x$, $g'(x)=2x-5+\e^x$.
La fonction $g’$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
Pour tout réel $x$, $g\dsec(x)=2+\e^x>0$. car la fonction exponentielle est strictement positive.
Ainsi $g$ est convexe sur $\R$.

$\quad$

Ex B

Exercice B

  1. Le point $A(1;4)$ appartient à $C_f$ donc $f(1)=4$.
    La courbe $C_f$ admet une tangente horizontale au point $A(1;4)$. Donc $f'(1)=0$.
    $\quad$
  2. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables sur $]0;+\infty[$ dont le dénominateur ne s’annule pas.
    Pour tout réel $x>0$ on a
    $\begin{align*} f'(x)&=\dfrac{\dfrac{b}{x}\times x-\left(a+b\ln(x)\right)}{x^2} \\
    &=\dfrac{b-a-b\ln(x)}{x^2}\end{align*}$
    $\quad$
  3. En utilisant l’expression algébrique de $f(x)$ fournie et la réponse à la question précédente on a $f(1)=a$ et $f'(1)=b-a$.
    Par conséquent $\begin{cases} a=4\\b-a=0\end{cases} \ssi \begin{cases} a=4\\b=4\end{cases}$.
    $\quad$
  4. $\lim\limits_{x\to 0^+} 4+4\ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$
    Donc $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
    Pour tout réel $x>0$,
    $f(x)=\dfrac{4}{x}+4\times \dfrac{\ln(x)}{x}$.
    Or $\lim\limits_{x\to +\infty} \dfrac{4}{x}=0$ et, par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    Donc $\lim\limits_{x\to +\infty} f(x)=0$.
    $\quad$
  5. On a donc, d’après l’expression de $f'(x)$ trouvée à la question 2. $f'(x)=\dfrac{-4\ln(x)}{x^2}$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $-\ln(x)$.
    Or $-\ln(x)=0 \ssi x=1$ et $-\ln(x)>0 \ssi x<1$.
    On obtient ainsi le tableau suivant :
    $\quad$
  6. Pour tout réel $x>0$ on a $f'(x)=-\dfrac{4\ln(x)}{x^2}$.
    $f’$ est donc dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout réel $x>0$ :
    $\begin{align*} f\dsec(x)&=-\dfrac{\dfrac{4}{x}\times x^2-4\ln(x)\times 2x}{x^4} \\
    &=-\dfrac{4x-8x\ln(x)}{x^4}\\
    &=\dfrac{-4+8\ln(x)}{x^3}\end{align*}$
    $\quad$
  7. Sur $]0;+\infty[$, le signe de $f\dsec(x)$ ne dépend que de celui de $-4+8\ln(x)$.
    Or $-4+8\ln(x)=0\ssi \ln(x)=\dfrac{1}{2} \ssi x=\e^{1/2}$
    et $-4+8\ln(x)>0 \ssi \ln(x)>\dfrac{1}{2} \ssi x>\e^{1/2}$
    Ainsi $f\dsec{x}$ s’annule en changeant de signe en $\e^{1/2}$.
    De plus $f\left(\e^{1/2}\right)=\dfrac{4+4\times \dfrac{1}{2}}{\e^{1/2}}=6\e^{-1/2}$
    Ainsi $f$ possède un unique point d’inflexion $B$ de coordonnées $\left(\e^{1/2};6\e^{-1/2}\right)$.
    $\quad$

 

Énoncé

Exercice 1     5 points

Les probabilités demandées dans cet exercice seront arrondies à $10^{-3}$.

Un laboratoire pharmaceutique vient d’élaborer un nouveau test anti-dopage.

Partie A

Une étude sur ce nouveau test donne les résultats suivants :

  • si un athlète est dopé, la probabilité que le résultat du test soit positif est $0,98$ (sensibilité du test) ;
  • si un athlète n’est pas dopé, la probabilité que le résultat du test soit négatif est $0,995$ (spécificité du test).

On fait subir le test à un athlète sélectionné au hasard au sein des participants à une compétition d’athlétisme. On
note $D$ l’événement « l’athlète est dopé » et $T$ l’événement « le test est positif ». On admet que la probabilité de l’événement $D$ est égale à $0,08$.

  1. Traduire la situation sous la forme d’un arbre pondéré.
    $\quad$
  2. Démontrer que $P(T)= 0,083$.
    $\quad$
  3. a. Sachant qu’un athlète présente un test positif, quelle est la probabilité qu’il soit dopé ?
    $\quad$
    b. Le laboratoire décide de commercialiser le test si la probabilité de l’événement « un athlète présentant un
    test positif est dopé » est supérieure ou égale à $0,95$.
    Le test proposé par le laboratoire sera-t-il commercialisé ? Justifier.
    $\quad$

$\quad$

Partie B

Dans une compétition sportive, on admet que la probabilité qu’un athlète contrôlé présente un test positif est $0,103$.

  1. Dans cette question 1., on suppose que les organisateurs décident de contrôler 5 athlètes au hasard parmi les
    athlètes de cette compétition. On note $X$ la variable aléatoire égale au nombre d’athlètes présentant un test
    positif parmi les $5$ athlètes contrôlés.
    a. Donner la loi suivie par la variable aléatoire $X$. Préciser ses paramètres.
    $\quad$
    b. Calculer l’espérance $E(X)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$
    c. Quelle est la probabilité qu’au moins un des $5$ athlètes contrôlés présente un test positif ?
    $\quad$
  2. Combien d’athlètes faut-il contrôler au minimum pour que la probabilité de l’événement « au moins un athlète
    contrôlé présente un test positif » soit supérieure ou égale à $0,75$ ? Justifier.
    $\quad$

$\quad$

Exercice 2     5 points

Un biologiste s’intéresse à l’évolution de la population d’une espèce animale sur une île du Pacifique.
Au début de l’année 2020, cette population comptait $600$ individus. On considère que l’espèce sera menacée d’extinction sur cette île si sa population devient inférieure ou égale à $20$ individus.

Le biologiste modélise le nombre d’individus par la suite $\left(u_n\right)$ définie par : $$\begin{cases} u_0&=0,6\\u_{n+1}&=0,75u_n\left(1-0,15u_n\right)\end{cases}$$

où pour tout entier naturel $n$, $u_n$ désigne le nombre d’individus, en milliers, au début de l’année 2020 $+n$.

  1. Estimer, selon ce modèle, le nombre d’individus présents sur l’île au début de l’année 2021 puis au début
    de l’année 2022.
    $\quad$

Soit $f$ la fonction définie sur l’intervalle $[0;1]$ par $f(x)=0,75x(1-0,15x)$.

  1. Montrer que la fonction $f$ est croissante sur l’intervalle $[0;1]$ et dresser son tableau de variations.
    $\quad$
  2. Résoudre dans l’intervalle $[0;1]$ l’équation $f(x)=x$.
    $\quad$

On remarquera pour la suite de l’exercice que, pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$.

  1. a. Démontrer par récurrence que pour tout entier naturel $n$, $0 \pp u_{n+1} \pp u_n \pp 1$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    c. Déterminer la limite $\ell$ de la suite $\left(u_n\right)$.
    $\quad$
  2. Le biologiste a l’intuition que l’espèce sera tôt ou tard menacée d’extinction.
    a. Justifier que, selon ce modèle, le biologiste a raison.
    $\quad$
    b. Le biologiste a programmé en langage Python la fonction menace() ci-dessous :
    $$\begin{array}{|l|}
    \hline
    \text{def menace():}\\
    \quad \text{u = 0.6}\\
    \quad \text{n = 0}\\
    \quad \text{while u > 0.02:}\\
    \qquad \text{u = 0.75 * u * (1 – 0.15 * u)}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner la valeur numérique renvoyée lorsqu’on appelle la fonction menace().
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     5 points

Les questions 1. à 5. de cet exercice peuvent être traitées de façon indépendante.

On considère un cube $ABCDEFGH$. Le point $I$ est le milieu du segment $[EF]$, le point $J$ est le milieu du segment $[BC]$ et le point $K$ est le milieu du segment $[AE]$.

 

  1.  Les droites $(AI)$ et $(KH)$ sont-elles parallèles ? Justifier votre réponse.
    $\quad$

Dans la suite, on se place dans le repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$.

  1. a. Donner les coordonnées des points $I$ et $J$.
    $\quad$
    b. Montrer que les vecteurs $\vect{IJ}$ , $\vect{AE}$ et $\vect{AC}$ sont coplanaires.
    $\quad$

On considère le plan $P$ d’équation $x+3y-2z+2=0$ ainsi que les droites $d_1$ et $d_2$ définies par les représentations paramétriques ci-dessous : $$d_1:\begin{cases} x=3+t\\y=8-2t\\z=-2+3t\end{cases}, t\in \R \quad \text{et} \quad d_2:\begin{cases} x=4+t\\y=1+t\\z=8+2t\end{cases}, t\in \R$$.

  1. Les droites $d_1$ et $d_2$ sont-elles parallèles ? Justifier votre réponse.
    $\quad$
  2. Montrer que la droite $d_2$ est parallèle au plan $P$.
    $\quad$
  3. Montrer que le point $L(4;0;3)$ est le projeté orthogonal du point $M(5;3;1)$ sur le plan $P$.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)
Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Exercice A

Principaux domaines abordés :

  • Fonction exponentielle
  • Convexité

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. On justifiera chaque réponse.

Affirmation 1 : Pour tous réels $a$ et $b$, $\left(\e^{a+b}\right)^2=\e^{2a}+\e^{2b}$.
$\quad$

Affirmation 2 : Dans le plan muni d’un repère, la tangente au point $A$ d’abscisse $0$ à la courbe représentative de
la fonction $f$ définie sur $\R$ par $f(x)=-2+(3-x)\e^x$
admet pour équation réduite $y=2x+1$.
$\quad$

Affirmation 3 : $\lim\limits_{x\to +\infty} \e^{2x}-\e^x+\dfrac{3}{x}=0$.
$\quad$

Affirmation 4 : L’équation $1-x+\e^{-x}=0$ admet une seule solution appartenant à l’intervalle $[0 ; 2]$.
$\quad$

Affirmation 5 : La fonction $g$ définie sur $\R$ par $g(x)=x^2-5x+\e^x$ est convexe.
$\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction logarithme népérien
  • Convexité

Dans le plan muni d’un repère, on considère ci-dessous la courbe $C_f$ représentative d’une fonction $f$, deux fois
dérivable sur l’intervalle $]0;+\infty[$. La courbe $C_f$ admet une tangente horizontale $T$ au point $A(1;4)$.

  1.  Préciser les valeurs $f(1)$ et $f'(1)$.
    $\quad$

On admet que la fonction $f$ est définie pour tout réel $x$ de l’intervalle $]0;+\infty[$ par : $$f(x)=\dfrac{a+b\ln(x)}{x}$$
où $a$ et $b$ sont deux nombres réels.

  1. Démontrer que, pour tout réel $x$ strictement positif, on a : $$f'(x)=\dfrac{b-a-b\ln(x)}{x^2}$$
    $\quad$
  2. En déduire les valeurs des réels $a$ et $b$.
    $\quad$

Dans la suite de l’exercice, on admet que la fonction $f$ est définie pour tout réel $x$ de l’intervalle $]0;+\infty[$ par :^$$f(x)=\dfrac{4+4\ln(x)}{x}$$

  1. Déterminer les limites de $f$ en $0$ et en $+\infty$.
    $\quad$
  2. Déterminer le tableau de variations de $f$ sur l’intervalle $]0;+\infty[$.
    $\quad$
  3. Démontrer que, pour tout réel $x$ strictement positif, on a : $$f\dsec(x)=\dfrac{-4+8\ln(x)}{x^3}$$
    $\quad$
  4. Montrer que la courbe $C_f$ possède un unique point d’inflexion $B$ dont on précisera les coordonnées.
    $\quad$

$\quad$