Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 19 mai 2022

Centres étrangers – Liban – 19 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient donc l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(F\cap C)&=P(F)\times P_F(C) \\
    &=0,48\times 0,165 \\
    &=0,079~2\end{align*}$
    La probabilité que la personne choisie soit une femme qui exerce une profession de cadre est égale à $0,079~2$.
    $\quad$
  3. a. $\left(F,\conj{F}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(C)&=P(C\cap F)+P\left(C\cap\conj{F}\right) \\
    &=0,079~2+P\left(\conj{F}\right)\times P_{\conj{F}}(C) \\
    &=0,079~2+0,52\times 0,215 \\
    &=0,191\end{align*}$
    La probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. D’une part $P(C)\times P(F)=0,091~68$
    D’autre part $P(C \cap F)=0,079~2$
    Donc $P(C)\times P(F)\neq P(C\cap F)$.
    Les événements $F$ et $C$ ne sont pas indépendants.
    $\quad$
  4. On a
    $\begin{align*} P_C(F)&=\dfrac{P(C\cap F)}{P(C)} \\
    &=\dfrac{0,079~2}{0,191} \\
    &\approx 0,414~7\end{align*}$.
    La probabilité que la personne choisie soit une femme sachant qu’elle exerce une profession de cadre est environ égale à $0,414~7$.
    $\quad$
  5. a. On répète $15$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de cadres au sein de l’échantillon de $15$ salariés.
    Par conséquent $X$ suit la loi binomiale de paramètres $n=15$ et $p=0,191$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=(1-0,191)^{15}+\dbinom{15}{1}0,191\times (1-0,191)^{14} \\
    &\approx 0,189~0\end{align*}$
    La probabilité que l’échantillon contienne au plus $1$ cadre est environ égale à $0,189~0$.
    $\quad$
    c. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=np\\
    &=15\times 0,191 \\
    &=2,865\end{align*}$
    $\quad$
  6. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire qui compte le nombre de cadres au sein de l’échantillon de $n$ salariés.
    Par conséquent $Y$ suit la loi binomiale de paramètres $n$ et $p=0,191$.
    $\begin{align*} P(Y\pg 1)\pg 0,99 &\ssi 1-P(X=0)\pg 0,199 \\
    &\ssi P(X=0)\pp 0,01 \\
    &\ssi 0,808^n \pp 0,01\\
    &\ssi n\ln(0,808) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,808)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,808)} \approx 21,6$.
    Il faut donc que l’échantillon contienne au moins $22$ salariés pour la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. $[AH]$ et $[ED]$ sont les diagonales du carré $ADHE$.
    Les droites $(AH)$ et $(ED)$ sont par conséquent perpendiculaires.
    $\quad$
    b. $EFGH$ est un carré donc $(EH)$ et $(HG)$ sont perpendiculaires.
    $CDHG$ est un carré donc $(GH)$ et $(DH)$ sont perpendiculaires.
    Ainsi, $(HG)$ est perpendiculaire à deux droites sécantes du plan $(EDH)$.
    Par conséquent, la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. La droite $(ED)$ est incluse dans le plan $(EDH)$. D’après la question précédente, les droites $(GH)$ et $(ED)$ sont orthogonales.
    D’après la question 1.a. les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    La droite $(ED)$ est donc orthogonale à deux droites sécantes (le point $A$ n’appartient pas à la droite $(GH)$) du plan $(AGH)$.
    La droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Dans le repère fourni on a $E(0;0;1)$ et $D(0;1;0)$.
    Par conséquent $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$.
    $\quad$
    $\vect{ED}$ est un vecteur normal au plan $(AGH)$ d’après la question précédente.
    Une équation cartésienne du plan $(AGH)$ est donc de la forme $y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan. Ainsi $d=0$.
    Une équation cartésienne du plan $(AGH)$ est $y-z=0$.
    $\quad$
  3. a. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]1\\-1\end{pmatrix}$.
    Une représentation paramétrique de la droite $(EL)$ est $\begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\end{cases} \qquad t\in \R$.
    $\quad$
    b. On résout le système
    $\begin{align*} \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\y-z=0 \end{cases} &\ssi \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\ 1+t+t=0\end{cases} \\
    &\ssi \begin{cases}t=-\dfrac{1}{2}\\ x=\dfrac{1}{3}t\\[3pt]y=\dfrac{1}{2}\\[3pt]z=\dfrac{1}{2}\end{cases}\end{align*}$
    Le point d’intersection de la droite $(EL)$ et du plan $(AGH)$ a donc pour coordonnées $\left(\dfrac{1}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    c. $\dfrac{1}{2}-\dfrac{1}{2}=0$ : le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ appartient au plan $(AGH)$.
    $\vect{KL}\begin{pmatrix}0\\-\dfrac{1}{2}\\[3pt]\dfrac{1}{2}\end{pmatrix}$.
    Par conséquent $\vect{KL}=-\dfrac{1}{2}\vect{ED}$.
    Ainsi $\vect{KL}$ est un vecteur normal au plan $(AGH)$.
    Donc $K\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ est le projeté orthogonal du point $L$ sur le plan $(AGH)$.
    $\quad$
    d. On a
    $\begin{align*} KL&=\sqrt{0^2+\left(-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^2} \\
    &=\sqrt{\dfrac{1}{2}} \\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$.
    La distance du point $L$ ai plan $(AGH)$ est donc $h=\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. On applique le théorème de Pythagore dans le triangle $AHD$ rectangle en $D$.
    Donc $AH^2=AD^2+HD^2$ ainsi $AH^2=2$ et $AH=\sqrt{2}$
    $(HG)$ est orthogonale au plan $(EDH)$ d’après la question 1.b.
    La droite $(AH)$ est incluse dans le plan $(EDH)$.
    Par conséquent les droites $(AH)$ et $(HG)$ sont perpendiculaires et le triangle $AHG$ est rectangle en $H$.
    L’aire du triangle $AHG$ est donc
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times HG}{2} \\
    &=\dfrac{\sqrt{2}\times 1}{2}\\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$
    Le volume du tétraèdre $LAGH$ est alors
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times h \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{2}}{2}\times \dfrac{\sqrt{2}}{2} \\
    &=\dfrac{1}{6}\end{align*}$.

Ex 3

Exercice 3

  1. La fonction $g$ est deux fois dérivables sur $\R$ en tant que somme de fonctions deux fois dérivables.
    Pour tout réel $x$ on a $g'(x)=1~000x^{999}+1$ et $g\dsec(x)=999~000x^{998}$
    $998$ est pair donc, pour tout réel $x$ $g\dsec(x)\pg 0$.
    La fonction $g$ est convexe sur $\R$
    Réponse b
    $\quad$
  2. D’après le graphique, $f'(0)=1$.
    Une équation de la droite $T$ est donc de la forme $y=x+b$.
    $T$ est par conséquent parallèle à la droite d’équation $y=x$.
    Réponse a
    $\quad$
  3. Pour tout entier naturel $n$ on a $-1\pp (-1)^n \pp 1$.
    Donc $-\dfrac{-1}{1+n}\pp u_n \pp \dfrac{1}{n+1}$
    Or pour tout entier naturel $n$ on a $-1 \pp -\dfrac{1}{1+n}$ et $\dfrac{1}{1+n}\pp 1$.
    Ainsi $-1\pp u_n \pp 1$.
    Réponse c
    $\quad$
  4. Pour tout entier naturel $n$ on a $v_n\times v_{n+1}<0$.
    Cela signifie donc que deux termes consécutifs de la suite $\left(v_n\right)$ sont toujours de signes contraires.
    Ainsi, tous les termes de rang pair sont du même signe.
    Par conséquent $v_{10}$ est du même signe que $v_0$
    Réponse c
    $\quad$
  5. On a $8=2w_1-4 \ssi 12=2w_1 \ssi w_1=6$
    $6=2w_0-4 \ssi 2w_0=10\ssi w_0=5$.
    Réponse 5
    $\quad$
  6. Pour tout entier naturel $n$ on pose $P(n):~a_n>0$
    Initialisation : $a_0=1>0$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $a_n>0$ et $\e^n>0$ donc $\dfrac{\e^n}{\e^n+1}a_n>0$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n$, on a $a_n>0$.
    $\quad$
    Soit $n\in \N$
    $\begin{align*} a_{n+1}-a_n&=\dfrac{\e^n}{\e^n+1}a_n-a_n \\
    &=\left(\dfrac{\e^n}{\e^n+1}-1\right)a_n \\
    &=-\dfrac{1}{\e^n+1}a_n\\
    &<0\end{align*}$
    La suite $\left(a_n\right)$ est donc strictement décroissante.
    Réponse b
    $\quad$
    Remarque : Puisqu’il s’agit d’une question d’un QCM, l’utilisation de la calculatrice est à privilégiée ici pour avoir une idée du comportement de la suite.
    $\quad$
  7. On appelle $u_n$ le nombre de cellules à la $n$-ième génération.
    Ainsi, pour tout entier naturel $n$ on a $u_n=2^n$.
    Au bout de $4$ heures il y a environ $4~000$ cellules. Or $u_{11}=2~048$ et $u_{12}=4~096$.
    Il a donc fallu $4$ heures pour obtenir à la $12$-ième génération.
    $\dfrac{4\times 60}{12}=20$.
    Le temps de génération est donc environ égal à $20$ minutes.
    Réponse c
    $\quad$

 

Ex 4

Exercice 4

Partie A

  1. On a $\lim\limits_{x\to 0^+} \e^x=1$ et $\lim\limits_{x\to 0^+} \ln(x)=-\infty$.
    Ainsi $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
  2. Pour tout réel $x\in ]0;1]$ on a
    $\begin{align*} f'(x)&=-\e^{-x}+\dfrac{1}{x} \\
    &=\dfrac{-x\e^{-x}+1}{x} \\
    &=\dfrac{1-x\e^{-x}}{x}\end{align*}$
    $\quad$
  3. La fonction exponentielle est convexe sur $\R$. Sa courbe représentative est donc au-dessus de toutes ses tangentes.
    On a $\e^0=1$. Une équation de la tangente à la courbe au point d’abscisse $0$ est par conséquent $y=x+1$.
    Ainsi, pour tout réel $x\in $\e^x\pg x+1>x$ soit $1\pg x\e^{-x}$.
    Donc pour tout réel $x\in $]0;1]$ on a $x\e^x<1$.
    Remarque : On pouvait également déterminer le tableau de variations de la fonction $g$ définie sur $]0;1]$ par $g(x)=x\e^{-x}$.
    $\quad$
    Ainsi sur $]0;1]$, $1-x\e^{-x}>0$
    Par conséquent $f'(x)>0$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;1]$.
    $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $f(1)=\e^{-1}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=0$ admet une unique solution $\ell$ sur $]0;1]$.
    $\quad$

Partie B

  1. a. On a $a_1=\e^{-1}\approx 0,37$ et $b_1=\e^{-1/10}\approx 0,90$.
    $\quad$
    b. On peut écrire
    $\begin{array}{|l|}
    \hline
    \text{de termes(n):}\\
    \quad \text{a = 1 / 10} \\
    \quad \text{b = 1} \\
    \quad \text{for k in range(0,n):}\\
    \qquad \text{c = exp(b)}\\
    \qquad \text{b = exp(a)}\\
    \qquad \text{a = c}\\
    \quad \text{return(a,b)}\\
    \hline
    \end{array}$
    Remarque : On suppose donc que la bibliothèque $\texttt{math}$ a été importée (ou au moins la fonction $\texttt{exp}$) pour que la fonction ne comporte pas d’erreur.
    $\quad$
  2. a. Pour tout $n\in \N$ on pose $P(n):~0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    Initialisation : On a $a_0=0,1$, $a_1 \approx 0,37$, $b_1\approx 0,90$ et $b_0=1$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    La fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    Par conséquent $\e^{0}>\e^{-a_n}\pg \e^{-a_{n+1}}\pg \e^{-b_{n+1}}\pg \e^{-b_n}\pg \e^{-1}$
    Soit $1>b_{n+1}\pg b_{n+2}\pg a_{n+2}\pg a_{n+1}\pg \e^{-1}>0$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout entier naturel $n$ on a $0<a_n\pp a_{n+1}\pp b_{n+1} \pp b_n \pp 1$.
    $\quad$
    b. La suite $\left(a_n\right)$ est croissante et majorée par $1$ : elle converge donc.
    La suite $\left(b_n\right)$ est décroissante et minorée par $0$ : elle converge donc.
    $\quad$
  3. a. On a $A=\e^{-B}$  par conséquent $\ln(A)=-B$ et $B=-\ln(A)$.
    Or $B=\e^{-A}$ donc $-\ln(A)=\e^{-A}$ soit $\e^{-A}+\ln(A)=0$.
    Par conséquent $f(A)=0$.
    $\quad$
    b. D’après la question précédente et la question A.4. $A=\ell$.
    On a $B=\e^{-A}$ donc $A=-\ln(B)$
    Or $A=\e^{-B}$ soit $-\ln(B)=\e^{-B}$ et donc $f(B)=0$.
    On a ainsi également $B=\ell$.
    Donc $A-B=0$.
    Remarque : On dit que les suite $\left(a_n\right)$ et $\left(b_n\right)$ sont adjacentes.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Les résultats seront arrondis si besoin à $10^{-4}$ près.
Une étude statistique réalisée dans une entreprise fournit les informations suivantes :

  • $48 \%$ des salariés sont des femmes. Parmi elles, $16,5 \%$ exercent une profession de cadre ;
  • $52 \%$ des salariés sont des hommes. Parmi eux, $21,5 \%$ exercent une profession de cadre.

On choisit une personne au hasard parmi les salariés.
On considère les événements suivants :

  • $F$ : « la personne choisie est une femme » ;
  • $C$ : « la personne choisie exerce une profession de cadre ».
  1. Représenter la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que la personne choisie soit une femme qui exerce une profession de cadre.
    $\quad$
  3. a. Démontrer que la probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. Les événements $F$ et $C$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Calculer la probabilité de $F$ sachant $C$, notée $P_C(F)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  5. On choisit au hasard un échantillon de 15 salariés. Le grand nombre de salariés dans l’entreprise permet d’assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de cadres au sein de l’échantillon de $15$ salariés.
    On rappelle que la probabilité qu’un salarié choisi au hasard soit un cadre est égale à $0,191$.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Calculer la probabilité que l’échantillon contienne au plus $1$ cadre.
    $\quad$
    c. Déterminer l’espérance de la variable aléatoire $X$.
    $\quad$
  6. Soit $n$ un entier naturel.
    On considère dans cette question un échantillon de $n$ salariés.
    Quelle doit être la valeur minimale de 𝑛𝑛 pour que la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

On considère le cube $ABCDEFGH$ de côté $1$ représenté ci-dessous.

 

On munit l’espace du repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. a. Justifier que les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    $\quad$
    b. Justifier que la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. En déduire que la droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Donner les coordonnées du vecteur $\vect{ED}$.
    Déduire de la question 1.c. qu’une équation cartésienne du plan $(AGH)$ est :
    $$y-z=0$$
    $\quad$
  3. On désigne par $L$ le point de coordonnées $\left(\dfrac{2}{3};1;0\right)$
    a. Déterminer une représentation paramétrique de la droite $(EL)$.
    $\quad$
    b. Déterminer l’intersection de la droite $(EL)$ et du plan $(AGH)$.
    $\quad$
    c. Démontrer que le projeté orthogonal du point $L$ sur le plan $(AGH)$ est le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    d. Montrer que la distance du point $L$ au plan $(AGH)$ est égale à $\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. Déterminer le volume du tétraèdre $LAGH$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule :
    $$V=\dfrac{1}{3}\times (\text{aire de la base})\times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonctions, suites

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. . Soit $g$ la fonction définie sur $\R$ par $g(x)=x^{1~000}+x$.
    On peut affirmer que :
    a. la fonction $g$ est concave sur $\R$.
    b. la fonction $g$ est convexe sur $\R$.
    c. la fonction $g$ possède exactement un point d’inflexion.
    d. la fonction $g$ possède exactement deux points d’inflexion.
    $\quad$
  2. On considère une fonction $f$ définie et dérivable sur $\R$. On note $f’$ sa fonction dérivée.
    On note $C$ la courbe représentative de $f$.
    On note $\Gamma$ la courbe représentative de $f’$.
    On a tracé ci-dessous la courbe $\boldsymbol{\Gamma}$ .

    On note $T$ la tangente à la courbe $\boldsymbol{C}$ au point d’abscisse $0$.
    On peut affirmer que la tangente $T$ est parallèle à la droite d’équation :
    a. $y=x$
    b. $y=0$
    c. $y=1$
    d. $x=0$
    $\quad$

  3. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n=\dfrac{(-1)^n}{n+1}$.
    On peut affirmer que la suite $\left(u_n\right)$ est :
    a. majorée et non minorée.
    b. minorée et non majorée.
    c. bornée.
    d. non majorée et non minorée.
    $\quad$
  4. Soit $k$ un nombre réel non nul.
    Soit $\left(v_n\right)$ une suite définie pour tout entier naturel $n$.
    On suppose que $v_0=k$ et que pour tout $n$, on a $v_n\times v_{n+1}<0$.
    On peut affirmer que $v_{10}$ est :
    a. positif.
    b. négatif.
    c. du signe de $k$.
    d. du signe de $-k$.
    $\quad$
  5. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par :
    $$w_{n+1}=2w_n-4\text{ et } w_2=8$$
    On peut affirmer que :
    a. $w_0=0$.
    b. $w_0=5$.
    c. $w_0=10$.
    d. Il n’est pas possible de calculer $w_0$.
    $\quad$
  6. On considère la suite $\left(a_n\right)$ définie pour tout entier naturel $n$ par : $$a_{n+1}=\dfrac{\e^n}{\e^n+1}a_n \text{ et } a_0=1$$
    On peut affirmer que :
    a. la suite $\left(a_n\right)$ est strictement croissante.
    b. la suite $\left(a_n\right)$ est strictement décroissante.
    c. la suite $\left(a_n\right)$ n’est pas monotone.
    d. la suite $\left(a_n\right)$ est constante.
    $\quad$
  7. Une cellule se reproduit en se divisant en deux cellules identiques, qui se
    divisent à leur tour, et ainsi de suite. On appelle temps de génération le temps nécessaire pour qu’une cellule donnée se divise en deux cellules. On a mis en culture $1$ cellule. Au bout de $4$ heures, il y a environ $4~000$ cellules.
    On peut affirmer que le temps de génération est environ égal à :
    a. moins d’une minute.
    b. $12$ minutes.
    c. $20$ minutes.
    d. $1$ heure.
    $\quad$

$\quad$

Exercice 4

Thème : Fonctions, fonction exponentielle, fonction logarithme, suites

Partie A

On considère la fonction $f$ définie pour tout réel $x$ de $]0 ; 1]$ par :$$f(x)=\e^{-x}+\ln(x)$$

  1. Calculer la limite de $f$ en $0$.
    $\quad$
  2. On admet que $f$ est dérivable sur $]0 ; 1]$. On note $f’$ sa fonction dérivée.
    Démontrer que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a :
    $$f'(x)=\dfrac{1-x\e^{-x}}{x}$$
    $\quad$
  3. Justifier que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a $x\e^{-x}<1$.
    En déduire le tableau de variation de $f$ sur $]0 ; 1]$.
    $\quad$
  4. Démontrer qu’il existe un unique réel $\ell$ appartenant à $]0 ; 1]$ tel que $f(\ell)=0$.
    $\quad$

Partie B

  1. On définit deux suites $\left(a_n\right)$ et $\left(b_n\right)$ par :
    $$\begin{cases} a_0=\dfrac{1}{10}\\[3pt]b_0=1\end{cases} \text{ et, pour tout entier naturel }n,~\begin{cases} a_{n+1}=\e^{-b_n}\\[3pt]b_{n+1}=\e^{-a_n}\end{cases}$$
    a. Calculer $a_1$ et $b_1$. On donnera des valeurs approchées à $10^{-2}$ près.
    $\quad$
    b. On considère ci-dessous la fonction termes, écrite en langage Python.
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad\text{a = 1/10}\\
    \quad\text{b = 1}\\
    \quad\text{for k in range(0,n):}\\
    \qquad\text{c = …}\\
    \qquad\text{b = …}\\
    \qquad\text{a = c}\\
    \quad\text{return(a,b)}\\
    \hline
    \end{array}$
    Recopier et compléter sans justifier le cadre ci-dessus de telle sorte que la
    fonction termes calcule les termes des suites $\left(a_n\right)$ et $\left(b_n\right)$.
    $\quad$
  2. On rappelle que la fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    a. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $$0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$$
    $\quad$
    b. En déduire que les suites $\left(a_n\right)$ et $\left(b_n\right)$ sont convergentes.
    $\quad$
  3. On note $A$ la limite de $\left(a_n\right)$ et $B$ la limite de $\left(b_n\right)$.
    On admet que $A$ et $B$ appartiennent à l’intervalle $]0 ; 1]$, et que $A = \e^{-B}$ et $B = \e^{-A}$.
    a. Démontrer que $f(A)=0$.
    $\quad$
    b. Déterminer $A-B$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 18 mai 2022

Centres étrangers – Liban – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On a
    $\begin{align*} P(J\cap C)&=P(J)\times P_J(C)\\
    &=0,2\times 0,06 \\
    &=0,012\end{align*}$
    $\quad$
  3. $\left(J,\conj{J}\right)$ forme un système complet d’événements.
    D’après la formule des probabilités totales :
    $\begin{align*} P(C)&=P(J\cap C)+P\left(\conj{J}\cap C\right) \\
    &=0,012+P\left(\conj{J}\right)P_{\conj{J}}(C)\\
    &=0,012+0,8\times 0,125 \\
    &=0,112\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_C\left(\conj{J}\right)&=\dfrac{P\left(C\cap \conj{J}\right)}{P(C)} \\
    &=\dfrac{0,8\times 0,125}{0,112} \\
    &\approx 0,893\end{align*}$
    La probabilité que le skieur ait un forfait SÉNIOR sachant qu’il a choisi l’option coupe-file est environ égale à $0,893$.
    $\quad$
  5. Un skieur ayant choisi l’option coupe-file a moins de vingt-cinq ans ou plus de vingt-cinq ans.
    Ainsi :
    $\begin{align*} P_C(J)&=1-P_C\left(\conj{J}\right) \\
    &\approx 0,107\\
    &<0,15\end{align*}$
    L’affirmation est donc vraie.
    $\quad$

Partie B

  1. $X$ suit la loi binomiale de paramètres $n=30$ et $p=0,112$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,112)^{30} \\
    &=1-0,888^{30} \\
    &\approx 0,972\end{align*}$
    La probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,972$.
    $\quad$
  3. On veut calculer :
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,888^{30}+\dbinom{30}{1}0,112^1\times 0,888^{29} \\
    &\approx 0,136\end{align*}$
    La probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,136$.
    $\quad$
  4. L’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=np\\
    &=30\times 0,112 \\
    &=3,36\end{align*}$
    $\quad$

Ex 2

Exercice 2

  1. On appelle $v_n$ le volume d’eau, en litres, contenu dans la bouteille au bout de $n$ heures.
    On a donc, pour tout entier naturel $n$, $v_{n+1}=(1-0,15)v_n$ soit $v_{n+1}=0,85 v_n$.
    $\left(v_n\right)$ est donc une suite géométrique de raison $0,85$ et de premier terme $1$.
    Par conséquent, pour tout entier naturel $n$, $v_n=0,85^n$.
    $\begin{align*} u_n \pp 0,25&\ssi 0,85^n \pp 0,25 \\
    &\ssi n\ln(0,85)\pp \ln(0,25) \\
    &\ssi n\pg \dfrac{\ln(0,25)}{\ln(0,85)} \qquad \text{car } \ln(0,85)<0 \end{align*}$
    Or $\dfrac{\ln(0,25)}{\ln(0,85)}\approx 8,53$.
    C’est donc au bout de $9$ heures que le volume d’eau devient inférieur à un quart de litre.
    Réponse c
    $\quad$
  2. Pour tout $n\in \N$, on pose $P(n):~u_n=6$.
    Initialisation : $u_0=6$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_{n+1}&=\dfrac{1}{2} u_n+3 \\
    &=\dfrac{1}{2}\times 6+3 \\
    &=6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n, $u_n=6$.
    Réponse d
    $\quad$
  3. Soit $x\in ]0;+\infty[$
    $\begin{align*} f(2x)&=4\ln(3\times 2x) \\
    &=4\left(\ln(2)+\ln(3x)\right) \\
    &=4\ln(2)+4\ln(3x)\\
    &=\ln\left(2^4\right)+f(x)\\
    &=\ln(16)+f(x)\end{align*}$
    Réponse b
    $\quad$
  4. Pour tout réel $x>1$ on a $g(x)=\dfrac{\ln(x)}{x}\times \dfrac{x}{x-1}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$
    D’après la limite du quotient des termes de plus haut degré $\lim\limits_{x\to +\infty} \dfrac{x}{x-1}=\lim\limits_{x\to +\infty} \dfrac{x}{x}=1$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=0$ : $C_g$ admet une asymptote horizontale d’équation $y=0$.
    $\quad$
    $C_g$ ne peut avoir d’asymptote verticale qu’en $1$.
    Pour tout réel $x\in ]1;+\infty[$ on a $g(x)=\dfrac{\ln(x)-\ln(1)}{x-1}$.
    Ainsi $g(x)$ est le taux d’accroissement de la fonction $\ln$ entre $1$ et $x$.
    Donc $\lim\limits_{x\to 1^+} g(x)=\ln'(1)=\dfrac{1}{1}$.
    $C_g$ n’a pas d’asymptote verticale.
    Réponse c
    $\quad$
  5. $h$ est définie sur $]0;2]$. Par conséquent :
    $\begin{align*} h(x)=0&\ssi 1+2\ln(x)=0 \\
    &\ssi 2\ln(x)=-1 \\
    &\ssi \ln(x)=-0,5 \\
    &\ssi x=\e^{-0,5}\end{align*}$
    Or $\e^{-0,5}\in \left[\dfrac{1}{\e};2\right]$.
    Réponse b
    $\quad$
  6. D’une part
    $\begin{align*} h\left(\sqrt{\e}\right)&=\left(\sqrt{\e}\right)^2\left(1+2\ln\left(\sqrt{\e}\right)\right) \\
    &=\e\left(1+2\times \dfrac{1}{2}\ln(\e)\right) \\
    &=2\e\end{align*}$
    D’autre part
    $\begin{align*} h’\left(\sqrt{\e}\right)&=4\left(\sqrt{\e}\right)\left(1+\ln\left(\sqrt{\e}\right)\right) \\
    &=4\sqrt{e}\left(1+\dfrac{1}{2}\right)\\
    &=6\sqrt{\e}\end{align*}$
    Une équation de la tangente à $C_h$ au point d’abscisse $\sqrt{\e}$ est donc $y=6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e$
    Or
    $\begin{align*} 6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e&=6\sqrt{\e}x-6\e+2\e \\
    &=6\sqrt{\e}x-4\e \\
    &=\left(6\e^{1/2}\right).x-4\e\end{align*}$
    Réponse d
    $\quad$
  7. Pour tout réel $x\in ]0;2]$ on a
    $\begin{align*} h\dsec(x)&=4\left(1+\ln(x)\right)+4x\times \dfrac{1}{x} \\
    &=4+4\ln(x)+4 \\
    &=8+4\ln(x)\end{align*}$
    $\begin{align*} h\dsec(x)>0&\ssi 8+4\ln(x)>0 \\
    &\ssi 4\ln(x)>8 \\
    &\ssi \ln(x)>0,5 \\
    &\ssi x>\sqrt{\e}\end{align*}$.
    On a, de même, $h\dsec(x)=0 \ssi x=\sqrt{\e}$.
    $\sqrt{2}\in ]0;2]$.
    La courbe $C_h$ possède donc un unique point d’inflexion sur $]0;2]$.
    Réponse b
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. a. $\lim\limits_{x\to -\infty} 0,5x-2=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to -\infty} \e^{0,5x-2}=0$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$.
    $\quad$
    b. Pour tout réel $x$ non nul on a
    $\begin{align*} 1+0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right) &=1+x-\e^{-0,5x}\times \e^{-2} \\
    &=f(x)\end{align*}$
    $\lim\limits_{x\to +\infty} 0,5x=+\infty$ et, par croissances comparées, $\lim\limits_{X\to +\infty} \dfrac{\e^X}{X}=+\infty$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^{0,5x}}{0,5x}=+\infty$.
    Par produit des limites, $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a $f'(x)=1-0,5\e^{0,5x-2}$
    $\quad$
    b.
    $\begin{align*} f'(x)<0&\ssi 1-0,5\e^{0,5x-2}<0 \\
    &\ssi -0,5\e^{0,5x-2}<-1 \\
    &\ssi \e^{0,5x-2}>2 \\
    &\ssi 0,5x-2>\ln(2) \\
    &\ssi 0,5x>2+\ln(2) \\
    &\ssi x>4+2\ln(2)\end{align*}$
    Ainsi l’ensemble des solutions de l’inéquation $f'(x)<0$ est bien $\left]4+2\ln(2);+\infty\right[$.
    $\quad$
  3. En raisonnant de la même façon on obtient $f'(x)=0 \ssi x=4+2\ln(2)$.
    On obtient donc le tableau de variations suivant :

    $\begin{align*} f\left(4+2\ln(2)\right)&=1+4+2\ln(2)-\e^{2+\ln(2)-2} \\
    &=5+2\ln(2)-2\\
    &=3+2\ln(2)\end{align*}$
    $\quad$
  4. $4+2\ln(2)>0$.
    La fonction $f$ est donc continue (car dérivable) et strictement croissante sur $[-1;0]$.
    $f(-1)=-\e^{-2,5}<0$ et $f(0)=1-\e^{-2}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet donc une unique solution sur l’intervalle $[-1;0]$.
    $\quad$

Partie B

  1. a. Pour tout entier naturel $n$ on pose $P(n):~u_n\pp u_{n+1} \pp 4$
    Initialisation : $u_0=0$ et $u_1=2-\e^{-1,5}\approx 1,78$
    Donc $u_0\pp u_1\pp 4$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    La fonction $f$ est strictement croissante sur $\left]-\infty;4+2\ln(2)\right]$ donc sur $[0;4]$.
    $\begin{align*} u_n\pp u_{n+1} \pp 4&\Rightarrow f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(4) \\
    &\Rightarrow u_{n+1}\pp u_{n+2}\pp 5-1\end{align*}$
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n \pp u_{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $4$; elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. $\ell$ est solution de l’équation $x=f(x)$
    $\begin{align*} x=f(x)&\ssi 1+x-\e^{0,5x-2}=x \\
    &\ssi 1-\e^{0,5x-2}=0 \\
    &\ssi \e^{0,5x-2}=1 \\
    &\ssi 0,5x-2=0 \\
    &\ssi 0,5x=2 \\
    &\ssi x=4\end{align*}$
    Ainsi $\ell =4$.
    $\quad$
    b. La fonction $\texttt{valeur}$ renvoie le plus petit entier naturel $n$ tel que $u_n>a$.
    Cela signifie donc le plus petit entier naturel $n$ tel que $u_n>3,99$ est $12$.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a $R(3;2;0)$ et $\vect{AB}\begin{pmatrix} -4\\4\\0\end{pmatrix}$
    $\quad$
    b. Une équation du plan $\mathscr{P}_1$ est donc de la forme $-4x+4y+d=0$.
    $R(2;2;0)$ appartient au plan $\mathscr{P}_1$ donc $-12+8+d=0 \ssi d=4$.
    Une équation de $\mathscr{P}_1$ est donc $-4x+4y+4=0$ soit $x-y-1=0$.
    $\quad$
    c. $10-9-1=0$ donc $E(10;9;8)$ appartient à $\mathscr{P}_1$.
    $\vect{EA}\begin{pmatrix} -5\\-9\\-9\end{pmatrix}$ et $\vect{EB}\begin{pmatrix} -9\\-5\\-9\end{pmatrix}$
    $\begin{align*} EA&=\sqrt{(-5)^2+(-9)^2+(-9)^2}\\
    &=\sqrt{25+81+81} \\
    &=\sqrt{187}\end{align*}$
    $\begin{align*} EB&=\sqrt{(-9)^2+(-5)^2+(-9)^2}\\
    &=\sqrt{187}\end{align*}$
    On a donc $EA=EB$.
    $\quad$
  2. a. Un vecteur normal au plan $\mathscr{P}_2$ est $\vec{n}\begin{pmatrix}1\\0\\-1\end{pmatrix}$
    $\vect{AB}$ et $\vec{n}$ ne sont pas colinéaires.
    Les plans $\mathscr{P}_1$ et $\mathscr{P}_2$ sont par conséquent sécants.
    $\quad$
    b. Soit $t\in \R$.
    $\begin{align*} (2+t)-(1+t)-1&=2+t-1-t-1 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_1$.
    $\begin{align*} (2+t)-t-2&=2+t-t-2 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_2$.
    L’intersection de deux plans et une droite.
    Ainsi une représentation paramétrique de $\Delta$ est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$.
    $\quad$
  3. $\quad$
    $\begin{align*} \begin{cases} x=2+t\\y=1+t\\z=t\\y+z-3=0\end{cases} &\ssi  \begin{cases} x=2+t\\y=1+t\\z=t\\1+t+t-3=0\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=1+t\\z=t\\t=1\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=2\\z=1\end{cases}\end{align*}$
    La droite $\Delta$ est sécante au plan $\mathscr{P}_3$ en $\Omega(3;2;1)$.
    $\quad$
  4. a. $\Omega$ appartient au plan médiateur de $[AB]$ donc $\Omega A=\Omega B$.
    $\Omega$ appartient au plan médiateur de $[AC]$ donc $\Omega A=\Omega C$.
    $\Omega$ appartient au plan médiateur de $[AD]$ donc $\Omega A=\Omega D$.
    Ainsi $\Omega A=\Omega B=\Omega C=\Omega D$.
    $\quad$
    b. Les points $A$, $B$, $C$ et $D$ appartiennent donc à la sphère de centre $\Omega$ et de rayon $\Omega A$.
    Or
    $\begin{align*} \Omega A&=\sqrt{(5-3)^2+(0-2)^2+(-1-1)^2} \\
    &=\sqrt{4+4+4} \\
    &=2\sqrt{3}\end{align*}$
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Dans une station de ski, il existe deux types de forfait selon l’âge du skieur :

  • un forfait JUNIOR pour les personnes de moins de vingt-cinq ans ;
  • un forfait SÉNIOR pour les autres.

Par ailleurs, un usager peut choisir, en plus du forfait correspondant à son âge,
l’option coupe-file qui permet d’écourter le temps d’attente aux remontées
mécaniques.

On admet que :

  • $20\%$ des skieurs ont un forfait JUNIOR ;
  • $80\% des skieurs ont un forfait SÉNIOR ;
  • parmi les skieurs ayant un forfait JUNIOR, $6\%$ choisissent l’option coupe-file ;
  • parmi les skieurs ayant un forfait SÉNIOR, $12,5\%$ choisissent l’option coupe-file.

On interroge un skieur au hasard et on considère les événements :

  • $J$ : « le skieur a un forfait JUNIOR » ;
  • $C$ : « le skieur choisit l’option coupe-file ».

Les deux parties peuvent être traitées de manière indépendante.

Partie A

  1. Traduire la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité $P(J\cap C)$.
    $\quad$
  3. Démontrer que la probabilité que le skieur choisisse l’option coupe-file
    est égale à $0,112$.
    $\quad$
  4. Le skieur a choisi l’option coupe-file. Quelle est la probabilité qu’il s’agisse d’un skieur ayant un forfait SÉNIOR ? Arrondir le résultat à $10^{-3}$.
    $\quad$
  5. Est-il vrai que les personnes de moins de vingt-cinq ans représentent moins de $15\%$ des skieurs ayant choisi l’option coupe-file ? Expliquer.
    $\quad$

Partie B
On rappelle que la probabilité qu’un skieur choisisse l’option coupe-file est
égale à $0,112$.

On considère un échantillon de $30$ skieurs choisis au hasard.

Soit $X$ la variable aléatoire qui compte le nombre des skieurs de l’échantillon ayant choisi l’option coupe-file.

  1. On admet que la variable aléatoire $X$ suit une loi binomiale.
    Donner les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  3. Calculer la probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  4. Calculer l’espérance mathématique de la variable aléatoire $X$.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites, fonctions, fonction logarithme

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. Un récipient contenant initialement $1$ litre d’eau est laissé au soleil.
    Toutes les heures, le volume d’eau diminue de $15\%$.
    Au bout de quel nombre entier d’heures le volume d’eau devient-il inférieur à un quart de litre ?
    a. $2$ heures
    b. $8$ heures
    c. $9$ heures
    d. $13$ heures
    $\quad$
  2. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_{n+1}=\dfrac{1}{2}u_n+3$ et $u_0=6$. On peut affirmer que :
    a. la suite $\left(u_n\right)$ est strictement croissante.
    b. la suite $\left(u_n\right)$ est strictement décroissante.
    c. la suite $\left(u_n\right)$ n’est pas monotone.
    d. la suite $\left(u_n\right)$ est constante.
    $\quad$
  3. On considère la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=4\ln(3x)$
    Pour tout réel $x$ de l’intervalle $]0;+\infty[$ , on a :
    a. $f(2x)=f(x)+\ln(24)$
    b. $f(2x)=f(x)+\ln(16)$
    c. $f(2x)=\ln(2)+f(x)$
    d. $f(2x)=2f(x)$
    $\quad$
  4. On considère la fonction $g$ définie sur l’intervalle $]1;+\infty[$ par :
    $$g(x)\dfrac{\ln(x)}{x-1}$$
    On note $\mathcal{C}_g$ la courbe représentative de la fonction $g$ dans un repère orthogonal.
    La courbe $\mathcal{C}_g$ admet :
    a. une asymptote verticale et une asymptote horizontale.
    b. une asymptote verticale et aucune asymptote horizontale.
    c. aucune asymptote verticale et une asymptote horizontale.
    d. aucune asymptote verticale et aucune asymptote horizontale.
    $\quad$

Dans la suite de l’exercice, on considère la fonction $h$ définie sur l’intervalle $]0 ; 2]$ par : $$h(x) = x^2\left(1 + 2 \ln(x)\right)$$
On note $\mathcal{C}_h$ la courbe représentative de $h$ dans un repère du plan.
On admet que $h$ est deux fois dérivable sur l’intervalle $]0 ; 2]$.
On note $h’$ sa dérivée et $h\dsec$ sa dérivée seconde.

On admet que, pour tout réel $x$ de l’intervalle $]0 ; 2]$, on a :$$h'(x)=4x\left(1+\ln(x)\right)$$

  1. Sur l’intervalle $\left[\dfrac{1}{\e};2\right]$, la fonction $h$ s’annule :
    a. exactement $0$ fois.
    b. exactement $1$ fois.
    c. exactement $2$ fois.
    d. exactement $3$ fois.
    $\quad$
  2. Une équation de la tangente à $\mathcal{C}_h$ au point d’abscisse $\sqrt{\e}$ est :
    a. $y=\left(6\e^{\frac{1}{2}}\right).x$
    b. $y=\left(6\sqrt{\e}\right).x+2\e$
    c. $y=6\e^{\frac{x}{2}}$
    d. $y=\left(6\e^{\frac{1}{2}}\right).x-4\e$
    $\quad$
  3. Sur l’intervalle $]0 ; 2]$, le nombre de points d’inflexion de la courbe $\mathcal{C}_h$ est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. $3$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : suites, fonctions, fonction exponentielle

Partie A

On considère la fonction $f$ définie pour tout réel $x$ par : $$f(x)=1+x-\e^{0,5x-2}$$
On admet que la fonction $f$ est dérivable sur $\R$. On note $f’$ sa dérivée.

  1. a. Déterminer la limite de la fonction $f$ en $-\infty$.
    $\quad$
    b. Démontrer que, pour tout réel $x$ non nul, $f(x) = 1 + 0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right)$.
    En déduire la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. a. Déterminer $f'(x)$ pour tout réel $x$.
    $\quad$
    b. Démontrer que l’ensemble des solutions de l’inéquation $f'(x)<0$ est
    l’intervalle $]4 + 2\ln(2) ; +\infty[$.
    $\quad$
  3. Déduire des questions précédentes le tableau de variation de la fonction $f$ sur $\R$.
    On fera figurer la valeur exacte de l’image de $4 + 2\ln(2)$ par $f$.
    $\quad$
  4. Montrer que l’équation $f(x) = 0$ admet une unique solution sur l’intervalle $[-1; 0]$.
    $\quad$

Partie B

On considère la suite $\left(u_n\right)$ définie par $u_0=0$ et, pour tout entier naturel $n$ ,
$$u_{n+1}=f\left(u_n\right) \text{ où } f \text{ est la fonction définie à la }\textbf{ partie A.}$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$ , on a : $$u_n\pp u_{n+1}\pp 4$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ converge. On notera $\ell$ la limite.
    $\quad$
  2. a. On rappelle que $\ell$ vérifie la relation $\ell=f(\ell)$.
    Démontrer que $\ell = 4$.
    $\quad$
    b. On considère la fonction $\texttt{valeur}$ écrite ci-dessous dans le langage Python :
    $\begin{array}{|l|}
    \hline
    \text{def valeur(a):}\\
    \quad\text{u=0}\\
    \quad\text{n=0}\\
    \quad\text{while u<=a:}\\
    \qquad\text{u=1+u-exp(0.5*u-2)}\\
    \qquad\text{n=n+1}\\
    \quad\text{return n}\\
    \hline
    \end{array}$
    L’instruction $\texttt{valeur(3.99)}$ renvoie la valeur $12$.
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $\Oijk$.
On considère les points $A(5 ; 0 ; -1)$, $B(1 ; 4 ; -1)$, $C(1 ; 0 ; 3)$, $D(5 ; 4 ; 3)$ et $E(10 ; 9 ; 8)$

  1. a. Soit $R$ le milieu du segment $[AB]$.
    Calculer les coordonnées du point $R$ ainsi que les coordonnées du vecteur $\vect{AB}$.
    $\quad$
    b. Soit $\mathcal{P}_1$ le plan passant par le point $R$ et dont $\vect{AB}$ est un vecteur normal.
    Démontrer qu’une équation cartésienne du plan $\mathcal{P}_1$ est :
    $$x-y-1=0$$
    $\quad$
    c. Démontrer que le point $E$ appartient au plan $\mathcal{P}_1$ et que $EA = EB$.
    $\quad$
  2. On considère le plan $\mathcal{P}_2$ d’équation cartésienne $x-z-2=0$.
    a. Justifier que les plans $\mathcal{P}_1$ et $\mathcal{P}_2$ sont sécants.
    $\quad$
    b. On note $\Delta$ la droite d’intersection de $\mathcal{P}_1$ et $\mathcal{P}_2$ .
    Démontrer qu’une représentation paramétrique de la droite $\Delta$ est :$$\begin{cases} x=2+t\\y=1+t\\z=t\end{cases} \quad (t\in \R)$$
    $\quad$
  3. On considère le plan $\mathcal{P}_3$ d’équation cartésienne $z+z-3=0$.
    Justifier que la droite $\Delta$ est sécante au plan $\mathcal{P}_3$ en un point $\Omega$ dont on déterminera les coordonnées.

Si $S$ et $T$ sont deux points distincts de l’espace, on rappelle que l’ensemble des points $M$ de l’espace tels que $MS = MT$ est un plan, appelé plan médiateur du segment $[ST]$.
On admet que les plans $\mathcal{P}_1$, $\mathcal{P}_2$ et $\mathcal{P}_3$ sont les plans médiateurs respectifs des segments $[AB]$, $[AC]$ et $[AD]$.

  1. a. Justifier que $\Omega A = \Omega B = \Omega C = \Omega D$.
    $\quad$
    b. En déduire que les points $A$, $B$, $C$ et $D$ appartiennent à une même sphère dont on précisera le centre et le rayon.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – 11 mai 2022

Métropole – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A : Étude du premier protocole

  1. a. Pour tout $t\in[0;10]$ on a
    $\begin{align*} f'(t)&=3\e^{-0,5t+1}+3t\times (-0,5)\e^{-0,5t+1} \\
    &=3(-0,5t+1)\e^{-0,5t+1}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $-0,5t+1$.
    Or $-0,5t+1=0 \ssi -0,5t=-1 \ssi t=2$
    et $-0,5t+1>0 \ssi -0,5t>-1 \ssi t<2$
    On obtient donc le tableau de variations suivant :$\quad$
    c. D’après le tableau de variations, la fonction $f$ atteint son maximum pour $t=2$ et celui-ci vaut $f(2)=6$.
    La quantité de médicament présente dans le sang est donc maximale au bout de $2$ h et elle vaut alors $6$ mg.
    $\quad$
  2. a. La fonction $f$ est continue et strictement croissante sur $[0;2]$.
    De plus, $f(0)=0<5$ et $f(2)=6>5$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(t)=5$ admet une unique solution $\alpha$ sur $[0;2]$.
    D’après la calculatrice $\alpha \approx 1,02$.
    $\quad$
    b. $\beta-\alpha \approx 2,44$. Le médicament est donc efficace environ $2,44$ heures soit $2$ heures et $26$ minutes.
    $\quad$

Partie B : Étude du deuxième protocole

  1. La quantité de médicament baisse de $30\%$ au bout d’une heure. Il en reste donc $70\%$ soit $0,7u_0=1,4$.
    On réinjecte $1,8$ mg
    Donc $u_1=1,4+1,8=3,2$.
    Après l’injection de la première heure, il y a donc $3,2$ mg de médicament dans le sang.
    $\quad$
  2. La quantité de médicament baisse de $30\%$ en une heure. Il est donc $70\%$ soit $0,7u_n$.
    On réinjecte $1,8$ mg.
    Donc, pour tout $n\in \N$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on note $P(n):~u_b \pp u_{n+1} <6$.
    Initialisation : $u_0=2$ et $u_1=3,2$. Donc $u_0\pp u_1<6$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <6 &\ssi 0,7u_n \pp 0,7u_{n+1} < 4,2 \\
    &\ssi 0,7u_n+1,8 \pp 0,7u_{n+1}+1,8<6 \\
    &\ssi u_{n+1} \pp u_{n+2}<6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n\pp u_{n+1} <6$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $6$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. On considère la fonction $g$ définie sur $\R$ par $g(x)=0,7x+1,8$.
    La fonction $f$ est continue sur $\R$ en tant que fonction affine et, pour tout $n\in \N$ on a $u_{n+1}=g\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $g(x)=x$
    $\begin{align*} 0,7x+1,8=x&\ssi 0,3x=1,8 \\
    &\ssi x=6\end{align*}$
    Donc $\ell=6$.
    Sur le long terme, le patient aura $6$ mg de médicament dans le sang.
    $\quad$
  4. a. Pour tout $n\in \N$
    $\begin{align*} v_{n+1}&=6-u_{n+1} \\
    &=6-0,7u_n-1,8 \\
    &=4,2-0,7u_n \\
    &=0,7\left(6-u_n\right)\\
    &=0,7v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,7$ et de premier terme $v_0=6-u_0=4$.
    $\quad$
    b. On a donc, pour tout $n\in \N$, $v_n=4\times 0,7^n$.
    Par conséquent $u_n=6-v_n=6-4\times 0,7^n$.
    $\quad$
    c. $\quad$
    $\begin{align*} u_n\pg 5,5&\ssi 6-4\times 0,7^n \pg 5,5 \\
    &\ssi -4\times 0,7^n \pg 0,5 \\
    &\ssi 0,7^n \pp 0,125 \\
    &\ssi n\ln(0,7) \pp \ln(0,125) \\
    &\ssi n \pg \dfrac{\ln(0,125)}{\ln(0,7)} \qquad \text{car } \ln(0,7)<0\end{align*}$
    $\quad$

 

Ex 2

Exercice 2

  1. a. On a $\vec{u}(2;-1;2)$.
    $\quad$
    b. Si $t=-1$ alors $x=-1$, $y=3$ et $z=0$ donc $B(-1;3;0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. $\vect{AB}(0;2;-3)$.
    Donc
    $\begin{align*} \vect{AB}.\vec{u}&=0\times 2+2\times (-1)+2\times (-3) \\
    &=-8\end{align*}$
    $\quad$
  2. a. $\vec{u}$ est donc un vecteur normal au plan $\mathscr{P}$.
    Une équation cartésienne de ce plan est par conséquent de la forme : $2x-y+2z+d=0$.
    Or $A(-1;1;3)$ appartient à $\mathscr{P}$.
    Donc $-2-1+6+d=0\ssi d=-3$.
    Une équation cartésienne de $\mathscr{P}$ est $2x-y+2z-3=0$.
    $\quad$
    b. $2\times \dfrac{7}{9}-\dfrac{19}{9}+2\times \dfrac{16}{9}-3=\dfrac{27}{9}-3=0$ : le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{P}$.
    $1+2t=\dfrac{7}{9}\ssi 2t=\dfrac{-2}{9}\ssi t=\dfrac{-1}{9}$.
    En prenant $t=-\dfrac{1}{9}$ dans l’équation de $\mathscr{D}$ on obtient $\begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}$ donc le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{D}$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$
    c. $\vect{AH}\left(\dfrac{16}{9};\dfrac{10}{9};-\dfrac{11}{9}\right)$
    Donc
    $\begin{align*} AH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{10}{9}\right)^2+\left(\dfrac{-11}{9}\right)^2} \\
    &=\dfrac{\sqrt{477}}{9} \\
    &=\dfrac{\sqrt{53}}{3}\end{align*}$
    $\quad$
  3. a. $(HB)$ est orthogonale au plan $\mathscr{P}$. Par conséquent $\vect{HB}$ et $\vec{u}$ sont colinéaires.
    Il existe donc un réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b.
    $\begin{align*} \vect{AB}.\vec{u}&=\left(\vect{AH}+\vect{HB}\right).\vec{u} \\
    &= \vect{AH}.\vec{u}+ \vect{HB}.\vec{u} \\
    &=0+k\vec{u}.\vec{u} \\
    &=k\left\|\vec{u}\right\|^2\end{align*}$
    Ainsi $kj=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. On a $\left\|\vec{u}\right\|^2=2^2+(-1)^2+2^2=9$.
    Ainsi $k=-\dfrac{8}{9}$
    $\quad$
    Soit $H(x;y;z)$
    $\vect{HB}(-1-x;3-x;-z)$.
    $\begin{align*} \vect{HB}=-\dfrac{8}{9}\vec{u}&\ssi \begin{cases} 1-x=-\dfrac{8}{9}\times 2\\3-y=-\dfrac{8}{9}\times (-1)\\-z=-\dfrac{8}{9}\times 2\end{cases} \\
    &\ssi \begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}\end{align*}$
    On retrouve donc les coordonnées du point $H$ trouvées à la question 2.b.
    $\quad$
  4. $\vect{BH}\left(\dfrac{16}{9};\dfrac{-8}{9};\dfrac{16}{9}\right)$
    Donc
    $\begin{align*} BH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{-8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2} \\
    &=\dfrac{8}{3}\end{align*}$
    On appelle $\mathscr{B}$ l’aire du triangle $ACH$.
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times BH\times \mathscr{B} &\ssi \dfrac{8}{9}&=\dfrac{1}{3}\times \dfrac{8}{3}\times \mathscr{B} \\
    &\ssi \mathscr{B}=1\end{align*}$
    L’aire du triangle $ACH$ vaut $1$ unité d’aire.
    $\quad$

 

 

Ex 3

Exercice 3

  1. a. D’après l’énoncé $P(S)=0,25$.
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    c. On a
    $\begin{align*} P(F\cap S)&=P(F)\times P_F(S) \\
    &=0,52\times 0,4\\
    &=0,208\end{align*}$
    La probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On veut calculer
    $\begin{align*} P_F(S)&=\dfrac{P(S\cap F)}{P(S)} \\
    &=\dfrac{0,208}{0,25} \\
    &=0,832\end{align*}$
    La probabilité que la personne interrogée soit une femme sachant qu’elle a suivi le stage est égale à $0,832$.
    $\quad$
    e. $\left(F,\conj{F}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales
    $\begin{align*} P(S)=P(S\cap F)+P\left(S\cap \conj{F}\right) &\ssi P\left(S\cap \conj{F}\right)=P(S)-P(S\cap F)\\
    &\ssi P\left(S\cap \conj{F}\right)=0,042\end{align*}$
    Par conséquent
    $\begin{align*} P_F(S)&=\dfrac{P\left(S\cap \conj{F}\right)}{P\left(\conj{F}\right)} \\
    &=\dfrac{0,042}{0,48} \\
    &=0,0875 \\
    &<0,1\end{align*}$
    $\quad$
  2. a. On répète indépendamment $20$ fois  la même expérience de Bernoulli. $X$ compte le nombre de salariés ayant suivi le stage.
    Donc $X$ suit la loi binomiale de paramètres $n=20$ et $p=0,25$.
    $\quad$
    b.
    $\begin{align*} P(X=5)&=\dbinom{10}{5}\times 0,25^5\times (1-0,25)^{10-5} \\
    &\approx 0,202\end{align*}$
    La probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage est environ égale à $0,202$.
    $\quad$
    c. Ce programme calcule $P(X\pp k)$.
    D’après la calculatrice $P(X\pp 5) \approx 0,617$.
    Le programme renvoie donc $0,617$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} P(X\pg 6)&=1-P(X<6) \\
    &=1-P(X\pp 5) \\
    &\approx 0,383\end{align*}$
    $\quad$
  3. $1,05\times 0,25+1,02\times 0,75=1,0275$.
    Le pourcentage moyen d’augmentation des salaires de cette entreprise est donc de $2,75\%$.
    $\quad$

Ex 4

Exercice 4

  1. D’après la limite des termes de plus haut degré
    $\begin{align*} \lim\limits_{x\to +\infty} f(x)&=\lim\limits_{x\to +\infty} \dfrac{-2x^2}{x^2} \\
    &=-2\end{align*}$
    La droite d’équation $y=-2$ est donc asymptote à la courbe représentative de la fonction $f$.
    Réponse C
    $\quad$
  2. Une primitive de $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2}+K$
    $F(0)=1 \ssi \dfrac{1}{2}+K=1 \ssi K=\dfrac{1}{2}$
    Réponse D
    $\quad$
  3. $f’$ semble être strictement croissante sur $]-\infty;4[$ et strictement décroissante sur $[4;+\infty[$.
    Donc $f$ est convexe sur $]-\infty;4]$ et concave sur $[4;+\infty[$.
    Réponse C
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$. Par conséquent, pour tout réel $x$, $f(x)>0$ sur $\R$. $f$ est la dérivée de chacune de ses primitives.
    Réponse A
    $\quad
  5. Pour tout réel $x$, $f(x)=\dfrac{2\ln(x)}{3x^2}\times \dfrac{1}{1+\dfrac{3}{x^2}}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$
    De plus $\lim\limits_{x\to +\infty}  \dfrac{1}{1+\dfrac{3}{x^2}}=0$
    Par conséquent $\lim\limits_{x\to +\infty}f(x)=0$.
    Réponse D
    $\quad$
  6. L’équation peut s’écrire $\left(\e^x\right)^2+\e^x-12=0 \ssi \begin{cases} X=\e^x\\X^2+X-12=0\end{cases}$
    $X^2+X-12=0$ a pour discriminant $\Delta=49>0$
    Ses racines sont donc $X_1=-4$ et $X_2=3$.
    Or $\e^x=-4$ n’admet pas de solution et $\e^x=3$ admet une unique solution $x=\ln(3)$.
    Réponse C
    $\quad$

 

Énoncé

Exercice 1     7 points

Thèmes : fonction exponentielle, suites

Dans le cadre d’un essai clinique, on envisage deux protocoles de traitement d’une maladie.
L’objectif de cet exercice est d’étudier, pour ces deux protocoles, l’évolution de la quantité de médicament présente dans le sang d’un patient en fonction du temps.

Les parties A et B sont indépendantes.

Partie A : Étude du premier protocole

Le premier protocole consiste à faire absorber un médicament, sous forme de comprimé, au patient.
On modélise la quantité de médicament présente dans le sang du patient, exprimée en mg, par la fonction $f$ définie sur l’intervalle $[0; 10]$ par $f(t)=3t\e^{-0,5t+1}$, où $t$ désigne le temps, exprimé en heure, écoulé depuis la prise du comprimé.

  1. a. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 10]$ et on note $f’$ sa fonction dérivée.
    Montrer que, pour tout nombre réel $t$ de $[0; 10]$, on a : $f'(t)=3(-0,5t+1)\e^{-0,5t+1}$.
    $\quad$
    b. En déduire le tableau de variations de la fonction $f$ sur l’intervalle $[0; 10]$.
    $\quad$
    c. Selon cette modélisation, au bout de combien de temps la quantité de médicament présente dans le sang du patient sera-t-elle maximale ? Quelle est alors cette quantité maximale ?
    $\quad$
  2. a. Montrer que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[0; 2]$, notée $\alpha$, dont
    on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
    On admet que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[2; 10]$, notée $\beta$, et qu’une
    valeur approchée de $\beta$ à $10^{-2}$ près est $3,46$.
    $\quad$
    b. On considère que ce traitement est efficace lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5$ mg.
    Déterminer, à la minute près, la durée d’efficacité du  médicament dans le cas de ce protocole.
    $\quad$

Partie B : Étude du deuxième protocole

Le deuxième protocole consiste à injecter initialement au patient, par piqûre intraveineuse, une dose de $2$ mg de médicament puis à réinjecter toutes les heures une dose de $1,8$ mg.

On suppose que le médicament se diffuse instantanément dans le sang et qu’il est ensuite progressivement éliminé.

On estime que lorsqu’une heure s’est écoulée après une injection, la quantité de médicament dans le sang a diminué de $30 \%$ par rapport à la quantité présente immédiatement après cette injection.

On modélise cette situation à l’aide de la suite $\left(u_n\right)$ où, pour tout entier naturel $n$, $u_n$ désigne la quantité de médicament, exprimée en mg, présente dans le sang du patient immédiatement après l’injection de la $n$-ème heure. On a donc $u_0=2$.

  1. Calculer, selon cette modélisation, la quantité $u_1$ de médicament (en mg) présente dans le sang du patient immédiatement après l’injection de la première heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pp u_{n+1} <6$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
    c. Déterminer la valeur de $\ell$. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par $v_n=6-u_n$.
    a. Montrer que la suite $\left(v_bn\right)$ est une suite géométrique de raison $0,7$ dont on précisera le premier terme.
    $\quad$
    b. Déterminer l’expression de $v_n$ en fonction de $n$, puis de $u_n$ en fonction de $𝑛$.
    $\quad$
    c. Avec ce protocole, on arrête les injections lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5,5$ mg.
    Déterminer, en détaillant les calculs, le nombre d’injections réalisées en appliquant ce protocole.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$ on considère :

  • Le point $A$ de coordonnées $(-1;1;3)$;
  • La droite $\mathscr{D}$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=2-t\\z=2+2t\end{cases} \quad ,t\in \R$.

On admet que le point $A$ n’appartient pas à la droite $\mathscr{D}$.

  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u}$ de la droite $\mathscr{D}$.
    $\quad$
    b. Montrer que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. Calculer le produit scalaire $\vect{AB}.\vec{u}$.
    $\quad$
  2. On note $\mathscr{P}$ le plan passant par le point $A$ et orthogonal à la droite $\mathscr{D}$, et on appelle $H$ le point d’intersection du plan $\mathscr{P}$ et de la droite $\mathscr{D}$. Ainsi, $H$ est le projeté orthogonal de $A$ sur la droite $\mathscr{D}$.
    a. Montrer que le plan $\mathscr{P}$ admet pour équation cartésienne : $2x-y+2z-3=0$.
    $\quad$
    b. En déduire que le point $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    c. Calculer la longueur $AH$. On donnera une valeur exacte.
    $\quad$
  3. Dans cette question, on se propose de retrouver les coordonnées du point $H$, projeté orthogonal du point $A$ sur la droite $\mathscr{D}$, par une autre méthode.On rappelle que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$ et que le vecteur $\vec{u}$ est un vecteur directeur de la droite $\mathscr{D}$.
    a. Justifier qu’il existe un nombre réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b. Montrer que $k=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. Calculer la valeur du nombre réel $k$ et retrouver les coordonnées du point $H$.
    $\quad$
  4. On considère un point $C$ appartenant au plan $\mathscr{P}$ tel que le volume du tétraèdre $ABCH$ soit égal à $\dfrac{8}{9}$.
    Calculer l’aire du triangle $ACH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : probabilités

Le directeur d’une grande entreprise a proposé à l’ensemble de ses salariés un stage de formation à l’utilisation d’un nouveau logiciel.

Ce stage a été suivi par $25 \%$ des salariés.

  1. Dans cette entreprise, $52 \%$ des salariés sont des femmes, parmi lesquelles $40 \%$ ont suivi le stage.
    On interroge au hasard un salarié de l’entreprise et on considère les événements :
    $\bullet$ $F$ : « le salarié interrogé est une femme »,
    $\bullet$ $S$ : « le salarié interrogé a suivi le stage ».
    $\conj{F}$ et $\conj{S}$ désignent les événements contraires des événements $F$ et $S$.
    a. Donner la probabilité de l’événement $S$.
    $\quad$
    b. Recopier et compléter les pointillés de l’arbre pondéré ci-dessous sur les quatre branches indiquées.

    $\quad$
    c. Démontrer que la probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On sait que la personne interrogée a suivi le stage. Quelle est la probabilité que ce soit une femme ?
    $\quad$
    e. Le directeur affirme que, parmi les hommes salariés de l’entreprise, moins de $10 \%$ ont suivi le stage.
    Justifier l’affirmation du directeur.
    $\quad$

  2. On note $X$ la variable aléatoire qui à un échantillon de $20$ salariés de cette entreprise choisis au hasard associe le nombre de salariés de cet échantillon ayant suivi le stage. On suppose que l’effectif des salariés de l’entreprise est suffisamment important pour assimiler ce choix à un tirage avec remise.
    a. Déterminer, en justifiant, la loi de probabilité suivie par la variable aléatoire $X$.
    $\quad$
    b. Déterminer, à $10^{-3}$ près, la probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
    c. Le programme ci-dessous, écrit en langage Python, utilise la fonction $\texttt{binomiale(i,n,p)}$ créée pour l’occasion qui renvoie la valeur de la probabilité $P(X=i)$ dans le cas où la variable aléatoire $X$ suit une loi binomiale de paramètres $n$ et $p$.
    $\begin{array}{|l|}
    \hline
    \textbf{def proba}\text{(k):}\\
    \quad \text{P = 0}\\
    \quad \text{for i in range(0 , k + 1):}\\
    \qquad \text{P = P + binomiale(i,20,0.25)}\\
    \quad \textbf{return P}\\
    \hline
    \end{array}$
    Déterminer, à $10^{-3}$ près, la valeur renvoyée par ce programme lorsque l’on saisit $\texttt{proba(5)}$ dans la console Python. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
    d. Déterminer, à $10^{-3}$ près, la probabilité qu’au  moins $6$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
  3. Cette question est indépendante des questions 1 et 2.
    Pour inciter les salariés à suivre le stage, l’entreprise avait décidé d’augmenter les salaires des salariés ayant suivi le stage de $5\ %$, contre $2\%$ d’augmentation pour les salariés n’ayant pas suivi le stage.
    Quel est le pourcentage moyen d’augmentation des salaires de cette entreprise dans ces conditions ?
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonctions numériques

Cet exercice est un questionnaire à choix multiple.
Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la réponse choisie. Aucune justification n’est  demandée.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Les six questions sont indépendantes.

  1. La courbe représentative de la fonction $f$ définie sur $\R$ par $f(x)=\dfrac{-2x^2+3x-1}{x^2+1}$ admet pour asymptote la droite d’équation :
    a. $x=-2$;
    b. $y=-1$;
    c. $y=-2$;
    d. $y=0$.
    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=x\e^{x^2}$.
    La primitive $F$ de $f$ sur $\R$ qui vérifie $F(0)=1$ est définie par :
    a. $F(x)=\dfrac{x^2}{2}\e^{x^2}$;
    b. $F(x)=\dfrac{1}{2}\e^{x^2}$;
    c. $F(x)=\left(1+2x^2\right)\e^{x^2}$;
    d. $F(x)=\dfrac{1}{2}\e^{x^2}+\dfrac{1}{2}$.
    $\quad$
  3. On donne ci-dessous la représentation graphique $\mathscr{C}_{f’}$ de la fonction dérivée $f’$ d’une fonction $f$ définie sur ℝ.
    On peut affirmer que la fonction $f$ est :
    a. concave sur $]0; +\infty[$ ;
    b. convexe sur $]0; +\infty[$ ;
    c. convexe sur $[0; 2]$ ;
    d. convexe sur $[2; +\infty[$.
    $\quad$
  4. Parmi les primitives de la fonction $f$ définie sur $\R$ par $f(x)=3\e^{-x^2}+2$:
    a. toutes sont croissantes sur $\R$ ;
    b. toutes sont décroissantes sur $\R$ ;
    c. certaines sont croissantes sur $\R$ et d’autres décroissantes sur $\R$ ;
    d. toutes sont croissantes sur $]−\infty; 0]$ et décroissantes sur $[0; +\infty[$.
    $\quad$
  5. La limite en $+\infty$ de la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=\dfrac{2\ln(x)}{3x^2+1}$ est égale à :
    a. $\dfrac{2}{3}$ ;
    b. $+\infty$ ;
    c. $-\infty$ ;
    d. $0$.
    $\quad$
  6. L’équation $\e^{2x}+\e^x-12=0$ admet dans $\R$ :
    a. trois solutions ;
    b. deux solutions ;
    c. une seule solution ;
    d. aucune solution.
    $\quad$

 

Bac – Spécialité mathématiques – Polynésie – sujet 2 – 5 mai 2022

Polynésie – 5 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1     7 points

Thèmes : fonctions, primitives, probabilités

  1. Pour tout $x\in ]0;+\infty[$ on a
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)\end{align*}$
    Réponse a
    $\quad$
  2. Pour tout réel $x\in ]0;+\infty[$ on a $g(x)=x^2-x^2\ln(x)$
    Or $\lim\limits_{x\to 0} x^2=0$ et, par croissances comparées, $\lim\limits_{x\to 0} x^2\ln(x)=0$.
    Donc $\lim\limits_{x\to 0} g(x)=0$.
    Réponse c
    $\quad$
  3. Pour tout réel $x$ on a $f(x)=x\left(x^2-0,9x-0,1\right)$
    $f(x)=0\ssi x=0$ ou $x^2-0,9x-0,1=0$.
    Le discriminant de $x^2-0,9x-0,1$ est $\Delta=(-0,9)^2-4\times \times 1\times (-0,1)=1,21>0$.
    L’équation $x^2-0,9x-0,1=0$ possède donc deux solutions distinctes. $0$ n’est pas solution de cette équation.
    Ainsi l’équation $f(x)=0$ admet exactement $3$ solutions.
    Réponse d
    $\quad$
  4. On considère la fonction $K$ définie sur $\R$ par $K(x)=\dfrac{1}{2}H(2x)$
    La fonction $K$ est dérivable sur $\R$ en tant que composée de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} K'(x)&=\dfrac{1}{2}\times 2H'(2x)\\
    &=H'(2x) \\
    &=h(2x)\\
    &=k(x)\end{align*}$
    Réponse c
    $\quad$
  5. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*}f'(x)&=\e^x+x\e^x \\
    &=(1+x)\e^x\end{align*}$
    Donc $f'(1)=2\e$.
    De plus $f(1)=\e$.
    Une équation de la tangente au point d’abscisse $1$ de la courbe de la fonction $f$ est donc $y=2\e(x-1)+\e$
    Soit $y=2\e x-\e$.
    Réponse b
    $\quad$
  6. $\quad$
    $\begin{align*} (0,2)^n<0,001&\ssi n\ln(0,2)<\ln(0,001) \\
    &\ssi n>\dfrac{\ln(0,001)}{\ln(0,2)}\qquad \text{(car $\ln(0,2)<0$)}\end{align*}$
    Or $\dfrac{\ln(0,001)}{\ln(0,2)}\approx 4,29$.
    L’ensemble solution de l’inéquation est donc l’ensemble des entiers naturels supérieurs ou égaux à $5$.
    Réponse d
    $\quad$

Ex 2

Exercice 2     7 points

Thème : probabilités

Partie 1

  1. On a $P(C)=0,2$ et $P_C(D)=0,1$
    Donc
    $\begin{align*} P(C\cap D)&=P(C)\times P_C(D) \\
    &=0,2\times 0,1\\
    &=0,02\end{align*}$
    $\quad$
  2. $\left(C,\conj{C}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales :
    $\begin{align*} P(D)&=P(C\cap D)+P\left(\conj{C}\cap D\right) \\
    &=0,02+P\left(\conj{C}\right)\times P_{\conj{C}}(D) \\
    &=0,02+0,8\times 0,02 \\
    &=0,036\end{align*}$
    $\quad$
  3. On veut calculer
    $\begin{align*} P_D(C)&=\dfrac{P(C\cap D)}{P(D)} \\
    &=\dfrac{0,02}{0,036} \\
    &=\dfrac{5}{9}\end{align*}$
    La probabilité que le casque soit contrefait sachant qu’il a un défaut est égale à $\dfrac{5}{9}$.
    $\quad$

Partie 2

  1. a. On répète $35$ fois la même expérience de Bernoulli de paramètre $0,036$. $X$ est égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n=35$ et $p=0,036$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X=1)&=\dbinom{35}{1}\times 0,036^1\times (1-0,036)^{35-1} \\
    &=35\times 0,036\times 0,964^{34} \\
    &\approx 0,362\end{align*}$
    La probabilité qu’il y ait parmi les casques commandés exactement un casque présentant un défaut de conception est environ égale à $0,362$.
    $\quad$
    c. 
    $\begin{align*}P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,964^{35}+35\times 0,036\times 0,964^{34} \\
    &\approx 0,639\end{align*}$
    $\quad$
  2. On répète $n$ fois la même expérience de Bernoulli de paramètre $0,036$. On appelle $Y$ la variable aléatoire égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n$ et $p=0,036$.
    $\begin{align*} P(Y\pg 1)>0,99 &\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01  \\
    &\ssi 0,964^n <0,01 \\
    &\ssi n\ln(0,964)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,964)} \qquad \text{(car $\ln(0,964)<0$)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,964)} \approx 125,6$.
    Il faut donc commander au moins $126$ casques pour que la probabilité qu’au moins un casque présente un défaut soit supérieure à $0,99$.
    $\quad$

Ex 3

Exercice 3     7 points

Thème : suites, fonctions

  1. $\quad$
    $\begin{align*} u_1&=0,008u_1\left(200-u_1\right) \\
    &=0,008\times 40(200-40)\\
    &=51,2\end{align*}$
    Selon ce modèle il y avait environ $52$ oiseaux dans la colonie au début de l’année 2022.
    $\quad$
  2. $\quad$
    $\begin{align*}
    f(x)=x&\ssi 0,008x(200-x)=x \\
    &\ssi 0,008x(200-x)-x=0 \\
    &\ssi x\left(0,008(200-x)-1\right)=0 \\
    &\ssi x(1,6-0,008x-1)=0 \\
    &\ssi (0,6-0,008x)=0\\
    &\ssi x=0 \text{ ou } 0,6-0,008x=0 \\
    &\ssi x=0 \text{ ou } x=\dfrac{0,6}{0,008} \\
    &\ssi x=0 \text{ ou } x=75 \end{align*}$
    Les solutions de l’équation $f(x)=x$ sont donc $0$ et $75$.
    $\quad$
  3. a. Il y a au moins deux méthodes pour répondre à la question :
    – étudier le signe de $f'(x)$;
    – utiliser les propriétés sur les variations des fonctions polynômes du second degré (ce qui va être fait ici)
    Pour tout réel $x$ on a
    $f(x)=-0,008x^2+1,6x$
    Le coefficient principal est $a=-0,008<0$.
    Ainsi $f$ admet un maximum au point d’abscisse $\dfrac{-1,6}{2\times (-0,008)} =100$.
    La fonction est donc strictement croissante sur l’intervalle $[0;100]$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
    b. Pour tout entier naturel $n$ on a $u_{n+1}=0,008u_n\left(200-u_n\right)$
    Donc $u_{n+1}=f\left(u_n\right)$.
    Pour tout entier naturel $n$ on pose $P(n):~0\pp u_n \pp u_{n+1}\pp 100$.
    Initialisation : $u_0=40$ et $u_1=51,2$. Or $0\pp 40\pp 51,2\pp 100$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp u_n \pp u_{n+1} \pp 100$.
    La fonction $f$ est croissante sur $[0;100]$.
    Donc $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(100)$
    Soit $0\pp u_{n+1} \pp u_{n+2} \pp 80\pp 100$. $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $0\pp u_n \pp u_{n+1} \pp 100$.
    $\quad$
    c. La suite $\left(u_n\right)$ est donc croissante et majorée par $100$.
    Elle converge donc vers un réel $\ell$.
    $\quad$
    d. La fonction $f$ est continue sur $[0;100]$.
    Donc $\ell$ est solution de l’équation $f(x)=x$ dont l’unique solution est $75$ d’après la question 2.
    Ainsi $\ell=75$.
    Cela signifie que sur le long terme la colonie comptera $75$ individus.
    $\quad$
  4. La fonction renvoie l’année où la population dépasse la valeur $p$ envoyée en paramètre.
    La suite $\left(u_n\right)$ est majorée par $75$. Elle ne peut donc pas prendre de valeurs supérieures à $100$.
    Cela explique donc pourquoi $\texttt{seuil(100)}$ ne renvoie aucune valeur.
    Remarque : On se retrouve dans une boucle infinie!
    $\quad$

Ex 4

Exercice 4     7 points

Thème : géométrie dans le plan et l’espace

Partie 1. Première méthode

  1. On a $A(0;0;0)$ , $B(1;0;0)$ et $G(1;1;1)$.
    $\quad$
  2. $\vect{BK}\left(-1;\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\vect{AI}\left(\dfrac{1}{2};0;1\right)$ et $\vect{AG}(1;1;1)$.
    Les vecteurs $\vect{AI}$ et $\vect{AG}$ ne sont pas colinéaires.
    $\begin{align*} \vect{BK}.\vect{AI}&=-1\times \dfrac{1}{2}+\dfrac{1}{2}\times 0+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    $\begin{align*} \vect{BK}.\vect{AG}&=-1\times 1+\dfrac{1}{2}\times 1+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    Le vecteur $\vect{BK}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AIG)$.
    Par conséquent la droite $(BK)$ est orthogonale au plan $(AIG)$.
    $\quad$
  3. $-2\vect{BK}(2;-1;-1)$ est normal au plan $(AIG)$.
    Une équation cartésienne du plan $(AIG)$ est donc de la forme $2x-y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Ainsi, une équation cartésienne du plan $(AIG)$ est 2x-y-z=0$.
    $\quad$
  4. Une représentation paramétrique de la droite $(BK)$ est :
    $\begin{cases} x=1+2t\\y=-t\\z=-t\end{cases} \qquad ,t\in \R$.
    Remarque : plutôt que de prendre le vecteur $\vect{BK}$ comme vecteur directeur, on peut choisir $2\vect{BK}$ dont les coordonnées sont entières.
    $\quad$
  5. $2\times \dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{3}=0$ donc $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ appartient au plan $(AIG)$.
    En prenant $t=-\dfrac{1}{3}$ dans la représentation paramétrique de la droite $(BK)$ on retrouve les coordonnées du point $L$.
    Ainsi $L$ appartient à la fois à la droite $(BK)$ et au plan $(AIG)$.
    $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ est le projeté orthogonal du point $B$ sur le plan $(AIG)$.
    $\quad$
  6. $\vect{BL}\left(-\dfrac{2}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$
    $\begin{align*} BL&=\sqrt{\left(-\dfrac{2}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2} \\
    &=\sqrt{\dfrac{6}{9}} \\
    &=\sqrt{\dfrac{2}{3}}\end{align*}$
    La distance du point $B$ au plan $(AIG)$ est donc égale à $\sqrt{\dfrac{2}{3}}$.
    $\quad$

Partie 2. Deuxième méthode

  1. a. $ABCDEFGH$ est un cube. L’arête $[FG]$ est perpendiculaire au plan $(ABF)$ auquel appartient le point $I$.
    Donc, dans le tétraèdre $ABIG$, $[GF]$ est la hauteur relative à la base $AIB$.
    $\quad$
    b. L’aire de $AIB$ est :
    $\begin{align*} \mathscr{B}&=\dfrac{AE\times AB}{2} \\
    &=\dfrac{1}{2}\end{align*}$
    De plus $GF=1$
    Ainsi, le volume de $ABIG$ est :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times GF\times \mathscr{B} \\
    &=\dfrac{1}{6}\end{align*}$
    $\quad$
  2. Le triangle $AIG$ est donc isocèle en $I$.
    La hauteur issue de $I$ coupe donc le côté $[AG]$ en son milieu $0$.
    Ainsi $AO=\dfrac{\sqrt{3}}{2}$.
    Dans le triangle $AOI$ rectangle en $O$ on applique le théorème de Pythagore.
    $\begin{align*}AI^2=AO^2+OI^2 &\ssi OI^2=AI^2-AO^2 \\
    &\ssi OI^2=\dfrac{5}{4}-\dfrac{3}{4} \\
    &\ssi OI^2=\dfrac{1}{2}\end{align*}$
    Donc $OI=\dfrac{1}{\sqrt{2}}$.
    L’aire du triangle $AIG$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{OI\times AG}{2} \\
    &=\dfrac{\dfrac{1}{\sqrt{2}}\times \sqrt{3}}{2} \\
    &=\dfrac{\sqrt{3}}{2\sqrt{2}} \\
    &=\dfrac{\sqrt{6}}{4}\end{align*}$
    $\quad$
  3. On appelle $h$ la longueur de la hauteur issue de $B$ dans le tétraèdre $ABIG$
    Ainsi
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times h\times \mathscr{A} &\ssi
    \dfrac{1}{6}=\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}h\\
    &\ssi h=\dfrac{\dfrac{1}{6}}{\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}} \\
    &\ssi h=\dfrac{\sqrt{6}}{3}\end{align*}$
    On retrouve bien la valeur trouvée à la question 6. puisque :
    $\begin{align*} \sqrt{\dfrac{2}{3}}&=\sqrt{\dfrac{2}{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}} \\
    &=\dfrac{\sqrt{6}}{3}\end{align*}$
    $\quad$

Énoncé

Télécharger (PDF, 896KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.

Bac – Spécialité mathématiques – Polynésie – sujet 1 – 4 mai 2022

Polynésie – 4 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1     7 points

Thèmes : fonctions, suites

  1. $g$ est de la forme $ln(u)$ dont la dérivée, quand elle existe, est $\dfrac{u’}{u}$.
    Ici, pour tout $x\in ]0;+\infty[$, $u(x)=x^2+x+1$ et $u'(x)=2x+1$.
    Donc $g'(x)=\dfrac{2x+1}{x^2+x+1}$
    Réponse d
    $\quad$
  2. On considère la fonction $f$ définie sur $]0;+\infty[$ par $f(x)=x\ln(x)-x$.
    $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables.
    Pour tout $x\in ]0;+\infty[$,
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)+1-1\\
    &=\ln(x)\end{align*}$
    Réponde c
    $\quad$
  3. Pour tout $n\in \N$ on a
    $\begin{align*}a_n&=\dfrac{3^n\left(\dfrac{1}{3^n}-1\right)}{2^n\left(\dfrac{1}{2^{-n}}+1\right)}\\
    &=\left(\dfrac{3}{2}\right)^n \times \dfrac{\dfrac{1}{3^n}-1}{\dfrac{1}{2^n}+1}\end{align*}$
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{3^n}=0$ et $\lim\limits_{n\to +\infty} \dfrac{1}{2^n}=0$
    Donc $\lim\limits_{n\to +\infty} \dfrac{\dfrac{1}{3^n}-1}{\dfrac{1}{2^n}+1}=-1$
    de plus $1<\dfrac{3}{2}$ donc $\lim\limits_{n\to +\infty} \left(\dfrac{3}{2}\right)^n=+\infty$
    Par conséquent $\lim\limits_{n\to +\infty} a_n=-\infty$^.
    Réponse a
    $\quad$
  4. La fonction $f’$ est strictement décroissante sur $[-2;0]$.
    Donc $f$ est concave sur $[-2;0]$.
    Réponse d
    $\quad$
  5. On a $f'(x)>0$ sur $[0;1[$ et $f'(x)<0$ sur $]1;2]$.
    $f$ est donc strictement croissante sur $[0;1]$ et strictement décroissante sur $[1;2]$.
    $f$ admet donc un maximum en $1$ sur $[0;2]$.
    Réponse c
    $\quad$
  6. Le programme b ne convient pas car on ne rentre jamais dans la boucle “while”.
    Le programme c ne convient pas car on effectue $200$ fois la boucle “for” et la fonction renvoie la valeur de l’action après $200$ mois.
    Le programme d ne convient pas il ne teste que la valeur initiale de l’action. Il s’arrête aussitôt après.
    Réponse a
    $\quad$

Ex 2

Exercice 2     7 points

Thèmes : probabilités

 

  1. On a $P(M)=0,07$ et $P_M(T)=0,8$
    Donc
    $\begin{align*} P(M\cap T)&=P(M)\times P_M(T) \\
    &=0,07\times 0,8\\
    &=0,056\end{align*}$
    $\quad$
    $\quad$
  2. $\left(M,\conj{M}\right)$ est un système complet d’événements.
    D’après la formule des probabilités totales
    $\begin{align*} P(T)&=P(M\cap T)+P\left(\conj{M}\cap T\right) \\
    &=0,056+P\left(\conj{M}\right)\times P_{\conj{M}}(T)\\
    &=0,056+0,93\times 0,01 \\
    &=0,065~3\end{align*}$
    $\quad$
  3. Il est plus pertinent de connaître $P_T(M)$ puisqu’on veut déterminer si la personne testée est malade.
    $\quad$
  4. On veut calculer
    $\begin{align*} P_T(M)&=\dfrac{P(M\cap T)}{P(T)} \\
    &=\dfrac{0,056}{0,065~3} \\
    &\approx 0,86\end{align*}$
    La probabilité que la personne soit malade sachant que son test est positif est environ égale à $0,86$.
    $\quad$
  5. a. On répète $10$ fois la même expérience de Bernoulli de paramètres $0,065~3$. $X$ est égale au nombre d’individus ayant un test positif.
    Donc $X$ suit la loi binomiale de paramètres $n=10$ et $p=0,065~3$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X=2)&=\dbinom{10}{2}0,065~3^2\times (1-0,065~3)^{10-2}\\
    &=45\times 0,065~3^2\times 0,934~7^8\\
    &\approx 0,11\end{align*}$
    La probabilité pour qu’exactement deux personnes aient un test positif est environ égale à $0,11$.
    $\quad$
  6. On répète $n$ fois la même expérience de Bernoulli de paramètres $0,065~3$. On appelle $Y$ la variable aléatoire égale au nombre d’individus ayant un test positif.
    Donc $Y$ suit la loi binomiale de paramètres $n$ et $p=0,065~3$.
    $\begin{align*} P(Y\pg 1)>0,99 &\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01 \\
    &\ssi 0,934~7^n <0,01\\
    &\ssi n\ln(0,934~7) <\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,934~7)} \qquad \text{(car $\ln(0,934~7)<0$)}
    \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,934~7)}\approx 68,2$.
    Il faut donc tester au moins $69$ personnes pour que la probabilité qu’au moins l’une d’entre elle ait un test positif soit supérieur à $99\%$.
    $\quad$

 

Ex 3

Exercice 3     7 points

Thèmes : suites

  1. a.
    $\begin{align*}u_1&=\dfrac{u_0}{1+u_0}\\
    &=\dfrac{1}{1+1}\\
    &=\dfrac{1}{2}\end{align*}$
    $\begin{align*}u_2&=\dfrac{u_1}{1+u_1}\\
    &=\dfrac{\dfrac{1}{2}}{1+\dfrac{1}{2}}\\
    &=\dfrac{1}{3}\end{align*}$
    $\begin{align*}u_3&=\dfrac{u_2}{1+u_2}\\
    &=\dfrac{\dfrac{1}{3}}{1+\dfrac{1}{3}}\\
    &=\dfrac{1}{4}\end{align*}$
    $\quad$
    b.
    $\begin{array}{|c|l|}
    \hline
    1.&\text{def liste(k):}\\
    2.&\quad \text{L=[]}\\
    3.&\quad \text{u = 1}\\
    4.&\quad \text{for i in range(0,k+1):}\\
    5.&\qquad \text{L.append(u)}\\
    6.&\qquad \text{u = u / (1 + u)}\\
    7.&\quad \text{return(L)}\\
    \hline
    \end{array}$
    $\quad$
  2. Soit $n\in \N$.
    $\begin{align*} u_{n+1}-u_n&=\dfrac{u_n}{1+u_n}-u_n \\
    &=u_n\left(\dfrac{1}{1+u_n}-1\right) \end{align*}$
    $u_n>0$ donc $1+u_n>1$ et $\dfrac{1}{1+u_n}<1$
    Ainsi $u_{n+1}-u_n<0$
    La suite $\left(u_n\right)$ est donc strictement décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $0$.
    La suite $\left(u_n\right)$ converge donc vers un réel $\ell$.
    $\quad$
  4. On considère la fonction $f$ définie sur $]-\infty;-1[\cup]-1;+\infty[$ par $f(x)=\dfrac{x}{1+x}$.
    La fonction $f$ est continue sur $[0;+\infty[$ en tant que quotient de fonctions continues dont le dénominateur ne s’annule pas.
    De plus, pour tout entier naturel $n$ on a $u_{n+1}=f\left(u_n\right)$.
    $\ell$ est donc solution de l’équation
    $\begin{align*}x=\dfrac{x}{x+1} &\ssi x-\dfrac{x}{x+1}=0 \\
    &\ssi x\left(1-\dfrac{1}{x+1}\right)=0 \\
    &\ssi x\times \dfrac{x}{x+1}=0\\
    &\ssi x=0\end{align*}$
    Ainsi $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  5. a. Il semblerait que pour tout entier naturel $n$ on ait $u_n=\dfrac{1}{1+n}$
    $\quad$
    b. Pour tout entier naturel $n$ on pose $P(n):~u_n=\dfrac{1}{1+n}$.
    Initialisation : $u_0=1$ et $\dfrac{1}{1+0}=1$. Donc $P(1)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_{n+1}&=\dfrac{u_n}{1+u_n}\\
    &=\dfrac{\dfrac{1}{1+n}}{1+\dfrac{1}{1+n}} \\
    &=\dfrac{\dfrac{1}{1+n}}{\dfrac{1+n+1}{1+n}} \\
    &=\dfrac{1}{1+(n+1)}\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n=\dfrac{1}{1+n}$.
    $\quad$

 

Ex 4

Exercice 4     7 points

Thèmes : géométrie dans le plan et dans l’espace

  1. a. $\vect{AB}(-1;1;-3)$ et $\vect{AC}(4;7;1)$.
    Par conséquent :
    $\begin{align*} \vect{AB}.\vect{AC}&=-1\times 4+1\times 7-3\times 1\\
    &=-4+7-3 \\
    &=0\end{align*}$
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b. $\vect{BA}(1;-1;3)$ et $\vect{BC}(5;6;4)$
    Par conséquent :
    $\begin{align*} \vect{BA}.\vect{BC}&=1\times 5-1\times 6+3\times 4\\
    &=5-6+12\\
    &=11\end{align*}$
    $\begin{align*} BA&=\sqrt{1^2+(-1)^2+3^2}\\
    &=\sqrt{11}\end{align*}$
    $\begin{align*} BC&=\sqrt{5^2+6^2+4^2} \\
    &=\sqrt{25+36+16}\\
    &=\sqrt{77}\end{align*}$
    $\quad$
    c. On a
    $\begin{align*} \vect{BA}.\vect{BC}=BA\times BC\times \cos\left(\widehat{ABC}\right)&\ssi 11=\sqrt{11}\times \sqrt{77} \times \cos\left(\widehat{ABC}\right) \\
    &\ssi 11=\sqrt{11}\times \sqrt{11}\times \sqrt{7}\times \cos\left(\widehat{ABC}\right) \\
    &\ssi \cos\left(\widehat{ABC}\right)=\dfrac{1}{\sqrt{7}}\end{align*}$
    Par conséquent $\widehat{ABC}\approx 68$°.
    $\quad$
  2. a. Un vecteur normal au plan $\mathscr{P}$ est $\vec{n}(2;-1;-1)$.
    Les vecteurs $\vect{AB}$ et $vect{AC}$ ne sont pas colinéaires d’après la question 1.a.
    De plus :
    $\begin{align*} \vec{n}.\vect{AB}&=2\times (-1)-1\times 1-1\times (-3) \\
    &=-2-1+3 \\
    &=0\end{align*}$
    $\begin{align*} \vec{n}.\vect{AC}&=2\times 4-1\times 7-1\times 1 \\
    &=8-7-1 \\
    &=0\end{align*}$
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $ABC$.
    $\vec{n}$ est donc un vecteur normal à $(ABC)$ et $\mathscr{P}$.
    Par conséquent $\mathscr{P}$ et $(ABC)$ sont parallèles.
    $\quad$
    b. Une équation cartésienne du plan $(ABC)$ est donc de la forme $2x-y-z+d=0$
    Le point $B(1;0;-3)$ appartient au plan $(ABC)$. Ses coordonnées vérifient donc son équation
    $2\times 1-0-(-3)+d=0 \ssi d=-5$
    Une équation cartésienne du plan $(ABC)$ est donc $2x-y-z-5=0$.
    $\quad$
    c. Une représentation paramétrique de la droite $\mathscr{D}$ est
    $\begin{cases} x=1+2t\\y=2-t\\z=4-t\end{cases} \qquad ,t\in \R$
    $\quad$
    d. Les coordonnées du point $H$ sont solution du système :
    $\begin{align*}\begin{cases} x=1+2t\\y=2-t\\z=4-t\\2x-y-z-5=0\end{cases}& \ssi \begin{cases} x=1+2t\\y=2-t\\z=4-t\\2(1+2t)-(2-t)-(4-t)-5=0\end{cases} \\
    &\ssi \begin{cases} x=1+2t\\y=2-t\\z=4-t\\6t-9=0\end{cases} \\
    &\ssi \begin{cases} t=\dfrac{3}{2}\\x=4\\\dfrac{1}{2}\\z=\dfrac{5}{2}\end{cases}\end{align*}$
    Par conséquent $H$ a pour coordonnées $\left(4;\dfrac{1}{2}; \dfrac{5}{2}\right)$.
    $\quad$
  3. On a $AC=\sqrt{4^2+7^2+1^2}=\sqrt{66}$.
    Ainsi l’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{B}&=\dfrac{AB\times AB}{2} \\
    &=\dfrac{\sqrt{11}\times \sqrt{66}}{2} \\
    &=\dfrac{11\sqrt{6}}{2}\end{align*}$
    $[HE]$ est la hauteur de la pyramide $ABCE$ associée à la base $ABC$
    $\vect{HE}\left(-3;\dfrac{3}{2};\dfrac{3}{2}\right)$
    Par conséquent $HE=\sqrt{(-3)^2+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^2}=\sqrt{\dfrac{27}{2}}$
    Ainsi le volume de la pyramide $ABCE$  est :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times \dfrac{11\sqrt{6}}{2}\times \sqrt{\dfrac{27}{2}} \\
    &=16,5\end{align*}$
    $\quad$

Énoncé

Télécharger (PDF, 841KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. $f'(0)$ est le coefficient directeur de la droite $(AB)$ tangente à $\mathscr{C}_f$ en $A$.
    Ainsi,
    $\begin{align*} f'(0)&=\dfrac{20-5}{1-0} \\
    &=15\end{align*}$
    Réponse c
    $\quad$
  2. $A(0;5)$ appartient à $\mathscr{C}_f$. Donc $f(0)=5 \ssi b=5$.
    Donc $f(x)=(ax+5)\e^x$.
    Le point de coordonnées $(-0,5;0)$ appartient à $\mathscr{C}_f$.
    Donc $f(-0,5)=0 \ssi (-0,5a+5)\e^{-0,5}=0 \ssi -0,5a+5=0 \ssi a=10$
    (La fonction exponentielle est, en effet, strictement positive.)
    Réponse a
    $\quad$
  3. La fonction exponentielle est, en effet, strictement positive. Le signe de $f\dsec(x)$ ne dépend donc que de celui de $10x+25$.
    Or $10x+25>0 \ssi 10x>-25 \ssi x>-2,5$
    Et $10x+25=0 \ssi 10x=-25\ssi x=-2,5$
    Ainsi $f\dsec(x)$ change de signe en s’annulant en $-2,5$.
    Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$.
    Réponse c
    $\quad$
  4. Si on prend $U_n=-n$ et $V_n=2$ pour tout $n\in \N$ alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$. Mais $\lim\limits_{n\to +\infty} U_n=-\infty$. La réponse a est donc fausse.
    Si on prend $V_n=2+\dfrac{1}{n}$ et $U_n=V_n-1$ pour tout $n\in \N$. alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$ mais $V_n >2$ pour tout $n\in \N$ et $\lim\limits_{n\to +\infty} U_n=1$. Les reponses b et c sont fausses.
    Réponse d
    $\quad$
    Remarque : On pouvait également montrer que la réponse c était la bonne directement de la façon suivante :
    $\lim\limits_{n\to +\infty} V_n=2$. Il existe donc un entier naturel $n_0$ tel que, pour tout $n\pg n_0$, $\abs{V_n-2}<1$ (On peut remplacer $1$ par n’importe quel réel strictement positif).
    Ainsi, pour tout $n\pg n_0$ on a $-1< V_n-2<1$ soit $1<V_n<3$.
    Or, pour tout $n\in N$, on a $U_n\pp V_n$ donc, pour tout $n\pg n_0$, $U_n<3$.
    Ainsi, pour tout $n\in \N$, $U_n \pp \max\left(U_0,U_1,\ldots, U_{n_0},3\right)$ et la suite $\left(U_n\right)$ est majorée (mais on ne connaît pas le majorant).
    $\quad$

 

 

 

Ex 2

Exercice 2 (5 points)

  1. On a
    $\begin{align*} u_1&=f\left(u_0\right) \\
    &=f\left(\dfrac{1}{2}\right) \\
    &=\dfrac{2}{1+\dfrac{3}{2}} \\
    &=\dfrac{4}{5}\end{align*}$
    $\quad$
  2. a. Initialisation : On a $u_0=\dfrac{1}{2}$ et $u_1=\dfrac{4}{5}$ donc $\dfrac{1}{2} \pp u_0 \pp u_1 \pp 2$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$, c’est-à-dire $\dfrac{1}{2} \pp u_n\pp u_{n+1} \pp 2$.
    La fonction $f$ est croissante sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$.
    Ainsi $f\left(\dfrac{1}{2}\right) \pp f\left(u_n\right)\pp f\left(u_{n+1}\right) \pp f(2)$
    Soit $\dfrac{4}{5} \pp u_{n+1} \pp u_{n+2} \pp \dfrac{8}{7}$
    Donc $\dfrac{1}{2} \pp u_{n+1} \pp u_{n+2} \pp 2$.
    La propriété est, par conséquent, vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout $n\in \N$, on a $\dfrac{1}{2} \pp u_n \pp u_{n+1} \pp 2$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $2$. Elle est donc convergente.
    $\quad$
    c. La fonction $f$ est continue sur $\left[\dfrac{1}{2};2\right]$ comme quotient de fonctions continues dont le dénominateur ne s’annule pas.
    Ainsi $\ell$ est solution de l’équation, définie sur $\left[\dfrac{1}{2};2\right]$ :
    $\begin{align*} f(x)=x&\ssi \dfrac{4x}{1+3x}=x \\
    &\ssi 4x=x+3x^2\\
    &\ssi 3x^2-3x=0\\
    &\ssi 3x(x-1)=0\end{align*}$
    Les solutions de cette équation sont $0$ et $1$.
    $1$ est la seule valeur appartenant à $\left[\dfrac{1}{2};2\right]$.
    Par conséquent $\ell=1$.
    $\quad
  3. a. On peut écrire
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E):} \\
    \quad \text{u = 0.5} \\
    \quad \text{n = 0} \\
    \quad \text{while 1 – u >= E :} \\
    \qquad \text{u = 4 * u / (1 + 3 * u)} \\
    \qquad \text{n = n + 1} \\
    \quad \text{return n} \\
    \hline
    \end{array}$$
    $\quad$
    b. Si $E = 10^{-4}$
    Voici les premières valeurs (approchées pour certaines) de $u_n$ et de $1-u_n$
    $\begin{array}{|c|c|c|}
    \hline
    n& u_n &1-u_n \\ \hline
    0& 0,5& 0,5\\ \hline
    1& 0,8& 0,2\\ \hline
    2& 0,9411764706& 0,05882352941\\ \hline
    3& 0,9846153846& 0,01538461538\\ \hline
    4& 0,9961089494& 0,003891050584\\ \hline
    5& 0,9990243902& 0,0009756097561\\ \hline
    6& 0,999755919& 0,0002440810349\\ \hline
    7& 0,9999389686& 0,00006103143119\\ \hline
    \end{array}$
    Le programme renvoie donc $7$.
    $\quad$
  4. a. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\dfrac{u_{n+1}}{1-u_{n+1}} \\
    &=\dfrac{\dfrac{4u_n}{1+3u_n}}{1-\dfrac{4u_n}{1+3u_n}} \\
    &=\dfrac{4u_n}{1+3u_n-4u_n} \\
    &=\dfrac{4u_n}{1-u_n} \\
    &=4v_n\end{align*}$.
    La suite $\left(v_n\right)$ est donc géométrique de raison $4$ et de premier terme $v_0=\dfrac{u_0}{1-u_0}=1$.
    Ainsi, pour tout $n\in \N$, on a $v_n=4^n$.
    $\quad$
    b. Soit $n\in \N$.
    \begin{align*} v_n=\dfrac{u_n}{1-u_n} &\ssi v_n\left(1-u_n\right)=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n-u_nv_n=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n+u_nv_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n\left(1+v_n\right) \text{  et } u_n\neq 1\end{align*}$
    Ainsi $u_n=\dfrac{v_n}{1+v_n}$.
    $\quad$
    c. Soit $n\in \N$ on a
    $\begin{align*} u_n&=\dfrac{v_n}{1+v_n} \\
    &=\dfrac{4^n}{1+4^n} \\
    &=\dfrac{4^n}{4^n\left(0,25^n+1\right)} \\
    &=\dfrac{1}{1+0,25^n}\end{align*}$
    On a $-1<0,25<1$ donc $\lim\limits_{n\to +\infty} 0,25^n=0$ et $\lim\limits_{n\to +\infty} u_n=1$.

 

 

Ex 3

Exercice 3 (6 points)

Partie I : Effet de l’introduction d’une nouvelle espèce

  1. On a $f(0)=440$.
    Il y avait donc $440$ crapauds dans le lac lors de l’introduction des truites.
    $\quad$
  2. Pour tout $t\in [0;120]$ on a
    $\begin{align*} f'(t)&=(0,08t-8)\e^{\frac{t}{50}}+\left(0,04t^2-8t+400\right)\times \dfrac{1}{50}\e^{\frac{t}{50}} \\
    &=\left(0,08t-8+0,0008t^2-0,16t+8\right)\e^{\frac{t}{50}} \\
    &=\left(0,0008t^2-0,08t\right)\e^{\frac{t}{50}} \\
    &=0,0008t(t-100)\e^{\frac{t}{50}} \\
    &=8\times 10^{-4}t(t-100)\e^{\frac{t}{50}} \end{align*}$
    $\quad$
  3. La fonction exponentielle est strictement positive sur $\R$.
    Sur $[0;120]$ on a $t\pg 0$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $t-100$.
    Or $t-100=0 \ssi t=100$ et $t-100>0 \ssi t>100$.
    On obtient donc le tableau de variations suivant :
    $\quad$
  4. a. D’après le tableau de variations, la fonction $f$ atteint son minimum pour $t=100$.
    Ainsi, le nombre de crapauds atteint son minimum au bout de $100$ jours. Il y a alors $40$ crapauds dans le lac.
    $\quad$
    b. La fonction $f$ est strictement croissante sur l’intervalle $[100;120]$ et $f(120)\approx 216,37 > 140$.
    Ainsi, le nombre de crapauds dépassera un jour $140$ individus après avoir atteint son minimum.
    $\quad$
    c. D’après la calculatrice, $f(t)=140$ pour $t\approx 115,72$.
    C’est donc à partir du $116$ ième jour que le nombre de crapauds dépassera $140$ individus.
    $\quad$

 

Partie II : Effet de la Chytridiomycose sur une population de têtards

  1. On obtient l’arbre de probabilité suivant :
    $\quad$$\quad$
  2. $\left(L,\conj{L}\right)$ est un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(T)&=P(L)\times P_L(T)+P\left(\conj{L}\right)P_{\conj{L}}(T) \\
    &=0,25 \times 0,74+0\\
    &=0,185\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_{\conj{T}}(L)&=\dfrac{P(L)\times P_L\left(\conj{T}\right)}{1-P(T)} \\
    &=\dfrac{0,25 \times 0,26}{1-0,185} \\
    &\approx 0,080\end{align*}$
    La probabilité que le lac soit infecté sachant que le tétard n’est pas contaminé est environ égale à $0,08$.
    $\quad$

 

Ex A

Exercice A (5 points)

  1. On a $I\left(\dfrac{1}{4};0;1\right)$, $J\left(0;\dfrac{1}{4};1\right)$ et $K\left(1;0;\dfrac{1}{4}\right)$.
    $\quad$
  2. On a $\vect{AG}\begin{pmatrix}1\\1\\1\end{pmatrix}$, $\vect{IJ}\begin{pmatrix} -\dfrac{1}{4}\\[2mm] \dfrac{1}{4}\\[2mm]\\0\end{pmatrix}$ et $\vect{IK}\begin{pmatrix} \dfrac{3}{4} \\[2mm]0\\-\dfrac{3}{4}\end{pmatrix}$
    Ainsi $\vect{AG}.\vect{IJ}=-\dfrac{1}{4}+0+\dfrac{1}{4}=0$ et $\vect{AG}.\vect{IK}=\dfrac{3}{4}+0-\dfrac{3}{4}=0$
    Le vecteur $\vect{AG}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(IJK)$. Il est par conséquent normal à celui-ci.
    $\quad$
  3. Une équation cartésienne du plan $(IJK)$ est donc de la forme $x+y+z+d=0$.
    Le point $I\left(\dfrac{1}{4};0;1\right)$ appartient à ce plan.
    Ainsi $\dfrac{1}{4}+0+1+d=0 \ssi d=-\dfrac{5}{4}$
    Une équation cartésienne du plan $(IJK)$ est donc $x+y+z-\dfrac{5}{4}=0$ soit $4x+4y+4z-5=0$.
    $\quad$
  4. On a $\vect{BC}\begin{pmatrix} 0\\1\\0\end{pmatrix}$
    Une représentation paramétrique de $(BC)$ est donc $\begin{cases} x=1\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  5. On résout le système
    $\begin{align*} \begin{cases} x=1\\y=t\\z=0\\4x+4y+4z-5=0 \end{cases} &\ssi \begin{cases} x=1\\y=t\\z=0\\4+4t-5=0 \end{cases} \\
    &\ssi \begin{cases}x=1\\y=t\\z=0\\t=\dfrac{1}{4}\end{cases}\end{align*}$
    Ainsi les coordonnées du point $L$ sont $\left(1;\dfrac{1}{4};0\right)$.
    $\quad$
  6. On obtient la figure suivante :
    $\quad$

    $\quad$
  7. On a $\vect{LM}\begin{pmatrix} -\dfrac{3}{4} \\[2mm]\dfrac{3}{4}\\[2mm]0\end{pmatrix}$
    Ainsi $\vect{LM}=3\vect{IJ}$
    Les vecteurs $\vect{LM}$ et $\vect{IJ}$ sont colinéaires. Les points $I,J,L$ et $M$ sont donc coplanaires.
    $\quad$

 

 

 

Ex B

Exercice B (5 points)

Partie I

  1. On a $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{x\to 0^+} h(x)=-\infty$.
    $\quad$
  2. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\quad$
  3. La fonction $h$ est dérivable sur $]0;+\infty[$ en tant que somme et quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]0;+\infty[$.
    Ainsi, pour tout $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)\times 1}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
  4. Le signe de $h'(x)$ ne dépend que de celui de $1-\ln(x)$.
    Or $1-\ln(x)=0 \ssi \ln(x)=1 \ssi x=\e$ et $1-\ln(x)>0 \ssi -\ln(x)>-1 \ssi \ln(x)<1 \ssi x< \e$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$
  5. Sur l’intervalle $[\e;+\infty[$ on a $h(x)>1$. L’équation $h(x)=0$ ne possède donc pas de solution sur cet intervalle.
    Sur l’intervalle $]0;\e[$, la fonction $h$ est continue (car dérivable) et strictement croissante.
    De plus, $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h(\e)=\dfrac{1+\e}{\e}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une unique solution sur $]0;+\e[$.
    Ainsi, l’équation $h(x)=0$ possède une unique solution sur $]0;+\infty[$.
    De plus $h(0,5) \approx -0,39<0$ et $h(0,6)\approx 0,15>0$
    La fonction $h$ est strictement croissante sur $]0;\e[$ donc $0,5<\alpha<0,6$.
    $\quad$

Partie II

  1. Le coefficient directeur de $D_a$ au point d’abscisse $a$ est $g'(a)=\dfrac{1}{a}$.
    $\quad$
  2. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=x\times \dfrac{1}{x}+1\times \ln(x)-1 \\
    &=1+\ln(x)-1\\
    &=\ln(x)\end{align*}$
    Ainsi, le coefficient directeur de $T_a$ est $f'(a)=\ln(a)$.
    $\quad$
  3. $T_a$ et $D_a$ sont perpendiculaires
    $\ssi \dfrac{1}{a}\ln(a)=-1 $
    $\ssi 1+\dfrac{\ln(a)}{a}=0$
    $\ssi h(a)=0$
    $\ssi a=\alpha$
    Il existe donc une unique valeur de $a$ pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires. Il s’agit de $a=\alpha$.
    $\quad$

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Le graphique ci-dessous donne la représentation graphique $\mathscr{C}_f$ dans un repère orthogonal d’une fonction $f$ définie et dérivable sur $\R$.
On notera $f’$ la fonction dérivée de $f$ .
On donne les points $A$ de coordonnées $(0; 5)$ et $B$ de coordonnées $(1; 20)$. Le point $C$ est le point de la courbe $\mathscr{C}_f$ ayant pour abscisse $-2,5$. La droite $(AB)$ est la
tangente à la courbe $\mathscr{C}_f$ au point $A$.
Les questions 1 à 3 se rapportent à cette même fonction $f$.

  1. On peut affirmer que :
    a. $f'(-0,5)=0$
    b. si $x\in]-\infty ; -0,5[$, alors $f'(x)< 0$
    c. $f'(0) = 15$
    d. la fonction dérivée $f’$ ne change pas de signe sur $\R$.
    $\quad$
  2. On admet que la fonction $f$ représentée ci-dessus est définie sur $\R$ par $f(x) = (ax +b)\e^x$, où $a$ et $b$ sont deux nombres réels et que sa courbe coupe l’axe des abscisses en son point de coordonnées $(-0,5 ; 0)$.
    On peut affirmer que :
    a. $a = 10$ et $b = 5$
    b. $a = 2,5$ et $b = -0,5$
    c. $a = -1,5$ et $b = 5$
    d. $a=0$ et $b=5$
    $\quad$
  3. . On admet que la dérivée seconde de la fonction $f$ est définie sur $\R$ par : $f\dsec(x)= (10x +25)\e^x$.
    On peut affirmer que :
    a. La fonction $f$ est convexe sur $\R$
    b. La fonction $f$ est concave sur $\R$
    c. Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$
    d. $\mathscr{C}_f$ n’admet pas de point d’inflexion
    $\quad$
  4. On considère deux suites $\left(U_n\right)$ et $\left(V_n\right)$ définies sur $\N$ telles que :
    $\bullet$ pour tout entier naturel $n$, $U_n \pp V_n$ ;
    $\bullet$  $\lim\limits_{n\to +\infty} V_n=2$.
    On peut affirmer que :
    a. la suite $\left(U_n\right)$ converge
    b. pour tout entier naturel $n$, $V_n \pp 2$
    c. la suite $\left(U_n\right)$ diverge
    d. la suite $\left(U_n\right)$ est majorée
    $\quad$

$\quad$

Exercice 2     5 points

Soit $f$ la fonction définie sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$ par $$f(x)

On considère la suite $\left(u_n\right)$ définie par : $u_0=\dfrac{1}{2}$ et, pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$.

  1. Calculer $u_1$.
    $\quad$
  2. On admet que la fonction f est croissante sur l’intervalle ¸$\left]-\dfrac{1}{3};+\infty\right[$.
    a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $\dfrac{1}{2} \pp u_n \pp u_{n+1}\pp 2$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    c. On appelle $\ell$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $\ell$.
    $\quad$
  3. a. Recopier et compléter la fonction Python ci-dessous qui, pour tout réel positif $E$, détermine la plus petite valeur $P$ tel que : $1-u_P < E$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E) :}\\
    \quad \text{u = 0.5}\\
    \quad \text{n = 0}\\
    \quad \text{while . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{u = . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. Donner la valeur renvoyée par ce programme dans le cas où $E = 10^{-4}$.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par : $$v_n =\dfrac{u_n}{1-u_n}$$
    a. Montrer que la suite $\left(v_n\right)$ est géométrique de raison $4$.
    En déduire, pour tout entier naturel $n$, l’expression de $v_n$ en fonction de $n$.
    $\quad$
    b. Démontrer que, pour tout entier naturel $n$, on a : $u_n = \dfrac{v_n}{v_n+1}$.
    $\quad$
    c. Montrer alors que, pour tout entier naturel $n$ , on a :
    $$u_n =\dfrac{1}{1+0,25^n}$$
    Retrouver par le calcul la limite de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 3     5 points

Dans le parc national des Pyrénées, un chercheur travaille sur le déclin d’une espèce protégée dans les lacs de haute-montagne : le «crapaud accoucheur».
Les parties I et II peuvent être abordées de façon indépendante.

Partie I : Effet de l’introduction d’une nouvelle espèce.

Dans certains lacs des Pyrénées, des truites ont été introduites par l’homme afin de permettre des activités de pêche en montagne. Le chercheur a étudié l’impact de cette introduction sur la population de crapauds accoucheurs d’un lac.
Ses études précédentes l’amènent à modéliser l’évolution de cette population en fonction du temps par la fonction f suivante : $$f(t)=\left(0,04t^2-8t+400\right)\e^{\frac{t}{50}}+40 \text{ pour } t\in [0;120]$$

La variable $t$ représente le temps écoulé, en jour, à partir de l’introduction à l’instant $t = 0$ des truites dans le lac, et $f(t)$ modélise le nombre de crapauds à l’instant $t$.

  1. Déterminer le nombre de crapauds présents dans le lac lors de l’introduction des truites.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 120]$ et on note $f′$ sa fonction dérivée.
    Montrer, en faisant apparaitre les étapes du calcul, que pour tout nombre réel $t$ appartenant à l’intervalle $[0; 120]$ on a : $$f'(t)=t(t-100)\e^{\frac{t}{50}}\times 8\times 10^{-4}$$
    $\quad$
  3. Étudier les variations de la fonction $f$ sur l’intervalle $[0; 120]$, puis dresser le tableau de variations de $f$ sur cet intervalle (on donnera des valeurs approchées au centième).
    $\quad$
  4. Selon cette modélisation :
    a. Déterminer le nombre de jours $J$ nécessaires afin que le nombre de crapauds atteigne son minimum. Quel est ce nombre minimum ?
    $\quad$
    b. Justifier que, après avoir atteint son minimum, le nombre de crapauds dépassera un jour $140$ individus.
    $\quad$
    c. À l’aide de la calculatrice, déterminer la durée en jour à partir de laquelle le nombre de crapauds dépassera $140$ individus.
    $\quad$

Partie II : Effet de la Chytridiomycose sur une population de têtards

Une des principales causes du déclin de cette espèce de crapaud en haute montagne est une maladie, la « Chytridiomycose », provoquée par un champignon.
Le chercheur considère que :

  • Les trois quarts des lacs de montagne des Pyrénées ne sont pas infectés par le champignon, c’est-à-dire qu’ils ne contiennent aucun têtard (larve du crapaud) contaminé.
  • Dans les lacs restants, la probabilité qu’un têtard soit contaminé est de $0,74$.

Le chercheur choisit au hasard un lac des Pyrénées, et y procède à des prélèvements.
Pour la suite de l’exercice, les résultats seront arrondis au millième lorsque cela est nécessaire.
Le chercheur prélève au hasard un têtard du lac choisi afin d’effectuer un test avant de le relâcher.
On notera $T$ l’évènement « Le têtard est contaminé par la maladie » et $L$ l’évènement « Le lac est infecté par le champignon ».
On notera $\conj{L}$ l’évènement contraire de $L$ et $\conj{T}$ l’évènement contraire de $T$.

  1. Recopier et compléter l’arbre de probabilité suivant en utilisant les données de l’énoncé :$\quad$
  2. Montrer que la probabilité $P(T )$ que le têtard prélevé soit contaminé est de $0,185$.
    $\quad$
  3. Le têtard n’est pas contaminé. Quelle est la probabilité que le lac soit infecté ?
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Géométrie de l’espace rapporté à un repère orthonormé.

On considère le cube $ABCDEFGH$ donné en annexe.
On donne trois points $I$, $J$ et $K$ vérifiant : $$\vect{EI}=\dfrac{1}{4}\vect{EH}, \quad \vect{EJ}=\dfrac{1}{4}\vect{EF},\quad \vect{BK}=\dfrac{1}{4}\vect{BF}$$
Les points $I$, $J$ et $K$ sont représentés sur la figure donnée en annexe, à compléter et à rendre avec la copie.
On se place dans le repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. Donner sans justification les coordonnées des points $I$, $J$ et $K$.
    $\quad$
  2. Démontrer que le vecteur $\vect{AG}$ est normal au plan $(IJK)$.
    $\quad$
  3. Montrer qu’une équation cartésienne du plan $(IJK)$ est $4x +4y +4z -5 = 0$.
    $\quad$
  4. Déterminer une représentation paramétrique de la droite $(BC)$.
    $\quad$
  5. En déduire les coordonnées du point $L$, point d’intersection de la droite $(BC)$ avec le plan $(IJK)$.
    $\quad$
  6. Sur la figure en annexe, placer le point $L$ et construire  l’intersection du plan $(IJK)$ avec la face $(BCGF)$.
    $\quad$
  7. Soit $M\left(\dfrac{1}{4};1;0\right)$. Montrer que les points $I$, $J$, $L$ et $M$ sont coplanaires.
    $\quad$

ANNEXE

$\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme.

Partie I

On considère la fonction h définie sur l’intervalle $]0 ; +\infty[$ par : $$h(x) = 1+\dfrac{\ln(x)}{x}$$

  1. Déterminer la limite de la fonction $h$ en $0$.
    $\quad$
  2. Déterminer la limite de la fonction $h$ en $+\infty$.
    $\quad$
  3. On note $h’$ la fonction dérivée de $h$. Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $$h'(x) =\dfrac{1-\ln(x)}{x^2}$$
    $\quad$
  4. Dresser le tableau de variations de la fonction $h$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  5. Démontrer que l’équation $h(x) = 0$ admet une unique solution $\alpha$ dans $]0 ; +\infty[$.
    Justifier que l’on a : $0,5 < \alpha < 0,6$.$\quad$

Partie II

Dans cette partie, on considère les fonctions $f$ et $g$ définies sur $]0 ; +\infty[$ par : $$f (x) = x \ln(x)− x;\quad g(x) = \ln(x)$$
On note $\mathscr{C}_f$ et $\mathscr{C_g}$ les courbes représentant respectivement les fonctions $f$ et $g$ dans un repère orthonormé $\Oij$.
Pout tout nombre réel $a$ strictement positif, on appelle :

  • $T_a$ la tangente à $\mathscr{C}_f$ en son point d’abscisse $a$ ;
  • $D_a$ la tangente à $\mathscr{C}_g$ en son point d’abscisse $a$.

Les courbes $\mathscr{C}_f$ et $\mathscr{C}g$ ainsi que deux tangentes $T_a$ et $D_a$ sont représentées ci-dessous.

On recherche d’éventuelles valeurs de $a$ pour lesquelles les droites $T_a$ et $D_a$ sont perpendiculaires.
Soit $a$ un nombre réel appartenant à l’intervalle $]0 ; +\infty[$.

  1. Justifier que la droite $D_a$ a pour coefficient directeur $\dfrac{1}{a}$.
    $\quad$
  2. Justifier que la droite $T_a$ a pour coefficient directeur $\ln(a)$.

On rappelle que dans un repère orthonormé, deux droites de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si et seulement si $mm’ = -1$.

  1. Démontrer qu’il existe une unique valeur de $a$, que l’on identifiera, pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Asie – sujet 2 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    f'(x)&=(2x-2)\e^x+\left(x^2-2x-1\right)\e^x \\
    &=\left(2x-2+x^2-2x-1\right)\e^x \\
    &=\left(x^2-3\right)\e^x\end{align*}$
    L’affirmation A est donc fausse.
    $f'(2)>0$ et $f(0)<0$ : l’affirmation B est donc fausse
    Réponse C
    $\quad$
  2. $\lim\limits_{x\to +\infty} \e^x=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=0$
    La droite d’équation $y=0$ est donc asymptote à la courbe représentant la fonction $f$.
    $\lim\limits_{x\to -\infty} \e^x=-\infty$ donc $\lim\limits_{x\to -\infty} f(x)=\dfrac{3}{5}$
    La droite d’équation $y=\dfrac{3}{5}$ est donc asymptote à la courbe représentant la fonction $f$.
    Réponse C
    $\quad$
  3. La fonction $f\dsec$ s’annule en changeant de signe à trois reprise.
    La courbe représentant la fonction $f$ possède donc trois points d’inflexion.
    Réponse B
    $\quad$
  4. $\left(u_n\right)$ est une suite définie de manière explicite par un polynôme du second degré dont le coefficient principal est $a=1>0$.
    La fonction du second degré associée possède un minimum, d’abscisse $\dfrac{17}{2}$.
    $\left(u_n\right)$ est donc minorée.
    Réponse A
    $\quad$
  5. Cette fonction renvoie le plus entier naturel $n$ tel que $u_n\pg 45$.
    Réponse ARemarque :dans les faits cette fonction ne renvoie aucun résultat car la suite $\left(u_n\right)$ est croissante et majorée par $20$. Il est donc impossible que $u_n\pg 45$ !
    $\quad$

Ex 2

Exercice 2 (5 points)

  1. On a $A(0;0;0)$, $C(1;1;0)$ et $D(0;1;0)$
    Par conséquent $K\left(\dfrac{1}{2};1;0\right)$
    Donc $\vect{AK}\left(\dfrac{1}{2};1;0\right)$ et $\vect{AL}\left(0;1;\dfrac{3}{2}\right)$.
    $\quad$
  2. a. On a $\vec{n}.\vect{AK}=3-3+0=0$ et $\vec{n}.\vect{AL}=0-3+3=0$.
    $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AKL)$.
    C’est par conséquent un vecteur normal au plan $(AKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(AKL)$ est donc de la forme $6x-3y+2z+d=0$.
    Le point $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Une équation cartésienne du plan $(AKL)$ est alors $6x-3y+2z=0$.
    $\quad$
    c. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Ainsi une représentation paramétrique de la droite $\Delta$ est $$\begin{cases} x=6t\\y=1-3t\\z=2t\end{cases} \quad,t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{3}{49}$, on constate que le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient à la droite $\Delta$.
    De plus
    $\begin{align*} 6\times \dfrac{18}{49}-3\dfrac{40}{49}+2\dfrac{6}{49}&=\dfrac{108}{49}-\dfrac{120}{49}+\dfrac{12}{49} \\
    &=0\end{align*}$
    Le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient donc également au plan $(AKL)$.
    Par conséquent $N$ a pour coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$.
    $\quad$
  3. a. L’aire de la base $ADK$ est
    $\begin{align*} \mathcal{A}&=\dfrac{AD\times DK}{2} \\
    &=\dfrac{1\times \dfrac{1}{2}}{2} \\
    &=\dfrac{1}{4}\end{align*}$
    Ainsi
    $\begin{align*} \mathcal{V}&=\dfrac{\mathcal{A}\times DL}{3} \\
    &=\dfrac{\dfrac{1}{4}\times \dfrac{3}{2}}{3} \\
    &=\dfrac{1}{8}\end{align*}$
    $\quad$
    b. La distance du point $D$ au plan $(AKL)$ est
    $\begin{align*} DN&=\sqrt{\left(\dfrac{18}{49}\right)^2+\left(\dfrac{40}{49}-1\right)^2+\left(\dfrac{6}{49}\right)^2} \\
    &=\sqrt{\dfrac{9}{49}} \\
    &=\dfrac{3}{7}\end{align*}$
    $\quad$
    c. On a
    $\begin{align*} \mathcal{V}=\dfrac{1}{8}&\ssi \dfrac{\mathcal{A}_{AKL}\times DN}{3}=\dfrac{1}{8} \\
    &\ssi \dfrac{3}{7}\mathcal{A}_{AKL}=\dfrac{3}{8} \\
    &\ssi \mathcal{A}_{AKL}=\dfrac{7}{8}\end{align*}$
    L’aire du triangle $AKL$ est donc $\dfrac{7}{8}$.
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. Il y a $\dbinom{9}{3}=84$ façons différentes de positionner les trois cœurs.
    $\quad$
  2. Il y a $3$ façons de placer les cœurs sur une ligne pour gagner.
    Il y a $3$ façons de placer les cœurs sur une colonne pour gagner.
    Il y a $2$ façons de placer les cœurs sur une diagonale pour gagner.
    La probabilité qu’un ticket soit gagnant est donc $\dfrac{3+3+2}{84}=\dfrac{2}{21}$.
    $\quad$
  3. On appelle $G$ la variable aléatoire égale au gain algébrique du joeur.
    $G$ ne prend donc que $2$ valeurs $4$ et $-1$.
    $p(G=4)=\dfrac{2}{21}$ et $p(G=-1)=\dfrac{19}{21}$.
    L’espérance de $G$ est :
    $\begin{align*} E(G)&=4\times \dfrac{2}{21}+(-1)\times \dfrac{19}{21} \\
    &=-\dfrac{11}{21}\\
    &<0\end{align*}$
    Le jeu est donc défavorable au joueur.
    $\quad$
  4. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : le joueur gagne ou le joueur perd.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{21}$.
    $\quad$
    b. $p(X=5)=\dbinom{20}{5}\left(\dfrac{2}{21}\right)^5\left(\dfrac{19}{21}\right)^{15} \approx 0,027$.
    $\quad$
    c. On a
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-\left(\dfrac{19}{21}\right)^{20} \\
    & \approx 0,865\end{align*}$
    La probabilité qu’il y ait au moins un gagnant est environ égale à $0,865$.
    $\quad$

 

 

Ex A

Exercice A (5 points)

Partie I : modèle discret

  1. On a
    $\begin{align*} u_1&=u_0+0,05\left(20-u_0\right) \\
    &=1+0,05\times 19\\
    &=1,95\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}&=u_n+0,05\left(20-u_n\right) \\
    &=u_n+1-0,05u_n \\
    &=0,95u_n+1\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ on a $v_n=20-u_n$ soit $u_n=20-v_n$.
    $\begin{align*} v_{n+1}&=20-u_{n+1} \\
    &=20-0,95u_n-1 \\
    &=19-0,95u_n \\
    &=19-0,95\left(20-v_n\right) \\
    &=19-19+0,95v_n\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=20-1=19$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $v_n=19\times 0,95^n$.
    Par conséquent $u_n=20-19\times 0,95^n$.
    $\quad$
  3. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 0,95^n=0$ et $\lim\limits_{n\to +\infty}u_n=20$.
    $\quad$

Partie II : modèle continu

  1. La fonction $L$ est dérivable sur $[0;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $t\pg 0$ on a d’une part :
    $\begin{align*} L'(t)&=-19\times (-0,05)\e^{-0,05t}\\
    &=0,95\e^{-0,05t}\end{align*}$
    D’autre part :
    $\begin{align*} 0,05\left(20-L(t)\right)&=0,05\left(20-20+19\e^{-0,05t}\right) \\
    &=0,05 \times 19\e^{-0,05t} \\
    &=0,95\e^{-0,05t}\end{align*}$
    Ainsi $L$ est solution de $(E)$.
    De plus $L(0)=20-19=1$.
    $\quad$
  2. a. On a $L'(0)=0,95$ et $L'(5)=0,95\e^{-0,25} \approx 0,74$.
    Ainsi $L'(0)>L'(5)$
    $\quad$
    b. $\lim\limits_{t\to +\infty} -0,05t=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{t\to +\infty} L'(t)=0$.
    Ce résultat est cohérent avec la description du modèle de croissance exposé au début de l’exercice : le bambou croît de moins en moins rapidement et atteint finalement une taille de $20$ mètres. Au début de l’observation il mesure bien $1$ mètre.
    $\quad$

Ex B

Exercice B (5 points)

Partie I

  1. On a pu saisir la formule $=B2-\ln(B2-1)$.
    $\quad$
  2. Il semblerait que la suite $\left(u_n\right)$ soit décroissante et converge vers $2$.
    $\quad$

Partie II

  1. $\lim\limits_{x\to 1} x-1=0$ et $\lim\limits_{X\to 0} \ln(X)=-\infty$
    Donc $\lim\limits_{x\to 1} f(x)=+\infty$.
    $\quad$
  2. a. $f$ est dérivable sur $]1;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $x>1$ on a
    $\begin{align*} f'(x)&=1-\dfrac{1}{x-1} \\
    &=\dfrac{x-1-1}{x-1} \\
    &=\dfrac{x-2}{x-1}\end{align*}$
    $\quad$
    b. Le signe de $f'(x)$ ne dépend que de celui de $x-2$.
    Or $x-2=0 \ssi x=2$ et $x-2>0 \ssi x>2$.
    On obtient donc le tableau de signes suivant :
    $\quad$$\quad$
    c. D’après la question précédente, la fonction $f$ admet $2$ pour minimum atteint pour $x=2$.
    Ainsi, pour tout réel $x\pg 2, ~f(x)\pg 2$.
    $\quad$

Partie III

  1. Initialisation : Si $n=0$ alors $u_0=10\pg 2$. La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n\in \N$.
    Donc $u_n\pg 2$.
    D’après la question précédente $u_{n+1}=f\left(u_n\right) \pg 2$.
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n\pg 2$.
    $\quad$
  2. Soit $n\in \N$
    $\begin{align*} u_{n+1}-u_n&= u_n-\ln\left(u_n-1\right)-u_n \\
    &=-\ln\left(u_n-1\right)\end{align*}$
    Or $u_n\pg 2$ donc $u_n-1\pg 1$ et $\ln\left(u_n-1\right)\pg 0$.
    Donc $u_{n+1}-u_n \pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $2$. Elle converge donc.
    $\quad$
  4. $\ell$ est donc solution de l’équation $f(x)=x$.
    Or
    $\begin{align*} f(x)=x&\ssi x-\ln(x-1)=x\\
    &\ssi -\ln(x-1)=0\\
    &\ssi x-1=1 \\
    &\ssi x=2\end{align*}$
    Par conséquent $\ell=2$.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

Cet exercice est un questionnaire à choix multiples (QCM)

Pour chaque question, trois affirmations sont proposées, une seule de ces affirmations est exacte.
Le candidat recopiera sur sa copie le numéro de chaque question et la lettre de la réponse choisie pour celle-ci.
AUCUNE JUSTIFICATION n’est demandée. Une réponse fausse ou l’absence de réponse n’enlève aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par $$f(x) = \left(x^2-2x-1\right)\e^x$$
    A. La fonction dérivée de $f$ est la fonction définie par $f'(x) = (2x-2)\e^x$.
    B. La fonction $f$ est décroissante sur l’intervalle $]-\infty;2]$.
    C. $\ds\lim\limits_{x \to -\infty} f(x) = 0$.
    $\quad$
  2. On considère la fonction $f$ définie sur $\R$ par $f(x) = \dfrac{3}{5 + \e^x}$.
    Sa courbe représentative dans un repère admet :
    A. une seule asymptote horizontale;
    B. une asymptote horizontale et une asymptote verticale;
    C. deux asymptotes horizontales.
    $\quad$
  3. On donne ci-dessous la courbe $\mathcal{C}_{f”}$ représentant la fonction dérivée seconde $f”$ d’une fonction $f$ définie et deux fois dérivable sur l’intervalle $[-3,5;6]$.
    $\quad$

    A. La fonction $f$ est convexe sur l’intervalle $[-3;3]$.
    B. La fonction $f$ admet trois points d’inflexion.
    C. La fonction dérivée $f’$ de $f$ est décroissante sur l’intervalle $[0;2]$.
    $\quad$

  4. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n = n^2-17n+20$.
    A. La suite $\left(u_n\right)$ est minorée.
    B. La suite $\left(u_n\right)$ est décroissante.
    C. L’un des termes de la suite $\left(u_n\right)$ est égal à $2~021$.
    $\quad$
  5. On considère la suite $\left(u_n\right)$ définie par $u_0 = 2$ et, pour tout entier naturel $n$, $u_{n+1} = 0,75u_n +5$.
    On considère la fonction « seuil » suivante écrite en Python :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() }:\\
    \quad \text{u} = 2\\
    \quad \text{n} = 0\\
    \quad \text{while u} < 45 :\\
    \qquad \text{u} = 0.75*u + 5\\
    \qquad \text{n} = \text{n} + 1\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Cette fonction renvoie :
    A. la plus petite valeur de $n$ telle que $u_n \pg 45$ ;
    B. la plus petite valeur de $n$ telle que $u_n < 45$ ;
    C. la plus grande valeur de $n$ telle que $u_n \pg 45$.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un pavé droit $ABCDEFGH$ tel que $AB = AD = 1$ et $AE = 2$, représenté ci- dessous.
Le point $I$ est le milieu du segment $[AE]$. Le point $K$ est le milieu du segment $[DC]$.
Le point $L$ est défini par: $\vect{DL} = \dfrac{3}{2}\vect{AI}$. $N$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.

 

 

On se place dans le repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AI}\right)$.
On admet que le point $L$ a pour coordonnées $\left(0;1;\dfrac{3}{2}\right)$.

  1. Déterminer les coordonnées des vecteurs $\vect{AK}$ et $\vect{AL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vect{n}$ de coordonnées $(6;-3;2)$ est un vecteur normal au plan $(AKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(AKL)$.
    $\quad$
    c. Déterminer un système d’équations paramétriques de la droite $\Delta$ passant par $D$ et perpendiculaire au plan $(AKL)$.
    $\quad$
    d. En déduire que le point $N$ de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.
    $\quad$

On rappelle que le volume $\mathcal{V}$ d’un tétraèdre est donné par la formule : $$\mathcal{V} = \dfrac{1}{3}\times (\text{aire de la base}) \times \text{hauteur}$$

  1. a. Calculer le volume du tétraèdre $ADKL$ en utilisant le triangle $ADK$ comme base.
    $\quad$
    b. Calculer la distance du point $D$ au plan $(AKL)$.
    $\quad$
    c. Déduire des questions précédentes l’aire du triangle $AKL$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Une société de jeu en ligne propose une nouvelle application pour smartphone nommée « Tickets coeurs! ».
Chaque participant génère sur son smartphone un ticket comportant une grille de taille $3 \times 3$ sur laquelle sont placés trois cœurs répartis au hasard, comme par exemple ci-dessous.

 

 

Le ticket est gagnant si les trois cœurs sont positionnés côte à côte sur une même ligne, sur une même colonne ou sur une même diagonale.

  1. Justifier qu’il y a exactement $84$ façons différentes de positionner les trois cœurs sur une grille.
    $\quad$
  2. Montrer que la probabilité qu’un ticket soit gagnant est égale à $\dfrac{2}{21}$.
    $\quad$
  3. Lorsqu’un joueur génère un ticket, la société prélève $1$ € sur son compte en banque. Si le ticket est gagnant, la société verse alors au joueur $5$ €. Le jeu est-il favorable au joueur?
    $\quad$
  4. Un joueur décide de générer $20$ tickets sur cette application. On suppose que les générations des tickets sont indépendantes entre elles.
    a. Donner la loi de probabilité de la variable aléatoire $X$ qui compte le nombre de tickets gagnants parmi les $20$ tickets générés.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X = 5)$.
    $\quad$
    c. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X \pg 1)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • Suites
  • Équations différentielles

Dans cet exercice, on s’intéresse à la croissance du bambou Moso de taille maximale $20$ mètres.
Le modèle de croissance de Ludwig von Bertalanffy suppose que la vitesse de croissance pour un tel bambou est proportionnelle à l’écart entre sa taille et la taille maximale.

Partie I : modèle discret

Dans cette partie, on observe un bambou de taille initiale $1$ mètre.
Pour tout entier naturel $n$, on note $u_n$ la taille, en mètre, du bambou $n$ jours après le début de l’observation. On a ainsi $u_0 = 1$.
Le modèle de von Bertalanffy pour la croissance du bambou entre deux jours consécutifs se traduit par l’égalité : $$u_{n+1} = u_n + 0,05\left(20-u_n\right)~~ \text{pour tout entier naturel } n$$

  1. Vérifier que $u_1 = 1,95$.
    $\quad$
  2. a. Montrer que pour tout entier naturel $n$, $u_{n+1} = 0,95u_n + 1$.
    $\quad$
    b. On pose pour tout entier naturel $n$, $v_n = 20-u_n$.
    Démontrer que la suite $\left(v_n\right)$ est une suite géométrique dont on précisera le terme initial $v_0$ et la raison.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $u_n = 20-19 \times 0,95^n$.
    $\quad$
  3. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II : modèle continu

Dans cette partie, on souhaite modéliser la taille du même bambou Moso par une fonction donnant sa taille, en mètre, en fonction du temps $t$ exprimé en jour.
D’après le modèle de von Bertalanffy, cette fonction est solution de l’équation différentielle $$(E) \qquad y’ = 0,05(20-y)$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0;+\infty[$ et $y’$ désigne sa fonction dérivée.
Soit la fonction $L$ définie sur l’intervalle $[0;+\infty[$ par $$L(t) = 20-19\e^{-0,05t}$$

  1. Vérifier que la fonction $L$ est une solution de $(E)$ et qu’on a également $L(0) = 1$.
    $\quad$
  2. On prend cette fonction $L$ comme modèle et on admet que, si on note $L’$ sa fonction dérivée, $L'(t)$ représente la vitesse de croissance du bambou à l’instant $t$.
    a. Comparer $L'(0)$ et $L'(5)$.
    $\quad$
    b. Calculer la limite de la fonction dérivée $L’$ en $+\infty$.
    Ce résultat est-il en cohérence avec la description du modèle de croissance exposé au début de l’exercice ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Suites, étude de fonction
  • Fonction logarithme

Soit la fonction $f$ définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$
On considère la suite $\left(u_n\right)$ de terme initial $u_0 = 10$ et telle que $u_{n+1} = f\left(u_n\right)$ pour tout entier naturel $n$.

Partie I :

La feuille de calcul ci-dessous a permis d’obtenir des valeurs approchées des premiers termes de la suite $\left(u_n\right)$.

$$\begin{array}{|c|c|c|}
\hline
&\phantom{12345}A\phantom{12345} &B\\
\hline
1 &n&u_n\\
\hline
2 &0&10\\
\hline
3& 1&7,802~775~42\\
\hline
4& 2&5,885~444~74\\
\hline
5& 3&4,299~184~42\\
\hline
6& 4&3,105~509~13\\
\hline
7& 5&2,360~951~82\\
\hline
8& 6&2,052~767~5\\
\hline
9& 7&2,001~345~09\\
\hline
10& 8&2,000~000~9\\
\hline
\end{array}$$

  1. Quelle formule a été saisie dans la cellule B3 pour permettre le calcul des valeurs approchées de $\left(u_n\right)$ par recopie vers le bas ?
    $\quad$
  2. À l’aide de ces valeurs, conjecturer le sens de variation et la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II :

On rappelle que la fonction $f$ est définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$

  1. Calculer $\lim\limits_{x \to 1} f(x)$. On admettra que $\lim\limits_{x \to + \infty} f(x) = +\infty$.
    $\quad$
  2. a. Soit $f’$ la fonction dérivée de $f$. Montrer que pour tout $x \in ]1; +\infty[$, $f'(x) = \dfrac{x-2}{x-1}$.
    $\quad$
    b. En déduire le tableau des variations de $f$ sur l’intervalle $]1;+\infty[$, complété par les limites.
    $\quad$
    c. Justifier que pour tout $x\pg 2$, $f(x) \pg 2$.
    $\quad$

Partie III :

  1. En utilisant les résultats de la partie II, démontrer par récurrence que $u_n \pg 2$ pour tout entier naturel $n$.
    $\quad$
  2. Montrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
  4. On admet que $\ell$ vérifie $f(\ell) = \ell$. Donner la valeur de $\ell$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Asie – sujet 1 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. On a
    $\begin{align*} u_1&=\left(1-\dfrac{10}{100}\right)\times u_0+250 \\
    &=0,9\times 1~000+250 \\
    &= 1~150\end{align*}$
    $\quad$
  2. Chaque année elle ne conserve que $90\%$ de ses abonnés soit $0,9u_n$. De plus $250$ nouveaux abonnés s’ajoutent chaque année à ceux conservés.
    Ainsi, pour tout entier naturel $n$ on a $u_{n+1}=0,9u_n+250$.
    $\quad$
  3. L’instruction suite(10) renvoie la valeur de $u_{10}$ c’est-à-dire le nombre d’abonnés à son profil en 2030.
    $\quad$
  4. a. Initialisation : $u_0=1~000 \pp 2~500$
    La propriété est donc vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} u_{n+1}&=0,9u_n+250 \\
    &\pp 0,9\times 2~500+250 \\
    &\pp 2~250+250\\
    &\pp 2~500\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n \pp 2~500$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} u_{n+1}-u_n&=0,9u_n+250-u_n \\
    &=-0,1u_n+250 \\
    &=-0,1\left(u_n-2~500\right) \end{align*}$
    Or $u_n-2~500    \pp 0$ d’après la question précédente.
    Ainsi $u_{n+1}-u_n\pg 0$ et la suite $\left(u_n\right)$ est croissante.
    $\quad$
    c. La suite $\left(u_n\right)$ est croissante et majorée par $2~500$. Elle converge donc.
    $\quad$
  5. a. Soit $n\in \N$. On a $v_n=u_n-2~500$ donc $u_n=v_n+2~500$.
    $\begin{align*} v_{n+1}&=u_{n+1}-2~500 \\
    &=0,9u_n+250-2~500 \\
    &=0,9\left(v_n+2~500\right)-2~250 \\
    &=0,9v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,9$ et de premier terme $v_0=u_0-2~500=-1~500$.
    $\quad$
    b. Ainsi, pour tout $n\in \N$, on a $v_n=-1~500\times 0,9^n$
    Donc $u_n=v_n+2~500=-1~500\times 0,9^n+2~500$.
    $\quad$
  6. On peut écrire $$\begin{array}{|l|}
    \hline
    \text{u} = 1000 \\
    \text{n} = 2020 \\
    \text{while u} <= 2200 \\
    \quad \text{u} = 0,9 * \text{u} + 250 \\
    \quad \text{n} = \text{n} + 1\\
    \text{disp(n)}\\
    \hline
    \end{array}$$
    $\quad$
    On veut déterminer le plus petit entier naturel $n$ tel que:
    $\begin{align*} u_n > 2~200&\ssi -1~500 \times 0,9^n + 2~500>2~200 \\
    &\ssi -1~500\times 0,9^n > -300 \\
    &\ssi 0,9^n < 0,2 \\
    &\ssi n\ln(0,9) < \ln(0,2) \\
    &\ssi n>\dfrac{\ln(0,2)}{\ln(0,9)}\end{align*}$
    Or $\dfrac{\ln(0,2)}{\ln(0,9)} \approx 15,3$
    C’est donc en 2036 que le nombre d’abonnés dépassera $2~200$.
    $\quad$

Ex 2

Exercice 2 (5 points)

Partie I

  1. On a $P(6;0;0)$ et $Q(0;0;6)$.
    $\quad$
  2. $\vect{PQ}(-6;0;6)$ et $\vect{PR}(2;2;8)$.
    Donc $\vect{PQ}.\vec{n}=-6+0+6=0$ et $\vect{PR}.\vec{n}=2-10+8=0$.
    Par conséquent $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(PQR)$.
    C’est un vecteur normal au plan $(PQR)$.
    $\quad$
  3. Une équation cartésienne du plan $(PQR)$ est alors de la forme $x-5y+z+d=0$.
    Le point $P(6;0;0)$ appartient à ce plan.
    Donc $6+d=0 \ssi d=-6$.
    Une équation cartésienne du plan $(PQR)$ est donc $x-5y+z-6=0$.
    $\quad$

Partie II

  1. $\Omega$ est le milieu de $[EC]$
    Or $E(0;0;8)$ et $C(8;8;0)$
    Ainsi $\Omega\left(\dfrac{8+0}{2};\dfrac{0+8}{2};\dfrac{0+8}{2}\right)$ soit $\Omega(4;4;4)$.
    $\quad$
  2. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $d$.
    Une représentation paramétrique de cette droite est $$\begin{cases} x=4+t\\y=4-5t\\z=4+t\end{cases} \quad, t\in \R$$
    $\quad$
  3. Si on prend $t=\dfrac{2}{3}$ on a $4+t=\dfrac{14}{3}$, $4-5t=\dfrac{2}{3}$ donc le point de coordonnées $\left(\dfrac{14}{3};\dfrac{2}{3};\dfrac{14}{3}\right)$ appartient à $d$.
    De plus $\dfrac{14}{3}-\dfrac{5\times 2}{3}+\dfrac{14}{3}-6=\dfrac{18}{3}-6=0$ : le point de coordonnées $\left(\dfrac{14}{3};\dfrac{2}{3};\dfrac{14}{3}\right)$ appartient au plan $(PQR)$.
    Par conséquent $L$ a pour coordonnées $\left(\dfrac{14}{3};\dfrac{2}{3};\dfrac{14}{3}\right)$.
    $\quad$
  4. Cette distance est
    $\begin{align*} L\Omega&=\sqrt{\left(4-\dfrac{14}{3}\right)^2+\left(4-\dfrac{2}{3}\right)^2+\left(4-\dfrac{14}{3}\right)^2} \\
    &=\sqrt{12}\end{align*}$
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. a. Il y a $\dbinom{8}{2}=28$ tirages possibles .
    $\quad$
    b. Il y a $\dbinom{6}{1}\times \dbinom{2}{1}=12$ tirages permettant de gagner.
    La probabilités de gagner à ce jeu est donc $\dfrac{12}{28}=\dfrac{3}{7}$.
    $\quad$
  2. a. La variable aléatoire $G$ ne peut prendre que deux valeurs : $10-k$ et $-k$.
    $P(G=10-k)=\dfrac{3}{7}$ et $P(G=-k)=\dfrac{4}{7}$.
    $\quad$
    b. Le jeu est favorable au joueur si son espérance est positive.
    $\begin{align*} E(G)>0&\ssi \dfrac{3}{7}(10-k)-\dfrac{4}{7}k>0 \\
    &\ssi \dfrac{30}{7}-k>0 \\
    &\ssi k<\dfrac{30}{7}\end{align*}$
    Or $\dfrac{30}{7}\approx 4,2857$
    La somme maximale à payer est donc $4,28$ € pour que le jeu reste favorable au joueur.
    $\quad$
  3. a. On effectue $10$ tirages aléatoires, identiques et indépendants.
    À chaque tirage, il n’y a que deux issues : le joueur gagne ou le joueur perd.
    Ainsi $X$ suit la loi binomiale de paramètres $n=10$ et $p=\dfrac{3}{7}$.
    $\quad$
    b. On veut calculer
    $\begin{align*}P(X=4)&=\dbinom{10}{4}\left(\dfrac{3}{7}\right)^4\left(\dfrac{4}{7}\right)^6\\
    &\approx 0,247\end{align*}$
    La probabilité qu’il y ait exactement quatre joueurs gagnants est environ égale à $0,247$.
    $\quad$
    c. $P(X\pp5)=1-P(X\pp 4) \approx 0,440$
    La probabilité qu’il y ait au moins $5$ gagnants est environ égale à $0,440$.
    $\quad$
    d. D’après la calculatrice on a $P(X\pp 5) \approx 0,78$ et $P(X\pp 6) \approx 0,92$.
    Ainsi le plus petit entier naturel $n$ tel que $P(X\pp n) \pg 0,9$ est $6$.
    $\quad$

 

Ex A

Exercice A (5 points)

Partie I – lectures graphiques

  1. Le coefficient directeur de la tangente à la courbe de la fonction $f$ en $0$ est $f'(0)$.
    Graphiquement $f'(0)=0,4$.
    Le coefficient directeur de la tangente à la courbe de la fonction $f$ en $0$ est graphiquement égal à $0,4$.
    $\quad$
  2. a. La fonction $f’$ semble décroissante sur $]-\infty;-2[$ et sur $[1;+\infty[$ et croissante sur $[-2;1]$.
    $\quad$
    b. La fonction $f$ semble donc convexe sur $[-2;1]$.
    $\quad$

 

Partie II : étude de fonction

  1. D’après la limite des termes de plus haut degré, $\lim\limits_{x\to +\infty} x^2+x+\dfrac{5}{2}=\lim\limits_{x\to +\infty} x^2=+\infty$ et $\lim\limits_{x\to -\infty} x^2+x+\dfrac{5}{2}=\lim\limits_{x\to -\infty} x^2=+\infty$
    Or $\lim\limits_{X\to +\infty} \ln(X)=+\infty$
    Par conséquent $\lim\limits_{x\to +\infty} f(x)=+\infty$ et $\lim\limits_{x\to -\infty} f(x)=+\infty$
    $\quad$
  2. Pour tout réel $x$ on a $f'(x)=\dfrac{2x+1}{x^2+x+\dfrac{5}{2}}$.
    $\quad$
  3. Le signe de $f'(x)$ ne dépend que de celui de $2x+1$.
    Or $2x+1=0 \ssi x=-\dfrac{1}{2}$ et $2x+1>0 \ssi x>-\dfrac{1}{2}$.
    On obtient alors le tableau de variations suivant :
    $\quad$
  4. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\left[-\dfrac{1}{2};+\infty\right[$.
    De plus $f\left(-\dfrac{1}{2}\right)=\ln\left(\dfrac{9}{4}\right)\approx 0,81<2$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=2$ possède une unique solution dans $\left[-\dfrac{1}{2};+\infty\right[$.
    $\quad$
    b. D’après la calculatrice $\alpha \approx 1,8$.
    $\quad$
  5. Le signe de $f\dsec(x)$ ne dépend que de celui de $-2x^2-2x+4$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=36>0$ et les racines sont $1$ et $-2$.
    Ainsi $f\dsec(x)$ s’annule en changeant de signe en $-2$ et $1$.
    La courbe représentative de $f$ possède donc deux points d’inflexion d’abscisse $-2$ et $1$.
    $\quad$

 

Ex B

Exercice B (5 points)

Partie I

  1. a. La fonction $f$ définie sur $\R$ par $f(t)=1$ est solution de cette équation.
    En effet $f'(t)=0$ pour tout réel $t$ et $-0,4\times 1+0,4=0$.
    Donc $f'(t)=-0,4f(t)+0,4$ pour tout réel $t$.
    $\quad$
    b. Soit $f$ une autre solution de cette équation différentielle.
    Ainsi, la fonction $g$ définie pour tout réel $t$ par $g(t)=f(t)+1$ est également solution de cette équation différentielle.
    Par conséquent :
    $f'(t)=-0,4\left(f(t)+1\right)+0,4 \ssi f'(t)=-0,4f(t)$
    Les solutions de l’équation différentielle $y=-0,4y$ sont les fonctions définies par $t\mapsto C\e^{-0,4t}$ où $C\in \R$.
    Les solutions de l’équation différentielle initiale sont donc les fonctions définies par $t\mapsto C\e^{-0,4t}+1$ pour tout $C\in \R$
    $\quad$
    c. $g(0)=10 \ssi C+1=10 \ssi C=9$
    Ainsi $g$ est la fonction définie sur $\R$ par $t\mapsto 9\e^{-0,4t}+1$.
    $\quad$

Partie II

  1. $\lim\limits_{t\to +\infty} -0,4t=-\infty$ or $\lim\limits_{X\to -\infty} \e^{X}=0$
    Par conséquent $\lim\limits_{t\to +\infty} p(t)=1$.
    $\quad$
  2. Pour tout réel $t\pg 0$ on a
    $\begin{align*} p'(t)&=\dfrac{9\times -0,4\e^{-0,4t}}{\left(1+9\e^{-0,4t}\right)^2} \\
    &=\dfrac{-3,6\e^{-0,4}}{\left(1+9\e^{-0,4t}\right)^2} \end{align*}$
    $\quad$
  3. a. On a
    $\begin{align*} p(t)=\dfrac{1}{2} &\ssi \dfrac{1}{1+9\e^{-0,4t}}=\dfrac{1}{2} \\
    &\ssi 2=1+9\e^{-0,4t} \\
    &\ssi \e^{-0,4t}=\dfrac{1}{9} \\
    &\ssi -0,4t=-\ln(9) \qquad \text{car } \ln\left(\dfrac{1}{9}\right)=-\ln(9)\\
    &\ssi t=\dfrac{\ln(9)}{0,4}\end{align*}$
    Or $\dfrac{\ln(9)}{0,4}>0$ car $9>1$
    L’équation $p(t)=\dfrac{1}{2}$ admet donc une unique solution solution sur $[0;+\infty[$.
    Remarque : On pouvait également utiliser le corollaire du théorème des valeurs intermédiaires (ou théorème de la bijection)
    $\quad$
    b. D’après la calculatrice $\alpha=\dfrac{\ln(9)}{0,4}\approx 5,5$.
    $\quad$

Partie III

  1. Soit $t\pg 0$
    $\begin{align*} 0,4p(t)\left(1-p(t)\right)&=\dfrac{0,4}{1+9\e^{-0,4t}}\left(1-\dfrac{1}{1+9\e^{-0,4t}}\right) \\
    &=\dfrac{0,4}{1+9\e^{-0,4t}}\times \dfrac{-9\e^{-0,4t}}{1+9\e^{-0,4t}} \\
    &=\dfrac{-3,6\e^{-0,4t}}{1+9\e^{-0,4t}} \\
    &=p'(t)\end{align*}$
    Par conséquent $p$ est solution de l’équation différentielle $y’=0,4y(1-y)$.
    De plus $p(0)=\dfrac{1}{1+9}=\dfrac{1}{10}$.
    $\quad$
  2. $\lim\limits_{t\to +\infty} p(t)=1$ signifie que sur le long terme toutes les écoles auront accès à internet.
    $p(\alpha)=\dfrac{1}{2}$ avec $\alpha\approx 5,5$ signifie qu’au milieu de l’année 2026, la moitié des écoles auront accès à internet.
    $p(0)=\dfrac{1}{10}$ signifie qu’en 2020 seulement $10\%$ des écoles ont accès à internet.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

En 2020, une influenceuse sur les réseaux sociaux compte $1~000$ abonnés à son profil. On modélise le nombre d’abonnés ainsi: chaque année, elle perd $10\%$ de ses abonnés auxquels s’ajoutent $250$ nouveaux abonnés.
Pour tout entier naturel $n$, on note $u_n$ le nombre d’abonnés à son profil en l’année (2020 $+n$), suivant cette modélisation. Ainsi $u_0 = 1~000$.

  1. Calculer $u_1$.
    $\quad$
  2. Justifier que pour tout entier naturel $n$, $u_{n+1} = 0,9u_n + 250$.
    $\quad$
  3. La fonction Python nommée « suite » est définie ci-dessous. Dans le contexte de l’exercice, interpréter la valeur renvoyée par suite(10).
    $$\begin{array}{|l|}
    \hline
    \text{def suite( n) }:\\
    \quad \text{u} = 1000\\
    \quad \text{for i in range(n)} :\\
    \qquad \text{u} = 0,9*\text{u} + 250\\
    \quad \text{return u}\\
    \hline
    \end{array}$$
    $\quad$
  4. a. Montrer, à l’aide d’un raisonnement par récurrence, que pour tout entier naturel $n$, $u_n \pp 2~500$.
    $\quad$
    b. Démontrer que la suite $\left(u_n\right)$ est croissante.
    $\quad$
    c. Déduire des questions précédentes que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  5. Soit $\left(v_n\right)$ la suite définie par $v_n = u_n – 2~500$ pour tout entier naturel $n$.
    a. Montrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,9$ et de terme initial $v_0 = -1~500$.
    $\quad$
    b. Pour tout entier naturel $n$, exprimer $v_n$ en fonction de $n$ et montrer que : $$u_n = – 1~500 \times 0,9^n + 2~500$$
    $\quad$
    c. Déterminer la limite de la suite $\left(u_n\right)$ et interpréter dans le contexte de l’exercice.
    $\quad$
  6. Écrire un programme qui permet de déterminer en quelle année le nombre d’abonnés dépassera $2~200$.
    Déterminer cette année.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un cube $ABCDEFGH$ d’arête $8$ cm et de centre $\Omega$.
Les points $P$, $Q$ et $R$ sont définis par $\vect{AP} = \dfrac{3}{4}\vect{AB}$, $ \vect{AQ} = \dfrac{3}{4}\vect{AE}$ et $\vect{FR} = \dfrac{1}{4}\vect{FG}$.
On se place dans le repère orthonormé  $\left(\text{A};\vec{i},\vec{j},\vec{k}\right)$ avec : $\vec{i} = \dfrac{1}{8}\vect{AB}$, $\vec{j}= \dfrac{1}{8}\vect{AD}$ et $\vec{k} = \dfrac{1}{8}\vect{AE}$.

 

 

Partie I

  1. Dans ce repère, on admet que les coordonnées du point $R$ sont $(8;2;8)$.
    Donner les coordonnées des points $P$ et $Q$.
    $\quad$
  2. Montrer que le vecteur $\vec{n}(1;-5;1)$ est un vecteur normal au plan $(PQR)$.
    $\quad$
  3. Justifier qu’une équation cartésienne du plan $(PQR)$ est $x-5y+z-6 = 0$.
    $\quad$

Partie II

On note $L$ le projeté orthogonal du point $\Omega$ sur le plan $(PQR)$.

  1. Justifier que les coordonnées du point $\Omega$ sont $(4;4;4)$.
    $\quad$
  2. Donner une représentation paramétrique de la droite $d$ perpendiculaire au plan $(PQR)$ et passant par $\Omega$.
    $\quad$
  3. Montrer que les coordonnées du point $L$ sont $\left(\dfrac{14}{3}; \dfrac{2}{3};\dfrac{14}{3}\right)$
    $\quad$
  4. Calculer la distance du point $\Omega$ au plan $(PQR)$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Un sac contient les huit lettres suivantes: A B C D E F G H ($2$ voyelles et $6$ consonnes).
Un jeu consiste à tirer simultanément au hasard deux lettres dans ce sac.
On gagne si le tirage est constitué d’une voyelle et d’une consonne.

  1. Un joueur extrait simultanément deux lettres du sac.
    a. Déterminer le nombre de tirages possibles.
    $\quad$
    b. Déterminer la probabilité que le joueur gagne à ce jeu.
    $\quad$

Les questions 2 et 3 de cet exercice sont indépendantes.
Pour la suite de l’exercice, on admet que la probabilité que le joueur gagne est égale à $\dfrac{3}{7}$.

  1. Pour jouer, le joueur doit payer $k$ euros, $k$ désignant un entier naturel non nul.
    Si le joueur gagne, il remporte la somme de $10$ euros, sinon il ne remporte rien.
    On note $G$ la variable aléatoire égale au gain algébrique d’un joueur (c’est-à-dire la somme remportée à laquelle on soustrait la somme payée).
    a. Déterminer la loi de probabilité de $G$.
    $\quad$
    b. Quelle doit être la valeur maximale de la somme payée au départ pour que le jeu reste favorable au joueur ?
    $\quad$
  2. Dix joueurs font chacun une partie. Les lettres tirées sont remises dans le sac après chaque partie.
    On note $X$ la variable aléatoire égale au nombre de joueurs gagnants.
    a. Justifier que $X$ suit une loi binomiale et donner ses paramètres.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, qu’il y ait exactement quatre joueurs gagnants.
    $\quad$
    c. Calculer $P(X \pg 5)$ en arrondissant à $10^{-3}$. Donner une interprétation du résultat obtenu.
    $\quad$
    d. Déterminer le plus petit entier naturel $n$ tel que $P(X \pp  n) \pg 0,9$.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi: exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • convexité
  • fonction logarithme

Partie I : lectures graphiques

$f$ désigne une fonction définie et dérivable sur $\R$.
On donne ci-dessous la courbe représentative de la fonction dérivée $f’$.

 

 

Avec la précision permise par le graphique, répondre aux questions suivantes

  1. Déterminer le coefficient directeur de la tangente à la courbe de la fonction $f$ en $O$.
    $\quad$
  2. a. Donner les variations de la fonction dérivée $f’$.
    $\quad$
    b. En déduire un intervalle sur lequel $f$ est convexe.
    $\quad$

Partie II : étude de fonction

La fonction $f$ est définie sur $\R$ par $$f(x) = \ln \left(x^2 + x + \dfrac{5}{2}\right)$$

  1. Calculer les limites de la fonction $f$ en $+\infty$ et en $-\infty$.
    $\quad$
  2. Déterminer une expression $f'(x)$ de la fonction dérivée de $f$ pour tout $x \in \R$.
    $\quad$
  3. En déduire le tableau des variations de $f$. On veillera à placer les limites dans ce tableau.
    $\quad$
  4. a. Justifier que l’équation $f(x) = 2$ a une unique solution $\alpha$ dans l’intervalle $\left[-\dfrac{1}{2};+ \infty\right[$.
    $\quad$
    b. Donner une valeur approchée de $\alpha$ à $10^{-1}$ près.
    $\quad$
  5. La fonction $f’$ est dérivable sur $\R$. On admet que, pour tout $x \in \R$, $f”(x) = \dfrac{-2x^2-2x+4}{\left(x^2+x+\dfrac{5}{2}\right)^2}$.
    Déterminer le nombre de points d’inflexion de la courbe représentative de $f$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Étude de fonction, fonction exponentielle
  • Équations différentielles

Partie I

Considérons l’équation différentielle $$y’= -0,4y + 0,4$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0; + \infty[$.

  1. a. Déterminer une solution particulière constante de cette équation différentielle.
    $\quad$
    b. En déduire l’ensemble des solutions de cette équation différentielle.
    $\quad$
    c. Déterminer la fonction $g$, solution de cette équation différentielle, qui vérifie $g(0) = 10$.
    $\quad$

$\quad$

Partie II

Soit $p$ la fonction définie et dérivable sur l’intervalle $[0;+ \infty[$ par $$p(t) = \dfrac{1}{g(t)} = \dfrac{1}{1 + 9\e^{-0,4t}}$$

  1. Déterminer la limite de $p$ en $+ \infty$.
    $\quad$
  2. Montrer que $p'(t) = \dfrac{3,6\e^{-0,4t}}{ \left(1 + 9\e^{-0,4t}\right)^2}$ pour tout $t \in [0;+ \infty[$.
    $\quad$
  3. a. Montrer que l’équation $p(t) = \dfrac{1}{2}$ admet une unique solution $\alpha$ sur $[0;+ \infty[$.
    $\quad$
    b. Déterminer une valeur approchée de $\alpha$ à $10^{-1}$ près à l’aide d’une calculatrice.
    $\quad$

Partie III

  1. $p$ désigne la fonction de la partie II.
    Vérifier que $p$ est solution de l’équation différentielle $y’ = 0,4y(1-y)$ avec la condition initiale $y(0) = \dfrac{1}{10}$ où $y$ désigne une fonction définie et dérivable sur $[0; + \infty[$.
    $\quad$
  2. Dans un pays en voie de développement, en l’année 2020, $10\%$ des écoles ont accès à internet.
    Une politique volontariste d’équipement est mise en œuvre et on s’intéresse à l’évolution de la proportion des écoles ayant accès à internet.
    On note $t$ le temps écoulé, exprimé en année, depuis l’année 2020.
    La proportion des écoles ayant accès à internet à l’instant $t$ est modélisée par $p(t)$.
    Interpréter dans ce contexte la limite de la question II.1 puis la valeur approchée de $\alpha$ de la question II 3. b. ainsi que la valeur $p(0)$.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Métropole – sujet 2 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Question 1 :  Si $t=5$ alors $\begin{cases} x=-4+3\times 5\\y=6-3\times 5\\z=8-6\times 5\end{cases} \ssi \begin{cases} x=11\\y=-9\\z=-22\end{cases}$
Réponse b
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est $\vec{u}\begin{pmatrix} 3\\-3\\-6\end{pmatrix}$.
Réponse c
$\quad$

Question 3 : Un vecteur directeur de la droite $\mathcal{D}$ est $\vect{AB}\begin{pmatrix}-2\\2\\4\end{pmatrix}$.
On constate que $\vect{AB}=-\dfrac{3}{2}\vect{u_3}$.
Les deux droites sont donc parallèles.
En prenant $t=2$ on constate que le point $B$ appartient à la droite $\mathcal{D}’$.
Les deux droites sont donc confondues.
Réponse d
$\quad$

Question 4 : Un vecteur normal au plan $\mathcal{P}$ est $\vec{n}\begin{pmatrix}1\\m\\-2\end{pmatrix}$
La droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$
$\ssi$ $\vec{n}$ et $\vect{AB}$ sont orthogonaux
$\ssi \vec{n}.\vect{AB}=0$\\
$\ssi -2+2m-8=0$
$\ssi 2m=10$
$\ssi m=5$
Réponse c
$\quad$

Ex 2

Exercice 2

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
    b. On veut calculer :
    $\begin{align*} p(M\cap T)&=p(M)\times p_M(T)\\
    &=0,4\times 0,9\\
    &=0,36\end{align*}$
    La probabilité que le chat soit porteur de la maladie et que son test soit positif est égal à $0,36$.
    $\quad$
    c. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(M)\times p_M(T)+p\left(\conj{M}\right)\times p_{\conj{M}}(T)\\
    &=0,36+0,6\times 0,15\\
    &=0,45\end{align*}$
    La probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} p_T(M)&=\dfrac{p(T\cap M)}{p(T)} \\
    &=\dfrac{0,36}{0,45} \\
    &=0,8\end{align*}$
    La probabilité que le chat soit porteur de la maladie sachant que le test est positif est égale à $0,8$.
    $\quad$

  2. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,45$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} p(X=5)&=\dbinom{20}{5}0,45^5\times 0,55^{15} \\
    &\approx 0,036\end{align*}$
    La probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif est environ égale à $0,036$.
    $\quad$
    c. On veut calculer $p(X\pp 8) \approx 0,414$ d’après la calculatrice.
    La probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif est environ égale à $0,414$.
    $\quad$
    d. $E(X)=np=9$.
    En moyenne, $9$ chats présentent un test positif dans un échantillon de $20$ chats.
    $\quad$
  3. a. On effectue $n$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    La variable $Y$ donnant le nombre de chats présentant un test positif suit donc la loi binomiale de paramètre $n$ et $p=0,45$.
    Ainsi :
    $\begin{align*} p_n&=p(Y\pg 1) \\
    &=1-p(Y=0)\\
    &=1-0,55^n\end{align*}$
    $\quad$
    b. Le programme renvoie le plus petit entier naturel $n$ tel que $p_n\pg 0,99$.
    $\quad$
    c.
    $\begin{align*}
    p_n\pg 0,99 &\ssi 1-0,55^n \pg 0,99 \\
    &\ssi -0,55^n \pg -0,01 \\
    &\ssi 0,55^n \pp 0,01 \\
    &\ssi n\ln(0,55) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,55)}\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,55)}\approx7,7$
    Le programme renverra donc la valeur $8$.
    $\quad$

Ex 3

Exercice 3

  1. Il semblerait que $\dfrac{4}{u_n}=n+4$.
    $\quad$
  2. Initialisation : On a $u_0=1>0$.
    La propriété est donc vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose la propriété vraie au rang $n$.
    Ainsi $4u_n >0$ et $u_n+4>4>0$.
    Par conséquent $u_{n+1}>0$ en tant que quotient de nombres strictement positifs.
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, on a $u_n >0$.
    $\quad$
  3. Pour tout $n\in \N$.
    $\begin{align*}
    u_{n+1}-u_n&=\dfrac{4u_n}{u_n+4}-u_n\\
    &=\dfrac{4u_n-\left(u_n^2+4u_n\right)}{u_n+4}\\
    &=\dfrac{-u_n^2}{u_n+4}\\
    &<0\end{align*}$
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
  4. La suite $\left(u_n\right)$ est donc décroissante et minorée par $0$. Elle est par conséquent convergente.
    $\quad$
  5. Soit $n\in \N$
    $\begin{align*} v_{n+1}-v_n&=\dfrac{4}{~~\dfrac{4u_n}{u_n+4}~~}-\dfrac{4}{u_n} \\
    &=\dfrac{4\left(u_n+4\right)}{4u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n+4}{u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n}{u_n}\\
    &=1\end{align*}$
    La suite $\left(v_n\right)$ est donc arithmétique de raison $1$ et de premier terme $v_0=4$.
    Ainsi, pour tout entier naturel $n$, on a $v_n=4+n$.
    $\quad$
  6. Pour tout entier naturel $n$ on a donc
    $\begin{align*} v_n=\dfrac{4}{u_n}&\ssi 4+n=\dfrac{4}{u_n} \\
    &\ssi u_n=\dfrac{4}{4+n}\end{align*}$
    Or $\lim\limits_{n\to +\infty} 4+n=0$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$

 

 

Ex A

Exercice A

Partie I

  1. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} x^2=0^+$ donc $\lim\limits_{x\to 0^+} \dfrac{\ln(x)}{x^2}=-\infty$ et $\lim\limits_{x\to 0^+} h(x)=-\infty$
    $\quad$
  2. Pour tout réel $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x^2-2x\ln(x)}{x^4} \\
    &=\dfrac{x-2x\ln(x)}{x^4} \\
    &=\dfrac{1-2\ln(x)}{x^3}\end{align*}$
    $\quad$
  3. Le signe de $h'(x)$ sur $]0;+\infty[$ ne dépend donc que de celui de $1-2\ln(x)$.
    Or $1-2\ln(x)=0 \ssi \ln(x)=\dfrac{1}{2} \ssi x=\e^{1/2}$
    Et $1-2\ln(x)>0 \ssi -2\ln(x)>-1\ssi \ln(x)<\dfrac{1}{2} \ssi x<\e^{1/2}$
    Ainsi $h'(x) >0$ sur $\left]0;\e^{1/2}\right[$ et $h'(x)<0$ sur $\left]\e^{1/2};+\infty\right[$.
    La fonction $h$ est donc strictement croissante sur $\left]0;\e^{1/2}\right[$ et strictement décroissante sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
  4. La fonction $h$ est continue (car dérivable) et strictement croissante sur $\left]0;\e^{1/2}\right[$.
    De plus $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h\left(\e^{1/2}\right)=1+\dfrac{1}{2\e}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une solution sur l’intervalle $\left]0;\e^{1/2}\right[$.
    $\quad$
    La fonction $h$ est strictement décroissante sur $\left]\e^{1/2};+\infty\right[$ et $\lim\limits_{x\to +\infty} h(x)=0$.
    Par conséquent $h(x)>0$ sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
    Ainsi l’équation $h(x)=0$ possède une unique solution $\alpha$ solution sur $]0;+\infty$.
    $\quad$
    $h\left(\dfrac{1}{2}\right) \approx -1,8<0$ et $h(1)=1>0$
    Par conséquent $h\left(\dfrac{1}{2}\right)<h(\alpha)<h(1)$.
    La fonction $h$ est strictement croissante sur $\left]0;\e^{1/2}\right[$. Donc $\dfrac{1}{2} <\alpha <1$.
    $\quad$
  5. D’après les question 3. et 4. :
    $\bullet$ $h(x)<0$ sur $]0;\alpha[$;
    $\bullet$ $h(\alpha)=0$;
    $\bullet$ $h(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. Pour tout $x>0$ on a
    $\begin{align*} f_1(x)-f_2(x)&=x-1-\dfrac{\ln(x)}{x^2}-\left(x-2-\dfrac{2\ln(x)}{x^2} \right)\\
    &=x-1-\dfrac{\ln(x)}{x^2}-x+2+\dfrac{2\ln(x)}{x^2} \\
    &=1+\dfrac{\ln(x)}{x^2}\\
    &=h(x)\end{align*}$
    $\quad$
  2. L’équation $h(x)=0$ possède une unique solution $\alpha$ sur $]0;+\infty[$.
    Les courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ n’ont donc qu’un seul point d’intersection d’abscisse $\alpha$
    $h(\alpha)=0 \ssi \dfrac{\ln(\alpha}{\alpha^2}=-1$
    Ainsi $f_1(\alpha)=\alpha-1-\dfrac{\ln(\alpha}{\alpha^2}=\alpha$.
    Le point d’intersection des courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ a donc pour coordonnées $(\alpha;\alpha)$.
    D’après la question I.5., $\mathcal{C}_1$ est au-dessous de $\mathcal{C}_2$ sur $]0;+\alpha[$ et au-dessus de $\mathcal{C}_2$ sur $]\alpha;+\infty[$.
    $\quad$

Ex B

Partie I

  1. La fonction $f$ semble strictement croissante sur $]-\infty;-1]$ et strictement décroissante sur $[-1;+\infty[$.
    $\quad$
  2. La fonction $f$ semble concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$
    $\quad$

Partie II

  1. Pour tout réel $x$ on a
    $\begin{align*} f(x)&=(x+2)\e^{-x} \\
    &=x\e^{-x}+2\e^{-x} \\
    &=\dfrac{x}{\e^x}+2\e^{-x}\end{align*}$
    $\quad$
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    De plus $\lim\limits_{x\to +\infty} \e^{-x}=0$ donc $\lim\limits_{x\to +\infty} f(x)=0$.
    La droite d’équation $y=0$ est donc asymptote à la courbe $\mathcal{C}$ en $+\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1\times \e^{-x}+(x+2)\times \left(-\e^{-x}\right) \\
    &=(1-x-2)\e^{-x} \\
    &=(-x-1)\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$. Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0 \ssi -x>1 \ssi x<-1$.
    On obtient ainsi le tableau de variations suivant :


    $\quad$
    c. La fonction $f$ est continue (car dérivable) et strictement croissante sur $[-2;-1]$.
    De plus $f(-2) = 0<2$ et $f(-1)=\e>2$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=2$ possède une unique solution $\alpha$.
    D’après la calculatrice $\alpha \approx -1,6$.
    $\quad$

  3. $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=-\e^{-x}-(-x-1)\e^{-x} \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    La fonction exponentielle étant strictement positive sur $\R$, le signe de $f\dsec(x)$ ne dépend que de celui de $x$.
    Ainsi :
    $\bullet$ $f\dsec(x)<0$ sur $]-\infty;0[$;
    $\bullet$ $f\dsec(0)=0$;
    $\bullet$ $f\dsec(x)>0$ sur $]0;+\infty[$.
    La fonction $f$ est donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$.
    Le point $A$, d’abscisse $0$, est un point d’inflexion pour la courbe $\mathcal{C}$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

L’espace est rapporté à un repère orthonormé $\Oijk$.
On considère :

  • La droite $\mathcal{D}$ passant par les points $A(1 ; 1 ;-2)$ et $B(-1 ; 3 ; 2)$.
  • La droite $\mathcal{D}’$ de représentation paramétrique : $\left\{\begin{array}{l}x=-4+3 t \\ y=6-3 t \\ z=8-6 t\end{array}\right. \quad \text { avec } t \in \R $.
  • Le plan $\mathcal{P}$ d’équation cartésienne $x+m y-2 z+8=0$ où $m$ est un nombre réel.

Question 1 : Parmi les points suivants, lequel appartient à la droite $\mathcal{D}’$ ?
a. $M_{1}(-1 ; 3 ;-2)$
b. $M_{2}(11 ;-9 ;-22)$
c. $M_{3}(-7 ; 9 ; 2)$
d. $M_{4}(-2 ; 3 ; 4)$
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est:
a. $\vect{u_{1}}\begin{pmatrix}-4 \\ 6 \\ 8\end{pmatrix}$
b. $\vect{u_{2}}\begin{pmatrix}3 \\ 3 \\ 6\end{pmatrix}$
c. $\vect{u_{3}}\begin{pmatrix}3 \\ -3 \\ -6\end{pmatrix}$
d. $\vect{u_{4}}\begin{pmatrix}-1 \\ 3 \\ 2\end{pmatrix}$
$\quad$

Question 3 : Les droites $\mathcal{D}$ et $\mathcal{D}’$ sont:
a. sécantes
b. strictement parallèles
c. non coplanaires
d. confondues
$\quad$

Question 4 : La valeur du réel $m$ pour laquelle la droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$ est:
a. $m=-1$
b. $m=1$
c. $m=5$
d. $m=-2$
$\quad$

$\quad$

Exercice 2 6 points

Dans cet exercice, les résultats des probabilités demandées seront, si nécessaire, arrondis au millième.
La leucose féline est une maladie touchant les chats; elle est provoquée par un virus. Dans un grand centre vétérinaire, on estime à $40 \%$ la proportion de chats porteurs de la maladie. On réalise un test de dépistage de la maladie parmi les chats présents dans ce centre vétérinaire. Ce test possède les caractéristiques suivantes.

  • Lorsque le chat est porteur de la maladie, son test est positif dans $90 \%$ des cas.
  • Lorsque le chat n’est pas porteur de la maladie, son test est négatif dans $85 \%$ des cas.

On choisit un chat au hasard dans le centre vétérinaire et on considère les événements suivants:

  • $M$ : « Le chat est porteur de la maladie » ;
  • $T$ : « Le test du chat est positif » ;
  • $\conj{M}$ et $\conj{T}$ désignent les événements contraires des événements $M$ et $T$ respectivement.
  1. a. Traduire la situation par un arbre pondéré.
    $\quad$
    b. Calculer la probabilité que le chat soit porteur de la maladie et que son test soit positif.
    $\quad$
    c. Montrer que la probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On choisit un chat parmi ceux dont le test est positif. Calculer la probabilité qu’il soit porteur de la maladie.
    $\quad$
  2. On choisit dans le centre vétérinaire un échantillon de $20$ chats au hasard. On admet que l’on peut assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de chats présentant un test positif dans l’échantillon choisi.
    a. Déterminer, en justifiant, la loi suivie par la variable aléatoire $X$.
    $\quad$
    b. Calculer la probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif.
    $\quad$
    c. Calculer la probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif.
    $\quad$
    d. Déterminer l’espérance de la variable aléatoire $X$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  3. Dans cette question, on choisit un échantillon de $n$ chats dans le centre, qu’on assimile encore à un tirage avec remise. On note $p_{n}$ la probabilité qu’il y ait au moins un chat présentant un test positif dans cet échantillon.
    a. Montrer que $p_{n}=1-0,55^{n}$.
    $\quad$
    b. Décrire le rôle du programme ci-dessous écrit en langage Python, dans lequel la variable $\text{n}$ est un entier naturel et la variable $\text{P}$ un. nombre réel.
    $$\begin{array}{|l|}
    \hline
    \hspace {1cm} \textbf{def seuil} ():\\
    \hspace {1.5 cm} \text{n = 0} \\
    \hspace {1.5 cm} \text{P = 0}\\
    \hspace {1.5 cm} \textbf {while }\text{P < 0.99:} \\
    \hspace {2 cm}\text{n = n + 1}\\
    \hspace {2 cm}\text{P = 1 – 0.55**n}\\
    \hspace {1.5 cm}\textbf{return }\text{n}\\
    \hline
    \end{array}$$
    $\quad$
    c. Déterminer, en précisant la méthode employée, la valeur renvoyée par ce programme.
    $\quad$

$\quad$

Exercice 3     5 points

On considère la suite $\left(u_{n}\right)$ définie par $: u_{0}=1$ et, pour tout entier naturel $n$,
$$u_{n+1}=\dfrac{4 u_{n}}{u_{n}+4}$$

  1. La copie d’écran ci-dessous présente les valeurs, calculées à l’aide d’un tableur, des termes de la suite $\left(u_{n}\right)$ pour $n$ variant de $0$ à $12$, ainsi que celles du quotient $\dfrac{4}{u_{n}}$ (avec, pour les valeurs de $u_{n}$, affichage de deux chiffres pour les parties décimales).
    $$\begin{array}{|c|c|c|}
    \hline n & u_{n} & \dfrac{4}{u_{n}} \\
    \hline 0 & 1,00 & 4 \\
    \hline 1 & 0,80 & 5 \\
    \hline 2 & 0,67 & 6 \\
    \hline 3 & 0,57 & 7 \\
    \hline 4 & 0,50 & 8 \\
    \hline 5 & 0,44 & 9 \\
    \hline 6 & 0,40 & 10 \\
    \hline 7 & 0,36 & 11 \\
    \hline 8 & 0,33 & 12 \\
    \hline 9 & 0,31 & 13 \\
    \hline 10 & 0,29 & 14 \\
    \hline 11 & 0,27 & 15 \\
    \hline 12 & 0,25 & 16 \\
    \hline
    \end{array}$$
    À l’aide de ces valeurs, conjecturer l’expression de $\dfrac{4}{u_{n}}$ en fonction de $n$.
    $\quad$
    Le but de cet exercice est de démontrer cette conjecture (question 5.), et d’en déduire la limite de la suite $\left(u_{n}\right)$ (question 6.).
    $\quad$
  2. Démontrer par récurrence que, pour tout entier naturel $n$, on a $: u_{n}>0$.
    $\quad$
  3. Démontrer que la suite $\left(u_{n}\right)$ est décroissante.
    $\quad$
  4. Que peut-on conclure des questions 2. et 3. concernant la suite $\left(u_{n}\right)$ ?
    $\quad$
  5. On considère la suite $\left(v_{n}\right)$ définie pour tout entier naturel $n$ par : $v_{n}=\dfrac{4}{u_{n}}$.
    Démontrer que $\left(v_{n}\right)$ est une suite arithmétique. Préciser sa raison et son premier terme.
    En déduire, pour tout entier naturel $n$, l’expression de $v_{n}$ en fonction de $n$.
    $\quad$
  6. Déterminer, pour tout entier naturel $n$, l’expression de $u_{n}$ en fonction de $n$.
    En déduire la limite de la suite $\left(u_{n}\right)$.
    $\quad$

$\quad$

EXERCICE au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués dans un encadré.

$\quad$

Exercice A

Principaux domaines abordés:

  • Fonction logarithme;
  • dérivation.

Partie I

On désigne par $h$ la fonction définie sur l’intervalle $] 0 ;+\infty[$ par :
$$h(x)=1+\dfrac{\ln (x)}{x^{2}}$$
On admet que la fonction $h$ est dérivable sur $] 0 ;+\infty[$ et on note $h’$ sa fonction dérivée.

  1. Déterminez les limites de $h$ en $0$ et en $+\infty$.
    $\quad$
  2. Montrer que, pour tout nombre réel $x$ de $] 0 ;+\infty[$, h'(x)=\dfrac{1-2 \ln (x)}{x^{3}}$.
    $\quad$
  3. En déduire les variations de la fonction $h$ sur l’intervalle $]0 ;+\infty[$
    $\quad$
  4. Montrer que l’équation $h(x)=0$ admet une solution unique $\alpha$ appartenant à $] 0 ;+\infty[$ et vérifier que : $\dfrac{1}{2}<\alpha<1$.
    $\quad$
  5. Déterminer le signe de $h(x)$ pour $x$ appartenant à $] 0 ;+\infty[$.
    $\quad$

 

Partie II

On désigne par $f_{1}$ et $f_{2}$ les fonctions définies sur $] 0 ;+\infty[$ par :
$$
f_{1}(x)=x-1-\dfrac{\ln (x)}{x^{2}} \text { et } \quad f_{2}(x)=x-2-\dfrac{2 \ln (x)}{x^{2}}$$
On note $\mathcal{C}_{1}$ et $\mathcal{C}_{2}$ les représentations graphiques respectives de $f_{1}$ et $f_{2}$ dans un repère $\Oij$.

  1. Montrer que, pour tout nombre réel $x$ appartenant à $] 0 ;+\infty[$, on a :
    $$f_{1}(x)-f_{2}(x)=h(x)$$
    $\quad$
  2. Déduire des résultats de la Partie I la position relative des courbes $\mathcal{C}_{1}$ et $\mathcal{C}_{2} .$ On justifiera que leur unique point d’intersection a pour coordonnées $(\alpha ; \alpha)$.
    On rappelle que $\alpha$ est l’unique solution de l’équation $h(x)=0$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction exponentielle;
  • dérivation;
  • convexité.

PARTIE I

On donne ci-dessous, dans le plan rapporté à un repère orthonormé, la courbe représentant la fonction dérivée $f’$ d’une fonction $f$ dérivable sur $\R$. À l’aide de cette courbe, conjecturer, en justifiant les réponses:

  1. Le sens de variation de la fonction $f$ sur $\R$.
    $\quad$
  2. La convexité de la fonction $f$ sur $\R$.
    $\quad$

$\quad$

PARTIE II

On admet que la fonction $f$ mentionnée dans la Partie I est définie sur $\R$ par : $$f(x)=(x+2) \e^{-x}$$
On note $\mathcal{C}$ la courbe représentative de $f$ dans un repère orthonormé $\Oij$.
On admet que la fonction $f$ est deux fois dérivable sur $\R$, et on note $f’$ et $f\dsec$ les fonctions dérivées première et seconde de $f$ respectivement.

  1. Montrer que, pour tout nombre réel $x$, $$
    f(x)=\dfrac{x}{\e^{x}}+2 \e^{-x}$$
    En déduire la limite de $f$ en $+\infty$.
    Justifier que la courbe $\mathcal{C}$ admet une asymptote que l’on précisera. On admet que $\lim\limits_{x \to -\infty} f(x)=-\infty$.
    $\quad$
  2. a. Montrer que, pour tout nombre réel $x, f'(x)=(-x-1) \e^{-x}$.
    $\quad$
    b. Étudier les variations sur $\R$ de la fonction $f$ et dresser son tableau de variations.
    $\quad$
    c. Montrer que l’équation $f(x)=2$ admet une unique solution $\alpha$ sur l’intervalle $[-2 ;-1]$ dont on donnera une valeur approchée à $10^{-1}$ près.
    $\quad$
  3. Déterminer, pour tout nombre réel $x$, l’expression de $f\dsec(x)$ et étudier la convexité de la fonction $f$. Que représente pour la courbe $\mathcal{C}$ son point $A$ d’abscisse $0$ ?
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 1 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $f$ est dérivable sur $]0;+\infty [$ puisque $f\dsec$ existe.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=\dfrac{2\e^{2x}\times x-\e^{2x}}{x^2} \\
    &=\dfrac{(2x-1)\e^{2x}}{x^2}\end{align*}$
    Réponse c
    $\quad$
  2. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $2x-1$.
    Or $2x-1>0 \ssi x>\dfrac{1}{2}$
    Par conséquent $f$ est strictement décroissante sur $\left]0;\dfrac{1}{2}\right]$ et strictement croissante sur $\left[\dfrac{1}{2};+\infty\right[$.
    Elle admet donc un minimum en $\dfrac{1}{2}$.
    $\quad$
    Remarque : On pouvait répondre à cette question en traçant la courbe représentant la fonction sur la calculatrice.
    $\quad$
    Réponse c
    $\quad$
  3. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\e^{2x}}{x}=+\infty$
    Réponse a
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $2x^2-2x+1$.
    Son discriminant est :
    $\Delta=(-2)^2-2\times 4\times 1=-4<0$.
    Le coefficient principal est $a=2>0$.
    Par conséquent $f\dsec(x)>0$ sur $]0;+\infty[$ et $f$ est convexe sur $]0;+\infty[$.
    Réponse b
    $\quad$

Ex 2

Exercice 2

PARTIE I

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(D\cap T)&=p(D)\times p_D(T)\\
    &=0,05\times 0,98\\
    &=0,049\end{align*}$
    La probabilité qu’une pièce choisie au hasard dans la production de la
    chaîne soit défectueuse et présente un test positif est égale à $0,049$.
    $\quad$
    b. $D$ et $\conj{D}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(D)\times p_D(T)+p\left(\conj{D}\right)\times p_{\conj{D}}(T)\\
    &=0,05\times 0,98+0,95\times 0,03\\
    &=0,077~5\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} p_T(D)&=\dfrac{p(T\cap D)}{p(T)} \\
    &=\dfrac{0,049}{0,077~5}\\
    &\approx 0,63\end{align*}$
    La valeur prédictive positive de ce test est environ égale à $0,63<0,95$.
    Ce test n’est donc pas efficace.
    $\quad$

PARTIE II

  1. On effectue $20$ tirages aléatoires, indépendants et identiques. À chaque tirage il n’y a que deux issues : $D$ et $\conj{D}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,05$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-0,95^{20} \\
    &\approx 0,64\end{align*}$
    La probabilité pour que cet échantillon contienne au moins une pièce défectueuse est environ égale à $0,64$.
    $\quad$
  3. L’espérance est $E(X)=20 \times 0,05=1$.
    Cela signifie qu’en moyenne il y a une pièce défectueuse par échantillon de $20$ pièces.
    $\quad$

Ex 3

Exercice 3

I – Premier modèle

$1,3-(-19)=20,3$. Cela signifie qu’à chaque minute la température augmente de $2,03$ °C.
Au bout de $25$ minutes, selon ce modèle, la température des gâteaux serait donc de $-19+25\times 2,03=31,75$ °C.
La température ambiante est de $25$ °C. Les gâteaux ne peuvent pas avoir une température supérieure à la température ambiante.
Ce modèle n’est donc pas pertinent.
$\quad$

II – Second modèle 

  1. Pour tout entier naturel $n$ on a :
    $\begin{align*} T_{n+1}&=T_n-0,06\left(T_n-25\right) \\
    &=T_n-0,06T_n+1,5\\
    &=0,94T_n+1,5\end{align*}$
    $\quad$
  2. On a donc $T_1=0,94\times (-19)+1,5\approx -16,4$
    $T_2=0,94 \times T_1+1,5 \approx -13,9$
    $\quad$
  3. Initialisation : Si $n=0$ alors $T_0=-19 \pp 25$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} T_{n+1}&=0,94T_n+1,5\\
    &\pp 0,94 \times 25+1,5 \\
    &\pp 25\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, on a $T_n\pp 25$.
    $\quad$
  4. Pour tout entier naturel $n$, $T_{n+1}-T_n=-0,06\times \left(T_n-25\right)$
    Or $T_n-25 \pp 0$. Donc $T_{n+1}-T_n\pg 0$.
    La suite $\left(T_n\right)$ est par conséquent croissante.
    $\quad$
  5. La suite $\left(T_n\right)$ est croissante et majorée par $25$. Elle est donc convergente.
    $\quad$
  6. a. Pour tout entier naturel $n$ on a
    $\begin{align*} U_{n+1}&=T_{n+1}-25 \\
    &=0,94T_n+1,5-25 \\
    &=0,94T_n-23,5 \\
    &=0,94\left(U_n+25\right)-23,5 \\
    &=0,94U_n+23,5-23,5\\
    &=0,94U_n\end{align*}$
    La suite $\left(U_n\right)$ est donc géométrique de raison $0,94$ et de premier terme $U_0=T_0-25=-44$.
    $\quad$
    b. Pour tout entier naturel $n$ on a donc $U_n=-44 \times 0,94^n$.
    Donc $T_n=U_n+25=-44\times 0,94^n+25$.
    $\quad$
    c. $-1<0,94<1$ donc $\lim\limits_{n\to +\infty} 0,94^n =0$
    Par conséquent $\lim\limits_{n\to +\infty} T_n=25$.
    $\quad$
  7. a. On a $T_{30}\approx 18$.
    La température des gâteaux est donc environ égale à $18$ °C au bout d’une demi-heure.
    $\quad$
    b. À l’aide de la calculatrice on trouve que $T_{17} \approx 9,6$ et $T_{18} \approx 10,6$. De plus la suite $\left(T_n\right)$ est croissante.
    Cécile doit donc attendre entre $17$ et $18$ minutes pour déguster son gâteau.
    $\quad$
    c. On obtient le programme suivant :
    $$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = -19} \\
    \hspace{1.5cm} \textbf{while } \text{T < 10} : \hspace{1cm} \\
    \hspace{2cm} \text{T = 0.94 * T + 1.5}  \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$
    $\quad$

 

 

Ex A

Exercice A

  1. La droite $d$ a pour vecteur directeur le vecteur $\vec{u}$ et passe par le point $0$.
    Une représentation paramétrique de la droite $d$ est donc $\begin{cases} x=t\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  2. a. On a
    $\begin{align*} AM^2&=(t-1)^2+(t-3)^2+2^2 \\
    &=t^2-2t+1+t^2-6t+9+4\\
    &=2t^2-8t+14\end{align*}$
    $\quad$
    b. Le coefficient principal de l’expression du second degré $2t^2-8t+14$ est $2>0$.
    Elle admet donc un minimum atteint pour $t=\dfrac{8}{2\times 2}=2$.
    Ainsi le point $M_0(2;2;0)$ est le point de la droite $d$ pour lequel $AM^2$ est minimal et donc pour lequel la distance $AM$ est minimale.
    $\quad$
  3. $\vect{AM_0}\begin{pmatrix} 1\\-1\\2\end{pmatrix}$
    Donc $\vect{AM_0}.\vec{u}=1-1+0=0$
    Ces deux vecteurs sont donc orthogonaux et les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. Le vecteur $\vec{u}$ est orthogonal au plan d’équation $z=0$. Les points $A’$ et $M_0$ appartiennent à ce plan. Par conséquent $\vec{u}.\vect{A’M_0}=0$.
    Le vecteur $\vec{u}$ est donc orthogonal aux vecteurs (non colinéaires) $\vect{A’M_0}$ et $\vect{AM_0}$.
    La droite $d$ est par conséquent orthogonale au plan $\left(AA’M_0\right)$.
    $M_0$ appartient à la droite $d$, droite qui passe par le point $O$..
    Le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$.
    $\quad$
  5. On a $AA’=2$ et $M_0A’=\sqrt{(2-1)^2+(2-3)^2+0^2}=\sqrt{2}$.
    De plus $OM_0=\sqrt{2^2+2^2}=\sqrt{8}$
    Ainsi le volume de la pyramide $OM_0A’A$ est :
    $\begin{align*} V&=\dfrac{1}{3}\times \dfrac{2\times \sqrt{2}}{2}\times \sqrt{8} \\
    &=\dfrac{4}{3}\end{align*}$
    $\quad$

Ex B

Exercice B

  1. Pour tout réel $x$ on a :
    $\begin{align*} u'(x)&=2x\e^x+x^2\times \e^x \\
    &=2x\e^x+u(x)\end{align*}$
    Par conséquent $u$ est une solution particulière de $(E)$.
    $\quad$
  2. a. Si $f $est solution de l’équation différentielle $(E)$ alors $g$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$ et
    $\begin{align*} g'(x)&=f'(x)-u'(x) \\
    &=f(x)+2x\e^x-\left(u(x)+2x\e^x\right) \\
    &=f(x)+2x\e^x-u(x)-2x\e^x\\
    &=f(x)-u(x)\\
    &=g(x) \end{align*}$
    $g$ est donc solution de l’équation différentielle $y’=y$.
    $\quad$
    b. Une solution de l’équation $y’=y$ est la fonction $g$ définie sur $\R$ par $g(x)=\e^x$.
    Ainsi, pour tout réel $x$,
    $\begin{align*} f(x)&=g(x)+u(x) \\
    &=\e^x+x^2\e^x\end{align*}$
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. et b. Pour tout réel $x$, on a d’après les calculs faits à la question 1.,  $u'(x)=(2+x)x\e^x$.
    Or $2+x=0 \ssi x=-2$ et $2+x>0 \ssi x>-2$.
    La fonction exponentielle est strictement positive sur $\R$.
    On obtient donc le tableau de signes et de variations suivant :
    $\quad$
    c. $u’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $u'(x)=2x\e^x+x^2\e^x$ donc
    $\begin{align*} u\dsec(x)&=2\e^x+2x\e^x+2x\e^x +x^2\e^x \\
    &=\left(2+4x+x^2\right)\e^x \end{align*}$
    Le signe de $u\dsec(x)$ ne dépend que de celui de $x^2+4x+2$.
    Son discriminant est $\Delta=4^2-2\times 4=8>0$.
    Ses racines sont donc $x_1=\dfrac{-4-\sqrt{8}}{2}=-2-\sqrt{2}$ et $x_2=-2+\sqrt{2}$.
    Le coefficient principal est $a=1>0$.
    Par conséquent $u\dsec(x)<0$ sur $\left]-2-\sqrt{2};-2+\sqrt{2}\right[$.
    Le plus grand intervalle sur lequel la fonction $u$ est concave est $\left[-2-\sqrt{2};-2+\sqrt{2}\right]$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

Soit $f$ la fonction définie pour tout nombre réel $x$ de l’intervalle $]0 ;+\infty[$ par:
$$f(x)=\dfrac{\e^{2 x}}{x}$$
On donne l’expression de la dérivée seconde $f\dsec$ de $f$, définie sur l’intervalle $] 0 ;+\infty[$ par:
$$f\dsec(x)=\dfrac{2 \e^{2 x}\left(2 x^{2}-2 x+1\right)}{x^{3}}$$

  1. La fonction $f’$, dérivée de $f$, est définie sur l’intervalle $] 0 ;+\infty[$ par ;
    a. $f'(x)=2 e^{2 x}$
    b. $f'(x)=\dfrac{\e^{2 x}(x-1)}{x^{2}}$
    c. $f'(x)=\dfrac{\e^{2 x}(2 x-1)}{x^{2}}$
    d. $f'(x)=\dfrac{\e^{2 x}(1+2 x)}{x^{2}}$
    $\quad$
  2. La fonction $f$ :
    a. est décroissante sur $] 0 ;+\infty[$
    b. est monotone sur $] 0 ;+\infty[$
    c. admet un minimum en $\dfrac{1}{2}$
    d. admet un maximum en $\dfrac{1}{2}$
    $\quad$
  3. La fonction $f$ admet pour limite en $+\infty$ :
    a. $+\infty$
    b. $0$
    c. $1$
    d. $\e^{2 x}$
    $\quad$
  4. La fonction $f$ :
    a. est concave sur $] 0$; $+\infty[$
    b. est convexe sur $] 0 ;+\infty[$
    c. est concave sur $\left] 0 ; \dfrac{1}{2}\right]$
    d. est représentée par une courbe admettant un point d’inflexion
    $\quad$

$\quad$

Exercice 2     5 points

Une chaîne de fabrication produit des pièces mécaniques. On estime que $5\%$ des pièces produites par cette chaîne sont défectueuses.

Un ingénieur a mis au point un test à appliquer aux pièces. Ce test a deux résultats possibles: « positif » ou bien « négatif ».

On applique ce test à une pièce choisie au hasard dans la production de la chaîne.

On note $p(E)$ la probabilité d’un événement $E$.

On considère les événements suivants:

  •  $D$ : « la pièce est défectueuse »;
  •  $T$ : « la pièce présente un test positif »;
  •  $\conj{D}$ et $\conj{T}$ désignent respectivement les évènements contraires de $D$ et $T$.

Compte tenu des caractéristiques du test, on sait que :

  • La probabilité qu’une pièce présente un test positif sachant qu’elle défectueuse est égale à $0,98$ ;
  • La probabilité qu’une pièce présente un test négatif sachant qu’elle n’est pas défectueuse est égale à $0,97$ .

Les parties I et II peuvent être traitées de façon indépendante.

PARTIE I

  1. Traduire la situation à l’aide d’un arbre pondéré.
    $\quad$
  2. a. Déterminer la probabilité qu’une pièce choisie au hasard dans la production de la chaîne soit défectueuse et présente un test positif.
    $\quad$
    b. Démontrer que : $p(T)=0,077~5$.
    $\quad$
  3. On appelle valeur prédictive positive du test la probabilité qu’une pièce soit défectueuse sachant que le test est positif. On considère que pour être efficace, un test doit avoir une valeur prédictive positive supérieure à $0,95$ . Calculer la valeur prédictive positive de ce test et préciser s’il est efficace.
    $\quad$

PARTIE II

On choisit un échantillon de $20$ pièces dans la production de la chaîne, en assimilant ce choix à un tirage avec remise. On note $X$ la variable aléatoire qui donne le nombre de pièces défectueuses dans cet échantillon. On rappelle que: $p(D)=0,05$.

  1. Justifier que $X$ suit une loi binomiale et déterminer les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité que cet échantillon contienne au moins une pièce défectueuse. On donnera un résultat arrondi au centième.
    $\quad$
  3. Calculer l’espérance de la variable aléatoire $X$ et interpréter le résultat obtenu.
    $\quad$

$\quad$

Exercice 6     6 points

Cécile a invite des amis à déjeuner sur sa terrasse. Elle a prévu en dessert un assortiment de gâteaux individuels qu’elle a achetés surgelés.

Elle sort les gâteaux du congélateur à $-19$ °C et les apporte sur la terrasse ou la température ambiante est de $25$ °C.

Au bout de $10$ minutes la température des gâteaux est de $1,3$ °C.

I – Premier modèle

On suppose que la vitesse de décongélation est constante, c’est-à-dire que l’augmentation de la température des gâteaux est la même minute après minute.

Selon ce modèle, déterminer quelle serait la température des gâteaux $25$ minutes après leur sortie du congélateur.

Ce modèle semble-t-il pertinent?
$\quad$

II – Second modèle

On note $T_{n}$ la température des gâteaux, en degré Celsius, au bout de $n$ minutes après leur sortie du congélateur; ainsi $T_{0}=-19$.

On admet que pour modéliser L’évolution de la température, an doit avoir la relation suivante:
pour tout entier naturel $n$, $T_{n+1}-T_{n}=-0,06 \times\left(T_{n}-25\right)$.

  1. Justifier que, pour tout entier naturel $n$, on a: $T_{n+1}=0,94 T_{n}+1,5$.
    $\quad$
  2. Calculer $T_{1}$ et $T_{2}$. On donnera des valeurs arrondies au dixième.
    $\quad$
  3. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $T_{n} \pp 25$. En revenant a la situation étudiée, ce résultat était-il prévisible?
    $\quad$
  4. Etudier le sens de variation de la suite $\left(T_{n}\right)$.
    $\quad$
  5. Démontrer que la suite $\left(T_{n}\right)$ est convergente.
    $\quad$
  6. On pose, pour tout entier naturel $n, U_{n}=T_{n}-25$.
    a. Montrer que la suite $\left(U_{n}\right)$ est une suite géométrique dont on précisera la raison et le premier terme $U_{0}$.
    $\quad$
    b. En déduire que pour tout entier naturel $n, T_{n}=-44 \times 0,94^{n}+25$.
    $\quad$
    c. En déduire la limite de la suite $\left(T_{n}\right)$. Interpréter ce résultat dans le contexte de la situation étudiée.
    $\quad$
  7. a. Le fabricant conseille de consommer les gâteaux au bout d’une demi-heure a température ambiante après leur sortie du congélateur. Quelle est alors la température atteinte par les gâteaux? On donnera une valeur arrondie à l’entier le plus proche.
    $\quad$
    b. Cécile est une habituée de ces gâteaux, qu’elle aime déguster lorsqu’ils sont encore frais, a la température de $10$ °C. Donner un encadrement entre deux entiers consécutifs du temps en minutes après lequel Cécile doit déguster son gâteau.
    $\quad$
    c. Le programme suivant, écrit en langage Python, doit renvoyer après son exécution la plus petite valeur de l’entier $n$ pour laquelle $T_{n} \pg  10$.$$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = } \ldots\ldots \\
    \hspace{1.5cm} \textbf{while } \text{T }\ldots\ldots : \hspace{1cm} \\
    \hspace{2cm} \text{T = } \ldots\ldots \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$Recopier ce programme sur la copie et compléter les lignes incomplètes afin que le programme renvoie la valeur attendue.
    $\quad$

$\quad$

Exercice au chois du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
II indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer le choix, les principaux domaines abordés sont indiqués en début de chaque exercice.

Exercice A

Principaux domaines abordés:

  • Géométrie de l’espace rapporté à un repère orthonormé;
  • orthogonalité dans l’espace.

Dans un repère $Oikj$ on considère :

  • le point $A$ de coordonnées $(1 ; 3 ; 2)$,
  • le vecteur $\vec{u}$ de coordonnées $\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}$,
  • la droite $d$ passant par l’origine $O$ du repère et admettant pour vecteur directeur $\vec{u}$.

 

Le but de cet exercice est de déterminer le point de $d$ le plus proche du point $A$ et d’étudier quelques propriétés de ce point.

On pourra s’appuyer sur la figure ci-contre pour raisonner au fur et à mesure des questions.

  1. Déterminer une représentation paramétrique de la droite $d$.
    $\quad$
  2. Soit $t$ un nombre réel quelconque, et $M$ un point de la droite $d$, le point $M$ ayant pour coordonnées $(t ; t ; 0)$.
    a. On note $AM$ la distance entre les points $A$ et $M$. Démontrer que :$$AM^2=2 t^{2}-8 t+14$$
    $\quad$
    b. Démontrer que le point $M_0$ de coordonnées $(2 ; 2 ; 0)$ est le point de la droite $d$ pour lequel la distance $AM$ est minimale. On admettra que la distance $AM$ est minimale lorsque son carré $AM^2$ est minimal.
    $\quad$
  3. Démontrer que les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. On appelle $A’$ le projeté orthogonal du point $A$ sur le plan d’équation cartésienne $z=0$. Le point $A’$ admet donc pour coordonnées $(1 ; 3 ; 0)$.
    Démontrer que le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$, origine du repère.
    $\quad$
  5. Calculer le volume de la pyramide $OM_0A’A$.
    On rappelle que le volume d’une pyramide est donné par: $V=\dfrac{1}{3} \mathcal{B} h$, où $\mathcal{B}$ est l’aire d’une base et $h$ est la hauteur de la pyramide correspondant à cette base.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés:

  • Équations différentielles;
  • fonction exponentielle.

On considère l’équation différentielle $(E): y’=y+2 x \e^{x}$.

On cherche l’ensemble des fonctions définies et dérivables sur l’ensemble $\R$ des nombres réels qui sont solutions de cette équation.

  1. Soit $u$ la fonction définie sur $\R$ par $u(x)=x^{2} \e^{x}$. On admet que $u$ est dérivable et on note $u’$ sa fonction dérivée. Démontrer que $u$ est une solution particulière de $(E)$.
    $\quad$
  2. Soit $f$ une fonction définie et dérivable sur $\R$. On note $g$ la fonction définie sur $\R$ par :$$g(x)=f(x)-u(x)$$
    a. Démontrer que si la fonction $f$ est solution de l’équation différentielle $(E)$ alors la fonction $g$ est solution de l’équation différentielle : $y’=y$. On admet que la réciproque de cette propriété est également vraie.
    $\quad$
    b. À l’aide de la résolution de l’équation différentielle $y’=y$, résoudre l’équation différentielle $(E)$.
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. Étudier le signe de $u'(x)$ pour $x$ variant dans $\R$.
    $\quad$
    b. Dresser le tableau de variations de la fonction $u$ sur $\R$ (les limites ne sont pas demandées).
    $\quad$
    c. Déterminer le plus grand intervalle sur lequel la fonction $u$ est concave.
    $\quad$

$\quad$