Bac – Spécialité mathématiques – Nouvelle Calédonie- sujet 2 – 27 octobre 2022

Nouvelle Calédonie – 27 octobre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
    b. On a
    $\begin{align*} p\left(\conj{D}\cap R\right)&=p\left(\conj{D}\right)\times p_{\conj{D}}(R) \\
    &=\dfrac{3}{4}\times 0,35 \\
    &=0,262~5\end{align*}$
    $\quad$
    c. $\left(D,\conj{D}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(R)&=p(R\cap D)+ p\left(\conj{D}\cap R\right) \\
    &=p(D)\times p_D(R)+0,262~5 \\
    &=\dfrac{1}{4}\times 0,6+0,262~5 \\
    &=0,412~5\end{align*}$
    La probabilité que Stéphanie réussisse un tir est bien égale à $0,412~5$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} p_R\left(\conj{D}\right)&=\dfrac{p\left(R\cap \conj{D}\right)}{p(R)} \\
    &=\dfrac{0,262~5}{0,262~5} \\
    &\approx 0,636\end{align*}$
    La probabilité qu’il s’agisse d’un tir à trois points si Stéphanie réussit un tir est environ égale à $0,636$.
    $\quad$
  2. a. On répète $10$ fois de façon indépendantes la même expérience de Bernoulli de paramètre $0,35$.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,35$.
    $\quad$
    b. L’espérance de $X$ est :
    $\begin{align*} E(X)&=10\times 0,35 \\
    &=3,5\end{align*}$
    Sur $100$ tirs à trois points elle en réussit donc en moyenne $35$.
    $\quad$
    c. On veut calculer $P(X\pp 6)\approx 0,97$.
    La probabilité que Stéphanie rate $4$ tirs ou plus est environ égale à $0,97$.
    $\quad$
    d. On veut calculer $P(X\pg 6)=1-P(X\pp 5)\approx 0,09$.
    La probabilité que Stéphanie rate au plus $4$ tirs est environ égale à $0,09$.
    $\quad$
  3. On note $Y$ la variable aléatoire qui compte le nombre de tirs réussis.
    On répète $n$ fois de façon indépendantes la même expérience de Bernoulli de paramètre $0,35$.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,35$
    On veut déterminer le plus plus petit entier naturel $n$ tel que :
    $\begin{align*} p(Y\pg 1)\pg 0,99 &\ssi 1-P(X=0)\pg 0,99 \\
    &\ssi P(X=0) \pp 0,01 \\
    &\ssi 0,65^n \pp 0,01 \\
    &\ssi n\ln(0,65) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,65)}\quad \text{car } \ln(0,65)>0\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,65)}\approx 10,69$.
    La plus petite valeur de $n$ telle que la probabilité que Stéphanie réussisse au moins un tir parmi les $n$ tirs soit supérieure ou égale à $0,99$ est donc $11$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. La fonction $f$ est dérivable sur $]0;+\infty[$ par hypothèse.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=\ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)+1-1\\
    &=\ln(x)\end{align*}$
    $\quad$
    b. On a $f(\e)=-2$ et $f'(\e)=1$.
    Une équation de la tangente $T$ est donc $y=1\times (x-\e)-2$ soit $y=x-\e-2$.
    $\quad$
    c. Par hypothèse la fonction $f$ est deux fois dérivables sur $]0;+\infty[$.
    Par conséquent, pour tout réel $x>0$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    d. La fonction $f$ est convexe sur $]0;+\infty[$. La courbe $\mathscr{C}_f$ est donc au-dessus de toutes ses tangentes.
    Ainsi $\mathscr{C}_f$ est au-dessus de $T$.
    $\quad$
  2. a. Par croissances comparées $\lim\limits_{x\to 0} x\ln(x)=0$. Donc $\lim\limits_{x\to 0} f(x)=-2$.
    $\quad$
    b. Pour tout réel $x>0$ on a $f(x)=x\left(\ln(x)-1-\dfrac{2}{x}\right)$.
    Or $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} \dfrac{1}{x}=0$.
    Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
  3. $\ln(x)=0\ssi x=1$ et $\ln(x)>0 \ssi x>1$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  4. a. Pour tout réel $x\in ]0;1]$ on a, d’après la question précédente, $f(x)<-2$. L’équation $f(x)=0$ n’admet donc aucune solution sur l’intervalle $]0;1]$.
    La fonction $f$ est continue (car dérivable) et strictement croissante sur l’intervalle $[1;+\infty[$.
    $f(1)=-3<0$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur l’intervalle $[1;+\infty[$.
    Ainsi l’équation $f(x)=0$ admet une unique solution sur $]0;+\infty[$.
    $\quad$
    b. $f(4,3)\approx -0,03<0$ et $f(4,4)\approx 0,12>0$.
    Donc $f(4,3)<f(\alpha)<f(4,4)$.
    La fonction $f$ est strictement croissante sur l’intervalle $[4,3;4;4]$.
    Par conséquent $4,3<\alpha<4,4$.
    Ainsi $\alpha\in ]4,3;4,4[$.
    $\quad$
    c. D’après les questions précédentes :
    $\bullet$ $f(x)<0$ sur $]0;\alpha[$;
    $\bullet$ $f(\alpha)=0$;
    $\bullet$ $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$
  5. $\texttt{seuil(0.01)}$ renvoie la valeur $4,32$.
    Il s’agit d’une valeur approchée à $10^{-2}$ près de $\alpha$.
    $\quad$

 

Ex 3

Exercice 3

  1. On a $B(6;4;0)$, $E(0;4;4)$, $F(6;4;4)$ et $G(6;0;4)$.
    $\quad$
  2. Le volume du toit est
    $\begin{align*}V_{pyramide}&=\dfrac{1}{3}\times 6\times 4\times (6-4) \\
    &=16\end{align*}$
    Le volume de $EFGHS$ est donc égale à $16$ u.v.
    Le volume du parallélépipède est :
    $\begin{align*} V_{parallélépipède}&=6\times 4\times 4\\
    &=96\end{align*}$
    Le volume de la maison est donc $V=16+96=112$ u.v.
    $\dfrac{16}{112}=\dfrac{1}{7}$
    Le volume de la pyramide $EFGHS$ représente bien le septième du volume total de la maison.
    $\quad$
  3. a. On a $\vect{EF}\begin{pmatrix} 6\\0\\0\end{pmatrix}$ et $\vect{ES}\begin{pmatrix}3\\-2\\2\end{pmatrix}$.
    Ces deux vecteurs sont clairement non colinéaires.
    Ainsi $\vec{n}.\vect{EF}=0+0+0=0$ et $\vec{n}.\vect{ES}=0-2+2=0$.
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(EFS)$. Il est, par conséquent, normal au plan $(EFS)$.
    $\quad$
    b. Une équation cartésienne du plan $(EFS)$ est donc de la forme $y+z+d=0$.
    Le point $E(0;4;4)$ appartient au plan $(EFS)$.
    Donc $4+4+d=0 \ssi d=-8$.
    Une équation cartésienne du plan $(EFS)$ est donc $y+z+8=0$.
    $\quad$
  4. a. La droite $(PQ)$ est dirigée par $\vec{k}$ et passe par $Q(2;3;5,5)$.
    Une représentation paramétrique de la droite $(PQ)$ est donc $$\begin{cases} x=2\\y=3\\z=5,5+t\end{cases} \qquad t\in \R$$
    $\quad$
    b. Le point $P$ est le point d’intersection de la droite $(PQ)$ et du plan $(EFS)$. Déterminons les coordonnées de ce point à l’aide du système :
    $\begin{align*}\begin{cases} y+z-8=0 \\x=2\\y=3\\z=5,5+t\end{cases} &\ssi \begin{cases}x=2\\y=3\\z=5,5+t\\3+5,5+t-8=0\end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\t=-0,5\\z=5\end{cases}\end{align*}$
    Ainsi $P$ a pour coordonnées $(2;3;5)$.
    $\quad$
    c. On a alors $\vect{PQ}\begin{pmatrix}0\\0\\0,5\end{pmatrix}$.
    Ainsi $PQ=0,5$.
    $\quad$
  5. Un vecteur directeur de $\Delta$ est $\vec{u}\begin{pmatrix} 6\\-4\\4\end{pmatrix}$
    $\vec{k}$ et $\vec{u}$ ne sont pas colinéaires. Les droites $(PQ)$ et $\Delta$ ne sont donc pas parallèles.
    Déterminons si elles sont sécantes.
    $\begin{align*} \begin{cases} x=2\\y=3\\z=5,5+t\\x=-4+6s\\y=7-4s\\z=2+4s\end{cases}&\ssi \begin{cases} x=2\\y=3\\z=5,5+t\\-4+6s=2\\7-4s=3\\z=2+4s\end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\s=1\\z=2+4s\\z=5,5+t \end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\z=6\\s=1\\t=0,5\end{cases}\end{align*}$
    Les droites $(PQ)$ et $\Delta$ sont donc sécantes. Leur point d’intersection a pour coordonnées $(2;3;6)$.
    L’oiseau passe donc $0,5$ unité au-dessus de l’antenne. Par conséquent, il ne la percute pas.
    $\quad$

 

Ex 4

Exercice 4

  1. Pour tout $n\in \N$ on a $-1\pp (-1)^n \pp 1$ donc $-\dfrac{1}{n}\pp u_n \pp \dfrac{1}{n}$.
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{n}=0$.
    D’après le théorème des gendarmes $\lim\limits_{n\to +\infty} u_n=0$.
    Réponse D
    $\quad$
  2. On a :
    $\begin{align*} w_0&=\e^{-2\ln(a)}+2 \\
    &=a^{-2}+2 \\
    &=\dfrac{1}{a^2}+2\end{align*}$
    Réponse A
    $\quad$
  3. La suite $\left(v_n\right)$ est décroissante.
    Pour tout $n\in \N$
    $\begin{align*} v_n\pp v_{n+1} &\ssi -2v_n\pg -2v_{n+1} \\
    &\ssi \e^{-2v_n}\pg \e^{-2v_{n+1}} \\
    &\ssi w_n\pg w_{n+1}\end{align*}$
    La suite $\left(w_n\right)$ est donc décroissante.
    La fonction exponentielle est strictement positive. Par conséquent, pour tout $n\in \N$, $\e^{-2v_n}>0$ et $w_n>2$.
    Réponse B
    $\quad$
  4. Montrons que la bonne réponse est la B.
    Il suffisait ici de calculer les premiers termes de chacune des $5$ suites pour déterminer que seule la proposition convenait.
    $-\dfrac{2}{3^0}+4=2$ ce qui correspond bien à $a_0=2$.
    $\begin{align*} -\dfrac{2}{3^{n+1}}+4&=\dfrac{1}{3}\times \dfrac{-2}{3^n}+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4-4\right)+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4\right)-\dfrac{4}{3}+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4\right)+\dfrac{8}{3}\end{align*}$
    On retrouve bien la relation de récurrence $a_{n+1}=\dfrac{1}{3}a_n+\dfrac{8}{3}$.
    Réponse B
    $\quad$
  5. Pour tout $n\in \N$ on a $b_{n+1}-b_n=\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)$.
    Or $\left(b_n\right)^2+3>2$ donc $\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)<0$.
    La suite $\left(b_n\right)$ est par conséquent décroissante.
    Réponse B
    $\quad$
  6. $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{x\to 0^+} g(x)=+\infty$.
    La droite d’équation $x=0$ est asymptote à la courbe $\mathscr{C}_g$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    La courbe $\mathscr{C}_g$ ne possède pas d’asymptote horizontale.
    Réponse B
    $\quad$
  7. On considère la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2+1}$
    $F$ est dérivable sur $\R$ en tant que composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} F'(x)&=\dfrac{1}{2}\times 2x\e^{x^2+1} \\
    &=f(x)\end{align*}$
    Réponse D
    $\quad$

 

Énoncé

Le sujet propose 4 exercices.
Le candidat choisit 3 exercices parmi les 4 et ne doit traiter que ces 3 exercices.

Exercice 1     7 points

Principaux domaines abordés : probabilités

Au basket-ball, il existe deux sortes de tir :

  • les tirs à deux points.
    Ils sont réalisés près du panier et rapportent deux points s’ils sont réussis.
  • les tirs à trois points.
    Ils sont réalisés loin du panier et rapportent trois points s’ils sont réussis.

Stéphanie s’entraîne au tir. On dispose des données suivantes :

  • Un quart de ses tirs sont des tirs à deux points. Parmi eux, $60 \%$ sont réussis.
  • Trois quarts de ses tirs sont des tirs à trois points. Parmi eux, $35\%$ sont réussis.
  1. Stéphanie réalise un tir.
    On considère les évènements suivants :
    $D$ : « Il s’agit d’un tir à deux points ».
    $R$ : « le tir est réussi ».
    a. Représenter la situation à l’aide d’un arbre de probabilités.
    $\quad$
    b. Calculer la probabilité $p(D \cap R)$.
    $\quad$
    c. Démontrer que la probabilité que Stéphanie réussisse un tir est égale à $0,412~5$.
    $\quad$
    d. Stéphanie réussit un tir. Calculer la probabilité qu’il s’agisse d’un tir à trois points.
    Arrondir le résultat au centième.
    $\quad$
  2. Stéphanie réalise à présent une série de $10$ tirs à trois points.
    On note $X$ la variable aléatoire qui compte le nombre de tirs réussis.
    On considère que les tirs sont indépendants. On rappelle que la probabilité que Stéphanie réussisse un tir à trois points est égale à $0,35$.
    a. Justifier que $X$ suit une loi binomiale. Préciser ses paramètres.
    $\quad$
    b. Calculer l’espérance de $X$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
    c. Déterminer la probabilité que Stéphanie rate $4$ tirs ou plus. Arrondir le résultat au centième.
    $\quad$
    d. Déterminer la probabilité que Stéphanie rate au plus $4$ tirs. Arrondir le résultat au centième.
    $\quad$
  3. Soit $n$ un entier naturel non nul.
    Stéphanie souhaite réaliser une série de $n$ tirs à trois points.
    On considère que les tirs sont indépendants. On rappelle que la probabilité qu’elle réussisse un tir à trois points est égale à $0,35$.
    Déterminer la valeur minimale de $n$ pour que la probabilité que Stéphanie réussisse au moins un tir parmi les n tirs soit supérieure ou égale à $0,99$.
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : fonctions, fonction logarithme.

Soit $f$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par :
$$f(x) = x\ln(x)-x-2$$
On admet que la fonction $f$ est deux fois dérivable sur $]0 ; +\infty[$.
On note $f’$ sa dérivée, $f\dsec$ sa dérivée seconde et $\mathscr{C}_f$ sa courbe représentative dans un repère.

  1. a. Démontrer que, pour tout $x$ appartenant à $]0 ; +\infty[$, on a $f'(x) = \ln(x)$.
    $\quad$
    b. Déterminer une équation de la tangente $T$ à la courbe $\mathscr{C}_f$ au point d’abscisse $x =\e$.
    $\quad$
    c. Justifier que la fonction $f$ est convexe sur l’intervalle $]0 ; +\infty[$.
    $\quad$
    d. En déduire la position relative de la courbe $\mathscr{C}_f$ et de la tangente $T$.
    $\quad$
  2. a. Calculer la limite de la fonction $f$ en $0$.
    $\quad$
    b. Démontrer que la limite de la fonction $f$ en $+\infty$ est égale à $+\infty$.
    $\quad$
  3. Dresser le tableau de variations de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  4. a. Démontrer que l’équation $f (x) = 0$ admet une unique solution dans l’intervalle $]0 ; +\infty[$. On note $\alpha$ cette solution.
    $\quad$
    b. Justifier que le réel $\alpha$ appartient à l’intervalle $]4,3; 4,4[$.
    $\quad$
    c. En déduire le signe de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  5. On considère la fonction $\texttt{seuil}$ suivante écrite dans le langage Python :
    On rappelle que la fonction $\texttt{log}$ du module $\texttt{math}$ (que l’on suppose importé) désigne
    la fonction logarithme népérien $\ln$.$$\begin{array}{|l|}
    \hline
    \text{def seuil(pas) :}\\
    \quad  \text{x=4.3}\\
    \quad  \text{while x*log (x) – x – 2 < 0:}\\
    \qquad  \text{x=x+pas}\\
    \quad  \text{return x}\\
    \hline
    \end{array}$$
    Quelle est la valeur renvoyée à l’appel de la fonction $\texttt{seuil(0.01)}$?
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés : géométrie dans l’espace

Une maison est modélisée par un parallélépipède rectangle $ABCDEFGH$ surmonté d’une pyramide $EFGHS$.
On a $DC = 6$, $DA = DH = 4$.
Soit les points $I$, $J$ et $K$ tels que $\vect{DI}=\dfrac{1}{6}\vect{DC}$, $\vect{DJ}=\dfrac{1}{4}\vect{DA}$, $\vect{DK}=\dfrac{1}{6}\vect{DH}$.
On note $\vec{i}=\vect{DI}$, $\vec{j}=\vect{DJ}$, $\vec{k}=\vect{DK}$.
On se place dans le repère orthonormé $\left(D;\vec{i},\vec{j},\vec{k}\right)$.
On admet que le point $S$ a pour coordonnées $(3; 2; 6)$.

  1. Donner, sans justifier, les coordonnées des points $B$, $E$, $F$ et $G$.
    $\quad$
  2. Démontrer que le volume de la pyramide $EFGHS$ représente le septième du volume total de la maison.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V =\dfrac{1}{3}\times \text{(aire de la base)}\times \text{hauteur}$$
    $\quad$
  3. a. Démontrer que le vecteur $\vec{n}$ de coordonnées $\begin{pmatrix}0\\1\\0\end{pmatrix}$ est normal au plan $(EFS)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(EFS)$ est $y +z-8 = 0$.
    $\quad$
  4. On installe une antenne sur le toit, représentée par le  segment $[PQ]$. On dispose des
    données suivantes :
    $\bullet$ le point $P$ appartient au plan $(EFS)$;
    $\bullet$ le point $Q$ a pour coordonnées $(2; 3; 5,5)$;
    $\bullet$ la droite $(PQ)$ est dirigée par le vecteur $\vec{k}$.
    a. Justifier qu’une représentation paramétrique de la droite $(PQ)$ est :
    $$\begin{cases}x=2\\y = 3\\z = 5,5+t\end{cases} \quad (t \in \R)$$
    b. En déduire les coordonnées du point $P$.
    $\quad$
    c. En déduire la longueur $PQ$ de l’antenne.
    $\quad$
  5. Un oiseau vole en suivant une trajectoire modélisée par la droite $\Delta$ dont une représentation paramétrique est : $$\begin{cases} x=-4+6s\\y=7-4s\\z=2+4s\end{cases} \quad (s\in \R)$$
    Déterminer la position relative des droites $(PQ)$ et $\Delta$.
    L’oiseau va-t-il percuter l’antenne représentée par le segment $[PQ]$?
    $\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés : : suites, fonctions, primitives

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée

  1. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $$u_n=\dfrac{(-1)^n}{n+1}$$
    On peut affirmer que :
    a. la suite $\left(u_n\right)$ diverge vers $+\infty$.
    b. la suite $\left(u_n\right)$ diverge vers $-\infty$.
    c. la suite $\left(u_n\right)$ n’a pas de limite.
    d. la suite $\left(u_n\right)$ converge.
    $\quad$

Dans les questions 2 et 3, on considère deux suites $\left(v_n\right)$ et $\left(u_n\right)$ vérifiant la relation : $$w_n=\e^{-2v_n+2}$$

  1. . Soit $a$ un nombre réel strictement positif. On a $v_0 = \ln(a)$.
    a. $w_0=\dfrac{1}{a^2}+2$
    b. $w_0=\dfrac{1}{a^2+2}$
    c. $w_0=-2a+2$
    d. $w_0=\dfrac{1}{-2a}+2$
    $\quad$
  2. On sait que la suite $\left(v_n\right)$ est croissante. On peut affirmer que la suite $\left(w_n\right)$ est :
    a. décroissante et majorée par $3$.
    b. décroissante et minorée par $2$.
    c. croissante et majorée par $3$.
    d. croissante et minorée par $2$.
    $\quad$
  3. On considère la suite $\left(a_n\right)$ ainsi définie : $$a_0=2 \text{ et, pour tout entier naturel }n,~~a_{n+1}=\dfrac{1}{3}a_n+\dfrac{8}{3}$$
    Pour tout entier naturel $n$, on a :
    a. $a_n=4\times \left(\dfrac{1}{3}\right)^n-2$
    b. $a_n=-\dfrac{2}{3^n}+4$
    c. $a_n=4-\left(\dfrac{1}{3}\right)^n$
    d. $a_n=2\times \left(\dfrac{1}{3}\right)^n+\dfrac{8n}{3}$
    $\quad$
  4. On considère une suite $\left(b_n\right)$ telle que, pour tout entier naturel $n$, on a : $$b_{n+1}=b_n+\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)$$
    On peut affirmer que :
    a. la suite $\left(b_n\right)$ est croissante.
    b. la suite $\left(b_n\right)$ est décroissante.
    c. la suite $\left(b_n\right)$ n’est pas monotone.
    d. le sens de variation de la suite $\left(b_n\right)$ dépend de $b_0$.
    $\quad$
  5. On considère la fonction $g$ définie sur l’intervalle $]0 ; +\infty[$ par : $$g(x)=\dfrac{\e^x}{x}$$
    On note $\mathscr{C}_g$ la courbe représentative de la fonction $g$ dans un repère orthogonal.
    La courbe $\mathscr{C}_g$ admet :
    a. une asymptote verticale et une asymptote horizontale.
    b. une asymptote verticale et aucune asymptote horizontale.
    c. aucune asymptote verticale et une asymptote horizontale.
    d. aucune asymptote verticale et aucune asymptote horizontale.
    $\quad$
  6. Soit $f$ la fonction définie sur $\R$ par $$f(x)=x\e^{x^2+1}$$
    Soit $F$ une primitive sur $\R$ de la fonction $f$. Pour tout réel $x$, on a :
    a. $F(x)=\dfrac{1}{2}x^2\e^{x^2+1}$
    b. $F(x)=\left(1+2x^2\right)\e^{x^2+1}$
    c. $F(x)=\e^{x^2+1}$
    d. $F(x)=\dfrac{1}{2}\e^{x^2+1}$
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Nouvelle Calédonie- sujet 1 – 26 octobre 2022

Nouvelle Calédonie – 26 octobre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a.$\lim\limits_{x\to 0} x^2-6x=0$ et $\lim\limits_{x\to 0} \ln(x)=-\infty$ donc $\lim\limits_{x\to 0} f(x)=-\infty$.
    La droite d’équation $x=0$ est donc asymptote à la courbe $\mathscr{C}_f$.
    $\quad$
    b. Pour tout réel $x$ on a $f(x)=x^2\left(1-\dfrac{6}{x}+\dfrac{4\ln(x)}{x^2}\right)$.
    Or $\lim\limits_{x\to +\infty} \dfrac{1}{x}=0$ et, par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$.
    De plus $\lim\limits_{x\to +\infty} x^2=+\infty$.
    Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
  2. a. La fonction $f$ est dérivable sur $]0;+\infty[$ par hypothèse.
    Pour tout réel $x>0$ on a:
    $\begin{align*} f'(x)&=2x-6+\dfrac{4}{x} \\
    &=\dfrac{2x^2-6x+4}{x} \\
    &=\dfrac{2\left(x^2-3x+2\right)}{x}\end{align*}$
    $\quad$
    b. Le signe de $f'(x)$ ne dépend que de celui-ci de $x^2-3x+2$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=1>0$.
    Les racines de ce polynômes sont :
    $x_1=\dfrac{3+\sqrt{1}}{2}=2$ et $x_2=\dfrac{3-\sqrt{1}}{2}=1$.
    Le coefficient principal du polynôme est $a=1>0$.
    Ainsi :
    $\bullet$ $f'(x)>0$ sur $]0;1[$;
    $\bullet$ $f'(1)=0$;
    $\bullet$ $f'(x)<0$ sur $]1;2[$;
    $\bullet$ $f'(2)=0$;
    $\bullet$ $f'(x)>0$ sur $]2;+\infty[$.
    On obtient donc le tableau de variations suivant :
    $\quad$
    $f(2)=-8+4\ln(2)
    $\quad$
  3. La fonction $f$ est continue (car dérivable) et strictement croissante sur l’intervalle $[4;5]$.
    De plus $f(4)\approx -2,45<0$ et $f(5)\approx 1,44>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $[4;5]$.
    $\quad$
  4. a. Pour tout $x>0$
    $\begin{align*} f\dsec(x)>0 &\ssi 2x^2-4>0 \\
    &\ssi x^2>2 \\
    &\ssi x>\sqrt{2}\end{align*}$
    La fonction $f$ est donc concave sur $\left]0;\sqrt{2}\right]$ et convexe sur $\left[\sqrt{2};+\infty\right[$.
    De plus $f\dsec\left(\sqrt{2}\right)=0$ et $f\left(\sqrt{2}\right)=2-6\sqrt{2}+2\ln(2)$.
    Ainsi, $\mathscr{C}_f$ admet un unique point d’inflexion de coordonnées $\left(\sqrt{2};2-6\sqrt{2}+2\ln(2)\right)$.
    $\quad$
    b. La fonction $f$ est concave sur $\left]0;\sqrt{2}\right]$. La courbe $\mathscr{C}_f$ est donc au-dessus de ses cordes sur cet intervalle.
    La fonction $f$ est convexe sur $\left[\sqrt{2};+\infty\right[$. La courbe $\mathscr{C}_f$ est donc au-dessous de ses cordes sur cet intervalle.
    Ainsi :
    – $\mathscr{C}_f$ est au-dessus de $[AM]$ sur $\left]0;\sqrt{2}\right[$.
    – $\mathscr{C}_f$ est au-dessous de $[AM]$ sur $\left]\sqrt{2};+\infty[\right[$.
    $\quad$

 

 

Ex 2

Exercice 2

  1. a. $u_1=-\e^{-1}\approx -0,368$ et $u_2=-\e^{-3-\e^{-1}}\approx -0,034$.
    $\quad$
    b. $\texttt{fonc(2)}$ renvoie la valeur de $u_2$ c’est-à-dire environ $0,034$.
    $\quad$
  2. a. Par hypothèse $f$ est dérivable sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=3x^2\e^x+x^3\e^x \\
    &=x^2\e^x(3+x)\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $x+3$.
    Or $x+3=0 \ssi x=-3$ et $x+3>0 \ssi x>-3$.
    La fonction $f$ est donc strictement décroissante sur $]-\infty;-3]$ et strictement croissante sur $[3;+\infty[$.
    De plus, par croissances comparées $\lim\limits_{x\to -\infty} x^3\e^{-x}=0$.
    $\lim\limits_{x\to +\infty} x^3=+\infty$ et $\lim\limits_{x\to +\infty} \e^x=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\begin{align*} f(-3)&=(-3)^3\e^{-3} \\
    &=-27\e^{-3}\end{align*}$
    On a ainsi justifié chacun des éléments du tableau de variations.
    $\quad$
    c. Pour tout $n\in \N$ on pose $P(n):~-1\pp u_n\pp u_{n+1} \pp 0$.
    Initialisation : $u_0=-1$ et $u_1\approx -0,368$.
    On a donc bien $-1\pp u_0\pp u_1 \pp 0$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $-1\pp u_n \pp u_{n+1} \pp 0$.
    La fonction $f$ est strictement croissante sur $[-1;0]$.
    Par conséquent $f(-1) \pp f\left(u_n\right)\pp f\left(u_{n+1}\right) \pp f(0)$
    Or $f(-1) \approx -0,368$ et $f(0)=0$.
    Ainsi $-1\pp u_{n+1} \pp u_{n+2}\pp 0$.
    $P(n+1)$ est donc vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout $n\in \N$ on a $-1\pp u_n\pp u_{n+1} \pp 0$.
    $\quad$
    d. La suite $\left(u_n\right)$ est croissante et majorée par $0$. Elle converge donc vers un réel $\ell$.
    $\quad$
    e. On a $f(x)=x\ssi x^3\e^x=x \ssi x\left(x^2\e^x-1\right)=0 \ssi x=0$ ou $x^2\e^x-1=0$.
    Or l’équation $x^2\e^x-1=0$ possède une unique solution supérieure à $\dfrac{1}{2}$ et on sait que $-1\pp \ell \pp 0$.
    Ainsi $\ell=0$.
    $\quad$

 

Ex 3

Exercice 3

  1. Le point $G$ a pour coordonnées $(3;2;1)$.
    $\quad$
  2. Une équation cartésienne du plan $(EHI)$ est donc de la forme $2x-3z+d=0$.
    Le point $E(0;0;1)$ appartient à ce plan donc $0-3+d=0\ssi d=3$.
    Une équation cartésienne du plan $(EHI)$ est par conséquent $2x-3z+3=0$.
    $\quad$
  3. Le triangle $EIF$ est isocèle en $I$ et $\vect{EF}=\vect{AB}$. Par conséquent l’abscisse de $I$ est $\dfrac{AB}{2}=1,5$.
    Sa côte, $z_I$ vérifie $2\times 1,5-3z_I+3=0 \ssi 3z_I=6 \ssi z_I=2$.
    De plus $I$ appartient au plan $(ABE)$ dont une équation cartésienne est $y=0$.
    Ainsi $I$ a pour coordonnées $(1,5;0;2)$.
    $\quad$
  4. On a $\vect{IE}(-1,5;0;-1)$ et $\vect{IF}(1,5;0;-1)$
    Par conséquent
    $\begin{align*} IE&=\sqrt{(-1,5)^2+(-1)^2} \\
    &=\sqrt{3,25}\end{align*}$
    et $IF=IE=\sqrt{3,25}$.
    D’une part $\vect{IE}.\vect{IF}=-1,5\times 1,5+(-1)\times (-1)=-1,25$
    D’autre part $\vect{IE}.\vect{IF}=IE\times IF\times \cos\widehat{EIF}$
    Ainsi $3,25 \cos\widehat{EIF}=-1,25 \ssi \cos\widehat{EIF}=-\dfrac{5}{13}$
    Donc $\widehat{EIF}\approx 113$°.
    $\quad$
  5. a. La droite $\Delta$ est dirigée par $\vec{u}$ et passe par $R$.
    Une représentation paramétrique de la droite $\Delta$ est donc $$\begin{cases} x=6-3t\\y=-3+4t\\z=-1+t\end{cases}$$
    $\quad$
    b. Le point $K$ appartient au plan $(BFG)$ par conséquent son abscisse est $x_K=3$.
    Le point $K$ appartient à la droite $\Delta$ donc $6-3t=3 \ssi t=1$.
    Ainsi $K$ a pour coordonnées $(3;1;0)$.
    $\quad$
    c. On a $C(3;2;0)$ et $B(3;0;0)$. Donc $K$ est le milieu de $[BC]$ et appartient donc bien à l’arête $[BC]$

 

Ex 4

Exercice 4

  1. On veut calculer
    $\begin{align*} p\left(E_0\cap R_0\right)&=p\left(E_0\right)\times p_{E_0}\left(R_0\right) \\
    &=0,4\times (1-0,01) \\
    &=0,4\times 0,99 \\
    &=0,396\end{align*}$
    Réponse B
    $\quad$
  2. $\left(E_0,E_1\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} p\left(R_0\right)&=p\left(E_0\cap R_0\right)+p\left(E_1\cap R_0\right) \\
    &=0,396+p\left(E_1\right)\times p_{E_1}\left(R_0\right) \\
    &=0,396+0,6\times 0,02 \\
    &=0,408\end{align*}$
    Réponse C
    $\quad$
  3. On a
    $\begin{align*} p_{R_1}\left(E_0\right)&=\dfrac{p\left(R_1\cap E_0\right)}{p\left(R_1\right)} \\
    &=\dfrac{p\left(E_0\right)\times p_{E_0}\left(R_1\right)}{1-p\left(R_0\right)}\\
    &=\dfrac{0,4\times 0,01}{1-0,408} \\
    &\approx 0,006~757\end{align*}$
    Réponse C$\quad$
  4. La probabilité qu’il y ait une erreur de transmission est :
    $\begin{align*} p\left(\left(E_0\cap R_1\right)\cup\left(E_1\cap R_0\right)\right)&=p\left(E_0\cap R_1\right)+p\left(E_1\cap R_0\right) \\
    &=p\left(E_0\right)p_{E_0}\left(R_1\right)+p\left(E_1\right)p_{E_1}\left(R_0\right) \\
    &=0,4\times 0,01+0,6\times 0,02 \\
    &=0,016\end{align*}$
    Réponse B
    $\quad$
  5. On appelle $X$ la variable aléatoire comptant le nombre d’octets transmis sans erreur.
    On effectue indépendamment $10$ expérience de Bernoulli de paramètres $0,88$.
    $X$ suit la loi binomiale de paramètres $n=10$ et $p=0,88$.
    Ainsi
    $\begin{align*} p(X=7)&=\dbinom{10}{7}0,88^7\times 0,12^3 \\
    &\approx 0,085\end{align*}$
    Réponse D
    $\quad$
  6. On reprend la variable aléatoire $X$ définie à la question précédente.
    On veut calculer
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-0,12^{10} \end{align*}$
    Réponse A
    $\quad$
  7. On appelle $Y$ la variable aléatoire comptant le nombre d’octets transmis sans erreur.
    On effectue indépendamment $N$ expérience de Bernoulli de paramètres $0,88$.
    $Y$ suit la loi binomiale de paramètres $N$ et $p=0,88$.
    On veut déterminer la plus grande valeur de $N$ telle que
    $\begin{align*} P(X=N)\pg 0,1 &\ssi 0,88^N\pg 0,1 \\
    &\ssi N\ln(0,88) \pg \ln(0,1) \\
    &\ssi N\pp \dfrac{\ln(0,1)}{\ln(0,88)} \quad \text{car } \ln(0,88)<0 \end{align*}$
    Or $\dfrac{\ln(0,1)}{\ln(0,88)}\approx 18,01$.
    Par conséquent $N_0=18$.
    Réponse B
    $\quad$

 

 

Énoncé

Le sujet propose 4 exercices.
Le candidat choisit 3 exercices parmi les 4 et ne doit traiter que ces 3 exercices.

Exercice 1     7 points

Principaux domaines abordés : fonctions, fonction logarithme; convexité.

On considère la fonction $f$ définie sur l’intervalle $]0 ; +\infty[$ par $$f(x)=x^2-6x+4\ln(x)$$

On admet que la fonction $f$ est deux fois dérivable sur l’intervalle $]0 ; +\infty[$.
On note $f ‘$ sa dérivée et $f\dsec$ sa dérivée seconde.
On note $\mathscr{C}_f$ la courbe représentative de la fonction $f$ dans un repère orthogonal.

  1. a. Déterminer $\lim\limits_{x\to 0} f (x)$.
    Interpréter graphiquement ce résultat.
    $\quad$
    b. Déterminer $\lim\limits_{x\to +\infty} f(x)$.
    $\quad$
  2. a. Déterminer $f'(x)$ pour tout réel $x$ appartenant à $]0;+\infty[$.
    $\quad$
    b. Étudier le signe de $f'(x)$ sur l’intervalle $]0;+\infty[$.
    En déduire le tableau de variations de $f$.
    $\quad$
  3. Montrer que l’équation $f (x) = 0$ admet une unique solution dans l’intervalle $[4; 5]$.
    $\quad$
  4. On admet que, pour tout $x$ de $]0 ; +\infty[$, on a : $$f\dsec(x)=\dfrac{2x^2-4}{x^2}$$
    a. Étudier la convexité de la fonction $f$ sur $]0 ; +\infty[$.
    On précisera les valeurs exactes des coordonnées des éventuels points d’inflexion de $\mathscr{C}_f$.
    $\quad$
    b. On note $A$ le point de coordonnées $\left(\sqrt{2};f\left(\sqrt{2}\right)\right)$.
    Soit $t$ un réel strictement positif tel que $t\neq \sqrt{2}$. Soit $M$ le point de coordonnées $\left(t ; f (t)\right)$.
    En utilisant la question 4. a, indiquer, selon la valeur de $t$, les positions relatives du segment $[AM]$ et de la courbe $\mathscr{C}_f$.
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : suites; fonctions, fonction exponentielle

On considère la fonction $f$ définie sur $\R$ par $$f(x) = x^3\e^x$$
On admet que la fonction $f$ est dérivable sur $\R$ et on note $f’$
sa fonction dérivée.

  1. On définit la suite $\left(u_n\right)$ par $u_0 = -1$ et, pour tout entier naturel $n$, $u_{n+1} = f\left(u_n\right)$.
    a. Calculer $u_1$ puis $u_2$.
    On donnera les valeurs exactes, puis les valeurs approchées à $10^{-3}$.
    $\quad$
    b. On considère la fonction $\texttt{fonc}$, écrite en langage Python ci-dessous.
    $$\begin{array}{|l|}
    \hline
    \text{def fonc(n) :}\\
    \quad \text{u =- 1}\\
    \quad \text{for i in range(n) :}\\
    \qquad \text{u=u**3*exp(u)}\\
    \quad \text{return u}\\
    \hline
    \end{array}$$
    On rappelle qu’en langage Python, « $\texttt{i in range (n)}$ » signifie que $\texttt{i}$ varie de $\texttt{0}$ à $\texttt{n-1}$.
    $\quad$
    Déterminer, sans justifier, la valeur renvoyée par $\texttt{fonc(2)}$ arrondie à $10^{-3}$.
    $\quad$
  2. a. Démontrer que, pour tout $x$ réel, on a $f'(x) = x^2\e^x(x+3)$.
    $\quad$
    b. Justifier que le tableau de variations de $f$ sur $\R$ est celui représenté ci-dessous :
    $\quad$

    $\quad$
    c. Démontrer, par récurrence, que pour tout entier naturel $n$, on a : $$-1 \pp u_n \pp u_{n+1} \pp 0$$
    $\quad$
    d. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    e. On note $\ell$ la limite de la suite $\left(u_n\right)$.
    On rappelle que $\ell$ est solution de l’équation $f(x) = x$.
    Déterminer $\ell$. $\Big($Pour cela, on admettra que l’équation $x^2\e^x-1 = 0$ possède une
    seule solution dans $\R$ et que celle-ci est strictement supérieure à $\dfrac{1}{2}\Big)$.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés : géométrie dans l’espace.

Une maison est constituée d’un parallélépipède rectangle $ABCDEFGH$ surmonté d’un prisme $EFIHGJ$ dont une base est le triangle $EIF$ isocèle en $I$.
Cette maison est représentée ci-dessous.

On a $AB = 3$, $AD = 2$, $AE = 1$.
On définit les vecteurs $\vec{i}=\dfrac{1}{3}\vect{AB}$, $\vec{j}=\dfrac{1}{2}\vect{AD}$, $\vec{k}=\vect{AE}$.
On munit ainsi l’espace du repère orthonormé $\left(A;~\vec{i},~\vec{j},~\vec{k}\right)$.

  1. Donner les coordonnées du point $G$.
    $\quad$
  2. Le vecteur $\vec{n}$ de coordonnées $(2 ; 0 ; -3)$ est vecteur normal au plan $(EHI)$.
    Déterminer une équation cartésienne du plan $(EHI)$.
    $\quad$
  3. Déterminer les coordonnées du point $I$.
    $\quad$
  4. Déterminer une mesure au degré près de l’angle $\widehat{EIF}$.
    $\quad$
  5. Afin de raccorder la maison au réseau électrique, on souhaite creuser une tranchée rectiligne depuis un relais électrique situé en contrebas de la maison.
    Le relais est représenté par le point $R$ de coordonnées $(6 ; -3 ; -1)$.
    La tranchée est assimilée à un segment d’une droite $\Delta$ passant par $R$ et dirigée par le vecteur $\vec{u}$ de coordonnées $(-3 ; 4 ; 1)$. On souhaite vérifier que la tranchée atteindra la maison au niveau de l’arête $[BC]$.
    a. Donner une représentation paramétrique de la droite $\Delta$.
    $\quad$
    b. On admet qu’une équation du plan $(BFG)$ est $x = 3$.
    Soit $K$ le point d’intersection de la droite $\Delta$ avec le plan $(BFG)$.
    Déterminer les coordonnées du point $K$.
    $\quad$
    c. Le point $K$ appartient-il bien à l’arête $[BC]$ ?
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés : probabilités.

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.

On considère un système de communication binaire transmettant des $0$ et des $1$.
Chaque $0$ ou $1$ est appelé bit.
En raison d’interférences, il peut y avoir des erreurs de transmission :
un $0$ peut être reçu comme un $1$ et, de même, un $1$ peut être reçu comme un $0$.
Pour un bit choisi au hasard dans le message, on note les évènements :

  • $E_0$ : « le bit envoyé est un $0$ »;
  • $E_1$ : « le bit envoyé est un $1$ »;
  • $R_0$ : « le bit reçu est un $0$ »;
  • $R_1$ : « le bit reçu est un $1$ ».

On sait que : $p\left(E_0\right) = 0,4$; $p_{E_0}\left(R_1\right)=0,01$; $p_{E_1}\left(R_0\right)=0,02$.
On rappelle que la probabilité conditionnelle de $A$ sachant $B$ est notée $p_B(A)$.
On peut ainsi représenter la situation par l’arbre de probabilités ci-dessus.

  1. La probabilité que le bit envoyé soit un $0$ et que le bit reçu soit un $0$ est égale à :
    a. $0,99$
    b. $0,396$
    c. $0,01$
    d. $0,4$
    $\quad$
  2. La probabilité $p\left(R_0\right)$ est égale à :
    a. $0,99$
    b. $0,02$
    c. $0,408$
    d. $0,931$
    $\quad$
  3. Une valeur, approchée au millième, de la probabilité $p_{R_1}
    \left(E_0\right)$ est égale
    a. $0,004$
    b. $0,001$
    c. $0,007$
    d. $0,010$
    $\quad$
  4. La probabilité de l’évènement « il y a une erreur de transmission » est égale à :
    a. $0,03$
    b. $0,016$
    c. $0,16$
    d. $0,015$
    $\quad$

Un message de longueur huit bits est appelé un octet.
On admet que la probabilité qu’un octet soit transmis sans erreur est égale à $0,88$.

  1. On transmet successivement $10$ octets de façon indépendante.
    La probabilité, à $10^{-3}$ près, qu’exactement $7$ octets soient transmis sans erreur est égale à :
    a. $0,915$
    b. $0,109$
    c. $0,976$
    d. $0,085$
    $\quad$
  2. On transmet successivement $10$ octets de façon indépendante.
    La probabilité qu’au moins $1$ octet soit transmis sans erreur est égale à :
    a. $1-0,12^{10}$
    b. $0,12^{10}
    c. $0,88^{10}$
    d. $1-0,88^{10}$
    $\quad$
  3. Soit $N$ un entier naturel. On transmet successivement $N$ octets de façon indépendante.
    Soit $N_0$ la plus grande valeur de $N$ pour laquelle la probabilité que les $N$ octets soient tous transmis sans erreur est supérieure ou égale à $0,1$.
    On peut affirmer que :
    a. $N_0 = 17$
    b. $N_0 = 18$
    c. $N_0 = 19$
    d. $N_0 = 20$
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Métropole, Antilles, Guyane – sujet 1 – 8 septembre 2022

Métropole Antilles/Guyane – 8 septembre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. Pour tout réel $x$
    $\begin{align*} g(x)&=\dfrac{2\e^x}{\e^x+1} \\
    &=\dfrac{2\e^x}{\e^x\left(1+\e^{-x}\right) }\\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$ et $\lim\limits_{x\to +\infty} g(x)=2$.
    La droite d’équation $y=2$ est donc asymptote à la courbe représentative de la fonction $g$ en $+\infty$.
    Réponse b
    $\quad$
  2. La fonction $f\dsec$ semble positive sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Par conséquent $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Réponse c
    $\quad$
  3. Pour tout $n\in \N$ on a :
    $\begin{align*} v_{n+1}&=u_{n+1}-2 \\
    &=\dfrac{1}{2}u_{n+1}+1-2 \\
    &=\dfrac{1}{2}u_{n+1}-1 \\
    &=\dfrac{1}{2}\left(u_n-2\right)\\
    &=\dfrac{1}{2}v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $\dfrac{1}{2}$.
    Réponse d
    $\quad$
  4. $0<\dfrac{1}{4}<1$ donc $\lim\limits_{n\to +\infty} \left(\dfrac{1}{4}\right)^n=0$. Par conséquent $\lim\limits_{n\to +\infty} 1+\left(\dfrac{1}{4}\right)^n=1$.
    $\begin{align*}\dfrac{n}{n+1}&=\dfrac{n}{n\left(1+\dfrac{1}{n}\right)}\\
    &=\dfrac{1}{1+\dfrac{1}{n}}\end{align*}$
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{n}=0$.
    Par conséquent $\lim\limits_{n\to +\infty} \dfrac{n}{n+1}=1$ et $\lim\limits_{n\to +\infty} 2-\dfrac{n}{n+1}=1$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} u_n=1$.
    Réponse b
    $\quad$
  5. On considère la fonction $F$ définie sur $]0;+\infty[$ par $F(x)=\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$.
    La fonction $F$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a :
    $\begin{align*} F'(x)&=\dfrac{1}{3}\times 3x^2\left(\ln(x)-\dfrac{1}{3}\right)+\dfrac{1}{3}x^3\times \dfrac{1}{x}\\
    &=x^2\ln(x)-\dfrac{1}{3}x^2+\dfrac{1}{3}x^2 \\
    &=x^2\ln(x)\end{align*}$
    Ainsi $F$ est une primitive de la fonction $f$.
    Réponse a
    $\quad$
  6. Soit $x\in \R$
    $\begin{align*} 2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}&=\dfrac{2\e^{-x}+2+3\e^{-x}-5}{\e^{-x}+1} \\
    &=\dfrac{5\e^{-x}-3}{\e^{-x}+1} \\
    &=\dfrac{\e^{-x}\left(5-3\e^x\right)}{\e^{-x}\left(1+\e^x\right)} \\
    &=\dfrac{5-3\e^x}{1+\e^x}\end{align*}$
    Réponse a
    $\quad$

Ex 2

Exercice 2

  1. a. On a $p\left(\conj{M}\cap \conj{G}\right)=0,06$ et $p\left(\conj{M}\right)=1-0,7$ c’est-à-dire $p\left(\conj{M}\right)=0,3$.
    Or
    $\begin{align*} P_{\conj{M}}\left(\conj{G}\right)&=\dfrac{p\left(\conj{M}\cap \conj{G}\right)}{p\left(\conj{M}\right)} \\
    &=\dfrac{0,06}{0,3} \\
    &=0,2\end{align*}$
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    $\quad$
    c. On veut calculer
    $\begin{align*} p\left(G\cap \conj{M}\right)&=p\left(\conj{M}\right)\times p_{\conj{M}}(G) \\
    &=0,3\times 0,8\\
    &=0,24\end{align*}$
    La probabilité de l’événement « le client visite la grotte et ne visite pas le musée » est égale à $0,24$.
    $\quad$
    d. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} p(G)&=p(G\cap M)+p\left(\conj{M}\cap G\right) \\
    &=p(M)\times p_M(G)+p\left(\conj{M}\cap G\right) \\
    &=0,7\times 0,6+0,24 \\
    &=0,66\end{align*}$
    $\quad$
  2. On veut calculer
    $\begin{align*} p_G(M)&=\dfrac{p(G\cap M)}{p(G)} \\
    &=\dfrac{0,7\times 0,6}{0,66} \\
    &=\dfrac{7}{11} \\
    &>\dfrac{1}{2}
    \end{align*}$
    L’affirmation est donc exacte.
    $\quad$
  3. a. On a $T(\Omega)=\acco{0,~5,~12,~17}$
    $\begin{align*} p(T=0)&=p\left(\conj{G}\cap \conj{M}\right) \\
    &=0,06\end{align*}$
    $\begin{align*} p(T=5)&=p\left(G\cap \conj{M}\right) \\
    &=0,24\end{align*}$
    $\begin{align*} p(T=12)&=p\left(\conj{G}\cap M\right) \\
    &=0,28\end{align*}$
    $\begin{align*} p(T=17)&=p\left(G\cap M\right) \\
    &=0,42\end{align*}$
    Ainsi
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&5&12&17\\
    \hline
    p(T=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    $\quad$
    b. L’espérance mathématique de $T$ est donc
    $\begin{align*} E(T)&=0\times 0,06+5\times 0,24+12\times 0,28+17\times 0,42 \\
    &=11,7\end{align*}$
    $\quad$
    c. Un client dépense donc en moyenne $11,70$ €.
    On appelle $N$ le nombre moyen de clients par journée.
    $11,7N\pg 700 \ssi x\pg \dfrac{700}{11,7}$
    Or $\dfrac{700}{11,7}\approx 59,83$.
    Il faut donc, en moyenne, au moins $60$ clients par journée pour atteindre cet objectif.
    $\quad$
  4. On appelle $p$ le prix de la visite de la grotte. On appelle $T’$ la variable aléatoire qui modélise la somme dépensée par un client de l’hôtel pour ces visites. On obtient alors la loi de probabilité suivante
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&x&12&12+x\\
    \hline
    p(T’=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    Son espérance est donc
    $\begin{align*} E(T’)&=0,24x+12\times 0,28+0,42(12+x) \\
    &=0,24x+3,36+5,04+0,42x \\
    &=8,4+0,66x\end{align*}$
    $\begin{align*} E(T’)=15&\ssi 8,4+0,66x=15 \\
    &\ssi 0,66x=6,6 \\
    &\ssi x=10\end{align*}$
    Le prix de la visite de la grotte devrait donc être de $10$ euros pour atteindre l’objectif.
    $\quad$
  5. On appelle $X$ la variable aléatoire comptant le nombre de clients ayant visité la grotte. On répète $100$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,66$.
    $X$ suit donc la loi binomiale de paramètres $n=100$ et $p=0,66$.
    D’après la calculatrice :
    $\begin{align*} P(X\pg 75)&=1-P(X\pp 74) \\
    &\approx 0,034\end{align*}$
    La probabilité qu’au moins les trois quarts des clients de l’hôtel aient visité la grotte est environ égale à $0,034$.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. Par croissances comparées,$\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    $\quad$
  2. a. Pour tout réel $x\pg 1$ on a :
    $\begin{align*} f'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
    b. Pour tout réel $x\pg 1$ on a $x^2\pg 1$
    $1-\ln(x)=0\ssi \ln(x)=1\ssi=\e$ donc $f'(x)=0 \ssi x=\e$
    $1-\ln(x)>0 \ssi \ln(x)<1 \ssi x<\e$ donc $f'(x)>0 \ssi x\in [1;\e]$
    $1-\ln(x)<0 \ssi \ln(x)>1 \ssi x>\e$ donc $f'(x)>0 \ssi x\in [\e;+\infty[$
    $\quad$
    c. On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  3. a. Soit $k$ un réel, $0\pp k \pp \e^{-1}$. La fonction $f$ est continue et strictement croissante sur $[1;\e]$.
    $f(0)=0\pp k$ et $f(\e)=\e^{-1}\pg k$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=k$ admet une unique solution $\alpha$ sur l’intervalle $[1;\e]$.
    $\quad$
    b. Soit $k$ strictement supérieur à $\dfrac{1}{\e}$.
    Pour tout réel $x\pg 1$ on a $fx)\pp \e^{-1}$.
    Par conséquent l’équation $f(x)=k$ n’admet aucune solution sur $[1;+\infty[$.
    $\quad$

Partie B

  1. La fonction $g$ est dérivable sur $\R$ comme composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $g'(x)=\dfrac{1}{4}\e^{\frac{x}{4}}>0$ car la fonction exponentielle est strictement positive.
    La fonction $g$ est donc strictement croissante sur $\R$.
    $\quad$
  2. Pour tout $n\in \N$ on pose $P(n):~u_n \pp u_{n+1} \pp \e$.
    Initialisation : $u_0=1$ et $u_1=\e^{\frac{1}{4}}\approx 1,28$
    Par conséquent $u_0\pp u_1 \pp \e$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $u_n \pp u_{n+1} \pp \e$. La fonction $g$ est strictement croissante sur $[1;\e]$. Par conséquent :
    $g\left(u_{n+1}\right) \pp g\left(u_{n+1}\right) \pp g(\e)$ soit $u_{n+1} \pp u_{n+2} \pp \e^{-1}\pp \e$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$, on a $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. La suite $\left(u_n\right)$ est croissante et majorée par $\e$.
    Par conséquent $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  4. $\e^{\frac{x}{4}}=x \ssi \dfrac{x}{4}=\ln(x) \ssi \dfrac{1}{4}=\dfrac{\ln(x)}{x} \ssi f(x)=\dfrac{1}{4}$
    $\quad$
  5. D’après la calculatrice une solution de l’équation $f(x)=\dfrac{1}{4}$ est environ égale à $1,43$ qui appartient bien à $[1;\e]$.
    Ainsi $\ell \approx 1,43$.

Ex 4

Exercice 4

  1. a. $\vect{DE}\begin{pmatrix} 12\\-15\\-6\end{pmatrix}$
    Par conséquent $\dfrac{1}{3}\vect{DE}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$ est un vecteur directeur de $\Delta$.
    Ainsi, une représentation paramétrique de $\Delta$ est $\begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\end{cases} \qquad t\in \R$.
    $\quad$
    b. $\Delta$ et $\Delta’$ sont parallèles. Un vecteur directeur de de $\Delta$ est donc également un vecteur directeur de $\Delta’$.
    Une représentation paramétrique de $\Delta’$ est donc $\begin{cases} x=4t\\y=-5t\\z=-2t\end{cases} \qquad t\in \R$.
    $\quad$
    c. $4t=1,36 \ssi t=0,34$
    De plus $-5\times 0,34=-1,7$ et $-2\times 0,34=-0,68 \neq -0,7$.
    Donc $F$ n’appartient pas à la droite $\Delta’$.
    $\quad$
  2. a. $\vect{AB}\begin{pmatrix}2\\2\\-1\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}2\\0\\4\end{pmatrix}$.
    Ces deux vecteurs ne sont clairement pas colinéaires (aucune coordonnée nulle pour le vecteur $\vect{AB}$). Les points $A$, $B$ et $C$ définissent donc bien un plan.
    $\quad$
    b. On note $\vec{n}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$.
    $\vec{n}.\vect{AB}=8-10+2=0$ et $\vec{n}.\vect{AC}=8+0-8=0$.
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    La droite $\Delta$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Une équation du plan $(ABC)$ est donc de la forme $4x-5y-2z+d=0$.
    Le point $A(-1;-1;3)$ appartient au plan $(ABC)$.
    Par conséquent $-4+5-6+d=0 \ssi d=5$.
    Une équation cartésienne du plan $(ABC)$ est donc $4x-5y-2z+5=0$.
    $\quad$
  3. a. Prenons $t=2$ dans la représentation paramétrique de $\Delta$.
    Le point de coordonnées $(7;-4;5)$ appartient donc à la droite $\Delta$.
    Donc $G(7;-4;4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Les coordonnées du point $H$ sont solution du système
    $\begin{align*} \begin{cases} 4x-5y-2z+5=0\\x=-1+4t\\y=6-5t\\z=8-2t\end{cases}&\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\-4+16t-30+25t-16+4t+5=0\end{cases} \\
    &\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\45t=45\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=1\\z=6\end{cases} \end{align*}$.
    Le point $H$ a donc pour coordonnées $(3;1;6)$.
    $\quad$
    c. La distance du point $G$ au plan $(ABC)$ est par conséquent $HG$.
    Or $\vect{HG}$ a pour coordonnées $\begin{pmatrix} -4\\5\\2\end{pmatrix}$
    Ainsi
    $\begin{align*} HG&=\sqrt{(-4)^2+5^2+2^2} \\
    &=\sqrt{16+25+4} \\
    &=\sqrt{45} \\
    &=\sqrt{9\times 5}\\
    &=3\sqrt{5}\end{align*}$
    $\quad$
  4. a. $\vect{AB}.\vect{AC}=4+0-4=0$.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b. $AB=\sqrt{9}=3$ et $AC=\sqrt{20}=2\sqrt{5}$
    Le volume du tétraèdre $ABCG$ est donc
    $\begin{align*} V&=\dfrac{\dfrac{AB\times AC}{2}\times HG}{3} \\
    &=\dfrac{3\times \sqrt{5}\times 3\sqrt{5}}{3} \\
    &=15\end{align*}$
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thèmes : fonctions, suites

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $g$ définie sur $\R$ par : $g(x)=\dfrac{2\e^x}{\e^x+1}$.
    La courbe représentative de la fonction $g$ admet pour asymptote en $+\infty$ la droite d’équation :
    a. $x=2$;
    b. $y=2$;
    c. $y=0$
    d. $x=-1$.
    $\quad$
  2. On considère une fonction $f$ définie et deux fois dérivable sur $\R$.
    On appelle $C$ sa représentation graphique.
    $\quad$
    On désigne par $d\dsec$ la dérivée seconde de $f$.
    $\quad$
    On a représenté sur le graphique ci-dessous la courbe de $f\dsec$, notée $C\dsec$.
    $\quad$

    $\quad$
    a. $C$ admet un unique point d’inflexion;
    b. $f$ est convexe sur l’intervalle $[-1;2]$;
    c. $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$;
    d. $f$ est convexe sur $\R$.
    $\quad$
  3. On donne la suite $\left(u_n\right)$ définie par : $u_0= 0$ et pour tout entier naturel $n$, $u_{n+1}=\dfrac{1}{2}u_n+1$.
    La suite $\left(v_n\right)$, définie pour tout entier naturel $n$ par $v_n=u_n-2$, est :
    a. arithmétique de raison $-2$;
    b. géométrique de raison $-2$;
    c. arithmétique de raison $1$;
    d. géométrique de raison $\dfrac{1}{2}$.
    $\quad$
  4. On considère une suite $\left(u_n\right)$ telle que, pour tout entier naturel $n$, on a : $$1+\left(\dfrac{1}{4}\right)^n \pp u_n \pp 2-\dfrac{n}{n+1}$$
    On peut affirmer que la suite $\left(u_n\right)$ :
    a. converge vers $2$;
    b. converge vers $1$;
    c. diverge vers $+\infty$;
    d. n’a pas de limite.
    $\quad$
  5. Soit $f$ la fonction définie sur $]0; +\infty[$ par $f(x)=x^2\ln(x)$.
    Une primitive $F$ de $f$ sur $]0; +\infty[$ est définie par :
    a. $F(𝑥) =\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$;
    b. $F(x) = \dfrac{1}{3}x^3\left(\ln(x)-1\right)$;
    c. $F(x) = \dfrac{1}{3}x^2$;
    d. $F(x) = \dfrac{1}{3}x^2\left(\ln(x)-1\right)$.
    $\quad$
  6. Pour tout réel $x$ , l’expression $2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}$ est égale à :
    a. $\dfrac{5-3\e^x}{1+\e^x}$;
    b. $\dfrac{5+3\e^x}{1-\e^x}$;
    c. $\dfrac{5+3\e^x}{1+\e^x}$;
    d. $\dfrac{5-3\e^x}{1-\e^x}$.
    $\quad$

$\quad$

Exercice 2     7 points
Thème : probabilités

Un hôtel situé à proximité d’un site touristique dédié à la préhistoire propose deux visites dans les environs, celle d’un musée et celle d’une grotte.

Une étude a montré que $70\%$ des clients de l’hôtel visitent le musée. De plus, parmi les clients visitant le musée, $60\%$ visitent la grotte.
Cette étude montre aussi que $6\%$ des clients de l’hôtel ne font aucune visite.
On interroge au hasard un client de l’hôtel et on note :

  • $M$ l’événement : « le client visite le musée » ;
  • $G$ l’événement : « le client visite la grotte ».

On note $\conj{M}$ l’événement contraire de $M$, 𝐺$\conj{G}$ l’événement contraire de $G$, et pour tout événement $E$, on note $p(E)$ la probabilité de $E$.

Ainsi, d’après l’énoncé, on a : $p\left(\conj{M}\cap \conj{G}\right)= 0,06$

  1. a. Vérifier que $p_{\conj{M}}\left(\conj{G}\right) = 0,2$, où $p_{\conj{M}}\left(\conj{G}\right)$ désigne la probabilité que le client interrogé ne visite pas la grotte sachant qu’il ne visite pas le musée.
    $\quad$
    b. L’arbre pondéré ci-dessous modélise la situation. Recopier et
    compléter cet arbre en indiquant sur chaque branche la probabilité
    associée.
    $\quad$
    $\quad$
    c. Quelle est la probabilité de l’événement « le client visite la grotte et ne visite pas le musée » ?
    $\quad$
    d. Montrer que $p(G) = 0,66$.
    $\quad$
  2. Le responsable de l’hôtel affirme que parmi les clients qui visitent la grotte, plus de la moitié visitent également le musée. Cette affirmation est-elle exacte ?
    $\quad$
  3. Les tarifs pour les visites sont les suivants :
    $\bullet$ visite du musée : $12$ euros ;
    $\bullet$ visite de la grotte : $5$ euros.
    On considère la variable aléatoire $T$ qui modélise la somme dépensée par un client de l’hôtel pour ces visites.
    a. Donner la loi de probabilité de $T$. On présentera les résultats sous la forme d’un tableau.
    $\quad$
    b. Calculer l’espérance mathématique de $T$.
    $\quad$
    c. Pour des questions de rentabilité, le responsable de l’hôtel estime que le montant moyen des recettes des visites doit être supérieur à $700$ euros par jour. Déterminer le nombre moyen de clients par journée permettant d’atteindre cet objectif.
    $\quad$
  4. Pour augmenter les recettes, le responsable souhaite que l’espérance de la variable aléatoire modélisant la somme dépensée par un client de l’hôtel pour ces visites passe à $15$ euros, sans modifier le prix de visite du musée qui demeure à $12$ euros. Quel prix faut-il fixer pour la visite de la grotte afin d’atteindre cet objectif ? (On admettra que l’augmentation du
    prix d’entrée de la grotte ne modifie pas la fréquentation des deux sites).
    $\quad$
  5.  On choisit au hasard $100$ clients de l’hôtel, en assimilant ce choix à un tirage avec remise. Quelle est la probabilité qu’au moins les trois quarts de ces clients aient visité la grotte à l’occasion de leur séjour à l’hôtel ? On donnera une valeur du résultat à $10^{-3}$ près.
    $\quad$

$\quad$

Exercice 3     7 points
Thèmes : fonctions logarithme et exponentielle, suites

Les parties A et B sont, dans une large mesure, indépendantes.

Partie A

On considère la fonction $f$ définie sur l’intervalle $[1 ; +\infty[$ par $f(x)=\dfrac{\ln(x)}{x}$, où $\ln$ désigne la fonction logarithme népérien.

  1. Donner la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[1 ; +\infty[$ et on note $f’$ sa fonction dérivée.
    a. Montrer que, pour tout nombre réel $x\pg 1$, $f'(x)=\dfrac{1-\ln(x)}{x^2}$.
    $\quad$
    b. Justifier le tableau de signes suivant, donnant le signe de $f'(x)$ suivant les valeurs de $x$.
    $\quad$

    $\quad$
    c. Dresser le tableau de variations complet de la fonction $f$.
    $\quad$
  3. Soit $k$ un nombre réel positif ou nul.
    a. Montrer que, si $0\pp k\pp \dfrac{1}{\e}$, l’équation $f(x)=k$ admet une unique solution sur l’intervalle $[1 ;\e]$.
    $\quad$
    b. Si $k>\dfrac{1}{\e}$, l’équation $𝑓(𝑥) = k$ admet-elle des solutions sur l’intervalle $[1 ; +\infty[$ ?
    Justifier.
    $\quad$

Partie B

Soit $g$ la fonction définie sur $\R$ par : $g(x)=\e^{\frac{x}{4}}$.
On considère la suite $\left(u_n\right)$ définie par $u_0 = 1$ et, pour tout entier naturel $n$ : $$u_{n+1}=\e^{\frac{u_n}{4}} \text{  c’est à dire : } u_{n+1}=g\left(u_n\right)$$

  1. Justifier que la fonction $g$ est croissante sur $\R$.
    $\quad$
  2. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

On note $\ell$ la limite de la suite $\left(u_n\right)$, et on admet que $\ell$ est solution de l’équation : $$\e^{\frac{x}{4}}=x$$

  1. En déduire que $\ell$ est solution de l’équation $f(x)=\dfrac{1}{4}$, où $f$ est la fonction étudiée dans la partie A.
    $\quad$
  2. Donner une valeur approchée à $10^{-2}$ près de la limite $\ell$ de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points
$A(-1 ; -1 ; 3)$, $B(1 ; 1 ; 2)$, $C(1 ; -1 ; 7)$.
On considère également la droite ∆ passant par les points $D(-1 ; 6 ; 8)$ et $E(11 ; -9 ; 2)$.

  1. a. Vérifier que la droite $\Delta$ admet pour représentation paramétrique :
    $$\begin{cases}x = -1 + 4t\\y = 6-5t,z = 8-2t\end{cases} \quad \text{avec }t\in \R$$
    $\quad$
    b. Préciser une représentation paramétrique de la droite $\Delta’$ parallèle à $\Delta$ et passant par l’origine $O$ du repère.
    $\quad$
    c. Le point $F(1,36 ; -1,7 ; -0,7)$ appartient-il à la droite $\Delta’$ ?
    $\quad$
  2. a. Montrer que les points $A$, $B$ et $C$ définissent un plan.
    $\quad$
    b. Montrer que la droite $\Delta$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Montrer qu’une équation cartésienne du plan $(ABC)$ est : $4x-5y-2z+5=0$.
    $\quad$
  3. a. Montrer que le point $G(7; -4; 4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $G$ sur le plan $(ABC)$.
    $\quad$
    c. En déduire que la distance du point $G$ au plan $(ABC)$ est égale à $3\sqrt{5}$.
    $\quad$
  4. a. Montrer que le triangle $ABC$ est rectangle en $A$.
    $\quad$
    b. Calculer le volume $V$ du tétraèdre $ABCG$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ est l’aire d’une base et $h$ la hauteur correspondant à cette base.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Asie – sujet 2 – 18 mai 2022

Centres étrangers – Asie – 18 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. $\vect{AB}\begin{pmatrix} 5\\1\\0\end{pmatrix}$, $\vect{DC}\begin{pmatrix} 5\\1\\0\end{pmatrix}$ et $\vect{AD}\begin{pmatrix} -1\\5\\-4\end{pmatrix}$.
    $\quad$
    b. $\vect{AB}=\vect{DC}$ donc $ABCD$ est un parallélogramme.
    De plus
    $\begin{align*} \vect{AB}.\vect{AD}&=5\times (-1)+1\times 5+0\times (-4) \\
    &=-5+5+0\\
    &=0\end{align*}$
    $ABCD$ est donc un parallélogramme dont deux côtés consécutifs sont perpendiculaires.
    Par conséquent $ABCD$ est un rectangle.
    $\quad$
    c. On a
    $\begin{align*} AB&=\sqrt{5^2+1^2+0^2} \\
    &=\sqrt{26}\end{align*}$
    et
    $\begin{align*} AD&=\sqrt{(-1)^2+5^2+(-4)^2} \\
    &=\sqrt{42}\end{align*}$
    L’aire du rectangle $ABCD$ est donc
    $\begin{align*} \mathscr{A}&=AB\times AD \\
    &=\sqrt{26}\times \sqrt{42}\\
    &=2\sqrt{273}\end{align*}$
    $\quad$
  2. a. Les vecteurs $\vect{AB}$ et $\vect{AD}$ ne sont pas colinéaires (une des coordonnées de $\vect{AB}$ est nulle tandis que la même coordonnée de $\vect{AD}$ ne l’est pas).
    Ainsi $A$, $B$ et $D$ définissent bien un plan.
    $\quad$
    b. D’une part
    $\begin{align*} \vec{n}.\vect{AB}&=-2\times 5+10\times 1+13\times 0\\
    &=-10+10+0\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{n}.\vect{AD}&=-2\times (-1)+10\times 5+13\times (-4)\\
    &=2+50-52\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABD)$.
    $\vec{n}$ est donc normal au plan $(ABD)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABD)$ est donc de la forme $-2x+10y+13z+d=0$.
    Le point $A(-3;1;3)$ appartient à ce plan.
    Par conséquent $6+10+39+d=0\ssi d=-55$
    Une équation cartésienne du plan $(ABD)$ est donc $-2x+10y+13z-55=0$.
    $\quad$
  3. a. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Une représentation paramétrique de la droite $\Delta$ est donc $$\begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\end{cases} \quad t\in \R$$
    $\quad$
    b. Les coordonnées du point $I$ sont solution du système:
    $\begin{align*} \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\-2x+10y+13z-55=0\end{cases}&\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\-2(-3-2t)+10(14+10t)+13(14+13t)-55=0\end{cases} \\
    &\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\6+4t+140+100t+182+169t-55=0\end{cases}\\
    &\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\273t+273=0\end{cases}\\
    &\ssi \begin{cases} t=-1\\x=-1\\y=4\\z=1\end{cases}\end{align*}$
    Le point $I$ a donc pour coordonnées $(-1;4;1)$.
    $\quad$
    c. $\vect{IK}\begin{align*} -2\\10\\-13\end{align*}$
    Donc
    $\begin{align*} IK&=\sqrt{(-2)^2+10^2+(-13)^2} \\
    &=\sqrt{273}\end{align*}$
    Ainsi la hauteur de la pyramide $KABCD$ de base $ABCD$ et de sommet $K$ vaut bien $\sqrt{273}$.
    $\quad$
  4. Le volume de la pyramide $KABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times IK \\
    &=\dfrac{1}{3}\times 2\sqrt{273}\times \sqrt{273} \\
    &=182\end{align*}$
    $\quad$

 

 

Ex 2

Exercice 2

Partie A

  1. La courbe $\mathscr{C}_2$ représente une fonction qui semble être strictement positive et strictement décroissante sur $]3;+\infty[$. La courbe de sa fonction dérivée est  strictement située en dessous de l’axe des abscisses ce qui n’est pas le cas de la courbe $\mathscr{C}_1$.
    En revanche la courbe $\mathscr{C}_1$ semble représenter une fonction strictement croissante. La courbe de sa fonction dérivée est donc située strictement au-dessus de l’axe des abscisses.
    Ainsi $f$ est représentée par $\mathscr{C}_1$ et $f’$ par $\mathscr{C}_2$.
    $\quad$
  2. Graphiquement l’équation $f(x)=3$ admet une unique solution qui vaut environ $5,6$.
    $\quad$
  3. Graphiquement la fonction $f$ semble être concave sur $\R$.
    $\quad$

Partie B

  1. On étudie le signe de la fonction $g$ définie sur $]3;+\infty[$ par $g(x)=x^2-x-6$.
    Le discriminant est $\Delta =25>0$.
    Les racines de $x^2-x-6$ sont donc $x_1=\dfrac{1-\sqrt{25}}{2}=-2$ et $x_2=\dfrac{1+\sqrt{25}}{2}=3$.
    Le coefficient principale de $x^2-x-6$ est $a=1>0$.
    Ainsi $g(x)>0$ sur $]3;+\infty[$.
    Par conséquent $\ln\left(x^2-x-6\right)$ est bien définie sur $]3;+\infty[$.
    $\quad$
  2. $\lim\limits_{x\to 3^+} x^2-x-6=0$ et $\lim\limits_{X\to 0^+} \ln(X)=-\infty$ donc $\lim\limits_{x\to 3^+} f(x)=-\infty$.
    $\lim\limits_{x\to +\infty} x^2-x-6=0$ (fonction du second degré dont le coefficient principal est positif) et $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
    La droite d’équation $x=3$ est donc asymptote à la courbe représentative de la fonction $f$.
    $\quad$
  3. a. La fonction $f$ est dérivable sur $I$ en tant que composée de fonctions dérivables.
    Pour tout réel $x\in I$ on a $f'(x)=\dfrac{2x-1}{x^2-x-6}$.
    $\quad$
    b. Pour tout réel $x\in I$ on a $x^2-x-6>0$. Ainsi, $f'(x)$ est du signe de $2x-1$.
    $2x-1=0\ssi 2x=1\ssi x=\dfrac{1}{2}$
    $2x-1>0 \ssi 2x>1\ssi x>\dfrac{1}{2}$
    Or $\dfrac{1}{2}<3$. Ainsi, pour tout réel $x\in I$, $f'(x)>0$.
    On obtient donc le tableau de variations suivant :$\quad$
  4. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]3;+\infty[$ et donc sur $]5;6[$.
    De plus $f(5)\approx 2,64<3$ et $f(6)\approx 3,18>3$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=3$ admet une unique solution sur l’intervalle $]5;6[$.
    $\quad$
    b. D’après la calculatrice $5,63<\alpha<5,64$.
    $\quad$
  5. a. La fonction $f’$ est dérivable sur $]3;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Ainsi, pour tout réel $x\in I$
    $\begin{align*} f\dsec(x)&=\dfrac{2\left(x^2-x-6\right)-(2x-1)^2}{\left(x^2-x-6\right)^2} \\
    &=\dfrac{2x^2-2x-12-\left(4x^2-4x+1\right)}{\left(x^2-x-6\right)^2} \\
    &=\dfrac{-2x^2+2x-13}{\left(x^2-x-6\right)^2} \end{align*}$
    $\quad$
    b. Un carré étant toujours positif, le signe de $f\dsec(x)$ ne dépend que de celui de $-2x^2+2x-13$.
    Son discriminant est $\Delta=-100<0$
    Le coefficient principal du polynôme du second degré est $a=-2<0$.
    Ainsi, pour tout réel $x\in I$, $-2x^2+2x-13<0$.
    Par conséquent, pour tout réel $x\in I$, $f\dsec(x)<0$ et la fonction $f$ est concave sur $I$.
    $\quad$

Ex 3

Exercice 3

Partie 1

  1. S’il prend le bus de 8 h, il est sûr d’être à l’heure à l’aéroport à temps pour son vol. Donc $P_B(V)=1$.
    $\quad$
  2. On obtient l’arbre pondéré suivant :
    $\quad$
  3. $\left(B,\conj{B}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(V)&=P(B\cap V)+P\left(\conj{B}\cap V\right) \\
    &=P(B)\times P_B(V)+P\left(\conj{B}\right)\times P_{\conj{B}}(V) \\
    &=0,2\times 1+0,8\times 0,5 \\
    &=0,6\end{align*}$
    $\quad$
  4. On veut calculer
    $\begin{align*} P_V(B)&=\dfrac{P(V\cap B)}{P(V)} \\
    &=\dfrac{0,2\times 1}{0,6}\\
    &=\dfrac{1}{3}\end{align*}$
    La probabilité que Julien soit arrivé à l’aéroport en bus sachant qu’il est à l’heure à l’aéroport pour son vol est égale à $\dfrac{1}{3}$.
    $\quad$

Partie 2

  1. On répète, de façon indépendante, $206$ fois la même expérience de Bernoulli. $X$ compte le nombre de passagers se présentant à l’embarquement.
    Donc $X$ suit la loi binomiale de paramètres $n=206$ et $p=0,95$.
    $\quad$
  2. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=206\times 0,95 \\
    &=195,7\end{align*}$
    En moyenne, $195,7$ (soit environ $196$) passagers vont se présenter à l’embarquement.
    $\quad$
  3. On a
    $\begin{align*} P(X=201)&=\dbinom{206}{201} \times 0,95^{201}\times 0,05^5 \\
    &\approx 0,031\end{align*}$
    La probabilité que $201$ passagers se présentent à l’embarquement est environ égale à $0,031$.
    $\quad$
  4. D’après la calculatrice, $P(X\pp 200)\approx 0,948$.
    La probabilité que le nombre de passagers se présentant à l’embarquement soit inférieur à la capacité de l’avion est environ égale à $0,948$.
    $\quad$
  5. a. On a :
    $\begin{align*} P(Y=6)&=1-\left(P(Y=0)+P(Y=1)+\ldots+P(Y=5)\right) \\
    &=0,000~03\end{align*}$
    $\quad$
    b. $206$ billets ont été vendus. La compagnie a donc encaissé $206\times 250=51~500$ euros.
    Pour chaque passager lésé la compagnie doit payer $250+600=850$ euros.
    Il y a $Y$ passagers lésés.
    Ainsi $C=51~500-850Y$.
    $\quad$
    c. La loi de probabilité de $C$ est donc donnée par le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|}
    \hline
    c_i&51~500&50~650&49~800&48~950&48100&47~250&46~400 \\
    \hline
    P\left(C=c_i\right)&0,947~75&0,030~63&0,014~41&0,005~39&0,001~51&0,000~28&0,000~03\\
    \hline
    \end{array}$$
    L’espérance mathématique de $C$ est
    $\begin{align*} E(C)&=51~500\times P(C=51~500)+49~800\times P(C=50~650)+\ldots+46~400\times P(C=46~400) \\
    &=51~429,25\end{align*}$
    $\quad$
    d. En vendant $200$ billets le chiffre d’affaires est $200\times 250=50~000$ euros.
    Ainsi le chiffre d’affaires moyen en pratiquant le surbooking est supérieur à celui obtenu en vendant exactement $200$ billets.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a
    $\begin{align*} p_1&=0,3+0,7p_0^2 \\
    &=0,3+0,7\times 0,3^2 \\
    &=0,363\end{align*}$
    et
    $\begin{align*} p_2&=0,3+0,7p_1^2 \\
    &=0,3+0,7\times 0,363^2 \\
    &=0,392~238~3\end{align*}$
    La probabilité que la bactérie ait au plus une seule descendance est égale à $0,363$ et la probabilité qu’elle ait au plus deux descendance est égale à $0,392~238~3$.
    $\quad$
    b. La probabilité d’obtenir au moins $11$ générations de bactérie est $1-p_{10}\approx 0,572$.
    $\quad$
    c. La suite $\left(p_n\right)$ semble être croissante et converger vers un réel sont la valeur est environ égale à $0,428~5$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $R(n):~0\pp p_n\pp p_{n+1} \pp 0,5$.
    Initialisation : $p_0=0,3$ et $p_1=0,363$ donc $0\pp p_0\pp p_1 \pp 0,5$.
    Par conséquent $R(0)$ est vraie.
    $\quad$Hérédité : Soit $n\in \N$. On suppose $R(n)$ vraie.
    $\begin{align*} 0\pp p_n\pp p_{n+1}\pp 0,5&\Rightarrow 0 \pp p_n^2\pp p_{n+1}^2 \pp 0,25 \\
    &\Rightarrow 0 \pp 0,7p_n^2\pp 0,7p_{n+1}^2 \pp 0,175 \\
    &\Rightarrow 0,3 \pp 0,3+0,7p_n^2\pp 0,3+0,7p_{n+1}^2 \pp 0,475 \end{align*}$
    Par conséquent $0\pp 0,3\pp p_{n+1}\pp p_{n+2} \pp 0,475\pp 0,5$ et $R(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp p_n\pp p_{n+1} \pp 0,5$.
    $\quad$
    b. La suite $\left(p_n\right)$ est croissante et majorée par $0,5$; elle converge donc vers un réel $L$.
    $\quad$
  3. a. La fonction $f:~x\mapsto 0,3+0,7x^2$ est continue sur $\R$ et, pour tout $n\in \N$, $p_{n+1}=f\left(p_n\right)$.
    Ainsi $L$ est solution de l’équation $x=f(x)$ soit $0,7x^2-x+0,3=0$.
    $\quad$
    b. Le discriminant de $0,7x^2-x+0,3$ est $\Delta =0,16>0$.
    Ce polynôme du second degré admet donc deux racines : $x_1=\dfrac{1-\sqrt{0,16}}{1,4}=\dfrac{3}{7}$ et $x_2=\dfrac{1+\sqrt{0,16}}{1,4}=1$.
    Seule $x_1$ appartient à l’intervalle $[0;0,5]$.
    Donc $L=\dfrac{3}{7}$.
    $\quad$
  4. On obtient la fonction suivante :
    $$\begin{array}{|l|}
    \hline
    \text{def suite(n) :}\\
    \quad \text{p = 0.3}\\
    \quad \text{s= [p]}\\
    \quad \text{for i in range(n):}\\
    \qquad \text{p = 0.3 + 0.7 * p ** 2}\\
    \qquad \text{s.append(p)}\\
    \quad \text{return (s)}\\
    \hline
    \end{array}$$
    $\quad$

 

Énoncé

Exercice 1     7 points

Principaux domaines abordés : Manipulation des vecteurs, des droites et des plans de l’espace. Orthogonalité et distances dans l’espace. Représentations paramétriques et équations cartésiennes.

Dans un repère orthonormé $\Oijk$ de l’espace, on considère les points $$A(-3 ; 1 ; 3),~B(2 ; 2 ; 3),~C(1 ; 7 ; -1),~D(-4 ; 6 ; -1) \text{ et } K(-3 ; 14 ; 14)$$

  1. a. Calculer les coordonnées des vecteurs $\vect{AB}$, $\vect{DC}$ et $\vect{AD}$.
    $\quad$
    b. Montrer que le quadrilatère $ABCD$ est un rectangle.
    $\quad$
    c. Calculer l’aire du rectangle $ABCD$.
    $\quad$
  2. a. Justifier que les points $A$, $B$ et $D$ définissent un plan.
    $\quad$
    b. Montrer que le vecteur $\vec{n}(-2 ; 10 ; 13)$ est un vecteur normal au plan $(ABD)$.
    $\quad$
    c. En déduire une équation cartésienne du plan $(ABD)$.
    $\quad$
  3. a. Donner une représentation paramétrique de la droite ∆$\Delta$ orthogonale au plan $(ABD)$ et qui passe par le point $K$.
    $\quad$
    b. Déterminer les coordonnées du point $I$, projeté orthogonal du point $K$ sur le plan $(ABD)$.
    $\quad$
    c. Montrer que la hauteur de la pyramide $KABCD$ de base $ABCD$ et de sommet $K$ vaut $\sqrt{273}$.
    $\quad$
  4. Calculer le volume $V$ de la pyramide $KABCD$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule : $$V =\dfrac{1}{3}\times \text{aire de la base} \times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : Étude des fonctions. Fonction logarithme.

Partie A

 

Dans le repère orthonormé ci-dessus, sont tracées les courbes représentatives d’une fonction $f$ et de sa fonction dérivée, notée $f’$
, toutes deux définies sur $]3 ; +\infty[$.

  1. Associer à chaque courbe la fonction qu’elle représente. Justifier.
    $\quad$
  2. Déterminer graphiquement la ou les solutions éventuelles de l’équation $f (x) = 3$.
    $\quad$
  3. Indiquer, par lecture graphique, la convexité de la fonction $f$.
    $\quad$

Partie B

  1. Justifier que la quantité $\ln\left(x^2-x-6\right)$ est bien définie pour les valeurs $x$ de l’intervalle $]3 ; +\infty[$, que l’on nommera $I$ dans la suite.
    $\quad$
  2. On admet que la fonction $f$ de la Partie A est définie par $f(x)\ln\left(x^2-x-6\right)$ sur $I$.
    Calculer les limites de la fonction $f$ aux deux bornes de l’intervalle $I$.
    En déduire une équation d’une asymptote à la courbe représentative de la fonction $f$ sur $I$.
    $\quad$
  3. a. Calculer $f'(x)$ pour tout $x$ appartenant à $I$.
    $\quad$
    b. Étudier le sens de variation de la fonction $f$ sur $I$.
    Dresser le tableau des variations de la fonction $f$ en y faisant figurer les limites aux bornes de $I$.
    $\quad$
  4. a. Justifier que l’équation $f(x) = 3$ admet une unique solution $\alpha$ sur l’intervalle $]5; 6[.$
    $\quad$
    b. Déterminer, à l’aide de la calculatrice, un encadrement de $\alpha$ à $10^{-2}$ près.
    $\quad$
  5. a. Justifier que $f\dsec(x)=\dfrac{-2x^2+2x-13}{\left(x^2-x-6\right)^2}$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $I$.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés: Probabilités conditionnelles et indépendance. Variables aléatoires.

Les deux parties de cet exercice sont indépendantes

Partie 1
Julien doit prendre l’avion; il a prévu de prendre le bus pour se rendre à l’aéroport.
S’il prend le bus de 8 h, il est sûr d’être à l’aéroport à temps pour son vol.
Par contre, le bus suivant ne lui permettrait pas d’arriver à temps à l’aéroport.
Julien est parti en retard de son appartement et la probabilité qu’il manque son bus est de $0,8$.
S’il manque son bus, il se rend à l’aéroport en prenant une compagnie de voitures privées; il a alors une probabilité de $0,5$ d’être à l’heure à l’aéroport.
On notera :

  • $B$ l’évènement : « Julien réussit à prendre son bus »;
  • $V$ l’évènement : « Julien est à l’heure à l’aéroport pour son vol ».
  1. Donner la valeur de $P_B (V )$.
    $\quad$
  2. Représenter la situation par un arbre pondéré.
    $\quad$
  3. Montrer que $P(V) = 0,6$.
    $\quad$
  4. Si Julien est à l’heure à l’aéroport pour son vol, quelle est la probabilité qu’il soit arrivé à l’aéroport en bus ? Justifier.
    $\quad$

Partie 2

Les compagnies aériennes vendent plus de billets qu’il n’y a de places dans les avions car certains passagers ne se présentent pas à l’embarquement du vol sur lequel ils ont réservé.
On appelle cette pratique le surbooking.
Au vu des statistiques des vols précédents, la compagnie aérienne estime que chaque passager a $5 \%$ de chance de ne pas se présenter à l’embarquement.
Considérons un vol dans un avion de $200$ places pour lequel $206$ billets ont été vendus. On suppose que la présence à l’embarquement de chaque passager est indépendante des autres passagers et on appelle $X$ la variable aléatoire qui compte le nombre de passagers se présentant à l’embarquement.

  1. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
  2. En moyenne, combien de passagers vont-ils se présenter à l’embarquement ?
    $\quad$
  3. Calculer la probabilité que $201$ passagers se présentent à l’embarquement. Le résultat sera arrondi à $10^{-3}$ près.
    $\quad$
  4. Calculer $P(X \pp 200)$, le résultat sera arrondi à $10^{-3}$ près. Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  5. La compagnie aérienne vend chaque billet à $250$ euros.
    Si plus de $200$ passagers se présentent à l’embarquement, la compagnie doit rembourser le billet d’avion et payer une pénalité de $600$ euros à chaque passager lésé.
    On appelle :
    $\bullet~~Y$ la variable aléatoire égale au nombre de passagers qui ne peuvent pas embarquer bien qu’ayant acheté un billet;
    $\bullet~~C$ la variable aléatoire qui totalise le chiffre d’affaire de la compagnie aérienne sur ce vol.
    $\quad$
    On admet que $Y$ suit la loi de probabilité donnée par le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|}
    \hline
    y_i& 0& 1& 2& 3& 4& 5& 6\\
    \hline
    P\left(Y = y_i\right)&0,947~75& 0,030~63 &0,014~41 &0,005 ~39 &0,001~51& 0,000~28&\phantom{0,000~28}\\
    \hline
    \end{array}$$
    a. Compléter la loi de probabilité donnée ci-dessus en calculant $P(Y = 6)$.
    $\quad$
    b. Justifier que : $C = 51500−850Y$.
    $\quad$
    c. Donner la loi de probabilité de la variable aléatoire $C$ sous forme d’un tableau.
    Calculer l’espérance de la variable aléatoire $C$ à l’euro près.
    $\quad$
    d. Comparer le chiffre d’affaires obtenu en vendant exactement $200$ billets et le chiffre d’affaires moyen obtenu en pratiquant le surbooking.
    $\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés: Suites numériques. Algorithmique et programmation.

On s’intéresse au développement d’une bactérie.
Dans cet exercice, on modélise son développement avec les hypothèses suivantes : cette bactérie a une probabilité $0,3$ de mourir sans descendance et une probabilité $0,7$ de se diviser en deux bactéries filles.
Dans le cadre de cette expérience, on admet que les lois de reproduction des bactéries sont les mêmes pour toutes les générations de bactéries qu’elles soient mère ou fille.
Pour tout entier naturel $n$, on appelle $p_n$ la probabilité d’obtenir au plus $n$ descendances pour une bactérie.
On admet que, d’après ce modèle, la suite $\left(p_n\right)$ est définie de la façon suivante :
$p_0 = 0,3$ et, pour tout entier naturel $n$, $$p_{n+1} = 0,3+0,7p_n^2$$

  1. La feuille de calcul ci-dessous donne des valeurs approchées de la suite $\left(p_n\right)$.

    a. Déterminer les valeurs exactes de $p_1$ et $p_2$ (masquées dans la feuille de calcul) et interpréter ces valeurs dans le contexte de l’énoncé.
    $\quad$
    b. Quelle est la probabilité, arrondie à $10^{-3}$ près, d’obtenir au moins $11$ générations de bactéries à partir d’une bactérie de ce type ?
    $\quad$
    c. Formuler des conjectures sur les variations et la convergence de la suite $\left(p_n\right)$.
    $\quad$

  2. a. Démontrer par récurrence sur $n$ que, pour tout entier naturel $n$, $0\pp p_n \pp p_{n+1}\pp 0,5$.
    $\quad$
    b. Justifier que la suite $\left(p_n\right)$ est convergente.
    $\quad$
  3. On appelle $L$ la limite de la suite $\left(p_n\right)$.
    a. Justifier que $L$ est solution de l’équation $0,7x
    2- x+0,3 = 0$
    $\quad$
    b. Déterminer alors la limite de la suite $\left(p_n\right)$.
    $\quad$
  4. La fonction suivante, écrite en langage Python, a pour objectif de renvoyer les $n$ premiers termes de la suite $\left(p_n\right)$.
    $$\begin{array}{ll}
    \begin{array}{l} 1\\2\\3\\4\\5\\6\\7\end{array}&\begin{array}{|l|}\hline\text{def suite(n) :}\\
    \quad \text{p = …}\\
    \quad \text{s = [p]}\\
    \quad \text{for i in range (…):}\\
    \quad \text{p = …}\\
    \quad \text{s.append(p)}\\
    \quad \text{return (s)}\\
    \hline
    \end{array}\end{array}$$
    Recopier, sur votre copie, cette fonction en complétant les lignes 2, 4 et 5 de façon à ce que la fonction $\texttt{suite(n)}$ retourne, sous forme de liste, les $n$ premiers termes de la suite.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – 11 mai 2022

Métropole – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A : Étude du premier protocole

  1. a. Pour tout $t\in[0;10]$ on a
    $\begin{align*} f'(t)&=3\e^{-0,5t+1}+3t\times (-0,5)\e^{-0,5t+1} \\
    &=3(-0,5t+1)\e^{-0,5t+1}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $-0,5t+1$.
    Or $-0,5t+1=0 \ssi -0,5t=-1 \ssi t=2$
    et $-0,5t+1>0 \ssi -0,5t>-1 \ssi t<2$
    On obtient donc le tableau de variations suivant :$\quad$
    c. D’après le tableau de variations, la fonction $f$ atteint son maximum pour $t=2$ et celui-ci vaut $f(2)=6$.
    La quantité de médicament présente dans le sang est donc maximale au bout de $2$ h et elle vaut alors $6$ mg.
    $\quad$
  2. a. La fonction $f$ est continue et strictement croissante sur $[0;2]$.
    De plus, $f(0)=0<5$ et $f(2)=6>5$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(t)=5$ admet une unique solution $\alpha$ sur $[0;2]$.
    D’après la calculatrice $\alpha \approx 1,02$.
    $\quad$
    b. $\beta-\alpha \approx 2,44$. Le médicament est donc efficace environ $2,44$ heures soit $2$ heures et $26$ minutes.
    $\quad$

Partie B : Étude du deuxième protocole

  1. La quantité de médicament baisse de $30\%$ au bout d’une heure. Il en reste donc $70\%$ soit $0,7u_0=1,4$.
    On réinjecte $1,8$ mg
    Donc $u_1=1,4+1,8=3,2$.
    Après l’injection de la première heure, il y a donc $3,2$ mg de médicament dans le sang.
    $\quad$
  2. La quantité de médicament baisse de $30\%$ en une heure. Il est donc $70\%$ soit $0,7u_n$.
    On réinjecte $1,8$ mg.
    Donc, pour tout $n\in \N$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on note $P(n):~u_b \pp u_{n+1} <6$.
    Initialisation : $u_0=2$ et $u_1=3,2$. Donc $u_0\pp u_1<6$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <6 &\ssi 0,7u_n \pp 0,7u_{n+1} < 4,2 \\
    &\ssi 0,7u_n+1,8 \pp 0,7u_{n+1}+1,8<6 \\
    &\ssi u_{n+1} \pp u_{n+2}<6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n\pp u_{n+1} <6$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $6$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. On considère la fonction $g$ définie sur $\R$ par $g(x)=0,7x+1,8$.
    La fonction $f$ est continue sur $\R$ en tant que fonction affine et, pour tout $n\in \N$ on a $u_{n+1}=g\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $g(x)=x$
    $\begin{align*} 0,7x+1,8=x&\ssi 0,3x=1,8 \\
    &\ssi x=6\end{align*}$
    Donc $\ell=6$.
    Sur le long terme, le patient aura $6$ mg de médicament dans le sang.
    $\quad$
  4. a. Pour tout $n\in \N$
    $\begin{align*} v_{n+1}&=6-u_{n+1} \\
    &=6-0,7u_n-1,8 \\
    &=4,2-0,7u_n \\
    &=0,7\left(6-u_n\right)\\
    &=0,7v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,7$ et de premier terme $v_0=6-u_0=4$.
    $\quad$
    b. On a donc, pour tout $n\in \N$, $v_n=4\times 0,7^n$.
    Par conséquent $u_n=6-v_n=6-4\times 0,7^n$.
    $\quad$
    c. $\quad$
    $\begin{align*} u_n\pg 5,5&\ssi 6-4\times 0,7^n \pg 5,5 \\
    &\ssi -4\times 0,7^n \pg 0,5 \\
    &\ssi 0,7^n \pp 0,125 \\
    &\ssi n\ln(0,7) \pp \ln(0,125) \\
    &\ssi n \pg \dfrac{\ln(0,125)}{\ln(0,7)} \qquad \text{car } \ln(0,7)<0\end{align*}$
    $\quad$

 

Ex 2

Exercice 2

  1. a. On a $\vec{u}(2;-1;2)$.
    $\quad$
    b. Si $t=-1$ alors $x=-1$, $y=3$ et $z=0$ donc $B(-1;3;0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. $\vect{AB}(0;2;-3)$.
    Donc
    $\begin{align*} \vect{AB}.\vec{u}&=0\times 2+2\times (-1)+2\times (-3) \\
    &=-8\end{align*}$
    $\quad$
  2. a. $\vec{u}$ est donc un vecteur normal au plan $\mathscr{P}$.
    Une équation cartésienne de ce plan est par conséquent de la forme : $2x-y+2z+d=0$.
    Or $A(-1;1;3)$ appartient à $\mathscr{P}$.
    Donc $-2-1+6+d=0\ssi d=-3$.
    Une équation cartésienne de $\mathscr{P}$ est $2x-y+2z-3=0$.
    $\quad$
    b. $2\times \dfrac{7}{9}-\dfrac{19}{9}+2\times \dfrac{16}{9}-3=\dfrac{27}{9}-3=0$ : le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{P}$.
    $1+2t=\dfrac{7}{9}\ssi 2t=\dfrac{-2}{9}\ssi t=\dfrac{-1}{9}$.
    En prenant $t=-\dfrac{1}{9}$ dans l’équation de $\mathscr{D}$ on obtient $\begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}$ donc le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{D}$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$
    c. $\vect{AH}\left(\dfrac{16}{9};\dfrac{10}{9};-\dfrac{11}{9}\right)$
    Donc
    $\begin{align*} AH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{10}{9}\right)^2+\left(\dfrac{-11}{9}\right)^2} \\
    &=\dfrac{\sqrt{477}}{9} \\
    &=\dfrac{\sqrt{53}}{3}\end{align*}$
    $\quad$
  3. a. $(HB)$ est orthogonale au plan $\mathscr{P}$. Par conséquent $\vect{HB}$ et $\vec{u}$ sont colinéaires.
    Il existe donc un réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b.
    $\begin{align*} \vect{AB}.\vec{u}&=\left(\vect{AH}+\vect{HB}\right).\vec{u} \\
    &= \vect{AH}.\vec{u}+ \vect{HB}.\vec{u} \\
    &=0+k\vec{u}.\vec{u} \\
    &=k\left\|\vec{u}\right\|^2\end{align*}$
    Ainsi $kj=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. On a $\left\|\vec{u}\right\|^2=2^2+(-1)^2+2^2=9$.
    Ainsi $k=-\dfrac{8}{9}$
    $\quad$
    Soit $H(x;y;z)$
    $\vect{HB}(-1-x;3-x;-z)$.
    $\begin{align*} \vect{HB}=-\dfrac{8}{9}\vec{u}&\ssi \begin{cases} 1-x=-\dfrac{8}{9}\times 2\\3-y=-\dfrac{8}{9}\times (-1)\\-z=-\dfrac{8}{9}\times 2\end{cases} \\
    &\ssi \begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}\end{align*}$
    On retrouve donc les coordonnées du point $H$ trouvées à la question 2.b.
    $\quad$
  4. $\vect{BH}\left(\dfrac{16}{9};\dfrac{-8}{9};\dfrac{16}{9}\right)$
    Donc
    $\begin{align*} BH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{-8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2} \\
    &=\dfrac{8}{3}\end{align*}$
    On appelle $\mathscr{B}$ l’aire du triangle $ACH$.
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times BH\times \mathscr{B} &\ssi \dfrac{8}{9}&=\dfrac{1}{3}\times \dfrac{8}{3}\times \mathscr{B} \\
    &\ssi \mathscr{B}=1\end{align*}$
    L’aire du triangle $ACH$ vaut $1$ unité d’aire.
    $\quad$

 

 

Ex 3

Exercice 3

  1. a. D’après l’énoncé $P(S)=0,25$.
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    c. On a
    $\begin{align*} P(F\cap S)&=P(F)\times P_F(S) \\
    &=0,52\times 0,4\\
    &=0,208\end{align*}$
    La probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On veut calculer
    $\begin{align*} P_F(S)&=\dfrac{P(S\cap F)}{P(S)} \\
    &=\dfrac{0,208}{0,25} \\
    &=0,832\end{align*}$
    La probabilité que la personne interrogée soit une femme sachant qu’elle a suivi le stage est égale à $0,832$.
    $\quad$
    e. $\left(F,\conj{F}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales
    $\begin{align*} P(S)=P(S\cap F)+P\left(S\cap \conj{F}\right) &\ssi P\left(S\cap \conj{F}\right)=P(S)-P(S\cap F)\\
    &\ssi P\left(S\cap \conj{F}\right)=0,042\end{align*}$
    Par conséquent
    $\begin{align*} P_F(S)&=\dfrac{P\left(S\cap \conj{F}\right)}{P\left(\conj{F}\right)} \\
    &=\dfrac{0,042}{0,48} \\
    &=0,0875 \\
    &<0,1\end{align*}$
    $\quad$
  2. a. On répète indépendamment $20$ fois  la même expérience de Bernoulli. $X$ compte le nombre de salariés ayant suivi le stage.
    Donc $X$ suit la loi binomiale de paramètres $n=20$ et $p=0,25$.
    $\quad$
    b.
    $\begin{align*} P(X=5)&=\dbinom{10}{5}\times 0,25^5\times (1-0,25)^{10-5} \\
    &\approx 0,202\end{align*}$
    La probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage est environ égale à $0,202$.
    $\quad$
    c. Ce programme calcule $P(X\pp k)$.
    D’après la calculatrice $P(X\pp 5) \approx 0,617$.
    Le programme renvoie donc $0,617$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} P(X\pg 6)&=1-P(X<6) \\
    &=1-P(X\pp 5) \\
    &\approx 0,383\end{align*}$
    $\quad$
  3. $1,05\times 0,25+1,02\times 0,75=1,0275$.
    Le pourcentage moyen d’augmentation des salaires de cette entreprise est donc de $2,75\%$.
    $\quad$

Ex 4

Exercice 4

  1. D’après la limite des termes de plus haut degré
    $\begin{align*} \lim\limits_{x\to +\infty} f(x)&=\lim\limits_{x\to +\infty} \dfrac{-2x^2}{x^2} \\
    &=-2\end{align*}$
    La droite d’équation $y=-2$ est donc asymptote à la courbe représentative de la fonction $f$.
    Réponse C
    $\quad$
  2. Une primitive de $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2}+K$
    $F(0)=1 \ssi \dfrac{1}{2}+K=1 \ssi K=\dfrac{1}{2}$
    Réponse D
    $\quad$
  3. $f’$ semble être strictement croissante sur $]-\infty;4[$ et strictement décroissante sur $[4;+\infty[$.
    Donc $f$ est convexe sur $]-\infty;4]$ et concave sur $[4;+\infty[$.
    Réponse C
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$. Par conséquent, pour tout réel $x$, $f(x)>0$ sur $\R$. $f$ est la dérivée de chacune de ses primitives.
    Réponse A
    $\quad
  5. Pour tout réel $x$, $f(x)=\dfrac{2\ln(x)}{3x^2}\times \dfrac{1}{1+\dfrac{3}{x^2}}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$
    De plus $\lim\limits_{x\to +\infty}  \dfrac{1}{1+\dfrac{3}{x^2}}=0$
    Par conséquent $\lim\limits_{x\to +\infty}f(x)=0$.
    Réponse D
    $\quad$
  6. L’équation peut s’écrire $\left(\e^x\right)^2+\e^x-12=0 \ssi \begin{cases} X=\e^x\\X^2+X-12=0\end{cases}$
    $X^2+X-12=0$ a pour discriminant $\Delta=49>0$
    Ses racines sont donc $X_1=-4$ et $X_2=3$.
    Or $\e^x=-4$ n’admet pas de solution et $\e^x=3$ admet une unique solution $x=\ln(3)$.
    Réponse C
    $\quad$

 

Énoncé

Exercice 1     7 points

Thèmes : fonction exponentielle, suites

Dans le cadre d’un essai clinique, on envisage deux protocoles de traitement d’une maladie.
L’objectif de cet exercice est d’étudier, pour ces deux protocoles, l’évolution de la quantité de médicament présente dans le sang d’un patient en fonction du temps.

Les parties A et B sont indépendantes.

Partie A : Étude du premier protocole

Le premier protocole consiste à faire absorber un médicament, sous forme de comprimé, au patient.
On modélise la quantité de médicament présente dans le sang du patient, exprimée en mg, par la fonction $f$ définie sur l’intervalle $[0; 10]$ par $f(t)=3t\e^{-0,5t+1}$, où $t$ désigne le temps, exprimé en heure, écoulé depuis la prise du comprimé.

  1. a. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 10]$ et on note $f’$ sa fonction dérivée.
    Montrer que, pour tout nombre réel $t$ de $[0; 10]$, on a : $f'(t)=3(-0,5t+1)\e^{-0,5t+1}$.
    $\quad$
    b. En déduire le tableau de variations de la fonction $f$ sur l’intervalle $[0; 10]$.
    $\quad$
    c. Selon cette modélisation, au bout de combien de temps la quantité de médicament présente dans le sang du patient sera-t-elle maximale ? Quelle est alors cette quantité maximale ?
    $\quad$
  2. a. Montrer que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[0; 2]$, notée $\alpha$, dont
    on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
    On admet que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[2; 10]$, notée $\beta$, et qu’une
    valeur approchée de $\beta$ à $10^{-2}$ près est $3,46$.
    $\quad$
    b. On considère que ce traitement est efficace lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5$ mg.
    Déterminer, à la minute près, la durée d’efficacité du  médicament dans le cas de ce protocole.
    $\quad$

Partie B : Étude du deuxième protocole

Le deuxième protocole consiste à injecter initialement au patient, par piqûre intraveineuse, une dose de $2$ mg de médicament puis à réinjecter toutes les heures une dose de $1,8$ mg.

On suppose que le médicament se diffuse instantanément dans le sang et qu’il est ensuite progressivement éliminé.

On estime que lorsqu’une heure s’est écoulée après une injection, la quantité de médicament dans le sang a diminué de $30 \%$ par rapport à la quantité présente immédiatement après cette injection.

On modélise cette situation à l’aide de la suite $\left(u_n\right)$ où, pour tout entier naturel $n$, $u_n$ désigne la quantité de médicament, exprimée en mg, présente dans le sang du patient immédiatement après l’injection de la $n$-ème heure. On a donc $u_0=2$.

  1. Calculer, selon cette modélisation, la quantité $u_1$ de médicament (en mg) présente dans le sang du patient immédiatement après l’injection de la première heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pp u_{n+1} <6$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
    c. Déterminer la valeur de $\ell$. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par $v_n=6-u_n$.
    a. Montrer que la suite $\left(v_bn\right)$ est une suite géométrique de raison $0,7$ dont on précisera le premier terme.
    $\quad$
    b. Déterminer l’expression de $v_n$ en fonction de $n$, puis de $u_n$ en fonction de $𝑛$.
    $\quad$
    c. Avec ce protocole, on arrête les injections lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5,5$ mg.
    Déterminer, en détaillant les calculs, le nombre d’injections réalisées en appliquant ce protocole.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$ on considère :

  • Le point $A$ de coordonnées $(-1;1;3)$;
  • La droite $\mathscr{D}$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=2-t\\z=2+2t\end{cases} \quad ,t\in \R$.

On admet que le point $A$ n’appartient pas à la droite $\mathscr{D}$.

  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u}$ de la droite $\mathscr{D}$.
    $\quad$
    b. Montrer que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. Calculer le produit scalaire $\vect{AB}.\vec{u}$.
    $\quad$
  2. On note $\mathscr{P}$ le plan passant par le point $A$ et orthogonal à la droite $\mathscr{D}$, et on appelle $H$ le point d’intersection du plan $\mathscr{P}$ et de la droite $\mathscr{D}$. Ainsi, $H$ est le projeté orthogonal de $A$ sur la droite $\mathscr{D}$.
    a. Montrer que le plan $\mathscr{P}$ admet pour équation cartésienne : $2x-y+2z-3=0$.
    $\quad$
    b. En déduire que le point $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    c. Calculer la longueur $AH$. On donnera une valeur exacte.
    $\quad$
  3. Dans cette question, on se propose de retrouver les coordonnées du point $H$, projeté orthogonal du point $A$ sur la droite $\mathscr{D}$, par une autre méthode.On rappelle que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$ et que le vecteur $\vec{u}$ est un vecteur directeur de la droite $\mathscr{D}$.
    a. Justifier qu’il existe un nombre réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b. Montrer que $k=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. Calculer la valeur du nombre réel $k$ et retrouver les coordonnées du point $H$.
    $\quad$
  4. On considère un point $C$ appartenant au plan $\mathscr{P}$ tel que le volume du tétraèdre $ABCH$ soit égal à $\dfrac{8}{9}$.
    Calculer l’aire du triangle $ACH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : probabilités

Le directeur d’une grande entreprise a proposé à l’ensemble de ses salariés un stage de formation à l’utilisation d’un nouveau logiciel.

Ce stage a été suivi par $25 \%$ des salariés.

  1. Dans cette entreprise, $52 \%$ des salariés sont des femmes, parmi lesquelles $40 \%$ ont suivi le stage.
    On interroge au hasard un salarié de l’entreprise et on considère les événements :
    $\bullet$ $F$ : « le salarié interrogé est une femme »,
    $\bullet$ $S$ : « le salarié interrogé a suivi le stage ».
    $\conj{F}$ et $\conj{S}$ désignent les événements contraires des événements $F$ et $S$.
    a. Donner la probabilité de l’événement $S$.
    $\quad$
    b. Recopier et compléter les pointillés de l’arbre pondéré ci-dessous sur les quatre branches indiquées.$\quad$
    c. Démontrer que la probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On sait que la personne interrogée a suivi le stage. Quelle est la probabilité que ce soit une femme ?
    $\quad$
    e. Le directeur affirme que, parmi les hommes salariés de l’entreprise, moins de $10 \%$ ont suivi le stage.
    Justifier l’affirmation du directeur.
    $\quad$
  2. On note $X$ la variable aléatoire qui à un échantillon de $20$ salariés de cette entreprise choisis au hasard associe le nombre de salariés de cet échantillon ayant suivi le stage. On suppose que l’effectif des salariés de l’entreprise est suffisamment important pour assimiler ce choix à un tirage avec remise.
    a. Déterminer, en justifiant, la loi de probabilité suivie par la variable aléatoire $X$.
    $\quad$
    b. Déterminer, à $10^{-3}$ près, la probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
    c. Le programme ci-dessous, écrit en langage Python, utilise la fonction $\texttt{binomiale(i,n,p)}$ créée pour l’occasion qui renvoie la valeur de la probabilité $P(X=i)$ dans le cas où la variable aléatoire $X$ suit une loi binomiale de paramètres $n$ et $p$.
    $\begin{array}{|l|}
    \hline
    \textbf{def proba}\text{(k):}\\
    \quad \text{P = 0}\\
    \quad \text{for i in range(0 , k + 1):}\\
    \qquad \text{P = P + binomiale(i,20,0.25)}\\
    \quad \textbf{return P}\\
    \hline
    \end{array}$
    Déterminer, à $10^{-3}$ près, la valeur renvoyée par ce programme lorsque l’on saisit $\texttt{proba(5)}$ dans la console Python. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
    d. Déterminer, à $10^{-3}$ près, la probabilité qu’au  moins $6$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
  3. Cette question est indépendante des questions 1 et 2.
    Pour inciter les salariés à suivre le stage, l’entreprise avait décidé d’augmenter les salaires des salariés ayant suivi le stage de $5\ %$, contre $2\%$ d’augmentation pour les salariés n’ayant pas suivi le stage.
    Quel est le pourcentage moyen d’augmentation des salaires de cette entreprise dans ces conditions ?
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonctions numériques

Cet exercice est un questionnaire à choix multiple.
Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la réponse choisie. Aucune justification n’est  demandée.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Les six questions sont indépendantes.

  1. La courbe représentative de la fonction $f$ définie sur $\R$ par $f(x)=\dfrac{-2x^2+3x-1}{x^2+1}$ admet pour asymptote la droite d’équation :
    a. $x=-2$;
    b. $y=-1$;
    c. $y=-2$;
    d. $y=0$.
    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=x\e^{x^2}$.
    La primitive $F$ de $f$ sur $\R$ qui vérifie $F(0)=1$ est définie par :
    a. $F(x)=\dfrac{x^2}{2}\e^{x^2}$;
    b. $F(x)=\dfrac{1}{2}\e^{x^2}$;
    c. $F(x)=\left(1+2x^2\right)\e^{x^2}$;
    d. $F(x)=\dfrac{1}{2}\e^{x^2}+\dfrac{1}{2}$.
    $\quad$
  3. On donne ci-dessous la représentation graphique $\mathscr{C}_{f’}$ de la fonction dérivée $f’$ d’une fonction $f$ définie sur ℝ.
    On peut affirmer que la fonction $f$ est :
    a. concave sur $]0; +\infty[$ ;
    b. convexe sur $]0; +\infty[$ ;
    c. convexe sur $[0; 2]$ ;
    d. convexe sur $[2; +\infty[$.
    $\quad$
  4. Parmi les primitives de la fonction $f$ définie sur $\R$ par $f(x)=3\e^{-x^2}+2$:
    a. toutes sont croissantes sur $\R$ ;
    b. toutes sont décroissantes sur $\R$ ;
    c. certaines sont croissantes sur $\R$ et d’autres décroissantes sur $\R$ ;
    d. toutes sont croissantes sur $]−\infty; 0]$ et décroissantes sur $[0; +\infty[$.
    $\quad$
  5. La limite en $+\infty$ de la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=\dfrac{2\ln(x)}{3x^2+1}$ est égale à :
    a. $\dfrac{2}{3}$ ;
    b. $+\infty$ ;
    c. $-\infty$ ;
    d. $0$.
    $\quad$
  6. L’équation $\e^{2x}+\e^x-12=0$ admet dans $\R$ :
    a. trois solutions ;
    b. deux solutions ;
    c. une seule solution ;
    d. aucune solution.
    $\quad$

 

Bac – Spécialité mathématiques – Asie – sujet 2 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    f'(x)&=(2x-2)\e^x+\left(x^2-2x-1\right)\e^x \\
    &=\left(2x-2+x^2-2x-1\right)\e^x \\
    &=\left(x^2-3\right)\e^x\end{align*}$
    L’affirmation A est donc fausse.
    $f'(2)>0$ et $f(0)<0$ : l’affirmation B est donc fausse
    Réponse C
    $\quad$
  2. $\lim\limits_{x\to +\infty} \e^x=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=0$
    La droite d’équation $y=0$ est donc asymptote à la courbe représentant la fonction $f$.
    $\lim\limits_{x\to -\infty} \e^x=-\infty$ donc $\lim\limits_{x\to -\infty} f(x)=\dfrac{3}{5}$
    La droite d’équation $y=\dfrac{3}{5}$ est donc asymptote à la courbe représentant la fonction $f$.
    Réponse C
    $\quad$
  3. La fonction $f\dsec$ s’annule en changeant de signe à trois reprise.
    La courbe représentant la fonction $f$ possède donc trois points d’inflexion.
    Réponse B
    $\quad$
  4. $\left(u_n\right)$ est une suite définie de manière explicite par un polynôme du second degré dont le coefficient principal est $a=1>0$.
    La fonction du second degré associée possède un minimum, d’abscisse $\dfrac{17}{2}$.
    $\left(u_n\right)$ est donc minorée.
    Réponse A
    $\quad$
  5. Cette fonction renvoie le plus entier naturel $n$ tel que $u_n\pg 45$.
    Réponse ARemarque :dans les faits cette fonction ne renvoie aucun résultat car la suite $\left(u_n\right)$ est croissante et majorée par $20$. Il est donc impossible que $u_n\pg 45$ !
    $\quad$

Ex 2

Exercice 2 (5 points)

  1. On a $A(0;0;0)$, $C(1;1;0)$ et $D(0;1;0)$
    Par conséquent $K\left(\dfrac{1}{2};1;0\right)$
    Donc $\vect{AK}\left(\dfrac{1}{2};1;0\right)$ et $\vect{AL}\left(0;1;\dfrac{3}{2}\right)$.
    $\quad$
  2. a. On a $\vec{n}.\vect{AK}=3-3+0=0$ et $\vec{n}.\vect{AL}=0-3+3=0$.
    $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AKL)$.
    C’est par conséquent un vecteur normal au plan $(AKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(AKL)$ est donc de la forme $6x-3y+2z+d=0$.
    Le point $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Une équation cartésienne du plan $(AKL)$ est alors $6x-3y+2z=0$.
    $\quad$
    c. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Ainsi une représentation paramétrique de la droite $\Delta$ est $$\begin{cases} x=6t\\y=1-3t\\z=2t\end{cases} \quad,t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{3}{49}$, on constate que le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient à la droite $\Delta$.
    De plus
    $\begin{align*} 6\times \dfrac{18}{49}-3\dfrac{40}{49}+2\dfrac{6}{49}&=\dfrac{108}{49}-\dfrac{120}{49}+\dfrac{12}{49} \\
    &=0\end{align*}$
    Le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient donc également au plan $(AKL)$.
    Par conséquent $N$ a pour coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$.
    $\quad$
  3. a. L’aire de la base $ADK$ est
    $\begin{align*} \mathcal{A}&=\dfrac{AD\times DK}{2} \\
    &=\dfrac{1\times \dfrac{1}{2}}{2} \\
    &=\dfrac{1}{4}\end{align*}$
    Ainsi
    $\begin{align*} \mathcal{V}&=\dfrac{\mathcal{A}\times DL}{3} \\
    &=\dfrac{\dfrac{1}{4}\times \dfrac{3}{2}}{3} \\
    &=\dfrac{1}{8}\end{align*}$
    $\quad$
    b. La distance du point $D$ au plan $(AKL)$ est
    $\begin{align*} DN&=\sqrt{\left(\dfrac{18}{49}\right)^2+\left(\dfrac{40}{49}-1\right)^2+\left(\dfrac{6}{49}\right)^2} \\
    &=\sqrt{\dfrac{9}{49}} \\
    &=\dfrac{3}{7}\end{align*}$
    $\quad$
    c. On a
    $\begin{align*} \mathcal{V}=\dfrac{1}{8}&\ssi \dfrac{\mathcal{A}_{AKL}\times DN}{3}=\dfrac{1}{8} \\
    &\ssi \dfrac{3}{7}\mathcal{A}_{AKL}=\dfrac{3}{8} \\
    &\ssi \mathcal{A}_{AKL}=\dfrac{7}{8}\end{align*}$
    L’aire du triangle $AKL$ est donc $\dfrac{7}{8}$.
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. Il y a $\dbinom{9}{3}=84$ façons différentes de positionner les trois cœurs.
    $\quad$
  2. Il y a $3$ façons de placer les cœurs sur une ligne pour gagner.
    Il y a $3$ façons de placer les cœurs sur une colonne pour gagner.
    Il y a $2$ façons de placer les cœurs sur une diagonale pour gagner.
    La probabilité qu’un ticket soit gagnant est donc $\dfrac{3+3+2}{84}=\dfrac{2}{21}$.
    $\quad$
  3. On appelle $G$ la variable aléatoire égale au gain algébrique du joeur.
    $G$ ne prend donc que $2$ valeurs $4$ et $-1$.
    $p(G=4)=\dfrac{2}{21}$ et $p(G=-1)=\dfrac{19}{21}$.
    L’espérance de $G$ est :
    $\begin{align*} E(G)&=4\times \dfrac{2}{21}+(-1)\times \dfrac{19}{21} \\
    &=-\dfrac{11}{21}\\
    &<0\end{align*}$
    Le jeu est donc défavorable au joueur.
    $\quad$
  4. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : le joueur gagne ou le joueur perd.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{21}$.
    $\quad$
    b. $p(X=5)=\dbinom{20}{5}\left(\dfrac{2}{21}\right)^5\left(\dfrac{19}{21}\right)^{15} \approx 0,027$.
    $\quad$
    c. On a
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-\left(\dfrac{19}{21}\right)^{20} \\
    & \approx 0,865\end{align*}$
    La probabilité qu’il y ait au moins un gagnant est environ égale à $0,865$.
    $\quad$

 

 

Ex A

Exercice A (5 points)

Partie I : modèle discret

  1. On a
    $\begin{align*} u_1&=u_0+0,05\left(20-u_0\right) \\
    &=1+0,05\times 19\\
    &=1,95\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}&=u_n+0,05\left(20-u_n\right) \\
    &=u_n+1-0,05u_n \\
    &=0,95u_n+1\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ on a $v_n=20-u_n$ soit $u_n=20-v_n$.
    $\begin{align*} v_{n+1}&=20-u_{n+1} \\
    &=20-0,95u_n-1 \\
    &=19-0,95u_n \\
    &=19-0,95\left(20-v_n\right) \\
    &=19-19+0,95v_n\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=20-1=19$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $v_n=19\times 0,95^n$.
    Par conséquent $u_n=20-19\times 0,95^n$.
    $\quad$
  3. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 0,95^n=0$ et $\lim\limits_{n\to +\infty}u_n=20$.
    $\quad$

Partie II : modèle continu

  1. La fonction $L$ est dérivable sur $[0;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $t\pg 0$ on a d’une part :
    $\begin{align*} L'(t)&=-19\times (-0,05)\e^{-0,05t}\\
    &=0,95\e^{-0,05t}\end{align*}$
    D’autre part :
    $\begin{align*} 0,05\left(20-L(t)\right)&=0,05\left(20-20+19\e^{-0,05t}\right) \\
    &=0,05 \times 19\e^{-0,05t} \\
    &=0,95\e^{-0,05t}\end{align*}$
    Ainsi $L$ est solution de $(E)$.
    De plus $L(0)=20-19=1$.
    $\quad$
  2. a. On a $L'(0)=0,95$ et $L'(5)=0,95\e^{-0,25} \approx 0,74$.
    Ainsi $L'(0)>L'(5)$
    $\quad$
    b. $\lim\limits_{t\to +\infty} -0,05t=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{t\to +\infty} L'(t)=0$.
    Ce résultat est cohérent avec la description du modèle de croissance exposé au début de l’exercice : le bambou croît de moins en moins rapidement et atteint finalement une taille de $20$ mètres. Au début de l’observation il mesure bien $1$ mètre.
    $\quad$

Ex B

Exercice B (5 points)

Partie I

  1. On a pu saisir la formule $=B2-\ln(B2-1)$.
    $\quad$
  2. Il semblerait que la suite $\left(u_n\right)$ soit décroissante et converge vers $2$.
    $\quad$

Partie II

  1. $\lim\limits_{x\to 1} x-1=0$ et $\lim\limits_{X\to 0} \ln(X)=-\infty$
    Donc $\lim\limits_{x\to 1} f(x)=+\infty$.
    $\quad$
  2. a. $f$ est dérivable sur $]1;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $x>1$ on a
    $\begin{align*} f'(x)&=1-\dfrac{1}{x-1} \\
    &=\dfrac{x-1-1}{x-1} \\
    &=\dfrac{x-2}{x-1}\end{align*}$
    $\quad$
    b. Le signe de $f'(x)$ ne dépend que de celui de $x-2$.
    Or $x-2=0 \ssi x=2$ et $x-2>0 \ssi x>2$.
    On obtient donc le tableau de signes suivant :
    $\quad$$\quad$
    c. D’après la question précédente, la fonction $f$ admet $2$ pour minimum atteint pour $x=2$.
    Ainsi, pour tout réel $x\pg 2, ~f(x)\pg 2$.
    $\quad$

Partie III

  1. Initialisation : Si $n=0$ alors $u_0=10\pg 2$. La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n\in \N$.
    Donc $u_n\pg 2$.
    D’après la question précédente $u_{n+1}=f\left(u_n\right) \pg 2$.
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n\pg 2$.
    $\quad$
  2. Soit $n\in \N$
    $\begin{align*} u_{n+1}-u_n&= u_n-\ln\left(u_n-1\right)-u_n \\
    &=-\ln\left(u_n-1\right)\end{align*}$
    Or $u_n\pg 2$ donc $u_n-1\pg 1$ et $\ln\left(u_n-1\right)\pg 0$.
    Donc $u_{n+1}-u_n \pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $2$. Elle converge donc.
    $\quad$
  4. $\ell$ est donc solution de l’équation $f(x)=x$.
    Or
    $\begin{align*} f(x)=x&\ssi x-\ln(x-1)=x\\
    &\ssi -\ln(x-1)=0\\
    &\ssi x-1=1 \\
    &\ssi x=2\end{align*}$
    Par conséquent $\ell=2$.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

Cet exercice est un questionnaire à choix multiples (QCM)

Pour chaque question, trois affirmations sont proposées, une seule de ces affirmations est exacte.
Le candidat recopiera sur sa copie le numéro de chaque question et la lettre de la réponse choisie pour celle-ci.
AUCUNE JUSTIFICATION n’est demandée. Une réponse fausse ou l’absence de réponse n’enlève aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par $$f(x) = \left(x^2-2x-1\right)\e^x$$
    A. La fonction dérivée de $f$ est la fonction définie par $f'(x) = (2x-2)\e^x$.
    B. La fonction $f$ est décroissante sur l’intervalle $]-\infty;2]$.
    C. $\ds\lim\limits_{x \to -\infty} f(x) = 0$.
    $\quad$
  2. On considère la fonction $f$ définie sur $\R$ par $f(x) = \dfrac{3}{5 + \e^x}$.
    Sa courbe représentative dans un repère admet :
    A. une seule asymptote horizontale;
    B. une asymptote horizontale et une asymptote verticale;
    C. deux asymptotes horizontales.
    $\quad$
  3. On donne ci-dessous la courbe $\mathcal{C}_{f”}$ représentant la fonction dérivée seconde $f”$ d’une fonction $f$ définie et deux fois dérivable sur l’intervalle $[-3,5;6]$.
    $\quad$

    A. La fonction $f$ est convexe sur l’intervalle $[-3;3]$.
    B. La fonction $f$ admet trois points d’inflexion.
    C. La fonction dérivée $f’$ de $f$ est décroissante sur l’intervalle $[0;2]$.
    $\quad$

  4. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n = n^2-17n+20$.
    A. La suite $\left(u_n\right)$ est minorée.
    B. La suite $\left(u_n\right)$ est décroissante.
    C. L’un des termes de la suite $\left(u_n\right)$ est égal à $2~021$.
    $\quad$
  5. On considère la suite $\left(u_n\right)$ définie par $u_0 = 2$ et, pour tout entier naturel $n$, $u_{n+1} = 0,75u_n +5$.
    On considère la fonction « seuil » suivante écrite en Python :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() }:\\
    \quad \text{u} = 2\\
    \quad \text{n} = 0\\
    \quad \text{while u} < 45 :\\
    \qquad \text{u} = 0.75*u + 5\\
    \qquad \text{n} = \text{n} + 1\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Cette fonction renvoie :
    A. la plus petite valeur de $n$ telle que $u_n \pg 45$ ;
    B. la plus petite valeur de $n$ telle que $u_n < 45$ ;
    C. la plus grande valeur de $n$ telle que $u_n \pg 45$.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un pavé droit $ABCDEFGH$ tel que $AB = AD = 1$ et $AE = 2$, représenté ci- dessous.
Le point $I$ est le milieu du segment $[AE]$. Le point $K$ est le milieu du segment $[DC]$.
Le point $L$ est défini par: $\vect{DL} = \dfrac{3}{2}\vect{AI}$. $N$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.

 

 

On se place dans le repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AI}\right)$.
On admet que le point $L$ a pour coordonnées $\left(0;1;\dfrac{3}{2}\right)$.

  1. Déterminer les coordonnées des vecteurs $\vect{AK}$ et $\vect{AL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vect{n}$ de coordonnées $(6;-3;2)$ est un vecteur normal au plan $(AKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(AKL)$.
    $\quad$
    c. Déterminer un système d’équations paramétriques de la droite $\Delta$ passant par $D$ et perpendiculaire au plan $(AKL)$.
    $\quad$
    d. En déduire que le point $N$ de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.
    $\quad$

On rappelle que le volume $\mathcal{V}$ d’un tétraèdre est donné par la formule : $$\mathcal{V} = \dfrac{1}{3}\times (\text{aire de la base}) \times \text{hauteur}$$

  1. a. Calculer le volume du tétraèdre $ADKL$ en utilisant le triangle $ADK$ comme base.
    $\quad$
    b. Calculer la distance du point $D$ au plan $(AKL)$.
    $\quad$
    c. Déduire des questions précédentes l’aire du triangle $AKL$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Une société de jeu en ligne propose une nouvelle application pour smartphone nommée « Tickets coeurs! ».
Chaque participant génère sur son smartphone un ticket comportant une grille de taille $3 \times 3$ sur laquelle sont placés trois cœurs répartis au hasard, comme par exemple ci-dessous.

 

 

Le ticket est gagnant si les trois cœurs sont positionnés côte à côte sur une même ligne, sur une même colonne ou sur une même diagonale.

  1. Justifier qu’il y a exactement $84$ façons différentes de positionner les trois cœurs sur une grille.
    $\quad$
  2. Montrer que la probabilité qu’un ticket soit gagnant est égale à $\dfrac{2}{21}$.
    $\quad$
  3. Lorsqu’un joueur génère un ticket, la société prélève $1$ € sur son compte en banque. Si le ticket est gagnant, la société verse alors au joueur $5$ €. Le jeu est-il favorable au joueur?
    $\quad$
  4. Un joueur décide de générer $20$ tickets sur cette application. On suppose que les générations des tickets sont indépendantes entre elles.
    a. Donner la loi de probabilité de la variable aléatoire $X$ qui compte le nombre de tickets gagnants parmi les $20$ tickets générés.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X = 5)$.
    $\quad$
    c. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X \pg 1)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • Suites
  • Équations différentielles

Dans cet exercice, on s’intéresse à la croissance du bambou Moso de taille maximale $20$ mètres.
Le modèle de croissance de Ludwig von Bertalanffy suppose que la vitesse de croissance pour un tel bambou est proportionnelle à l’écart entre sa taille et la taille maximale.

Partie I : modèle discret

Dans cette partie, on observe un bambou de taille initiale $1$ mètre.
Pour tout entier naturel $n$, on note $u_n$ la taille, en mètre, du bambou $n$ jours après le début de l’observation. On a ainsi $u_0 = 1$.
Le modèle de von Bertalanffy pour la croissance du bambou entre deux jours consécutifs se traduit par l’égalité : $$u_{n+1} = u_n + 0,05\left(20-u_n\right)~~ \text{pour tout entier naturel } n$$

  1. Vérifier que $u_1 = 1,95$.
    $\quad$
  2. a. Montrer que pour tout entier naturel $n$, $u_{n+1} = 0,95u_n + 1$.
    $\quad$
    b. On pose pour tout entier naturel $n$, $v_n = 20-u_n$.
    Démontrer que la suite $\left(v_n\right)$ est une suite géométrique dont on précisera le terme initial $v_0$ et la raison.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $u_n = 20-19 \times 0,95^n$.
    $\quad$
  3. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II : modèle continu

Dans cette partie, on souhaite modéliser la taille du même bambou Moso par une fonction donnant sa taille, en mètre, en fonction du temps $t$ exprimé en jour.
D’après le modèle de von Bertalanffy, cette fonction est solution de l’équation différentielle $$(E) \qquad y’ = 0,05(20-y)$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0;+\infty[$ et $y’$ désigne sa fonction dérivée.
Soit la fonction $L$ définie sur l’intervalle $[0;+\infty[$ par $$L(t) = 20-19\e^{-0,05t}$$

  1. Vérifier que la fonction $L$ est une solution de $(E)$ et qu’on a également $L(0) = 1$.
    $\quad$
  2. On prend cette fonction $L$ comme modèle et on admet que, si on note $L’$ sa fonction dérivée, $L'(t)$ représente la vitesse de croissance du bambou à l’instant $t$.
    a. Comparer $L'(0)$ et $L'(5)$.
    $\quad$
    b. Calculer la limite de la fonction dérivée $L’$ en $+\infty$.
    Ce résultat est-il en cohérence avec la description du modèle de croissance exposé au début de l’exercice ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Suites, étude de fonction
  • Fonction logarithme

Soit la fonction $f$ définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$
On considère la suite $\left(u_n\right)$ de terme initial $u_0 = 10$ et telle que $u_{n+1} = f\left(u_n\right)$ pour tout entier naturel $n$.

Partie I :

La feuille de calcul ci-dessous a permis d’obtenir des valeurs approchées des premiers termes de la suite $\left(u_n\right)$.

$$\begin{array}{|c|c|c|}
\hline
&\phantom{12345}A\phantom{12345} &B\\
\hline
1 &n&u_n\\
\hline
2 &0&10\\
\hline
3& 1&7,802~775~42\\
\hline
4& 2&5,885~444~74\\
\hline
5& 3&4,299~184~42\\
\hline
6& 4&3,105~509~13\\
\hline
7& 5&2,360~951~82\\
\hline
8& 6&2,052~767~5\\
\hline
9& 7&2,001~345~09\\
\hline
10& 8&2,000~000~9\\
\hline
\end{array}$$

  1. Quelle formule a été saisie dans la cellule B3 pour permettre le calcul des valeurs approchées de $\left(u_n\right)$ par recopie vers le bas ?
    $\quad$
  2. À l’aide de ces valeurs, conjecturer le sens de variation et la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II :

On rappelle que la fonction $f$ est définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$

  1. Calculer $\lim\limits_{x \to 1} f(x)$. On admettra que $\lim\limits_{x \to + \infty} f(x) = +\infty$.
    $\quad$
  2. a. Soit $f’$ la fonction dérivée de $f$. Montrer que pour tout $x \in ]1; +\infty[$, $f'(x) = \dfrac{x-2}{x-1}$.
    $\quad$
    b. En déduire le tableau des variations de $f$ sur l’intervalle $]1;+\infty[$, complété par les limites.
    $\quad$
    c. Justifier que pour tout $x\pg 2$, $f(x) \pg 2$.
    $\quad$

Partie III :

  1. En utilisant les résultats de la partie II, démontrer par récurrence que $u_n \pg 2$ pour tout entier naturel $n$.
    $\quad$
  2. Montrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
  4. On admet que $\ell$ vérifie $f(\ell) = \ell$. Donner la valeur de $\ell$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 2 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Question 1 :  Si $t=5$ alors $\begin{cases} x=-4+3\times 5\\y=6-3\times 5\\z=8-6\times 5\end{cases} \ssi \begin{cases} x=11\\y=-9\\z=-22\end{cases}$
Réponse b
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est $\vec{u}\begin{pmatrix} 3\\-3\\-6\end{pmatrix}$.
Réponse c
$\quad$

Question 3 : Un vecteur directeur de la droite $\mathcal{D}$ est $\vect{AB}\begin{pmatrix}-2\\2\\4\end{pmatrix}$.
On constate que $\vect{AB}=-\dfrac{3}{2}\vect{u_3}$.
Les deux droites sont donc parallèles.
En prenant $t=2$ on constate que le point $B$ appartient à la droite $\mathcal{D}’$.
Les deux droites sont donc confondues.
Réponse d
$\quad$

Question 4 : Un vecteur normal au plan $\mathcal{P}$ est $\vec{n}\begin{pmatrix}1\\m\\-2\end{pmatrix}$
La droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$
$\ssi$ $\vec{n}$ et $\vect{AB}$ sont orthogonaux
$\ssi \vec{n}.\vect{AB}=0$\\
$\ssi -2+2m-8=0$
$\ssi 2m=10$
$\ssi m=5$
Réponse c
$\quad$

Ex 2

Exercice 2

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$$\quad$
    b. On veut calculer :
    $\begin{align*} p(M\cap T)&=p(M)\times p_M(T)\\
    &=0,4\times 0,9\\
    &=0,36\end{align*}$
    La probabilité que le chat soit porteur de la maladie et que son test soit positif est égal à $0,36$.
    $\quad$
    c. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(M)\times p_M(T)+p\left(\conj{M}\right)\times p_{\conj{M}}(T)\\
    &=0,36+0,6\times 0,15\\
    &=0,45\end{align*}$
    La probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} p_T(M)&=\dfrac{p(T\cap M)}{p(T)} \\
    &=\dfrac{0,36}{0,45} \\
    &=0,8\end{align*}$
    La probabilité que le chat soit porteur de la maladie sachant que le test est positif est égale à $0,8$.
    $\quad$
  2. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,45$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} p(X=5)&=\dbinom{20}{5}0,45^5\times 0,55^{15} \\
    &\approx 0,036\end{align*}$
    La probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif est environ égale à $0,036$.
    $\quad$
    c. On veut calculer $p(X\pp 8) \approx 0,414$ d’après la calculatrice.
    La probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif est environ égale à $0,414$.
    $\quad$
    d. $E(X)=np=9$.
    En moyenne, $9$ chats présentent un test positif dans un échantillon de $20$ chats.
    $\quad$
  3. a. On effectue $n$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    La variable $Y$ donnant le nombre de chats présentant un test positif suit donc la loi binomiale de paramètre $n$ et $p=0,45$.
    Ainsi :
    $\begin{align*} p_n&=p(Y\pg 1) \\
    &=1-p(Y=0)\\
    &=1-0,55^n\end{align*}$
    $\quad$
    b. Le programme renvoie le plus petit entier naturel $n$ tel que $p_n\pg 0,99$.
    $\quad$
    c.
    $\begin{align*}
    p_n\pg 0,99 &\ssi 1-0,55^n \pg 0,99 \\
    &\ssi -0,55^n \pg -0,01 \\
    &\ssi 0,55^n \pp 0,01 \\
    &\ssi n\ln(0,55) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,55)}\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,55)}\approx7,7$
    Le programme renverra donc la valeur $8$.
    $\quad$

Ex 3

Exercice 3

  1. Il semblerait que $\dfrac{4}{u_n}=n+4$.
    $\quad$
  2. Initialisation : On a $u_0=1>0$.
    La propriété est donc vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose la propriété vraie au rang $n$.
    Ainsi $4u_n >0$ et $u_n+4>4>0$.
    Par conséquent $u_{n+1}>0$ en tant que quotient de nombres strictement positifs.
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, on a $u_n >0$.
    $\quad$
  3. Pour tout $n\in \N$.
    $\begin{align*}
    u_{n+1}-u_n&=\dfrac{4u_n}{u_n+4}-u_n\\
    &=\dfrac{4u_n-\left(u_n^2+4u_n\right)}{u_n+4}\\
    &=\dfrac{-u_n^2}{u_n+4}\\
    &<0\end{align*}$
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
  4. La suite $\left(u_n\right)$ est donc décroissante et minorée par $0$. Elle est par conséquent convergente.
    $\quad$
  5. Soit $n\in \N$
    $\begin{align*} v_{n+1}-v_n&=\dfrac{4}{~~\dfrac{4u_n}{u_n+4}~~}-\dfrac{4}{u_n} \\
    &=\dfrac{4\left(u_n+4\right)}{4u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n+4}{u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n}{u_n}\\
    &=1\end{align*}$
    La suite $\left(v_n\right)$ est donc arithmétique de raison $1$ et de premier terme $v_0=4$.
    Ainsi, pour tout entier naturel $n$, on a $v_n=4+n$.
    $\quad$
  6. Pour tout entier naturel $n$ on a donc
    $\begin{align*} v_n=\dfrac{4}{u_n}&\ssi 4+n=\dfrac{4}{u_n} \\
    &\ssi u_n=\dfrac{4}{4+n}\end{align*}$
    Or $\lim\limits_{n\to +\infty} 4+n=0$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$

 

 

Ex A

Exercice A

Partie I

  1. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} x^2=0^+$ donc $\lim\limits_{x\to 0^+} \dfrac{\ln(x)}{x^2}=-\infty$ et $\lim\limits_{x\to 0^+} h(x)=-\infty$
    $\quad$
  2. Pour tout réel $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x^2-2x\ln(x)}{x^4} \\
    &=\dfrac{x-2x\ln(x)}{x^4} \\
    &=\dfrac{1-2\ln(x)}{x^3}\end{align*}$
    $\quad$
  3. Le signe de $h'(x)$ sur $]0;+\infty[$ ne dépend donc que de celui de $1-2\ln(x)$.
    Or $1-2\ln(x)=0 \ssi \ln(x)=\dfrac{1}{2} \ssi x=\e^{1/2}$
    Et $1-2\ln(x)>0 \ssi -2\ln(x)>-1\ssi \ln(x)<\dfrac{1}{2} \ssi x<\e^{1/2}$
    Ainsi $h'(x) >0$ sur $\left]0;\e^{1/2}\right[$ et $h'(x)<0$ sur $\left]\e^{1/2};+\infty\right[$.
    La fonction $h$ est donc strictement croissante sur $\left]0;\e^{1/2}\right[$ et strictement décroissante sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
  4. La fonction $h$ est continue (car dérivable) et strictement croissante sur $\left]0;\e^{1/2}\right[$.
    De plus $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h\left(\e^{1/2}\right)=1+\dfrac{1}{2\e}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une solution sur l’intervalle $\left]0;\e^{1/2}\right[$.
    $\quad$
    La fonction $h$ est strictement décroissante sur $\left]\e^{1/2};+\infty\right[$ et $\lim\limits_{x\to +\infty} h(x)=0$.
    Par conséquent $h(x)>0$ sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
    Ainsi l’équation $h(x)=0$ possède une unique solution $\alpha$ solution sur $]0;+\infty[$.
    $\quad$
    $h\left(\dfrac{1}{2}\right) \approx -1,8<0$ et $h(1)=1>0$
    Par conséquent $h\left(\dfrac{1}{2}\right)<h(\alpha)<h(1)$.
    La fonction $h$ est strictement croissante sur $\left]0;\e^{1/2}\right[$. Donc $\dfrac{1}{2} <\alpha <1$.
    $\quad$
  5. D’après les question 3. et 4. :
    $\bullet$ $h(x)<0$ sur $]0;\alpha[$;
    $\bullet$ $h(\alpha)=0$;
    $\bullet$ $h(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. Pour tout $x>0$ on a
    $\begin{align*} f_1(x)-f_2(x)&=x-1-\dfrac{\ln(x)}{x^2}-\left(x-2-\dfrac{2\ln(x)}{x^2} \right)\\
    &=x-1-\dfrac{\ln(x)}{x^2}-x+2+\dfrac{2\ln(x)}{x^2} \\
    &=1+\dfrac{\ln(x)}{x^2}\\
    &=h(x)\end{align*}$
    $\quad$
  2. L’équation $h(x)=0$ possède une unique solution $\alpha$ sur $]0;+\infty[$.
    Les courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ n’ont donc qu’un seul point d’intersection d’abscisse $\alpha$
    $h(\alpha)=0 \ssi \dfrac{\ln(\alpha}{\alpha^2}=-1$
    Ainsi $f_1(\alpha)=\alpha-1-\dfrac{\ln(\alpha}{\alpha^2}=\alpha$.
    Le point d’intersection des courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ a donc pour coordonnées $(\alpha;\alpha)$.
    D’après la question I.5., $\mathcal{C}_1$ est au-dessous de $\mathcal{C}_2$ sur $]0;+\alpha[$ et au-dessus de $\mathcal{C}_2$ sur $]\alpha;+\infty[$.
    $\quad$

Ex B

Partie I

  1. La fonction $f’$ semble strictement positive sur $]-\infty;-1[$ et strictement négative sur $]-1;+\infty[$
    La fonction $f$ semble donc strictement croissante sur $]-\infty;-1]$ et strictement décroissante sur $[-1;+\infty[$.
    $\quad$
  2. La fonction $f’$semble changer de sens de variation en $0$. Elle semble décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$.
    La fonction $f$ semble donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$
    $\quad$

Partie II

  1. Pour tout réel $x$ on a
    $\begin{align*} f(x)&=(x+2)\e^{-x} \\
    &=x\e^{-x}+2\e^{-x} \\
    &=\dfrac{x}{\e^x}+2\e^{-x}\end{align*}$
    $\quad$
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    De plus $\lim\limits_{x\to +\infty} \e^{-x}=0$ donc $\lim\limits_{x\to +\infty} f(x)=0$.
    La droite d’équation $y=0$ est donc asymptote à la courbe $\mathcal{C}$ en $+\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1\times \e^{-x}+(x+2)\times \left(-\e^{-x}\right) \\
    &=(1-x-2)\e^{-x} \\
    &=(-x-1)\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$. Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0 \ssi -x>1 \ssi x<-1$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$
    c. La fonction $f$ est continue (car dérivable) et strictement croissante sur $[-2;-1]$.
    De plus $f(-2) = 0<2$ et $f(-1)=\e>2$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=2$ possède une unique solution $\alpha$.
    D’après la calculatrice $\alpha \approx -1,6$.
    $\quad$
  3. $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=-\e^{-x}-(-x-1)\e^{-x} \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    La fonction exponentielle étant strictement positive sur $\R$, le signe de $f\dsec(x)$ ne dépend que de celui de $x$.
    Ainsi :
    $\bullet$ $f\dsec(x)<0$ sur $]-\infty;0[$;
    $\bullet$ $f\dsec(0)=0$;
    $\bullet$ $f\dsec(x)>0$ sur $]0;+\infty[$.
    La fonction $f$ est donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$.
    Le point $A$, d’abscisse $0$, est un point d’inflexion pour la courbe $\mathcal{C}$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

L’espace est rapporté à un repère orthonormé $\Oijk$.
On considère :

  • La droite $\mathcal{D}$ passant par les points $A(1 ; 1 ;-2)$ et $B(-1 ; 3 ; 2)$.
  • La droite $\mathcal{D}’$ de représentation paramétrique : $\left\{\begin{array}{l}x=-4+3 t \\ y=6-3 t \\ z=8-6 t\end{array}\right. \quad \text { avec } t \in \R $.
  • Le plan $\mathcal{P}$ d’équation cartésienne $x+m y-2 z+8=0$ où $m$ est un nombre réel.

Question 1 : Parmi les points suivants, lequel appartient à la droite $\mathcal{D}’$ ?
a. $M_{1}(-1 ; 3 ;-2)$
b. $M_{2}(11 ;-9 ;-22)$
c. $M_{3}(-7 ; 9 ; 2)$
d. $M_{4}(-2 ; 3 ; 4)$
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est:
a. $\vect{u_{1}}\begin{pmatrix}-4 \\ 6 \\ 8\end{pmatrix}$
b. $\vect{u_{2}}\begin{pmatrix}3 \\ 3 \\ 6\end{pmatrix}$
c. $\vect{u_{3}}\begin{pmatrix}3 \\ -3 \\ -6\end{pmatrix}$
d. $\vect{u_{4}}\begin{pmatrix}-1 \\ 3 \\ 2\end{pmatrix}$
$\quad$

Question 3 : Les droites $\mathcal{D}$ et $\mathcal{D}’$ sont:
a. sécantes
b. strictement parallèles
c. non coplanaires
d. confondues
$\quad$

Question 4 : La valeur du réel $m$ pour laquelle la droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$ est:
a. $m=-1$
b. $m=1$
c. $m=5$
d. $m=-2$
$\quad$

$\quad$

Exercice 2 6 points

Dans cet exercice, les résultats des probabilités demandées seront, si nécessaire, arrondis au millième.
La leucose féline est une maladie touchant les chats; elle est provoquée par un virus. Dans un grand centre vétérinaire, on estime à $40 \%$ la proportion de chats porteurs de la maladie. On réalise un test de dépistage de la maladie parmi les chats présents dans ce centre vétérinaire. Ce test possède les caractéristiques suivantes.

  • Lorsque le chat est porteur de la maladie, son test est positif dans $90 \%$ des cas.
  • Lorsque le chat n’est pas porteur de la maladie, son test est négatif dans $85 \%$ des cas.

On choisit un chat au hasard dans le centre vétérinaire et on considère les événements suivants:

  • $M$ : « Le chat est porteur de la maladie » ;
  • $T$ : « Le test du chat est positif » ;
  • $\conj{M}$ et $\conj{T}$ désignent les événements contraires des événements $M$ et $T$ respectivement.
  1. a. Traduire la situation par un arbre pondéré.
    $\quad$
    b. Calculer la probabilité que le chat soit porteur de la maladie et que son test soit positif.
    $\quad$
    c. Montrer que la probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On choisit un chat parmi ceux dont le test est positif. Calculer la probabilité qu’il soit porteur de la maladie.
    $\quad$
  2. On choisit dans le centre vétérinaire un échantillon de $20$ chats au hasard. On admet que l’on peut assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de chats présentant un test positif dans l’échantillon choisi.
    a. Déterminer, en justifiant, la loi suivie par la variable aléatoire $X$.
    $\quad$
    b. Calculer la probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif.
    $\quad$
    c. Calculer la probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif.
    $\quad$
    d. Déterminer l’espérance de la variable aléatoire $X$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  3. Dans cette question, on choisit un échantillon de $n$ chats dans le centre, qu’on assimile encore à un tirage avec remise. On note $p_{n}$ la probabilité qu’il y ait au moins un chat présentant un test positif dans cet échantillon.
    a. Montrer que $p_{n}=1-0,55^{n}$.
    $\quad$
    b. Décrire le rôle du programme ci-dessous écrit en langage Python, dans lequel la variable $\text{n}$ est un entier naturel et la variable $\text{P}$ un. nombre réel.
    $$\begin{array}{|l|}
    \hline
    \hspace {1cm} \textbf{def seuil} ():\\
    \hspace {1.5 cm} \text{n = 0} \\
    \hspace {1.5 cm} \text{P = 0}\\
    \hspace {1.5 cm} \textbf {while }\text{P < 0.99:} \\
    \hspace {2 cm}\text{n = n + 1}\\
    \hspace {2 cm}\text{P = 1 – 0.55**n}\\
    \hspace {1.5 cm}\textbf{return }\text{n}\\
    \hline
    \end{array}$$
    $\quad$
    c. Déterminer, en précisant la méthode employée, la valeur renvoyée par ce programme.
    $\quad$

$\quad$

Exercice 3     5 points

On considère la suite $\left(u_{n}\right)$ définie par $: u_{0}=1$ et, pour tout entier naturel $n$,
$$u_{n+1}=\dfrac{4 u_{n}}{u_{n}+4}$$

  1. La copie d’écran ci-dessous présente les valeurs, calculées à l’aide d’un tableur, des termes de la suite $\left(u_{n}\right)$ pour $n$ variant de $0$ à $12$, ainsi que celles du quotient $\dfrac{4}{u_{n}}$ (avec, pour les valeurs de $u_{n}$, affichage de deux chiffres pour les parties décimales).
    $$\begin{array}{|c|c|c|}
    \hline n & u_{n} & \dfrac{4}{u_{n}} \\
    \hline 0 & 1,00 & 4 \\
    \hline 1 & 0,80 & 5 \\
    \hline 2 & 0,67 & 6 \\
    \hline 3 & 0,57 & 7 \\
    \hline 4 & 0,50 & 8 \\
    \hline 5 & 0,44 & 9 \\
    \hline 6 & 0,40 & 10 \\
    \hline 7 & 0,36 & 11 \\
    \hline 8 & 0,33 & 12 \\
    \hline 9 & 0,31 & 13 \\
    \hline 10 & 0,29 & 14 \\
    \hline 11 & 0,27 & 15 \\
    \hline 12 & 0,25 & 16 \\
    \hline
    \end{array}$$
    À l’aide de ces valeurs, conjecturer l’expression de $\dfrac{4}{u_{n}}$ en fonction de $n$.
    $\quad$
    Le but de cet exercice est de démontrer cette conjecture (question 5.), et d’en déduire la limite de la suite $\left(u_{n}\right)$ (question 6.).
    $\quad$
  2. Démontrer par récurrence que, pour tout entier naturel $n$, on a $: u_{n}>0$.
    $\quad$
  3. Démontrer que la suite $\left(u_{n}\right)$ est décroissante.
    $\quad$
  4. Que peut-on conclure des questions 2. et 3. concernant la suite $\left(u_{n}\right)$ ?
    $\quad$
  5. On considère la suite $\left(v_{n}\right)$ définie pour tout entier naturel $n$ par : $v_{n}=\dfrac{4}{u_{n}}$.
    Démontrer que $\left(v_{n}\right)$ est une suite arithmétique. Préciser sa raison et son premier terme.
    En déduire, pour tout entier naturel $n$, l’expression de $v_{n}$ en fonction de $n$.
    $\quad$
  6. Déterminer, pour tout entier naturel $n$, l’expression de $u_{n}$ en fonction de $n$.
    En déduire la limite de la suite $\left(u_{n}\right)$.
    $\quad$

$\quad$

EXERCICE au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués dans un encadré.

$\quad$

Exercice A

Principaux domaines abordés:

  • Fonction logarithme;
  • dérivation.

Partie I

On désigne par $h$ la fonction définie sur l’intervalle $] 0 ;+\infty[$ par :
$$h(x)=1+\dfrac{\ln (x)}{x^{2}}$$
On admet que la fonction $h$ est dérivable sur $] 0 ;+\infty[$ et on note $h’$ sa fonction dérivée.

  1. Déterminez les limites de $h$ en $0$ et en $+\infty$.
    $\quad$
  2. Montrer que, pour tout nombre réel $x$ de $] 0 ;+\infty[$, $h'(x)=\dfrac{1-2 \ln (x)}{x^{3}}$.
    $\quad$
  3. En déduire les variations de la fonction $h$ sur l’intervalle $]0 ;+\infty[$
    $\quad$
  4. Montrer que l’équation $h(x)=0$ admet une solution unique $\alpha$ appartenant à $] 0 ;+\infty[$ et vérifier que : $\dfrac{1}{2}<\alpha<1$.
    $\quad$
  5. Déterminer le signe de $h(x)$ pour $x$ appartenant à $] 0 ;+\infty[$.
    $\quad$

 

Partie II

On désigne par $f_{1}$ et $f_{2}$ les fonctions définies sur $] 0 ;+\infty[$ par :
$$
f_{1}(x)=x-1-\dfrac{\ln (x)}{x^{2}} \text { et } \quad f_{2}(x)=x-2-\dfrac{2 \ln (x)}{x^{2}}$$
On note $\mathcal{C}_{1}$ et $\mathcal{C}_{2}$ les représentations graphiques respectives de $f_{1}$ et $f_{2}$ dans un repère $\Oij$.

  1. Montrer que, pour tout nombre réel $x$ appartenant à $] 0 ;+\infty[$, on a :
    $$f_{1}(x)-f_{2}(x)=h(x)$$
    $\quad$
  2. Déduire des résultats de la Partie I la position relative des courbes $\mathcal{C}_{1}$ et $\mathcal{C}_{2} .$ On justifiera que leur unique point d’intersection a pour coordonnées $(\alpha ; \alpha)$.
    On rappelle que $\alpha$ est l’unique solution de l’équation $h(x)=0$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction exponentielle;
  • dérivation;
  • convexité.

PARTIE I

On donne ci-dessous, dans le plan rapporté à un repère orthonormé, la courbe représentant la fonction dérivée $f’$ d’une fonction $f$ dérivable sur $\R$. À l’aide de cette courbe, conjecturer, en justifiant les réponses:

  1. Le sens de variation de la fonction $f$ sur $\R$.
    $\quad$
  2. La convexité de la fonction $f$ sur $\R$.
    $\quad$

$\quad$

PARTIE II

On admet que la fonction $f$ mentionnée dans la Partie I est définie sur $\R$ par : $$f(x)=(x+2) \e^{-x}$$
On note $\mathcal{C}$ la courbe représentative de $f$ dans un repère orthonormé $\Oij$.
On admet que la fonction $f$ est deux fois dérivable sur $\R$, et on note $f’$ et $f\dsec$ les fonctions dérivées première et seconde de $f$ respectivement.

  1. Montrer que, pour tout nombre réel $x$, $$
    f(x)=\dfrac{x}{\e^{x}}+2 \e^{-x}$$
    En déduire la limite de $f$ en $+\infty$.
    Justifier que la courbe $\mathcal{C}$ admet une asymptote que l’on précisera. On admet que $\lim\limits_{x \to -\infty} f(x)=-\infty$.
    $\quad$
  2. a. Montrer que, pour tout nombre réel $x, f'(x)=(-x-1) \e^{-x}$.
    $\quad$
    b. Étudier les variations sur $\R$ de la fonction $f$ et dresser son tableau de variations.
    $\quad$
    c. Montrer que l’équation $f(x)=2$ admet une unique solution $\alpha$ sur l’intervalle $[-2 ;-1]$ dont on donnera une valeur approchée à $10^{-1}$ près.
    $\quad$
  3. Déterminer, pour tout nombre réel $x$, l’expression de $f\dsec(x)$ et étudier la convexité de la fonction $f$. Que représente pour la courbe $\mathcal{C}$ son point $A$ d’abscisse $0$ ?
    $\quad$

$\quad$