Bac – Spécialité mathématiques – Asie – sujet 2 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    f'(x)&=(2x-2)\e^x+\left(x^2-2x-1\right)\e^x \\
    &=\left(2x-2+x^2-2x-1\right)\e^x \\
    &=\left(x^2-3\right)\e^x\end{align*}$
    L’affirmation A est donc fausse.
    $f'(2)>0$ et $f(0)<0$ : l’affirmation B est donc fausse
    Réponse C
    $\quad$
  2. $\lim\limits_{x\to +\infty} \e^x=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=0$
    La droite d’équation $y=0$ est donc asymptote à la courbe représentant la fonction $f$.
    $\lim\limits_{x\to -\infty} \e^x=-\infty$ donc $\lim\limits_{x\to -\infty} f(x)=\dfrac{3}{5}$
    La droite d’équation $y=\dfrac{3}{5}$ est donc asymptote à la courbe représentant la fonction $f$.
    Réponse C
    $\quad$
  3. La fonction $f\dsec$ s’annule en changeant de signe à trois reprise.
    La courbe représentant la fonction $f$ possède donc trois points d’inflexion.
    Réponse B
    $\quad$
  4. $\left(u_n\right)$ est une suite définie de manière explicite par un polynôme du second degré dont le coefficient principal est $a=1>0$.
    La fonction du second degré associée possède un minimum, d’abscisse $\dfrac{17}{2}$.
    $\left(u_n\right)$ est donc minorée.
    Réponse A
    $\quad$
  5. Cette fonction renvoie le plus entier naturel $n$ tel que $u_n\pg 45$.
    Réponse ARemarque :dans les faits cette fonction ne renvoie aucun résultat car la suite $\left(u_n\right)$ est croissante et majorée par $20$. Il est donc impossible que $u_n\pg 45$ !
    $\quad$

Ex 2

Exercice 2 (5 points)

  1. On a $A(0;0;0)$, $C(1;1;0)$ et $D(0;1;0)$
    Par conséquent $K\left(\dfrac{1}{2};1;0\right)$
    Donc $\vect{AK}\left(\dfrac{1}{2};1;0\right)$ et $\vect{AL}\left(0;1;\dfrac{3}{2}\right)$.
    $\quad$
  2. a. On a $\vec{n}.\vect{AK}=3-3+0=0$ et $\vec{n}.\vect{AL}=0-3+3=0$.
    $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AKL)$.
    C’est par conséquent un vecteur normal au plan $(AKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(AKL)$ est donc de la forme $6x-3y+2z+d=0$.
    Le point $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Une équation cartésienne du plan $(AKL)$ est alors $6x-3y+2z=0$.
    $\quad$
    c. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Ainsi une représentation paramétrique de la droite $\Delta$ est $$\begin{cases} x=6t\\y=1-3t\\z=2t\end{cases} \quad,t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{3}{49}$, on constate que le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient à la droite $\Delta$.
    De plus
    $\begin{align*} 6\times \dfrac{18}{49}-3\dfrac{40}{49}+2\dfrac{6}{49}&=\dfrac{108}{49}-\dfrac{120}{49}+\dfrac{12}{49} \\
    &=0\end{align*}$
    Le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient donc également au plan $(AKL)$.
    Par conséquent $N$ a pour coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$.
    $\quad$
  3. a. L’aire de la base $ADK$ est
    $\begin{align*} \mathcal{A}&=\dfrac{AD\times DK}{2} \\
    &=\dfrac{1\times \dfrac{1}{2}}{2} \\
    &=\dfrac{1}{4}\end{align*}$
    Ainsi
    $\begin{align*} \mathcal{V}&=\dfrac{\mathcal{A}\times DL}{3} \\
    &=\dfrac{\dfrac{1}{4}\times \dfrac{3}{2}}{3} \\
    &=\dfrac{1}{8}\end{align*}$
    $\quad$
    b. La distance du point $D$ au plan $(AKL)$ est
    $\begin{align*} DN&=\sqrt{\left(\dfrac{18}{49}\right)^2+\left(\dfrac{40}{49}-1\right)^2+\left(\dfrac{6}{49}\right)^2} \\
    &=\sqrt{\dfrac{9}{49}} \\
    &=\dfrac{3}{7}\end{align*}$
    $\quad$
    c. On a
    $\begin{align*} \mathcal{V}=\dfrac{1}{8}&\ssi \dfrac{\mathcal{A}_{AKL}\times DN}{3}=\dfrac{1}{8} \\
    &\ssi \dfrac{3}{7}\mathcal{A}_{AKL}=\dfrac{3}{8} \\
    &\ssi \mathcal{A}_{AKL}=\dfrac{7}{8}\end{align*}$
    L’aire du triangle $AKL$ est donc $\dfrac{7}{8}$.
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. Il y a $\dbinom{9}{3}=84$ façons différentes de positionner les trois cœurs.
    $\quad$
  2. Il y a $3$ façons de placer les cœurs sur une ligne pour gagner.
    Il y a $3$ façons de placer les cœurs sur une colonne pour gagner.
    Il y a $2$ façons de placer les cœurs sur une diagonale pour gagner.
    La probabilité qu’un ticket soit gagnant est donc $\dfrac{3+3+2}{84}=\dfrac{2}{21}$.
    $\quad$
  3. On appelle $G$ la variable aléatoire égale au gain algébrique du joeur.
    $G$ ne prend donc que $2$ valeurs $4$ et $-1$.
    $p(G=4)=\dfrac{2}{21}$ et $p(G=-1)=\dfrac{19}{21}$.
    L’espérance de $G$ est :
    $\begin{align*} E(G)&=4\times \dfrac{2}{21}+(-1)\times \dfrac{19}{21} \\
    &=-\dfrac{11}{21}\\
    &<0\end{align*}$
    Le jeu est donc défavorable au joueur.
    $\quad$
  4. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : le joueur gagne ou le joueur perd.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{21}$.
    $\quad$
    b. $p(X=5)=\dbinom{20}{5}\left(\dfrac{2}{21}\right)^5\left(\dfrac{19}{21}\right)^{15} \approx 0,027$.
    $\quad$
    c. On a
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-\left(\dfrac{19}{21}\right)^{20} \\
    & \approx 0,865\end{align*}$
    La probabilité qu’il y ait au moins un gagnant est environ égale à $0,865$.
    $\quad$

 

 

Ex A

Exercice A (5 points)

Partie I : modèle discret

  1. On a
    $\begin{align*} u_1&=u_0+0,05\left(20-u_0\right) \\
    &=1+0,05\times 19\\
    &=1,95\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}&=u_n+0,05\left(20-u_n\right) \\
    &=u_n+1-0,05u_n \\
    &=0,95u_n+1\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ on a $v_n=20-u_n$ soit $u_n=20-v_n$.
    $\begin{align*} v_{n+1}&=20-u_{n+1} \\
    &=20-0,95u_n-1 \\
    &=19-0,95u_n \\
    &=19-0,95\left(20-v_n\right) \\
    &=19-19+0,95v_n\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=20-1=19$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $v_n=19\times 0,95^n$.
    Par conséquent $u_n=20-19\times 0,95^n$.
    $\quad$
  3. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 0,95^n=0$ et $\lim\limits_{n\to +\infty}u_n=20$.
    $\quad$

Partie II : modèle continu

  1. La fonction $L$ est dérivable sur $[0;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $t\pg 0$ on a d’une part :
    $\begin{align*} L'(t)&=-19\times (-0,05)\e^{-0,05t}\\
    &=0,95\e^{-0,05t}\end{align*}$
    D’autre part :
    $\begin{align*} 0,05\left(20-L(t)\right)&=0,05\left(20-20+19\e^{-0,05t}\right) \\
    &=0,05 \times 19\e^{-0,05t} \\
    &=0,95\e^{-0,05t}\end{align*}$
    Ainsi $L$ est solution de $(E)$.
    De plus $L(0)=20-19=1$.
    $\quad$
  2. a. On a $L'(0)=0,95$ et $L'(5)=0,95\e^{-0,25} \approx 0,74$.
    Ainsi $L'(0)>L'(5)$
    $\quad$
    b. $\lim\limits_{t\to +\infty} -0,05t=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{t\to +\infty} L'(t)=0$.
    Ce résultat est cohérent avec la description du modèle de croissance exposé au début de l’exercice : le bambou croît de moins en moins rapidement et atteint finalement une taille de $20$ mètres. Au début de l’observation il mesure bien $1$ mètre.
    $\quad$

Ex B

Exercice B (5 points)

Partie I

  1. On a pu saisir la formule $=B2-\ln(B2-1)$.
    $\quad$
  2. Il semblerait que la suite $\left(u_n\right)$ soit décroissante et converge vers $2$.
    $\quad$

Partie II

  1. $\lim\limits_{x\to 1} x-1=0$ et $\lim\limits_{X\to 0} \ln(X)=-\infty$
    Donc $\lim\limits_{x\to 1} f(x)=+\infty$.
    $\quad$
  2. a. $f$ est dérivable sur $]1;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $x>1$ on a
    $\begin{align*} f'(x)&=1-\dfrac{1}{x-1} \\
    &=\dfrac{x-1-1}{x-1} \\
    &=\dfrac{x-2}{x-1}\end{align*}$
    $\quad$
    b. Le signe de $f'(x)$ ne dépend que de celui de $x-2$.
    Or $x-2=0 \ssi x=2$ et $x-2>0 \ssi x>2$.
    On obtient donc le tableau de signes suivant :
    $\quad$$\quad$
    c. D’après la question précédente, la fonction $f$ admet $2$ pour minimum atteint pour $x=2$.
    Ainsi, pour tout réel $x\pg 2, ~f(x)\pg 2$.
    $\quad$

Partie III

  1. Initialisation : Si $n=0$ alors $u_0=10\pg 2$. La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n\in \N$.
    Donc $u_n\pg 2$.
    D’après la question précédente $u_{n+1}=f\left(u_n\right) \pg 2$.
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n\pg 2$.
    $\quad$
  2. Soit $n\in \N$
    $\begin{align*} u_{n+1}-u_n&= u_n-\ln\left(u_n-1\right)-u_n \\
    &=-\ln\left(u_n-1\right)\end{align*}$
    Or $u_n\pg 2$ donc $u_n-1\pg 1$ et $\ln\left(u_n-1\right)\pg 0$.
    Donc $u_{n+1}-u_n \pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $2$. Elle converge donc.
    $\quad$
  4. $\ell$ est donc solution de l’équation $f(x)=x$.
    Or
    $\begin{align*} f(x)=x&\ssi x-\ln(x-1)=x\\
    &\ssi -\ln(x-1)=0\\
    &\ssi x-1=1 \\
    &\ssi x=2\end{align*}$
    Par conséquent $\ell=2$.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

Cet exercice est un questionnaire à choix multiples (QCM)

Pour chaque question, trois affirmations sont proposées, une seule de ces affirmations est exacte.
Le candidat recopiera sur sa copie le numéro de chaque question et la lettre de la réponse choisie pour celle-ci.
AUCUNE JUSTIFICATION n’est demandée. Une réponse fausse ou l’absence de réponse n’enlève aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par $$f(x) = \left(x^2-2x-1\right)\e^x$$
    A. La fonction dérivée de $f$ est la fonction définie par $f'(x) = (2x-2)\e^x$.
    B. La fonction $f$ est décroissante sur l’intervalle $]-\infty;2]$.
    C. $\ds\lim\limits_{x \to -\infty} f(x) = 0$.
    $\quad$
  2. On considère la fonction $f$ définie sur $\R$ par $f(x) = \dfrac{3}{5 + \e^x}$.
    Sa courbe représentative dans un repère admet :
    A. une seule asymptote horizontale;
    B. une asymptote horizontale et une asymptote verticale;
    C. deux asymptotes horizontales.
    $\quad$
  3. On donne ci-dessous la courbe $\mathcal{C}_{f”}$ représentant la fonction dérivée seconde $f”$ d’une fonction $f$ définie et deux fois dérivable sur l’intervalle $[-3,5;6]$.A. La fonction $f$ est convexe sur l’intervalle $[-3;3]$.B. La fonction $f$ admet trois points d’inflexion.
    C. La fonction dérivée $f’$ de $f$ est décroissante sur l’intervalle $[0;2]$.
    $\quad$
  4. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n = n^2-17n+20$.
    A. La suite $\left(u_n\right)$ est minorée.
    B. La suite $\left(u_n\right)$ est décroissante.
    C. L’un des termes de la suite $\left(u_n\right)$ est égal à $2~021$.
    $\quad$
  5. On considère la suite $\left(u_n\right)$ définie par $u_0 = 2$ et, pour tout entier naturel $n$, $u_{n+1} = 0,75u_n +5$.
    On considère la fonction « seuil » suivante écrite en Python :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() }:\\
    \quad \text{u} = 2\\
    \quad \text{n} = 0\\
    \quad \text{while u} < 45 :\\
    \qquad \text{u} = 0.75*u + 5\\
    \qquad \text{n} = \text{n} + 1\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Cette fonction renvoie :
    A. la plus petite valeur de $n$ telle que $u_n \pg 45$ ;
    B. la plus petite valeur de $n$ telle que $u_n < 45$ ;
    C. la plus grande valeur de $n$ telle que $u_n \pg 45$.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un pavé droit $ABCDEFGH$ tel que $AB = AD = 1$ et $AE = 2$, représenté ci- dessous.
Le point $I$ est le milieu du segment $[AE]$. Le point $K$ est le milieu du segment $[DC]$.
Le point $L$ est défini par: $\vect{DL} = \dfrac{3}{2}\vect{AI}$. $N$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.

 

 

On se place dans le repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AI}\right)$.
On admet que le point $L$ a pour coordonnées $\left(0;1;\dfrac{3}{2}\right)$.

  1. Déterminer les coordonnées des vecteurs $\vect{AK}$ et $\vect{AL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vect{n}$ de coordonnées $(6;-3;2)$ est un vecteur normal au plan $(AKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(AKL)$.
    $\quad$
    c. Déterminer un système d’équations paramétriques de la droite $\Delta$ passant par $D$ et perpendiculaire au plan $(AKL)$.
    $\quad$
    d. En déduire que le point $N$ de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.
    $\quad$

On rappelle que le volume $\mathcal{V}$ d’un tétraèdre est donné par la formule : $$\mathcal{V} = \dfrac{1}{3}\times (\text{aire de la base}) \times \text{hauteur}$$

  1. a. Calculer le volume du tétraèdre $ADKL$ en utilisant le triangle $ADK$ comme base.
    $\quad$
    b. Calculer la distance du point $D$ au plan $(AKL)$.
    $\quad$
    c. Déduire des questions précédentes l’aire du triangle $AKL$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Une société de jeu en ligne propose une nouvelle application pour smartphone nommée « Tickets coeurs! ».
Chaque participant génère sur son smartphone un ticket comportant une grille de taille $3 \times 3$ sur laquelle sont placés trois cœurs répartis au hasard, comme par exemple ci-dessous.

 

 

Le ticket est gagnant si les trois cœurs sont positionnés côte à côte sur une même ligne, sur une même colonne ou sur une même diagonale.

  1. Justifier qu’il y a exactement $84$ façons différentes de positionner les trois cœurs sur une grille.
    $\quad$
  2. Montrer que la probabilité qu’un ticket soit gagnant est égale à $\dfrac{2}{21}$.
    $\quad$
  3. Lorsqu’un joueur génère un ticket, la société prélève $1$ € sur son compte en banque. Si le ticket est gagnant, la société verse alors au joueur $5$ €. Le jeu est-il favorable au joueur?
    $\quad$
  4. Un joueur décide de générer $20$ tickets sur cette application. On suppose que les générations des tickets sont indépendantes entre elles.
    a. Donner la loi de probabilité de la variable aléatoire $X$ qui compte le nombre de tickets gagnants parmi les $20$ tickets générés.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X = 5)$.
    $\quad$
    c. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X \pg 1)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • Suites
  • Équations différentielles

Dans cet exercice, on s’intéresse à la croissance du bambou Moso de taille maximale $20$ mètres.
Le modèle de croissance de Ludwig von Bertalanffy suppose que la vitesse de croissance pour un tel bambou est proportionnelle à l’écart entre sa taille et la taille maximale.

Partie I : modèle discret

Dans cette partie, on observe un bambou de taille initiale $1$ mètre.
Pour tout entier naturel $n$, on note $u_n$ la taille, en mètre, du bambou $n$ jours après le début de l’observation. On a ainsi $u_0 = 1$.
Le modèle de von Bertalanffy pour la croissance du bambou entre deux jours consécutifs se traduit par l’égalité : $$u_{n+1} = u_n + 0,05\left(20-u_n\right)~~ \text{pour tout entier naturel } n$$

  1. Vérifier que $u_1 = 1,95$.
    $\quad$
  2. a. Montrer que pour tout entier naturel $n$, $u_{n+1} = 0,95u_n + 1$.
    $\quad$
    b. On pose pour tout entier naturel $n$, $v_n = 20-u_n$.
    Démontrer que la suite $\left(v_n\right)$ est une suite géométrique dont on précisera le terme initial $v_0$ et la raison.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $u_n = 20-19 \times 0,95^n$.
    $\quad$
  3. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II : modèle continu

Dans cette partie, on souhaite modéliser la taille du même bambou Moso par une fonction donnant sa taille, en mètre, en fonction du temps $t$ exprimé en jour.
D’après le modèle de von Bertalanffy, cette fonction est solution de l’équation différentielle $$(E) \qquad y’ = 0,05(20-y)$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0;+\infty[$ et $y’$ désigne sa fonction dérivée.
Soit la fonction $L$ définie sur l’intervalle $[0;+\infty[$ par $$L(t) = 20-19\e^{-0,05t}$$

  1. Vérifier que la fonction $L$ est une solution de $(E)$ et qu’on a également $L(0) = 1$.
    $\quad$
  2. On prend cette fonction $L$ comme modèle et on admet que, si on note $L’$ sa fonction dérivée, $L'(t)$ représente la vitesse de croissance du bambou à l’instant $t$.
    a. Comparer $L'(0)$ et $L'(5)$.
    $\quad$
    b. Calculer la limite de la fonction dérivée $L’$ en $+\infty$.
    Ce résultat est-il en cohérence avec la description du modèle de croissance exposé au début de l’exercice ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Suites, étude de fonction
  • Fonction logarithme

Soit la fonction $f$ définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$
On considère la suite $\left(u_n\right)$ de terme initial $u_0 = 10$ et telle que $u_{n+1} = f\left(u_n\right)$ pour tout entier naturel $n$.

Partie I :

La feuille de calcul ci-dessous a permis d’obtenir des valeurs approchées des premiers termes de la suite $\left(u_n\right)$.

$$\begin{array}{|c|c|c|}
\hline
&\phantom{12345}A\phantom{12345} &B\\
\hline
1 &n&u_n\\
\hline
2 &0&10\\
\hline
3& 1&7,802~775~42\\
\hline
4& 2&5,885~444~74\\
\hline
5& 3&4,299~184~42\\
\hline
6& 4&3,105~509~13\\
\hline
7& 5&2,360~951~82\\
\hline
8& 6&2,052~767~5\\
\hline
9& 7&2,001~345~09\\
\hline
10& 8&2,000~000~9\\
\hline
\end{array}$$

  1. Quelle formule a été saisie dans la cellule B3 pour permettre le calcul des valeurs approchées de $\left(u_n\right)$ par recopie vers le bas ?
    $\quad$
  2. À l’aide de ces valeurs, conjecturer le sens de variation et la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II :

On rappelle que la fonction $f$ est définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$

  1. Calculer $\lim\limits_{x \to 1} f(x)$. On admettra que $\lim\limits_{x \to + \infty} f(x) = +\infty$.
    $\quad$
  2. a. Soit $f’$ la fonction dérivée de $f$. Montrer que pour tout $x \in ]1; +\infty[$, $f'(x) = \dfrac{x-2}{x-1}$.
    $\quad$
    b. En déduire le tableau des variations de $f$ sur l’intervalle $]1;+\infty[$, complété par les limites.
    $\quad$
    c. Justifier que pour tout $x\pg 2$, $f(x) \pg 2$.
    $\quad$

Partie III :

  1. En utilisant les résultats de la partie II, démontrer par récurrence que $u_n \pg 2$ pour tout entier naturel $n$.
    $\quad$
  2. Montrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
  4. On admet que $\ell$ vérifie $f(\ell) = \ell$. Donner la valeur de $\ell$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 2 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Question 1 :  Si $t=5$ alors $\begin{cases} x=-4+3\times 5\\y=6-3\times 5\\z=8-6\times 5\end{cases} \ssi \begin{cases} x=11\\y=-9\\z=-22\end{cases}$
Réponse b
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est $\vec{u}\begin{pmatrix} 3\\-3\\-6\end{pmatrix}$.
Réponse c
$\quad$

Question 3 : Un vecteur directeur de la droite $\mathcal{D}$ est $\vect{AB}\begin{pmatrix}-2\\2\\4\end{pmatrix}$.
On constate que $\vect{AB}=-\dfrac{3}{2}\vect{u_3}$.
Les deux droites sont donc parallèles.
En prenant $t=2$ on constate que le point $B$ appartient à la droite $\mathcal{D}’$.
Les deux droites sont donc confondues.
Réponse d
$\quad$

Question 4 : Un vecteur normal au plan $\mathcal{P}$ est $\vec{n}\begin{pmatrix}1\\m\\-2\end{pmatrix}$
La droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$
$\ssi$ $\vec{n}$ et $\vect{AB}$ sont orthogonaux
$\ssi \vec{n}.\vect{AB}=0$\\
$\ssi -2+2m-8=0$
$\ssi 2m=10$
$\ssi m=5$
Réponse c
$\quad$

Ex 2

Exercice 2

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
    b. On veut calculer :
    $\begin{align*} p(M\cap T)&=p(M)\times p_M(T)\\
    &=0,4\times 0,9\\
    &=0,36\end{align*}$
    La probabilité que le chat soit porteur de la maladie et que son test soit positif est égal à $0,36$.
    $\quad$
    c. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(M)\times p_M(T)+p\left(\conj{M}\right)\times p_{\conj{M}}(T)\\
    &=0,36+0,6\times 0,15\\
    &=0,45\end{align*}$
    La probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} p_T(M)&=\dfrac{p(T\cap M)}{p(T)} \\
    &=\dfrac{0,36}{0,45} \\
    &=0,8\end{align*}$
    La probabilité que le chat soit porteur de la maladie sachant que le test est positif est égale à $0,8$.
    $\quad$

  2. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,45$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} p(X=5)&=\dbinom{20}{5}0,45^5\times 0,55^{15} \\
    &\approx 0,036\end{align*}$
    La probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif est environ égale à $0,036$.
    $\quad$
    c. On veut calculer $p(X\pp 8) \approx 0,414$ d’après la calculatrice.
    La probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif est environ égale à $0,414$.
    $\quad$
    d. $E(X)=np=9$.
    En moyenne, $9$ chats présentent un test positif dans un échantillon de $20$ chats.
    $\quad$
  3. a. On effectue $n$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    La variable $Y$ donnant le nombre de chats présentant un test positif suit donc la loi binomiale de paramètre $n$ et $p=0,45$.
    Ainsi :
    $\begin{align*} p_n&=p(Y\pg 1) \\
    &=1-p(Y=0)\\
    &=1-0,55^n\end{align*}$
    $\quad$
    b. Le programme renvoie le plus petit entier naturel $n$ tel que $p_n\pg 0,99$.
    $\quad$
    c.
    $\begin{align*}
    p_n\pg 0,99 &\ssi 1-0,55^n \pg 0,99 \\
    &\ssi -0,55^n \pg -0,01 \\
    &\ssi 0,55^n \pp 0,01 \\
    &\ssi n\ln(0,55) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,55)}\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,55)}\approx7,7$
    Le programme renverra donc la valeur $8$.
    $\quad$

Ex 3

Exercice 3

  1. Il semblerait que $\dfrac{4}{u_n}=n+4$.
    $\quad$
  2. Initialisation : On a $u_0=1>0$.
    La propriété est donc vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose la propriété vraie au rang $n$.
    Ainsi $4u_n >0$ et $u_n+4>4>0$.
    Par conséquent $u_{n+1}>0$ en tant que quotient de nombres strictement positifs.
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, on a $u_n >0$.
    $\quad$
  3. Pour tout $n\in \N$.
    $\begin{align*}
    u_{n+1}-u_n&=\dfrac{4u_n}{u_n+4}-u_n\\
    &=\dfrac{4u_n-\left(u_n^2+4u_n\right)}{u_n+4}\\
    &=\dfrac{-u_n^2}{u_n+4}\\
    &<0\end{align*}$
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
  4. La suite $\left(u_n\right)$ est donc décroissante et minorée par $0$. Elle est par conséquent convergente.
    $\quad$
  5. Soit $n\in \N$
    $\begin{align*} v_{n+1}-v_n&=\dfrac{4}{~~\dfrac{4u_n}{u_n+4}~~}-\dfrac{4}{u_n} \\
    &=\dfrac{4\left(u_n+4\right)}{4u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n+4}{u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n}{u_n}\\
    &=1\end{align*}$
    La suite $\left(v_n\right)$ est donc arithmétique de raison $1$ et de premier terme $v_0=4$.
    Ainsi, pour tout entier naturel $n$, on a $v_n=4+n$.
    $\quad$
  6. Pour tout entier naturel $n$ on a donc
    $\begin{align*} v_n=\dfrac{4}{u_n}&\ssi 4+n=\dfrac{4}{u_n} \\
    &\ssi u_n=\dfrac{4}{4+n}\end{align*}$
    Or $\lim\limits_{n\to +\infty} 4+n=0$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$

 

 

Ex A

Exercice A

Partie I

  1. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} x^2=0^+$ donc $\lim\limits_{x\to 0^+} \dfrac{\ln(x)}{x^2}=-\infty$ et $\lim\limits_{x\to 0^+} h(x)=-\infty$
    $\quad$
  2. Pour tout réel $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x^2-2x\ln(x)}{x^4} \\
    &=\dfrac{x-2x\ln(x)}{x^4} \\
    &=\dfrac{1-2\ln(x)}{x^3}\end{align*}$
    $\quad$
  3. Le signe de $h'(x)$ sur $]0;+\infty[$ ne dépend donc que de celui de $1-2\ln(x)$.
    Or $1-2\ln(x)=0 \ssi \ln(x)=\dfrac{1}{2} \ssi x=\e^{1/2}$
    Et $1-2\ln(x)>0 \ssi -2\ln(x)>-1\ssi \ln(x)<\dfrac{1}{2} \ssi x<\e^{1/2}$
    Ainsi $h'(x) >0$ sur $\left]0;\e^{1/2}\right[$ et $h'(x)<0$ sur $\left]\e^{1/2};+\infty\right[$.
    La fonction $h$ est donc strictement croissante sur $\left]0;\e^{1/2}\right[$ et strictement décroissante sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
  4. La fonction $h$ est continue (car dérivable) et strictement croissante sur $\left]0;\e^{1/2}\right[$.
    De plus $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h\left(\e^{1/2}\right)=1+\dfrac{1}{2\e}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une solution sur l’intervalle $\left]0;\e^{1/2}\right[$.
    $\quad$
    La fonction $h$ est strictement décroissante sur $\left]\e^{1/2};+\infty\right[$ et $\lim\limits_{x\to +\infty} h(x)=0$.
    Par conséquent $h(x)>0$ sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
    Ainsi l’équation $h(x)=0$ possède une unique solution $\alpha$ solution sur $]0;+\infty$.
    $\quad$
    $h\left(\dfrac{1}{2}\right) \approx -1,8<0$ et $h(1)=1>0$
    Par conséquent $h\left(\dfrac{1}{2}\right)<h(\alpha)<h(1)$.
    La fonction $h$ est strictement croissante sur $\left]0;\e^{1/2}\right[$. Donc $\dfrac{1}{2} <\alpha <1$.
    $\quad$
  5. D’après les question 3. et 4. :
    $\bullet$ $h(x)<0$ sur $]0;\alpha[$;
    $\bullet$ $h(\alpha)=0$;
    $\bullet$ $h(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. Pour tout $x>0$ on a
    $\begin{align*} f_1(x)-f_2(x)&=x-1-\dfrac{\ln(x)}{x^2}-\left(x-2-\dfrac{2\ln(x)}{x^2} \right)\\
    &=x-1-\dfrac{\ln(x)}{x^2}-x+2+\dfrac{2\ln(x)}{x^2} \\
    &=1+\dfrac{\ln(x)}{x^2}\\
    &=h(x)\end{align*}$
    $\quad$
  2. L’équation $h(x)=0$ possède une unique solution $\alpha$ sur $]0;+\infty[$.
    Les courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ n’ont donc qu’un seul point d’intersection d’abscisse $\alpha$
    $h(\alpha)=0 \ssi \dfrac{\ln(\alpha}{\alpha^2}=-1$
    Ainsi $f_1(\alpha)=\alpha-1-\dfrac{\ln(\alpha}{\alpha^2}=\alpha$.
    Le point d’intersection des courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ a donc pour coordonnées $(\alpha;\alpha)$.
    D’après la question I.5., $\mathcal{C}_1$ est au-dessous de $\mathcal{C}_2$ sur $]0;+\alpha[$ et au-dessus de $\mathcal{C}_2$ sur $]\alpha;+\infty[$.
    $\quad$

Ex B

Partie I

  1. La fonction $f$ semble strictement croissante sur $]-\infty;-1]$ et strictement décroissante sur $[-1;+\infty[$.
    $\quad$
  2. La fonction $f$ semble concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$
    $\quad$

Partie II

  1. Pour tout réel $x$ on a
    $\begin{align*} f(x)&=(x+2)\e^{-x} \\
    &=x\e^{-x}+2\e^{-x} \\
    &=\dfrac{x}{\e^x}+2\e^{-x}\end{align*}$
    $\quad$
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    De plus $\lim\limits_{x\to +\infty} \e^{-x}=0$ donc $\lim\limits_{x\to +\infty} f(x)=0$.
    La droite d’équation $y=0$ est donc asymptote à la courbe $\mathcal{C}$ en $+\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1\times \e^{-x}+(x+2)\times \left(-\e^{-x}\right) \\
    &=(1-x-2)\e^{-x} \\
    &=(-x-1)\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$. Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0 \ssi -x>1 \ssi x<-1$.
    On obtient ainsi le tableau de variations suivant :


    $\quad$
    c. La fonction $f$ est continue (car dérivable) et strictement croissante sur $[-2;-1]$.
    De plus $f(-2) = 0<2$ et $f(-1)=\e>2$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=2$ possède une unique solution $\alpha$.
    D’après la calculatrice $\alpha \approx -1,6$.
    $\quad$

  3. $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=-\e^{-x}-(-x-1)\e^{-x} \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    La fonction exponentielle étant strictement positive sur $\R$, le signe de $f\dsec(x)$ ne dépend que de celui de $x$.
    Ainsi :
    $\bullet$ $f\dsec(x)<0$ sur $]-\infty;0[$;
    $\bullet$ $f\dsec(0)=0$;
    $\bullet$ $f\dsec(x)>0$ sur $]0;+\infty[$.
    La fonction $f$ est donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$.
    Le point $A$, d’abscisse $0$, est un point d’inflexion pour la courbe $\mathcal{C}$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

L’espace est rapporté à un repère orthonormé $\Oijk$.
On considère :

  • La droite $\mathcal{D}$ passant par les points $A(1 ; 1 ;-2)$ et $B(-1 ; 3 ; 2)$.
  • La droite $\mathcal{D}’$ de représentation paramétrique : $\left\{\begin{array}{l}x=-4+3 t \\ y=6-3 t \\ z=8-6 t\end{array}\right. \quad \text { avec } t \in \R $.
  • Le plan $\mathcal{P}$ d’équation cartésienne $x+m y-2 z+8=0$ où $m$ est un nombre réel.

Question 1 : Parmi les points suivants, lequel appartient à la droite $\mathcal{D}’$ ?
a. $M_{1}(-1 ; 3 ;-2)$
b. $M_{2}(11 ;-9 ;-22)$
c. $M_{3}(-7 ; 9 ; 2)$
d. $M_{4}(-2 ; 3 ; 4)$
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est:
a. $\vect{u_{1}}\begin{pmatrix}-4 \\ 6 \\ 8\end{pmatrix}$
b. $\vect{u_{2}}\begin{pmatrix}3 \\ 3 \\ 6\end{pmatrix}$
c. $\vect{u_{3}}\begin{pmatrix}3 \\ -3 \\ -6\end{pmatrix}$
d. $\vect{u_{4}}\begin{pmatrix}-1 \\ 3 \\ 2\end{pmatrix}$
$\quad$

Question 3 : Les droites $\mathcal{D}$ et $\mathcal{D}’$ sont:
a. sécantes
b. strictement parallèles
c. non coplanaires
d. confondues
$\quad$

Question 4 : La valeur du réel $m$ pour laquelle la droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$ est:
a. $m=-1$
b. $m=1$
c. $m=5$
d. $m=-2$
$\quad$

$\quad$

Exercice 2 6 points

Dans cet exercice, les résultats des probabilités demandées seront, si nécessaire, arrondis au millième.
La leucose féline est une maladie touchant les chats; elle est provoquée par un virus. Dans un grand centre vétérinaire, on estime à $40 \%$ la proportion de chats porteurs de la maladie. On réalise un test de dépistage de la maladie parmi les chats présents dans ce centre vétérinaire. Ce test possède les caractéristiques suivantes.

  • Lorsque le chat est porteur de la maladie, son test est positif dans $90 \%$ des cas.
  • Lorsque le chat n’est pas porteur de la maladie, son test est négatif dans $85 \%$ des cas.

On choisit un chat au hasard dans le centre vétérinaire et on considère les événements suivants:

  • $M$ : « Le chat est porteur de la maladie » ;
  • $T$ : « Le test du chat est positif » ;
  • $\conj{M}$ et $\conj{T}$ désignent les événements contraires des événements $M$ et $T$ respectivement.
  1. a. Traduire la situation par un arbre pondéré.
    $\quad$
    b. Calculer la probabilité que le chat soit porteur de la maladie et que son test soit positif.
    $\quad$
    c. Montrer que la probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On choisit un chat parmi ceux dont le test est positif. Calculer la probabilité qu’il soit porteur de la maladie.
    $\quad$
  2. On choisit dans le centre vétérinaire un échantillon de $20$ chats au hasard. On admet que l’on peut assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de chats présentant un test positif dans l’échantillon choisi.
    a. Déterminer, en justifiant, la loi suivie par la variable aléatoire $X$.
    $\quad$
    b. Calculer la probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif.
    $\quad$
    c. Calculer la probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif.
    $\quad$
    d. Déterminer l’espérance de la variable aléatoire $X$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  3. Dans cette question, on choisit un échantillon de $n$ chats dans le centre, qu’on assimile encore à un tirage avec remise. On note $p_{n}$ la probabilité qu’il y ait au moins un chat présentant un test positif dans cet échantillon.
    a. Montrer que $p_{n}=1-0,55^{n}$.
    $\quad$
    b. Décrire le rôle du programme ci-dessous écrit en langage Python, dans lequel la variable $\text{n}$ est un entier naturel et la variable $\text{P}$ un. nombre réel.
    $$\begin{array}{|l|}
    \hline
    \hspace {1cm} \textbf{def seuil} ():\\
    \hspace {1.5 cm} \text{n = 0} \\
    \hspace {1.5 cm} \text{P = 0}\\
    \hspace {1.5 cm} \textbf {while }\text{P < 0.99:} \\
    \hspace {2 cm}\text{n = n + 1}\\
    \hspace {2 cm}\text{P = 1 – 0.55**n}\\
    \hspace {1.5 cm}\textbf{return }\text{n}\\
    \hline
    \end{array}$$
    $\quad$
    c. Déterminer, en précisant la méthode employée, la valeur renvoyée par ce programme.
    $\quad$

$\quad$

Exercice 3     5 points

On considère la suite $\left(u_{n}\right)$ définie par $: u_{0}=1$ et, pour tout entier naturel $n$,
$$u_{n+1}=\dfrac{4 u_{n}}{u_{n}+4}$$

  1. La copie d’écran ci-dessous présente les valeurs, calculées à l’aide d’un tableur, des termes de la suite $\left(u_{n}\right)$ pour $n$ variant de $0$ à $12$, ainsi que celles du quotient $\dfrac{4}{u_{n}}$ (avec, pour les valeurs de $u_{n}$, affichage de deux chiffres pour les parties décimales).
    $$\begin{array}{|c|c|c|}
    \hline n & u_{n} & \dfrac{4}{u_{n}} \\
    \hline 0 & 1,00 & 4 \\
    \hline 1 & 0,80 & 5 \\
    \hline 2 & 0,67 & 6 \\
    \hline 3 & 0,57 & 7 \\
    \hline 4 & 0,50 & 8 \\
    \hline 5 & 0,44 & 9 \\
    \hline 6 & 0,40 & 10 \\
    \hline 7 & 0,36 & 11 \\
    \hline 8 & 0,33 & 12 \\
    \hline 9 & 0,31 & 13 \\
    \hline 10 & 0,29 & 14 \\
    \hline 11 & 0,27 & 15 \\
    \hline 12 & 0,25 & 16 \\
    \hline
    \end{array}$$
    À l’aide de ces valeurs, conjecturer l’expression de $\dfrac{4}{u_{n}}$ en fonction de $n$.
    $\quad$
    Le but de cet exercice est de démontrer cette conjecture (question 5.), et d’en déduire la limite de la suite $\left(u_{n}\right)$ (question 6.).
    $\quad$
  2. Démontrer par récurrence que, pour tout entier naturel $n$, on a $: u_{n}>0$.
    $\quad$
  3. Démontrer que la suite $\left(u_{n}\right)$ est décroissante.
    $\quad$
  4. Que peut-on conclure des questions 2. et 3. concernant la suite $\left(u_{n}\right)$ ?
    $\quad$
  5. On considère la suite $\left(v_{n}\right)$ définie pour tout entier naturel $n$ par : $v_{n}=\dfrac{4}{u_{n}}$.
    Démontrer que $\left(v_{n}\right)$ est une suite arithmétique. Préciser sa raison et son premier terme.
    En déduire, pour tout entier naturel $n$, l’expression de $v_{n}$ en fonction de $n$.
    $\quad$
  6. Déterminer, pour tout entier naturel $n$, l’expression de $u_{n}$ en fonction de $n$.
    En déduire la limite de la suite $\left(u_{n}\right)$.
    $\quad$

$\quad$

EXERCICE au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués dans un encadré.

$\quad$

Exercice A

Principaux domaines abordés:

  • Fonction logarithme;
  • dérivation.

Partie I

On désigne par $h$ la fonction définie sur l’intervalle $] 0 ;+\infty[$ par :
$$h(x)=1+\dfrac{\ln (x)}{x^{2}}$$
On admet que la fonction $h$ est dérivable sur $] 0 ;+\infty[$ et on note $h’$ sa fonction dérivée.

  1. Déterminez les limites de $h$ en $0$ et en $+\infty$.
    $\quad$
  2. Montrer que, pour tout nombre réel $x$ de $] 0 ;+\infty[$, h'(x)=\dfrac{1-2 \ln (x)}{x^{3}}$.
    $\quad$
  3. En déduire les variations de la fonction $h$ sur l’intervalle $]0 ;+\infty[$
    $\quad$
  4. Montrer que l’équation $h(x)=0$ admet une solution unique $\alpha$ appartenant à $] 0 ;+\infty[$ et vérifier que : $\dfrac{1}{2}<\alpha<1$.
    $\quad$
  5. Déterminer le signe de $h(x)$ pour $x$ appartenant à $] 0 ;+\infty[$.
    $\quad$

 

Partie II

On désigne par $f_{1}$ et $f_{2}$ les fonctions définies sur $] 0 ;+\infty[$ par :
$$
f_{1}(x)=x-1-\dfrac{\ln (x)}{x^{2}} \text { et } \quad f_{2}(x)=x-2-\dfrac{2 \ln (x)}{x^{2}}$$
On note $\mathcal{C}_{1}$ et $\mathcal{C}_{2}$ les représentations graphiques respectives de $f_{1}$ et $f_{2}$ dans un repère $\Oij$.

  1. Montrer que, pour tout nombre réel $x$ appartenant à $] 0 ;+\infty[$, on a :
    $$f_{1}(x)-f_{2}(x)=h(x)$$
    $\quad$
  2. Déduire des résultats de la Partie I la position relative des courbes $\mathcal{C}_{1}$ et $\mathcal{C}_{2} .$ On justifiera que leur unique point d’intersection a pour coordonnées $(\alpha ; \alpha)$.
    On rappelle que $\alpha$ est l’unique solution de l’équation $h(x)=0$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction exponentielle;
  • dérivation;
  • convexité.

PARTIE I

On donne ci-dessous, dans le plan rapporté à un repère orthonormé, la courbe représentant la fonction dérivée $f’$ d’une fonction $f$ dérivable sur $\R$. À l’aide de cette courbe, conjecturer, en justifiant les réponses:

  1. Le sens de variation de la fonction $f$ sur $\R$.
    $\quad$
  2. La convexité de la fonction $f$ sur $\R$.
    $\quad$

$\quad$

PARTIE II

On admet que la fonction $f$ mentionnée dans la Partie I est définie sur $\R$ par : $$f(x)=(x+2) \e^{-x}$$
On note $\mathcal{C}$ la courbe représentative de $f$ dans un repère orthonormé $\Oij$.
On admet que la fonction $f$ est deux fois dérivable sur $\R$, et on note $f’$ et $f\dsec$ les fonctions dérivées première et seconde de $f$ respectivement.

  1. Montrer que, pour tout nombre réel $x$, $$
    f(x)=\dfrac{x}{\e^{x}}+2 \e^{-x}$$
    En déduire la limite de $f$ en $+\infty$.
    Justifier que la courbe $\mathcal{C}$ admet une asymptote que l’on précisera. On admet que $\lim\limits_{x \to -\infty} f(x)=-\infty$.
    $\quad$
  2. a. Montrer que, pour tout nombre réel $x, f'(x)=(-x-1) \e^{-x}$.
    $\quad$
    b. Étudier les variations sur $\R$ de la fonction $f$ et dresser son tableau de variations.
    $\quad$
    c. Montrer que l’équation $f(x)=2$ admet une unique solution $\alpha$ sur l’intervalle $[-2 ;-1]$ dont on donnera une valeur approchée à $10^{-1}$ près.
    $\quad$
  3. Déterminer, pour tout nombre réel $x$, l’expression de $f\dsec(x)$ et étudier la convexité de la fonction $f$. Que représente pour la courbe $\mathcal{C}$ son point $A$ d’abscisse $0$ ?
    $\quad$

$\quad$