E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Mettre sous la forme d’une fraction irréductible $\dfrac{3}{4}-\dfrac{7}{5}$.
    $\quad$
    Correction Question 1

    $\begin{align*}\dfrac{3}{4}-\dfrac{7}{5}&=\dfrac{15}{20}-\dfrac{28}{20} \\
    &=-\dfrac{13}{20}\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  2. Donner l’écriture scientifique de $0,045~6$.
    $\quad$
    Correction Question 2

    $0,045~6=4,56\times 10^{-2}$
    $\quad$

    [collapse]

    $\quad$
  3. Compléter l’égalité $10^{-5}\times \ldots\ldots =10^8$.
    $\quad$
    Correction Question 3

    $10^{-5}\times 10^{13}=10^{8}$ car $-5+13=8$.
    $\quad$

    [collapse]

    $\quad$
  4. Développer l’expression $7x^2(4x-6)$.
    $\quad$
    Correction Question 4

    $7x^2(4x-6)=28x^3-42x$
    $\quad$

    [collapse]

    $\quad$
  5. Factoriser l’expression $(5x-3)(3x+1)+4x(5x-3)$.
    $\quad$
    Correction Question 5

    $\begin{align*} (5x-3)(3x+1)+4x(5x-3)&=(5x-3)\left[(3x+1)+4x\right] \\
    &=(5x-3)(7x+1)\end{align*}$
    $\quad$

    [collapse]

    $\quad$

    $\quad$

  6. Résoudre dans $\R$ l’équation $(2x-5)(-x+7) = 0$.
    $\quad$
    Correction Question 6

    Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    Donc $2x-5=0\ssi 2x=5 \ssi x=\dfrac{5}{2}$ ou $-x+7=0\ssi x=7$.
    Les solutions de l’équation sont donc $\dfrac{5}{2}$ et $7$.
    $\quad$

    [collapse]

    $\quad$
  7. Si $\dfrac{a}{b}=\dfrac{c}{d}$ alors $d=$
    $\quad$
    Correction Question 7

    $\dfrac{a}{b}=\dfrac{c}{d} \ssi ad=bc \ssi d=\dfrac{bc}{a}$
    $\quad$

    [collapse]

    $\quad$
  8. Calculer $40\%$ de $70$ €.
    $\quad$
    Correction Question 8

    $\dfrac{40}{100}\times 70=\dfrac{2~800}{100}=28$.
    $40\%$ de $70$ € représente donc $28$ €.
    $\quad$

    [collapse]

    $\quad$
  9. Un article est passé de $40$ € à $50$ €.
    Quel est le taux d’évolution en pourcentage de cet article ?
    $\quad$
    Correction Question 9

    On a $\dfrac{50-40}{40}=\dfrac{10}{40}=0,25$
    Le taux d’évolution est donc égal à $25\%$.
    $\quad$

    [collapse]

    $\quad$
  10. On a représenté une droite D dans le repère ci-dessous.

    Compléter par lecture graphique.
    L’équation réduite de la droite $D$ est : ………………………………….
    $\quad$
    Correction Question 10

    L’ordonnée à l’origine est $-3$.
    Pour chaque déplacement de $1$ unité vers la droite on descend de $3$ unités : le coefficient directeur est donc $-3$.
    L’équation réduite de $D$ est donc $y=-3x-3$.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Une baisse de $10\%$ suivie d’une baisse de $20\%$ correspond à une baisse globale de $\ldots$
    $\quad$
    Correction Question 2

    Le coefficient multiplicateur associé à cette évolution est :
    $\begin{align*} m&=\left(1-\dfrac{10}{100}\right)\times \left(1-\dfrac{20}{100}\right)\\
    &=0,9\times 0,8\\
    &=0,72\\
    &=1-0,28\end{align*}$
    Il s’agit donc d’une baisse globale de $28\%$.
    $\quad$

    [collapse]

    $\quad$
  2. La forme décimale de $\frac{7}{4}\times 10^{-3}$ est
    $\quad$
    Correction Question 2

    $\begin{align*} \dfrac{7}{4}\times 10^{-3}&=1,75\times 10^{-3} \\
    &=0,001~75\\
    \end{align*}$
    $\quad$

    [collapse]

    $\quad$
  3. La fraction irréductible égale à $1-\left(\dfrac{2}{3}\right)^2$ est :
    $\quad$
    Correction Question 3

    $\begin{align*} 1-\left(\dfrac{2}{3}\right)^2&=1-\dfrac{4}{9} \\
    &=\dfrac{5}{9}\end{align*}$
    $\quad$

    [collapse]

    $\quad$

Une série statistique est résumée à l’aide du diagramme en boîtes ci-dessous, utilisez-le pour répondre aux questions 4 et 5.

  1. L’écart interquartile de cette série vaut
    $\quad$
    Correction Question 4

    D’après le graphique, l’écart interquartile vaut $55-30=25$.
    $\quad$

    [collapse]

    $\quad$
  2. Le pourcentage des valeurs de cette série comprises entre $30$ et $60$ est de :
    $\quad$
    Correction Question 5

    D’après le graphique, le premier quartile est $Q_1=30$ et le maximum vaut $60$.
    Ainsi $75\%$ des valeurs de cette série sont comprises entre $30$ et $60$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$
  3. Résoudre l’équation $3x-10=x+2$.
    $\quad$
    Correction Question 6

    $\begin{align*} 3x-10=x+2 &\ssi 3x-x=2+10\\
    &\ssi 2x=12\\
    &\ssi x=6\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  4. Développer l’expression $(3x-2)^2$.
    $\quad$
    Correction Question 7

    $\begin{align*} (3x-2)^2&=(3x)^2-2\times 3x\times 2+2^2 \\
    &=9x^2-12x+4\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  5. Factoriser l’expression $x^3+5x$.
    $\quad$
    Correction Question 8

    $x^3+5x=x\left(x^2+5\right)$
    $\quad$

    [collapse]

    $\quad$
  6. Tracer la droite d’équation $y=-2x+3$ dans le repère ci-dessous

    $\quad$
    Correction Question 9

    Si $x=0$ alors $y=-2\times 0+3=3$. Le point $A$ de coordonnées $(0;3)$ appartient donc à la droite $\Delta$.
    Si $x=2,5$ alors $y=-2\times 2,5+3=-2$. Le point $B$ de coordonnées $(2,5;-2)$ appartient à la droite $\Delta$.
    $\quad$

    [collapse]

    $\quad$
  7. Dans un repère, on donne $A (5 ; 8)$ et $B (1 ; 0)$, le coefficient directeur de la droite $(AB)$ est :
    $\quad$
    Correction Question 10

    $A$ et $B$ ont des abscisses différentes.
    Le coefficient directeur de la droite $(AB)$ est donc :
    $\begin{align*} m&=\dfrac{8-0}{5-1} \\
    &=\dfrac{8}{4}\\
    &=2\end{align*}$
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

On a observé sur $5$ ans que la note sur $20$, notée $f(x)$, d’un service au bout de $x$ année(s) est donnée par $f(x)=x^3-6x^2+9x$.
Par exemple, puisque $f(4,5)=4,5^3-6\times 4,5^2+9\times 4,5=10,125$, le service obtient au bout de $4$ ans et demi la notre de $10,125$ sur $20$.

  1. a. Quelle note le service obtient-il au bout d’une année ?
    $\quad$
    b. Justifier que le service donne pleine satisfaction au bout des $5$ années.
    $\quad$
  2. a. Calculer $f'(x)$ sous forme développée.
    $\quad$
    b. Montrer que $f'(x)=3(x-1)(x-3)$.
    $\quad$
    c. Dresser, sans justifier, le tableau de variations de $f$ sur l’intervalle $[0;5]$.
    $\quad$

$\quad$

Correction Exercice

  1. a. On a $f(1)=1-6+9=4$.
    Le service obtient au bout d’une année la note de $4$ sur $20$.
    $\quad$
    b. $f(5)=5^3-6\times 5^2+9\times 5=20$.
    Le service donne pleine satisfaction au bout des $5$ années.
    $\quad$
  2. a. Pour tout réel $x$ positif on a :
    $\begin{align*} f'(x)&=3x^2-6\times 2x+9x\\
    &=3x^2-12x+9x\end{align*}$
    $\quad$
    b. Pour tout réel $x$ positif on a :
    $\begin{align*} 3(x-1)(x-3)&=3\left(x^2-3x-x+3\right)\\
    &=3\left(x^2-4x+3\right)\\
    &=3x^2-12x+9\\
    &=f'(x)\end{align*}$
    $\quad$
    c. On a $x-1=0 \ssi x=1$ et $x-1>0 \ssi x>1$
    $x-3=0 \ssi x=3$ et $x-3>0 \ssi x>3$
    On obtient donc le tableau de variations suivant :

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. $0,5\%$ de $12~641$ €
    $\quad$
    Correction Question 1

    $1\%$ de $12~641$ est égale à $126,41$€
    Donc $0,5\%$ de $12~641$ est égale à $63,205$
    $\quad$

    [collapse]

    $\quad$
  2. Développer $(2x+3)^2$.
    $\quad$
    Correction Question 2

    $\begin{align*} (2x+3)^2&=(2x)^2+2\times 2x\times 3+3^2\\
    &=4x^2+12x+9\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  3. Donner un antécédent de $0$ par $f:x\mapsto (x+3)(x-1)$.
    $\quad$
    Correction Question 3

    On veut donc résoudre l’équation $(x+3)(x-1)=0$.
    Un produit de facteurs est nul si, et seulement si, l’un de ses facteurs au moins est nul.
    Ainsi $(x+3)(x-1)=0 \ssi x+3=0$ ou $x-1=0$.
    $\ssi x=-3$ ou $x=1$
    Les antécédents de $0$ par la fonction $f$ sont donc $-3$ et $1$.
    $\quad$

    [collapse]

    $\quad$
  4. Résoudre l’inéquation : $3-2x\pg 0$
    $\quad$
    Correction Exercice 4

    $3-2x\pg 0\ssi -2x\pg -3 \ssi x\pp \dfrac{3}{2}$
    L’ensemble solution est donc $\left]-\infty;\dfrac{3}{2}\right]$.
    $\quad$

    [collapse]

    $\quad$
  5. Soit $f(x)=ax^2$ où $a$ est un nombre réel.
    Donner la valeur de $a$ sachant que $f(-2)=10$.
    $\quad$
    Correction Question 5

    $f(-2)=4a$
    Ainsi $f(-2)=10 \ssi 4a=10 \ssi a=\dfrac{5}{2}$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$
  6. Dans une classe de première, $42 \%$ des élèves sont des garçons et parmi eux, $4 \%$ sont internes.
    Donner le pourcentage de garçons internes.
    $\quad$
    Correction Question 6

    $\dfrac{42}{100}\times \dfrac{4}{100}=\dfrac{168}{10~000}=1,68\%$
    Le pourcentage de garçons internes est donc égale à $1,68\%$.
    $\quad$

    [collapse]

    $\quad$
  7. La population d’une ville de $1~520$ habitants baisse chaque année de $10\ %$.
    Donner l’arrondi à l’unité du nombre d’habitants au bout de $3$ ans.
    $\quad$
    Correction Question 7

    Au bout d’un an la population a baissé de $152$ habitants. Il reste donc $1~368$ habitants.
    La deuxième année la population a baissé d’environ $137$ habitants. Il reste donc $1231$ habitants
    La troisième année la population a baisse d’environ $123$ habitants. Il reste donc $1~108$ habitants
    $\quad$

    [collapse]

    $\quad$

La courbe ci-contre est la représentation graphique d’une fonction $f$ définie sur l’intervalle $[-6 ; 9]$. Cette fonction est celle qui est considérée dans les questions 8 à 10.
La droite passant par les points $A(0 ; -2)$ et $B(5 ; 0)$ est la représentation graphique d’une fonction affine $g$ définie sur $\R$.
Remarque : l’ordonnée du point $B$ a été modifiée pour correspondre à ce qui est donné sur le graphique.

 

  1. $f(-5)$ est égal à :
    $\quad$
    Correction Question 8

    D’après le graphique $f(-5)=1$.
    $\quad$

    [collapse]

    $\quad$
  2. Le nombre de solutions de l’équation $f(x)=-2$ est :
    $\quad$
    Correction Question 9

    La droite d’équation $y=-2$ coupe la courbe représentant la fonction $f$ en trois points.
    L’équation $f(x)=-2$ possède donc $3$ solutions.
    $\quad$

    [collapse]

    $\quad$
  3. $f$ est décroissante sur les intervalles :
    $\quad$
    Correction Question 10

    D’après le graphique, $f$ est décroissante sur les intervalles $[-5;-2]$ et $[5;9]$.
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise fabrique et commercialise des trottinettes. La capacité maximale de production de l’entreprise est de $21$ trottinettes.
Le coût total de fabrication (en euros) de $x$ trottinettes est modélisé par la fonction $C$ définie par : $$C(x) = 2x^3-50x^2+452x$$
Le prix de vente est de $200$ € par trottinette.

  1. Calculer, pour $12$ objets fabriqués et vendus, le coût de fabrication, la recette et le bénéfice.
    $\quad$
  2. On note $R(x)$ et $B(x)$ la recette et le bénéfice pour $x$ trottinettes vendues.
    a. Exprimer $R(x)$.
    $\quad$
    b. Montrer que le bénéfice réalisé pour $x$ trottinettes vendues est : $$B(x)=-2x^3+50x^2-252x$$
    $\quad$
  3. a. Montrer que $B(x)=-2x(x-7)(x-18)$.
    $\quad$
    b. Étudier le signe de $B(x)$ sur l’intervalle $[0 ; 21]$ et interpréter le signe de $B(x)$ dans le contexte de l’exercice.
    $\quad$

$\quad$

Correction Exercice

  1. Le coût de fabrication est $C(12)=1~680$ €.
    La recette est $200\times 12 = 2~400$ €.
    Le bénéfice est $2~400-1~680=720$ €
    $\quad$
  2. a. On a $R(x)=200x$.
    $\quad$
    b. Le bénéfice réalisé pour $x$ trottinettes vendues est :
    $\begin{align*} B(x)&=R(x)-C(x)\\
    &=200x-\left(2x^3-50x^2+452x\right) \\
    &=200x-2x^3+50x^2-452x\\
    &=-2x^3+50x^2-252x\end{align*}$
    $\quad$
  3. a. Pour tout réel $x$ on a :
    $\begin{align*} -2x(x-7)(x-18)&=-2x\left(x^2-18x-7x+126\right) \\
    &=-2x\left(x^2-25x+126\right)\\
    &=-2x^3+50x^2-252x\\
    &=B(x)\end{align*}$
    $\quad$
    b. $2x=0 \ssi x=0$ et $2x>0 \ssi x>0$
    $x-7=0\ssi x=7$ et $x-7>0\ssi x>7$
    $x-18=0\ssi x=18$ et $x-18>0 \ssi x>18$
    On obtient alors le tableau de signes suivant :L’entreprise réalise donc un bénéfice si elle produit et vend entre $7$ et $18$ trottinettes.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Exprimer en kilogrammes $\dfrac{5}{6}$ de $360$ kg.
    $\quad$
    Correction Question 1

    $\dfrac{5}{6}\times 360=5\times 60=300$
    $\quad$

    [collapse]

    $\quad$
  2. Développer $(2x+3)^2$.
    $\quad$
    Correction Question 2

    $\begin{align*} (2x+3)^2&=(2x)^2+2\times 2x\times 3+3^2\\
    &=4x^2+12x+9\end{align*}$
    $\quad$

    [collapse]

    $\quad$
    Remarque : Dans l’énoncé original il n’y avait pas le $^2$.
    $\quad$
  3. Donner un antécédent de $0$ par $f:x\mapsto (x+3)(x-1)$.
    $\quad$
    Correction Question 3

    On veut donc résoudre l’équation $(x+3)(x-1)=0$.
    Un produit de facteurs est nul si, et seulement si, l’un de ses facteurs au moins est nul.
    Ainsi $(x+3)(x-1)=0 \ssi x+3=0$ ou $x-1=0$.
    $\ssi x=-3$ ou $x=1$
    Les antécédents de $0$ par la fonction $f$ sont donc $-3$ et $1$.
    $\quad$

    [collapse]

    $\quad$
  4. Résoudre l’inéquation : $3-2x\pg 0$
    $\quad$
    Correction Exercice 4

    $3-2x\pg 0\ssi -2x\pg -3 \ssi x\pp \dfrac{3}{2}$
    L’ensemble solution est donc $\left]-\infty;\dfrac{3}{2}\right]$.
    $\quad$

    [collapse]

    $\quad$
  5. Soit $f(x)=ax^2$ où $a$ est un nombre réel.
    Donner la valeur de $a$ sachant que $f(-2)=10$.
    $\quad$
    Correction Question 5

    $f(-2)=4a$
    Ainsi $f(-2)=10 \ssi 4a=10 \ssi a=\dfrac{5}{2}$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$
  6. Dans une classe de première, $42 \%$ des élèves sont des garçons et parmi eux, $4 \%$ sont internes.
    Donner le pourcentage de garçons internes.
    $\quad$
    Correction Question 6

    $\dfrac{42}{100}\times \dfrac{4}{100}=\dfrac{168}{10~000}=1,68\%$
    Le pourcentage de garçons internes est donc égale à $1,68\%$.
    $\quad$

    [collapse]

    $\quad$

La courbe ci-contre est la représentation graphique d’une fonction $f$ définie sur l’intervalle $[-6 ; 9]$. Cette fonction est celle qui est considérée dans les questions 7 à 10.
La droite passant par les points $A(0 ; -2)$ et $B(5 ; 0)$ est la représentation graphique d’une fonction affine $g$ définie sur $\R$.
Remarque : l’ordonnée du point $B$ a été modifiée pour correspondre à ce qui est donné sur le graphique.

 

  1. $f(-5)$ est égal à :
    $\quad$
    Correction Question 7

    D’après le graphique $f(-5)=1$.
    $\quad$

    [collapse]

    $\quad$
  2. Le nombre de solutions de l’équation $f(x)=-2$ est :
    $\quad$
    Correction Question 8

    La droite d’équation $y=-2$ coupe la courbe représentant la fonction $f$ en trois points.
    L’équation $f(x)=-2$ possède donc $3$ solutions.
    $\quad$

    [collapse]

    $\quad$
  3. L’intervalle des valeurs de $f(x)$ est :
    $\quad$
    Correction Question 9

    D’après le graphique, $f(x)\in[-6;1]$.
    $\quad$

    [collapse]

    $\quad$
  4. Le coefficient directeur de la droite $(AB)$ est :
    $\quad$
    Correction Question 10

    $A$ et $B$ n’ont pas la même abscisse.
    Le coefficient directeur de la droite $(AB)$ est donc :
    $\begin{align*} m&=\dfrac{0-(-2)}{5-0} \\
    &=\dfrac{2}{5}\end{align*}$
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Soit $f$ la fonction définie sur $[0;60~000]$ par $f(x)=-0,01(x-5~000)(x-50~000)$.
Sa représentation graphique est donnée ci-dessous.

  1. a. Développe et réduire $f(x)$.
    $\quad$
    b. En quelle valeur de $x$ le maximum de$f$𝑓 est-il atteint?
    $\quad$
  2. En 2022, une entreprise de l’agroalimentaire bio prévoit de produire $60~ 000$ tonnes d’un nouveau produit et de le vendre $800$ € la tonne. On estime que toute la production sera vendue et que le coût total de production, en euros, de $x$ tonnes de produit est $C(x)=0,01x^2+250x+2~500~000$.
    a. Exprimer la recette en euros pour 𝑥 tonnes de produit vendues.
    $\quad$
    b. En déduire que le bénéfice en euros pour $x$ tonnes de produit fabriquées et vendues est $B(x) = -0,01x^2+550x-2~500~000$, pour tout $x$ de $[0 ; 60~000]$.
    Remarque : Il y avait une coquille dans l’expression de $B(x)$ dans l’énoncé original.
    $\quad$
    c. Quelle quantité de produit l’entreprise doit-elle produire et vendre pour réaliser un bénéfice maximal ? Combien vaut ce bénéfice ?
    $\quad$

$\quad$

Correction Exercice

  1. a.
    $\begin{align*} f(x)&=-0,01(x-5~000)(x-50~000)\\
    &=-0,01\left(x^2-50~000x-5~000x+250~000~000\right)\\
    &=-0,01\left(x^2-55~000x+250~000~000\right)\\
    &=-0,01x^2+550x-2~500~000\end{align*}$
    $\quad$
    b. Le maximum d’une fonction polynôme du second degré est atteint pour $x=-\dfrac{b}{2a}$ soit ici pour $x=\dfrac{550}{0,02}=27~500$.
    $\quad$
  2. a. Pour $x$ tonnes de produit vendues la recette est égale à $800x$.
    $\quad$
    b. Le bénéfice est alors :
    $\begin{align*} B(x)&=800x-C(x)\\
    &=800x-0,01x^2-250x-2~500~000\\
    &=-0,01x^2+550x-2~500~000\end{align*}$
    $\quad$
    c. On a ainsi $B(x)=f(x)$.
    L’entreprise doit donc produire et vendre $27~500$ tonnes de produit pour réaliser un bénéfice maximal.
    De plus $B(27~000)=5~062~500$
    Le bénéfice maximal est alors égale à $5~062~500$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Le chiffre d’affaire en milliers d’euros d’une entreprise en fonction du temps est modélisé par la fonction $f(x) = 3x\left(48x-5x^2\right)$ où $x$ exprimé en années est le temps écoulé depuis le 1$\ier$ janvier 2020.

  1. a. Développer $f(x)$.
    $\quad$
    b. En déduire $f'(x)$.
    $\quad$
    c. On admet que $f'(x)=-3x(15x-96)$. Dresser le tableau de variation de $f$.
    $\quad$.
    d. En déduire le maximum de $f$ sur $[0;10]$.
    $\quad$
  2. Compléter la ligne $10$ du programme écrit en Python ci-dessous afin qu’en fin d’exécution la variable $\text{M}$ contienne une valeur approchée du chiffre d’affaire maximal exprimé en milliers d’euros.
    $$\begin{array}{|c|l|}
    \hline
    1 &\text{def chiffresaffairesmax( ):} \\
    \hline
    2 &\hspace{1cm} \text{x=0}\\
    \hline
    4 &\hspace{1cm}\text{B = 3*x*(48*x – 5*x**2)}\\
    \hline
    5 &\hspace{1cm}\text{M=B}\\
    \hline
    6 &\hspace{1cm}\text{for k in range(100):}\\
    \hline
    7 &\hspace{2cm}\text{x=x+0.1}\\
    \hline
    8 &\hspace{2cm}\text{B= 3*x*(48*x – 5*x**2)}\\
    \hline
    9 &\hspace{2cm}\text{if B>M :}\\
    \hline
    10 &\hspace{3cm}\text{M=$\ldots$}\\
    \hline
    12 &\hspace{1cm}\text{return M}\\
    \hline
    \end{array}$$

$\quad$

$\quad$

Correction Exercice

  1. a. On a :
    $\begin{align*} f(x)&=3x\left(48x-5x^2\right) \\
    &=144x^2-15x^3\end{align*}$
    $\quad$
    b. On a :
    $\begin{align*} f'(x)&=144\times 2x-15\times 3x^2 \\
    &=288x-45x^2\end{align*}$
    $\quad$
    c. $-3x=0 \ssi x=0$ et $-3x>0 \ssi x<0$
    $15x-96=0 \ssi 15x=96 \ssi x= 6,4$ et $15x-96>0 \ssi 15x>96 \ssi x>6,4$
    On obtient alors le tableau de variations suivant :

    $\quad$
    d. D’après le tableau de variations précédent le maximum de la fonction $f$ sur l’intervalle $[0;10]$ est $1~966,08$.
    $\quad$
  2. On peut écrire
    $$\begin{array}{|c|l|}
    \hline
    1 &\text{def chiffresaffairesmax( ):} \\
    \hline
    2 &\hspace{1cm} \text{x=0}\\
    \hline
    4 &\hspace{1cm}\text{B = 3*x*(48*x – 5*x**2)}\\
    \hline
    5 &\hspace{1cm}\text{M=B}\\
    \hline
    6 &\hspace{1cm}\text{for k in range(100):}\\
    \hline
    7 &\hspace{2cm}\text{x=x+0.1}\\
    \hline
    8 &\hspace{2cm}\text{B= 3*x*(48*x – 5*x**2)}\\
    \hline
    9 &\hspace{2cm}\text{if B>M :}\\
    \hline
    10 &\hspace{3cm}\text{M=B}\\
    \hline
    12 &\hspace{1cm}\text{return M}\\
    \hline
    \end{array}$$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Un athlète s’entraîne au lancer de javelot. Au moment du lancer, le lanceur tient le javelot de telle manière que la pointe se trouve à la hauteur du sommet de son crâne. Pendant sa course, on considère que les frottements qui s’exercent sur la pointe du javelot sont négligeables, et que le javelot n’est soumis qu’à son poids. La trajectoire de la pointe du javelot est donc modélisée par une parabole.

  1. Lors du premier essai de l’athlète, la trajectoire de la pointe du javelot est donnée par la fonction $f$ telle que $f(x)=-0,01x^2+0,57x+1,8$, où $x$ est la distance au sol en mètres parcourue par la pointe du javelot et $f(x)$ l’altitude, en mètres, de la pointe du javelot quand celle-ci se trouve à une distance au sol de $x$ mètres du lanceur. On donne ci-dessous la représentation graphique de $f$.
    a. Calculer $f(0)$. Quelle est la taille de l’athlète ?
    $\quad$
    b. Vérifier que $f(x)=-0,01(x+3)(x-60)$.
    $\quad$
    c. Quelle est la distance au sol totale parcourue par le javelot ?
    $\quad$
    d. Donner le tableau de variation de la fonction $f$ sur l’intervalle $[0 ; 60]$. La hauteur maximale atteinte par le javelot dépasse-t-elle $10$ m? Justifier.
    $\quad$
  2. Lors du deuxième essai, la pointe du javelot réalise une trajectoire décrite par la fonction $h$ telle que $h(x) = -0,01x^2+0,6x+1,8$, où $x$ est la distance au sol en mètres parcourue par la pointe du javelot et $h(x)$ l’altitude en mètres de la pointe du javelot quand celle-ci se trouve à une distance au sol de $x$ mètres du lanceur.
    On a écrit le script suivant en Python :
    $$\begin{array}{|l|}
    \hline
    \text{x=60}\\
    \text{for i in range(1,6):}\\
    \hspace{1cm} \text{print(” x= “,x , “h(x)=”,-0.01*x**2+0.6*x+1.8)}\\
    \hspace{1cm} \text{x=60+i}\\
    \hline
    \end{array}$$
    Lorsqu’on l’exécute, on obtient l’affichage suivant :
    $\qquad \text{x= 60 h(x)= 1.8}$
    $\qquad \text{x= 61 h(x)= 1.1900000000000006}$
    $\qquad \text{x= 62 h(x)= 0.559999999999998}$
    $\qquad \text{x= 63 h(x)= -0.09000000000000052}$
    $\qquad \text{x= 64 h(x)= -0.7600000000000022}$
    L’athlète a-t-il amélioré sa performance par rapport à son premier lancer ?
    $\quad$

$\quad$

Correction Exercice

  1. a. $f(0)=-0,01\times 0^2+0,57\times 0+1,8=1,8$
    L’athlète mesure donc $1,8$ m.
    $\quad$
    b. Pour tout réel $x$ on a :
    $\begin{align*} -0,01(x+3)(x-60)&=-0,01\left(x^2-60x+3x-180\right)\\
    &=-0,01\left(x^2-57x-180\right)\\
    &=-0,01x^2+0,57x+1,8\\
    &=f(x)\end{align*}$
    $\quad$
    c. $f(x)=0 \ssi x+3=0$ ou $x-60=0$ $\ssi x=-3$ ou $x=60$.
    Le javelot touche donc le sol après avoir parcouru $60$ mètres.
    $\quad$
    d. $f$ est une fonction du second degré dont le coefficient principal est $a=-0,01<0$.
    Son maximum est atteint en $-\dfrac{b}{2a}=28,5$.
    On obtient donc le tableau de variations suivant :

    La hauteur maximale est donc $9,922~5$ m. Elle ne dépasse donc pas $10$ m.
    $\quad$
  2. D’après le script $h$ s’annule pour $x\in ]62;63[$.
    La distance parcourue par le javelot est donc supérieure à $60$ m.
    L’athlète a donc amélioré sa performance par rapport à son premier lancer.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Le plan étant muni d’un repère, la droite d’équation $y = 2x-2,5$ passe par le point $A$ d’ordonnée $0$ et d’abscisse :
    A. $-2,5$
    B. $1,5$
    C. $-1,25$
    D. $\dfrac{5}{4}$
    $\quad$
    Correction Question 1

    $2x-2,5=0\ssi 2x=2,5 \ssi x=1,25\ssi x=\dfrac{5}{4}$
    Réponse D
    $\quad$

    [collapse]

    $\quad$
  2. Une diminution de $50 \%$ est compensée par une augmentation de :
    A. $50 \%$
    B. $100 \%$
    C. $150 \%$
    D. $200 \%$
    $\quad$
    Correction Question 2

    On veut résoudre l’équation :
    $\begin{align*}\left(1-\dfrac{50}{100}\right)\left(1+\dfrac{x}{100}\right)=1&\ssi 0,5\left(1+\dfrac{x}{100}\right)=1 \\
    &\ssi 1+\dfrac{x}{100}=2 \\
    &\ssi x=100\end{align*}$
    Réponse B
    $\quad$

    [collapse]

    $\quad$
  3. On considère une augmentation de $5 \%$, deux années consécutives. Le coefficient multiplicateur est :
    A. $1,055$
    B. $1,10$
    C. $1,102~5$
    D. $2,10$
    $\quad$
    Correction Question 3

    $\begin{align*}\left(1+\dfrac{5}{100}\right)^2&=1,05^2 \\
    &=1,102~5\end{align*}$
    Remarque : le carré d’un nombre se terminant par $5$ se termine par $25$.
    $\quad$

    [collapse]

    $\quad$
  4. Le prix d’un survêtement est passé de $40$ € à $30$ € entre juin 2019 et juillet 2019. Sachant que l’indice du prix de ce survêtement était $80$ en juin 2019, son indice en juillet 2019 est :
    A. $70$
    B. $75$
    C. $90$
    D. $60$
    $\quad$
    Correction Question 4

    On a le tableau de proportionnalité suivant :
    $$\begin{array}{|c|c|c|}
    \hline
    \text{Prix}&40&30\\
    \hline
    \text{indice}&80&x\\
    \hline
    \end{array}$$
    $x=\dfrac{30\times 80}{40}=60$
    Réponse D
    $\quad$

    [collapse]

    $\quad$$\quad$
  5. Selon une enquête de l’INSEE sur la production de déchets non dangereux dans le commerce en 2016, $75 \%$ des déchets non dangereux du commerce ont été triés en 2016 et $3 \%$ des déchets triés du commerce en 2016 ont été mis en décharge.
    En 2016, le pourcentage de déchets du commerce qui ont été triés et mis en décharge est :
    A. $2,25 \%$
    B. $78 \%$
    C. $39 \%$
    D. $25 \%$
    $\quad$
    Correction Question 5

    $\dfrac{3}{100}\times \dfrac{75}{100}=\dfrac{2,25}{100}=2,25\%$
    Réponse A
    $\quad$

    [collapse]

    $\quad$
  6. Lors de deux évolution $CM=(1+t)^2. Alors :
    A. $t=\sqrt{CM-1}$
    B. $t=\sqrt{CM}-1$
    C. $t=\sqrt{1-CM}$
    D. $t=1-\sqrt{CM}$
    $\quad$
    Correction Question 6

    On a donc $\sqrt{CM}=1+t$ soit $t=\sqrt{CM}-1$
    Réponse B
    $\quad$

    [collapse]

    $\quad$
  7. Pour tout réel $x$, $(1-2x)^2$ est égal à :
    A. $1-4x+2x^2$
    B. $4x^2-4x+1$
    C. $1-4x^2$
    D. $1-2x^2$
    $\quad$
    Correction Question 7

    $\begin{align*} (1-2x)^2&=1^2-2\times 1\times 2x+(2x)^2 \\
    &=1-4x+4x^2\end{align*}$
    Réponse B
    $\quad$

    [collapse]

    $\quad$
  8. L’ensemble des valeurs de $x$ pour lesquelles $-2x+6$ est négatif est :
    A. $[3;+\infty[$
    B. $]-\infty;3]$
    C. $[-3;+\infty[$
    D. $]-\infty;-3]$
    $\quad$
    Correction Question 8

    $-2x+6\pp 0 \ssi -2x\pp -6 \ssi x\pg 3$
    L’ensemble solution est donc $[3;+\infty[$.
    Réponse A
    $\quad$

    [collapse]

    $\quad$
  9. On donne la courbe $\mathscr{C}$ d’une fonction $f$ définie sur $[-3 ; 2]$ :

    L’équation $f(x) = 0$ admet :
    A. une solution négative ;
    B. deux solutions positives ;
    C. deux solutions négatives ;
    D. une solution positive et une solution négative.
    $\quad$

    Correction Question 9

    La courbe $\mathscr{C}$ coupe $2$ l’axe des abscisses : une des abscisses est positive l’autre est négative.
    Réponse D
    $\quad$

    [collapse]

    $\quad$
  10. Le diagramme en barres ci-dessous donne la production brute d’électricité, en Twh (térawatt-heure) selon son origine (source : INSEE).

    Indiquer la seule proposition vraie :
    A. La quantité d’électricité d’origine hydraulique a diminué entre 2011 et 2016.
    B. La quantité d’électricité d’origine hydraulique était de $575$ Twh en 2006.
    C. La quantité d’électricité d’origine nucléaire n’a pas cessé de diminuer entre 2001 et 2016.
    D. La quantité d’électricité d’origine thermique était d’environ $40$ Twh en 1995.
    $\quad$
    Correction Question 10

    Réponse D
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence