Bac – Spécialité mathématiques – Amérique du Nord – sujet 2 – 22 mai 2024

Amérique du Nord – 22 mai 2024

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. On veut calculer :
    $\begin{align*}P(N\cap R)&=P(N)\times P_N(R) \\
    &=0,2286\times 0,0808 \\
    &\approx 0,0185\end{align*}$
    La probabilité que le véhicule soit neuf et hybride rechargeable est environ égale à $0,0185$.
    $\quad$
  3. $\left(N,\conj{N}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*}P(R)&=P(N\cap R)+P\left(\conj{N}\cap R\right) \\
    &=P(N)\times P_N(R)+P\left(\conj{N}\right)\times P_{\conj{N}}(R)\\
    &=0,2286\times 0,0808+0,7714\times 0,0127 \\
    &\approx 0,0283\end{align*}$
    La probabilité que le véhicule soit hybride rechargeable est environ égale à $0,0283$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_R(N)&=\dfrac{P(N\cap R)}{P(R)} \\
    &\approx \dfrac{0,2286\times 0,0808}{0,0283} \\
    &\approx 0,6527\end{align*}$
    La probabilité que le véhicule soit neuf sachant qu’il est hybride rechargeable est environ égale à $0,6527$.
    $\quad$

Partie B

  1. On effectue $500$ tirages aléatoires. Le probabilité que le véhicule soit neuf est environ égale à $0,65$.
    $X$ suit donc la loi binomiale de paramètres $n=500$ et $p=0,65$.
    $\quad$
  2. On a :
    $\begin{align*} P(X=325)&=\dbinom{500}{325}0,65^{325}\times (1-0,65)^{500-325} \\
    &=\dbinom{500}{325}0,65^{325}\times 0,35^{175} \\
    &\approx 0,0374\end{align*}$
    La probabilité qu’exactement $325$ de ces véhicules soient neufs est environ égale à $0,0374$.
    $\quad$
  3. On a, d’après la calculatrice :
    $\begin{align*} P(X\pg 325)&=1-P(X\pp 324) \\
    &\approx 0,5206\end{align*}$
    La probabilité pour qu’au moins $325$ véhicules soient neuf parmi les $500$ véhicules hybrides rechargeables est environ égale à $0,5206$.
    $\quad$

Partie C

  1. On appelle $Y$ la variable aléatoire représentant le nombre de véhicules neufs parmi les $n$ véhicules choisis.
    On répète $n$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,65$.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,65$.
    Donc :
    $\begin{align*} p_n&=P(Y=0)\\
    &=(1-0,65)^n \\
    &=0,35^n\end{align*}$
    $\quad$
  2. On a :
    $\begin{align*} q_n\pg 0,9999 &\ssi P(Y\pg 1)\pg 0,9999 \\
    &\ssi 1-p_n\pg 0,9999 \\
    &\ssi p_n \pp 0,0001 \\
    &\ssi 0,35^n \pp 0,0001 \\
    &\ssi n\ln(0,35) \pp \ln(0,0001) \qquad \text{croissance de la fonction } \ln \\
    &\ssi n \pp \dfrac{\ln(0,0001)}{\ln(0,35)} \qquad \ln(0,35)<0 \end{align*}$
    Or $\dfrac{\ln(0,0001)}{\ln(0,35)}\approx 8,77$.
    La plus petite valeur de $n$ telle que $q_n\pg 0,9999$ est donc $9$.
    $\quad$

Ex 2

Exercice 2

  1. On a $F(3;0;1)$, $H(0;1;1)$ et $M(1,5;1;0)$
    $\quad$
  2. a. On a $\vect{FH}\begin{pmatrix} -3\\1\\0\end{pmatrix}$ et $\vect{FM}\begin{pmatrix}-1,5\\1\\-1\end{pmatrix}$.
    Ces deux vecteurs ne sont pas colinéaires puisqu’ils n’ont pas la même composante nulle.
    Par conséquent :
    $\vec{n}.\vect{FH}=-6+6+0=0$
    $\vec{n}.\vect{FM}=-3+6-3=0$
    $\vec{n}$ est donc orthogonal à $2$ vecteurs non colinéaires du plan $(HMF)$.
    $\vec{n}$ est ainsi un vecteur normal au plan $(HMF)$.
    $\quad$
    b. Une équation cartésienne du plan $(HMF)$ est donc de la forme $2x+6y+3z+d=0$.
    $F(3;0;1)$ appartient à ce plan.
    Donc $6+0+3+d=0 \ssi d=-9$.
    Une équation cartésienne du plan $(HMF)$ est donc $2x+6y+3z-9=0$.
    $\quad$
    c. Un vecteur normal au plan $\mathcal{P}$ est $\vec{u}\begin{pmatrix}5\\15\\-3\end{pmatrix}$
    Or $\dfrac{5}{2}\neq \dfrac{-3}{3}$.
    Les vecteurs $\vec{n}$ et $\vec{u}$ ne sont donc pas colinéaires et les plans $\mathcal{P}$ et $(HMF)$ ne sont pas parallèles.
    $\quad$
  3. On a $D(0;1;0)$ et $G(3;1;1)$ donc $\vect{DG}\begin{pmatrix}3\\0\\1\end{pmatrix}$.
    Une représentation paramétrique de la droite $(DG)$ est donc $\begin{cases} x=3t\\y=1\\z=t\end{cases} \qquad t\in \R$.
    $\quad$
  4. On recherche l’ensemble solution du système :
    $\begin{align*} \begin{cases}  x=3t\\y=1\\z=t\\2x+6y+3z-9=0\end{cases}&\ssi \begin{cases}  x=3t\\y=1\\z=t\\6t+6+3t-9=0\end{cases} \\
    &\ssi \begin{cases}  x=3t\\y=1\\z=t\\9t=3\end{cases} \\
    &\ssi \begin{cases}  x=3t\\y=1\\z=t\\t=\dfrac{1}{3}\end{cases} \\
    &\ssi \begin{cases}  x=1\\y=1\\z=\dfrac{1}{3}\\[3mm]t=\dfrac{1}{3}\end{cases}\end{align*}$
    Par conséquent $N$ a pour coordonnées $\left(1;1;\dfrac{1}{3}\right)$.
    $\quad$
  5. On a :
    $\begin{align*}2\times 3+6\times \dfrac{1}{4}+3\times \dfrac{1}{2}-9&=-3+\dfrac{3}{2}+\dfrac{3}{2} \\
    &=0
    \end{align*}$
    Le point $R$ appartient à $(HMF)$.
    $\quad$
    $\vect{GR}\begin{pmatrix}0\\-\dfrac{3}{4}\\[3mm]-\dfrac{1}{2}\end{pmatrix}$ or $\dfrac{0}{2}\neq \dfrac{-\dfrac{3}{4}}{6}$
    $\vec{n}$ et $\vect{GR}$ ne sont pas colinéaires.
    $\vect{GR}$ n’est donc pas orthogonal au plan $(HMF)$.
    $R$ n’est pas le projeté orthogonal du point $G$ sur le plan $(HMF)$.$\quad$

Ex 3

Exercice 3

  1. La fonction $g$ est dérivable sur $[0;1]$ en tant que fonction polynôme.
    Pour tout réel $x\in [0;1]$ on a $g'(x)=2-2x$.
    Or $2-2x=0\ssi x=1$ et $2-2x>0 \ssi 2>2x\ssi 1>x$.
    $g$ est strictement croissante sur $[0;1]$.
    $g(0)=0$ et $g(1)=1$.
    $\quad$
  2. On a :
    $\begin{align*} u_1&=g\left(\dfrac{1}{2}\right) \\
    &=\dfrac{3}{4}\end{align*}$
    $\begin{align*} u_2&=g\left(\dfrac{3}{4}\right) \\
    &=\dfrac{15}{16}\end{align*}$
    $\quad$
  3. Pour tout entier naturel $n$ on pose $P(n):~0<u_n<u_{n+1}<1$.
    Initialisation : $u_0=\dfrac{1}{2}$ et $u_1=\dfrac{3}{4}$.
    Or $0<\dfrac{1}{2}<\dfrac{3}{4}<1$. $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n$ un entier naturel non nul. On suppose $P(n)$ vraie.
    Ainsi $0<u_n<u_{n+1}<1$.
    La fonction $g$ est strictement croissante sur $[0;1]$ donc $g(0)<g\left(u_n\right)<g\left(u_{n+1}\right)<g(1)$.
    Ainsi $0<u_{n+1}<u_{n+2}<1$.
    $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$ on a $0<u_n<u_{n+1}<1$.
    $\quad$
  4. La suite $\left(u_n\right)$ est donc croissante et majorée par $1$. D’après le théorème de la limite monotone elle converge.
    $\quad$
  5. La fonction $g$ est continue sur $[0;1]$ et pour tout entier naturel $n$ on a $u_{n+1}=g\left(u_n\right)$.
    Par conséquent $\ell$ est solution de l’équation :
    $\begin{align*} x=g(x)&\ssi x=2x-x^2 \\
    &\ssi x-x^2=0 \\
    &\ssi x(x-1)=0\end{align*}$
    Cette équation possède exactement deux solutions $0$ et $1$.
    La suite $\left(u_n\right)$ est croissante et $u_0>0$. Par conséquent $\ell =1$.
    $\quad$
  6. Pour tout entier naturel $n$ on a :
    $\begin{align*}v_{n+1}&=\ln\left(1-u_{n+1}\right) \\
    &=\ln\left(1-2u_n+u_n^2\right) \\
    &=\ln\left(\left(1-u_n\right)^2\right) \\
    &=2\ln\left(1-u_n\right) \\
    &=2v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $2$ et de premier terme $v_0=\ln\left(\dfrac{1}{2}\right)=-\ln(2)$.
    $\quad$
  7. Ainsi, pour tout $n\in \N$ on a $v_n=-\ln(2)\times 2^n$.
    $\quad$
  8. Par conséquent, pour tout $n\in \N$ on a
    $\begin{align*} -\ln(2)\times 2^n=\ln\left(1-u_n\right) &\ssi 1-u_n=\exp\left(-\ln(2)\times 2^n\right) \\
    &\ssi u_n=1-\exp\left(-\ln(2)\times 2^n\right) \end{align*}$
    $\quad$
    $\lim\limits_{n\to +\infty} 2^n=+\infty$ car $2>1$.
    Donc $\lim\limits_{n\to +\infty}-\ln(2)\times 2^n=-\infty$.
    Or $\lim\limits_{x\to -\infty} \e^x=0$.
    Par conséquent $\lim\limits_{n\to +\infty}u_n=1$.
    $\quad$
  9. On peut écrire :

    $\quad$

Ex 4

Exercice 4

  1. On veut résoudre l’équation :
    $\begin{align*} f(x)=0&\ssi a\ln(x)=0 \\
    &\ssi \ln(x)=0 \qquad \text{car } a>0\\
    &\ssi x=1\end{align*}$
    Le point d’intersection de la courbe $\mathcal{C}$ avec l’axe des abscisses a donc pour coordonnées $(1;0)$.
    $\quad$
  2. La fonction $F$ est dérivable sur $]0;+\infty[$ en tant que produit et somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a :
    $\begin{align*} F'(x)&=a\left(\ln(x)+x\times \dfrac{1}{x}-1\right )\\
    &=a\left(\ln(x)+1-1\right) \\
    &=a\ln(x)\\
    &=f(x)\end{align*}$
    $F$ est bien une primitive de $f$ sur $]0;+\infty[$.
    $\quad$
  3. L’aire du domaine grisé est :
    $\begin{align*} \int_1^{x_0}f(x)\dx&=\Big[F(x)\Big]_a^{x_0} \\
    &=F\left(x_0\right)-F(1) \\
    &=a\left(x_0\ln\left(x_0\right)-x_0\right)-a\left(-1\right) \\
    &=a\left(x_0\ln\left(x_0\right)-x_0+1\right)\end{align*}$
    $\quad$
  4. $f$ est dérivable sur $]0;+\infty[$ en tant que produit d’une fonction dérivable sur cet intervalle par une constante.
    Pour tout réel $x>0$ on a $f'(x)=\dfrac{a}{x}$
    Une équation de $T$ est $y=f’\left(x_0\right)\left(x-x_0\right)+f\left(x_0\right)$.
    $f’\left(x_0\right)=\dfrac{a}{x_0}$.
    Une équation de $T$ est donc $y=\dfrac{a}{x_0}\left(x-x_0\right)+a\ln\left(x_0\right)$.
    Son ordonnée à l’origine est donc $\dfrac{a}{x_0}\times \left(-x_0\right)+a\ln\left(x_0\right)=-a+a\ln\left(x_0\right)$.
    Ainsi $A$ a pour coordonnées $\left(0;-a+a\ln\left(x_0\right)\right)$.
    $B$ a pour coordonnées $\left(0;f\left(x_0\right)\right)$ soit $\left(0;a\ln\left(x_0\right)\right)$.
    Par conséquent :
    $\begin{align*} AB&=a\ln\left(x_0\right)-\left(-a+a\ln\left(x_0\right)\right) \\
    &=a\end{align*}$
    $AB$ est donc constante et vaut $a$.
    $\quad$

Énoncé

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1     (5 points)

Les données publiées le 1$^\text{er}$ mars 2023 par le ministère de la transition écologique sur les immatriculations de véhicules particuliers en France en 2022 contiennent les informations suivantes :

  • $22,86 \%$ des véhicules étaient des véhicules neufs ;
  • $8,08 \%$ des véhicules neufs étaient des hybrides rechargeables ;
  • $1,27 \%$ des véhicules d’occasion (c’est-à-dire qui ne sont pas neufs) étaient des hybrides rechargeables.

Dans tout l’exercice, les probabilités seront arrondies au dix-millième.

Partie A
Dans cette partie, on considère un véhicule particulier immatriculé en France en 2022.
On note :

  • $N$ l’événement « le véhicule est neuf » ;
  • $R$ l’événement « le véhicule est hybride rechargeable » ;
  • $\conj{N}$ et $\conj{R}$ les événements contraires des événements contraires de $N$ et $R$.
  1. Représenter la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que ce véhicule soit neuf et hybride rechargeable.
    $\quad$
  3. Démontrer que la valeur arrondie au dix-millième de la probabilité que ce véhicule soit hybride rechargeable est $0,0283$.
    $\quad$
  4. Calculer la probabilité que ce véhicule soit neuf sachant qu’il est hybride rechargeable.
    $\quad$

Partie B
Dans cette partie, on choisit 500 véhicules particuliers hybrides rechargeables immatriculés en France en 2022. Dans la suite, on admettra que la probabilité qu’un tel véhicule soit neuf est égale à $0,65$.
On assimile le choix de ces $500$ véhicules à un tirage aléatoire avec remise.

On appelle $X$ la variable aléatoire représentant le nombre de véhicules neufs parmi les $500$ véhicules choisis.

  1. On admet que la variable aléatoire $X$ suit une loi binomiale. Préciser la valeur de ses paramètres.
    $\quad$
  2. Déterminer la probabilité qu’exactement $325$ de ces véhicules soient neufs.
    $\quad$
  3. Déterminer la probabilité $p(X\pg 325)$ puis interpréter le résultat dans le contexte de l’exercice.
    $\quad$

Partie C
On choisit désormais $n$ véhicules particuliers hybrides rechargeables immatriculés en France en 2022, où $n$ désigne un entier naturel strictement positif.

On rappelle que la probabilité qu’un tel véhicule soit neuf est égale à $0,65$.

On assimile le choix de ces $n$ véhicules à un tirage aléatoire avec remise.

  1. Donner l’expression en fonction de $n$ de la probabilité $p_n$ que tous ces véhicules soient d’occasion.
    $\quad$
    2. On note $q_n$ la probabilité qu’au moins un de ces véhicules soit neuf. En résolvant une inéquation, déterminer la plus petite valeur de $n$ telle que $q_n \pg 0,9999$.
    $\quad$

$\quad$

Exercice 2     (5 points)

On considère le pavé droit $ABCDEFGH$ tel que $AB = 3$ et $AD=AE=1$ représenté ci-dessous.

On considère le point $I$ du segment $[AB]$ tel que $\vect {AB}=3\vect{AI}$ et on appelle $M$ le milieu du segment $[CD]$.

On se place dans le repère orthonormé $\left(A;\vect {AI};\vect{AD};\vect{AE}\right)$.

  1. Sans justifier, donner les coordonnées des points $F$, $H$ et $M$.
    $\quad$
  2. a. Montrer que le vecteur $\vec{n}\begin{pmatrix}2\\6\\3\end{pmatrix}$ est un vecteur normal au plan $(HMF)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(HMF)$ est :
    $$2x+6y+3z-9=0$$
    $\quad$
    c. Le plan $\mathcal{P}$ dont une équation cartésienne est $5x-15y-3z+7=0$ est-il parallèle au plan $(HMF)$ ? Justifier la réponse.$\quad$
  3. Déterminer une représentation paramétrique de la droite $(DG)$.
    $\quad$
  4. On appelle $N$ le point d’intersection de la droite $(DG)$ avec le plan $(HMF)$.
    Déterminer les coordonnées du point $N$.
    $\quad$
  5. Le point $R$ de coordonnées $\left(3;\dfrac{1}{4};\dfrac{1}{2}\right)$ est-il le projeté orthogonal du point $G$ sur le plan $(HMF)$? Justifier la réponse.
    $\quad$

$\quad$

Exercice 3     (5 points)

On considère la fonction $g$ définie sur l’intervalle $[0; 1]$ par $g(x) = 2x-x^2$.

  1. Montrer que la fonction $g$ est strictement croissante sur l’intervalle $[0; 1]$ et préciser les valeurs de $g(0)$ et de $g(1)$.

On considère la suite $\left(u_n\right)$ définie par $\begin{cases} u_0=\dfrac{1}{2}\\[3mm] u_{n+1}=g\left(u_n\right)\end{cases}$ pour tout entier naturel $n$.

  1. Calculer $u_1$ et $u_2$.
    $\quad$
  2. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $0<u_n<u_{n+1}<1$.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  4. Déterminer la limite $\ell$ de la suite $\left(u_n\right)$.
    $\quad$

On considère la suite $\left(v_n\right)$ définie pour tou tentier naturel $n$ par $v_n=\ln\left(1-u_n\right)$.

  1. Démontrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $2$ et préciser son premier terme.
    $\quad$
  2. En déduire une expression de $v_n$ en fonction de $n$.
    $\quad$
  3. En déduire une expression de $u_n$ en fonction de $n$ et retrouver la limite déterminée à la question 5.
    $\quad$
  4. Recopier et compléter le script Python ci-dessous afin que celui-ci renvoie le rang $n$ à  partir duquel la suite dépasse $0,95$.

    $\quad$

$\quad$

Exercice 4     (5 points)

Soit $a$ un réel strictement positif.
On considère la fonction $f$ définie sur l’intervalle $]0 ; +\infty[$ par $f(x)=a\ln(x)$.
On note $\mathcal{C}$ sa courbe représentative dans un repère orthonormé.
Soit $x_0$ un réel strictement supérieur à $1$.

  1. Déterminer l’abscisse du point d’intersection de la courbe  $\mathcal{C}$ et de l’axe des abscisses.
    $\quad$
  2. Vérifier que la fonction $F$ définie par $F(x) = a\left(x\ln(x)-x\right)$ est une primitive de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  3. En déduire l’aire du domaine grisé en fonction de $a$ et de $x_0$.
    $\quad$

On note $T$ la tangente à la courbe $\mathcal{C}$ au point $M$ d’abscisse $x_0$.
On appelle $A$ le point d’intersection de la tangente $T$ avec l’axe des ordonnées et $B$ le projeté orthogonal de $M$ sur l’axe des ordonnées.

  1. Démontrer que la longueur $AB$ est égale à une constante (c’est-à-dire à un nombre qui ne dépend pas de $x_0$) que l’on déterminera. Le candidat prendra soin d’expliciter sa démarche.
    $\quad$