Bac – Spécialité mathématiques – Amérique du Sud – sujet 1 – 26 septembre 2022

Amérique du Sud – 26 septembre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. a. On veut calculer :
    $\begin{align*} P(D\cap A)&=P(D)\times P_D(A) \\
    &=0,01\times 0,97 \\
    &=0,009~7\end{align*}$
    La probabilité qu’un danger se présente et que l’alarme s’active est égale à $0,009~7$.
    $\quad$
    b. La probabilité qu’un danger se présente sachant que l’alarme d’active est :
    $\begin{align*} P_A(D)&=\dfrac{P(A\cap D)}{P(A)} \\
    &=\dfrac{0,009~7}{0,014~65} \\
    &\approx 0,662\end{align*}$
    $\quad$
  3. $\left(D,\conj{D}\right)$ est un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} P(A)=P(A\cap D)+P\left(A\cap \conj{D}\right) &\ssi 0,014~65=0,009~7+P\left(\conj{D}\right)\times P_{\conj{D}}(A) \\
    &\ssi 0,99\times P_{\conj{D}}(A)=0,004~95 \\
    &\ssi P_{\conj{D}}(A)=\dfrac{0,004~95}{0,99} \\
    &\ssi P_{\conj{D}}(A)=0,005\end{align*}$
    $\quad$
  4. La probabilité que l’alarme ne fonctionne pas normalement est :
    $\begin{align*} p&=P\left(\left(\conj{A}\cap D\right)\cup\left(A\cap \conj{D}\right)\right) \\
    &=P(\left(\conj{A}\cap D\right)+P\left(A\cap \conj{D}\right) \qquad \text{(incompatibilité)} \\
    &=P(D)\times P_D\left(\conj{A}\right)+P\left(\conj{D}\right))\times P_{\conj{D}}(A) \\
    &=0,01\times 0,03+0,99\times 0,005 \\
    &=0,005~25 \\
    &<0,01\end{align*}$

Partie B

  1. On répète $5$ fois la même expérience de Bernoulli de paramètre $0,005~25$.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,005~25$.
    $\quad$
  2. La probabilité qu’un seul système d’alarme ne fonctionne pas normalement est :
    $\begin{align*} P(X=1)&=\dbinom{5}{1}\times 0,005~25\times (1-0,005~25)^4 \\
    &\approx 0,025~7\end{align*}$
    $\quad$
  3. La probabilité que, dans le lot prélevé, au moins un système d’alarme ne fonctionne pas normalement est :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,005~2)^5 \\
    &\approx 0,026~0\end{align*}$
    $\quad$

Partie C

On répète $n$ fois la même expérience de Bernoulli de paramètre $0,005~25$. On appelle $Y$ la variable aléatoire qui donne le nombre de systèmes d’alarme ne fonctionnant pas normalement parmi les $n$ systèmes d’alarme prélevés.
$Y$ suit donc la loi binomiale de paramètre $n$ et $p=0,005~25$.

$\begin{align*} P(Y\pg 1)\pg 0,07&\ssi 1-P(Y=0)\pg 0,07 \\
&\ssi P(Y=0)\pp 0,93 \\
&\ssi (1-0,005~25)^n \pp 0,93 \\
&\ssi n\ln(0,994~75) \pp \ln(0,93) \\
&\ssi n\pg \dfrac{\ln(0,93)}{\ln(0,994~75)} \end{align*}$
Or $\dfrac{\ln(0,93)}{\ln(0,994~75)}\approx 13,79$

Il faut donc prélever au moins $14$ systèmes d’alarme pour que la probabilité d’avoir au moins un système d’alarme qui ne fonctionne pas normalement soit supérieur à $0,07$.

$\quad$

 

Ex 2

Exercice 2

  1. a. 
    $\begin{align*} u_1&=\dfrac{1}{5}\times 4^2 \\
    &=\dfrac{16}{5} \end{align*}$
    $\quad$
    $\begin{align*} u_2&=\dfrac{1}{5}\times \left(\dfrac{16}{5}\right)^2 \\
    &=\dfrac{256}{125} \end{align*}$
    $\quad$
    b. On peut écrire :
    $\begin{array}{l}
    \text{def suite_u(p) :}\\
    \quad \text{u = 4} \\
    \quad \text{for i in range(1,p+1) :} \\
    \qquad \text{u = u**2 / 5} \\
    \quad \text{return u}\end{array}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $P(n):~~ 0<u_n\pp 4$.
    Initialisation : $u_0=4$ donc $P(0)$ est vraie
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $\begin{align*} 0<u_n\pp 4 &\Rightarrow 0<u_n^2\pp 16 \\
    &\Rightarrow 0<\dfrac{1}{5} u_n^2 \pp \dfrac{16}{5} \\
    &\Rightarrow0<u_{n+1}\pp 4\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$, on a $0<u_n\pp 4$.
    $\quad$
    b. Soit $n \in \N$
    $\begin{align*} u_{n+1}-u_n&=\dfrac{1}{5}u_n^2-u_n \\
    &=\dfrac{u_n}{5}\left(u_n-5\right)\end{align*}$
    Or $u_n>0$ et $u_n-5<0$ car $u_n\pp 4$
    Par conséquent $u_{n+1}-u_n <0$.
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
    c. La suite $\left(u_n\right)$ est décroissante et minorée par $0$.
    Par conséquent la suite $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  3. a. On appelle $f$ la fonction définie sur $\R$ par $f(x)=\dfrac{1}{5}x^2$. Elle est continue sur $\R$ en tant que fonction polynôme.
    La suite $\left(u_n\right)$ est convergente et, pour tout entier naturel $n$, on a $u_{n+1}=f\left(u_n\right)$.
    Par conséquent $\ell$ est solution de l’équation $f(x)=x$.
    Ainsi $\ell =\dfrac{1}{5}\ell^2$.
    $\quad$
    b.
    $\begin{align*} \ell =\dfrac{1}{5}\ell^2 &\ssi 5\ell-\ell^2=0 \\
    &\ssi \ell(5-\ell)=0 \\
    &\ssi \ell=0 \text{ ou } \ell =5 \end{align*}$
    Pour tout $n\in \N$ on a $0<u_n\pp 4$.
    Par conséquent $\ell$ ne peut pas être égale à $5$.
    Ainsi $\ell=0$.
    $\quad$
  4. a. Soit $n\in \N$
    $\begin{align*} v_{n+1}&=\ln\left(u_{n+1}\right) \\
    &=\ln\left(\dfrac{1}{5}u_n^2\right) \\
    &=\ln\left(u_n^2\right)-\ln(5) \\
    &=2\ln\left(u_n\right)-\ln(5) \\
    &=2v_n-\ln(5)\end{align*}$
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} w_{n+1}&=v_{n+1}-\ln(5) \\
    &=2v_n-\ln(5)-\ln(5) \\
    &=2\left(v_n-\ln(5)\right) \\
    &=2w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $2$ et de premier terme
    $\begin{align*} w_0&=v_0-\ln(5)\\
    &=ln(4)-\ln(5) \\
    &=\ln\left(\dfrac{4}{5}\right)\end{align*}$
    $\quad$
    c. Ainsi, pour tout $n\in \N$, $w_n= \ln\left(\dfrac{4}{5}\right)\times 2^n$.
    Donc
    $\begin{align*} v_n&=w_n+\ln(5) \\
    &=\ln(5)+\ln\left(\dfrac{4}{5}\right)\times 2^n \end{align*}$
    $\quad$
  5. $\ln\left(\dfrac{4}{5}\right)<0$ et $1<2$ donc $\lim\limits_{n\to +\infty} \ln\left(\dfrac{4}{5}\right)\times 2^n=-\infty$.
    Par conséquent $\lim\limits_{n\to +\infty} v_n=-\infty$
    Or $v_n=\ln\left(u_n\right)$.
    Donc $\lim\limits_{n\to +\infty} u_n=0^+$
    $\quad$

Ex 3

Exercice 3

Partie A

  1. On a
    $\begin{align*} g(\e)&=1+\e^2\left(1-2\ln(\e)\right) \\
    &=1+\e^2(1-2) \\
    &=1-\e^2 \\
    &\approx -6,39\end{align*}$
    Donc $g(\e)<0$.
    $\quad$
  2. $\lim\limits_{x\to +\infty} 1-2\ln(x)=-\infty$ et $\lim\limits_{x\to +\infty} x^2=+\infty$
    Donc $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
  3. a. Par hypothèse la fonction $g$ est dérivable sur $]0;+\infty[$.
    Ainsi, pour tout $x>0$
    $\begin{align*} g'(x)&=2x\left(1-2\ln(x)\right)+x^2\times \dfrac{-2}{x} \\
    &=2x-4x\ln(x)-2x \\
    &=-4x\ln(x)\end{align*}$
    $\quad$
    b. Pour tout $x>0$ on a $-4x<0$.
    $\ln(x)=0 \ssi x=1$ et $\ln(x)>0 \ssi x>1$.
    Ainsi $g'(x)=0 \ssi x=1$ et $g'(x)<0 \ssi 0<x<1$
    La fonction $g$ est strictement croissante sur $]0;1]$ et strictement décroissante sur $[1;+\infty[$.
    $\quad$
    c. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $[1;+\infty[$.
    $g(1)=2>0$ et $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution $\alpha$ sur l’intervalle $[1;+\infty[$.
    $\quad$
    d. D’après la calculatrice $g(1,89) \approx 0,02>0$ et $g(1,90) \approx -0,02<0$.
    Donc $1,89 <\alpha<1,90$.
    $\quad$
  4. La fonction $g$ est strictement décroissante sur $[1;+\infty[$ et $g(\alpha)=0$.
    Ainsi:
    – pour tout $x\in [1;\alpha[$ on a $g(x)>0$;
    – $g(\alpha)=0$;
    – pour tout $x\in ]\alpha;+\infty[$ on a $g(x)<0$.
    $\quad$

Partie B

  1. Pour tout $x\in [1;\alpha]$ on a $\ln(x)\pg 0$ donc $g\dsec(x)\pp 0$.
    La fonction $g$ est concave sur l’intervalle $[1;\alpha]$.
    $\quad$
  2. a. $g(1)=2$ et $g(\alpha)=0$.
    L’équation réduite de la droite $(AB)$ est donc de la forme $y=ax+b$.
    Or le coefficient directeur de cette droite est
    $\begin{align*} a&=\dfrac{0-2}{\alpha-1} \\
    &=\dfrac{-2}{\alpha-1}\end{align*}$
    $\begin{align*} g(\alpha)=0&\ssi 0=\dfrac{-2}{\alpha-1}\times \alpha+b \\
    &\ssi b=\dfrac{2\alpha}{\alpha-1}\end{align*}$
    Ainsi l’équation réduite de la droite $(AB)$ est $y=\dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$
    b. La fonction $g$ est concave sur $[1;\alpha]$. Ainsi la courbe $\mathscr{C}$ est au-dessus de toutes ses cordes sur cet intervalle, en particulier de la droite $(AB)$.
    Ainsi, pour tout $x\in [1;\alpha]$ on a $g(x)\pg \dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a donc $H(0;3;2)$ et $G(5;3;2)$.
    $\quad$
    b. Ainsi $\vect{HG}\begin{pmatrix}5\\0\\0\end{pmatrix}$
    Par conséquent, une représentation paramétrique de la droite $(GH)$ est $\begin{cases} x=5t\\y=3\\z=2\end{cases}$.
    $\quad$
  2. a. $M$ a donc pour coordonnées $(x;3;2)$ avec $x\in [0;5]$.
    Par conséquent $\vect{HM}\begin{pmatrix}x\\0\\0\end{pmatrix}$
    $\vect{HM}=k\vect{HG}\ssi  x=5k$.
    Donc $M$ a pour coordonnées $(5k;3;2)$.
    $\quad$
    b. $\vect{AM}\begin{pmatrix} 5k\\3\\2\end{pmatrix}$ et $\vect{CM}\begin{pmatrix} 5k-5\\0\\2\end{pmatrix}$
    Donc
    $\begin{align*} \vect{AM}.\vect{CM}&=5k(5k-5)+0+4\\
    &=25k^2-25k+4\end{align*}$
    $\quad$
    c. Le triangle $AMC$ est rectangle en $M$
    si, et seulement si, $\vect{AM}.\vect{CM}=0$
    si, et seulement si, $25k^2-25k+4=0$
    Le discriminant de cette équation du second degré est $\delta=(-25)^2-4\times 4\times 25=225>0$
    Les solutions de cette équation sont donc $k_1=\dfrac{25-\sqrt{225}}{50}=\dfrac{1}{5}$ et $k_2=\dfrac{25+\sqrt{225}}{50}=\dfrac{4}{5}$
    Ainsi, le triangle $AMC$ est rectangle en $M$ est rectangle si, et seulement si, $k=\dfrac{1}{5}$ ou $k=\dfrac{4}{5}$.
    $\quad$
  3. a. On a $A(0;0;0)$, $C(5;3;0)$ et $D(0;3;0)$
    Une équation cartésienne du plan $(ACD)$ est donc $z=0$.
    $\quad$
    b. D’après la question précédente, un vecteur normal au plan $(ACD)$ est $\vec{n}\begin{pmatrix}0\\0\\1\end{pmatrix}$.
    On a $\vect{MK}\begin{pmatrix} 0\\0\\-2\end{pmatrix}$
    Ainsi $\vec{n}$ et $\vect{MK}$ sont colinéaires et $\vect{MK}$ un vecteur normal au plan $(ACD)$.
    De plus, la côte du point $K$ est $0$ donc $K$ appartient au plan $(ACD)$.
    Par conséquent, $K$ est le projeté orthogonal du point $M$ sur le plan $(ACD)$.
    $\quad$
    c. $AD=3$, $DC=5$. Donc l’aire du triangle $ACD$ est $\mathscr{A}=\dfrac{15}{2}$.
    De plus $MK=2$.
    Le volume, en unités de volume, du tétraèdre $MACD$ est donc :
    $\begin{align*} V&=\dfrac{1}{3}\times MK\times \mathscr{A} \\
    &=\dfrac{1}{3}\times 2\times \dfrac{15}{2} \\
    &=5\end{align*}$
    $\quad$
  4. Le point $M$ de coordonnées $(1;3;2)$ correspond au point obtenu à l’aide $k=\dfrac{1}{5}$ à la question 2.a.
    Par conséquent, le triangle $AMC$ est rectangle en $M$.
    $\begin{align*} AM^2&=1+9+4 \\
    &=14\end{align*}$
    Donc $AM=\sqrt{14}$
    $\begin{align*} MC^2&=(-4)^2+0+2 \\
    &=20\end{align*}$
    Donc $MC=\sqrt{20}$
    L’aire du triangle $AMC$ rectangle en $M$ est donc
    $\begin{align*} \mathscr{A}’&=\dfrac{AM\times MC}{2} \\
    &=\dfrac{\sqrt{14\times 20}}{2} \\
    &=\sqrt{70}\end{align*}$
    Le volume du tétraèdre $AMCD$ est
    $\begin{align*} V=5&\ssi \dfrac{1}{3}\times \mathscr{A}’\times DP =5\\
    &\ssi \dfrac{1}{3}\times \sqrt{70}\times DP=5 \\
    &\ssi DP=\dfrac{15}{\sqrt{70}} \end{align*}$
    Par conséquent $DP\approx 1,8$.
    $\quad$

 

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : Probabilités

PARTIE A

Le système d’alarme d’une entreprise fonctionne de telle sorte que, si un danger se présente, l’alarme s’active avec une probabilité de $0,97$.
La probabilité qu’un danger se présente est de $0,01$ et la probabilité que l’alarme s’active est de $0,014~65$.
On note $A$ l’évènement « l’alarme s’active » et $D$ l’événement « un danger se présente ».
On note $\conj{M}$ l’évènement contraire d’un évènement $M$ et $P(M)$ la probabilité de l’évènement $M$.

  1. Représenter la situation par un arbre pondéré qui sera complété au fur et à mesure de l’exercice.
    $\quad$
  2. a. Calculer la probabilité qu’un danger se présente et que l’alarme s’active.
    $\quad$
    b. En déduire la probabilité qu’un danger se présente sachant que l’alarme s’active.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  3. Montrer que la probabilité que l’alarme s’active sachant qu’aucun danger ne s’est présenté est $0,005$.
    $\quad$
  4. On considère qu’une alarme ne fonctionne pas normalement lorsqu’un danger se présente et qu’elle ne s’active pas ou bien lorsqu’aucun danger ne se présente et qu’elle s’active.
    Montrer que la probabilité que l’alarme ne fonctionne pas normalement est inférieure à $0,01$.
    $\quad$

PARTIE B

Une usine fabrique en grande quantité des systèmes d’alarme. On prélève successivement et au hasard $5$ systèmes d’alarme dans la production de l’usine. Ce prélèvement est assimilé à un tirage avec remise.
On note $S$ l’évènement « l’alarme ne fonctionne pas normalement » et on admet que $P(S) = 0,005~25$.
On considère $X$ la variable aléatoire qui donne le nombre de systèmes d’alarme ne fonctionnant pas normalement parmi les $5$ systèmes d’alarme prélevés.
Les résultats seront arrondis à $10^{-4}$.

  1. Donner la loi de probabilité suivie par la variable aléatoire $X$ et préciser ses paramètres.
    $\quad$
  2. Calculer la probabilité que, dans le lot prélevé, un seul système d’alarme ne fonctionne pas normalement.
    $\quad$
  3. Calculer la probabilité que, dans le lot prélevé, au moins un système d’alarme ne fonctionne pas normalement.
    $\quad$

PARTIE C

Soit $n$ un entier naturel non nul. On prélève successivement et au hasard $n$ systèmes d’alarme.
Ce prélèvement est assimilé à un tirage avec remise.
Déterminer le plus petit entier $n$ tel que la probabilité d’avoir, dans le lot prélevé, au moins un système d’alarme qui ne fonctionne pas normalement soit supérieure à $0,07$.
$\quad$

$\quad$

Exercice 2     7 points
Thème : Suites

Soit $\left(u_n\right)$ la suite définie par $u_0 = 4$ et, pour tout entier naturel $n$, $u_{n+1} =\dfrac{1}{5}u_n^2$.

  1. a. Calculer $u_1$ et $u_2$.
    $\quad$
    b. Recopier et compléter la fonction ci-dessous écrite en langage Python. Cette fonction est nommée suite_u et prend pour paramètre l’entier naturel $p$.
    Elle renvoie la valeur du terme de rang $p$ de la suite $\left(u_n\right)$.
    $$\begin{array}{l}
    \text{def suite_u(p) :}\\
    \quad \text{u= …}\\
    \quad \text{for i in range(1,…) :}\\
    \qquad \text{u =…}\\
    \quad \text{return u}\end{array}$$
    $\quad$
  2. a. Démontrer par récurrence que pour tout entier naturel $n$, $0 < u_n \pp 4$.
    $\quad$
    b. Démontrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  3. a. Justifier que la limite $\ell$ de la suite $\left(u_n\right)$ vérifie l’égalité $\ell=\dfrac{1}{5}\ell^2$.
    $\quad$
    b. En déduire la valeur de $\ell$.
    $\quad$
  4. Pour tout entier naturel $n$, on pose $v_n = \ln\left(u_n\right)$ et $w_n = v_n-\ln(5)$.
    a. Montrer que, pour tout entier naturel $n$, $v_{n+1} = 2v_n-\ln(5)$.
    $\quad$
    b. Montrer que la suite $\left(w_n\right)$ est géométrique de raison $2$.
    $\quad$
    c. Pour tout entier naturel $n$, donner l’expression de $w_n$ en fonction de $n$ et montrer que $v_n = \ln\left(\dfrac{4}{5}\right)\times 2^n+\ln(5)$
    $\quad$
  5. Calculer $\lim\limits_{n\to +\infty} v_n$ et retrouver $\lim\limits_{n\to +\infty} u_n$.
    $\quad$

$\quad$

 

 

Exercice 3     7 points
Thème : Fonctions, fonction logarithme

Soit $g$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par $$g(x)=1+x^2\left[1-2\ln(x)\right]$$

La fonction $g$ est dérivable sur l’intervalle $]0 ; +\infty[$ et on note $g’$ sa fonction dérivée.
On appelle $\mathscr{C}$ la courbe représentative de la fonction $g$ dans un repère orthonormé du plan.

PARTIE A

  1. Justifier que $g(\e)$ est strictement négatif.
    $\quad$
  2. Justifier que $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
  3. a. Montrer que, pour tout $x$ appartenant à l’intervalle $]0 ; +\infty[$, $g'(x)=-4x\ln(x)$.
    $\quad$
    b. Étudier le sens de variation de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
    c. Montrer que l’équation $g(x) = 0$ admet une unique solution, notée $\alpha$, sur l’intervalle $[1 ; +\infty[$.
    $\quad$
    d. Donner un encadrement de $\alpha$ d’amplitude $10^{-2}$.
    $\quad$
  4. Déduire de ce qui précède le signe de la fonction $g$ sur l’intervalle $[1 ; +\infty[$.
    $\quad$

PARTIE B

  1. On admet que, pour tout $x$ appartenant à l’intervalle $[1 ; \alpha]$, $g\dsec(x)= -4\left[\ln(x)+1\right]$.
    Justifier que la fonction $g$ est concave sur l’intervalle $[1 ; \alpha]$.
    $\quad$
  2. Sur la figure ci-dessous, $A$ et $B$ sont les points de la courbe $\mathscr{C}$ d’abscisses respectives $1$ et $\alpha$.
    $\quad$

    $\quad$
    a. Déterminer l’équation réduite de la droite $(AB)$.
    $\quad$
    b. En déduire que pour tout réel $x$ appartenant à l’intervalle $[1 ; \alpha]$, $g(x)\pg \dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : Géométrie dans l’espace

Dans la figure ci-dessous, $ABCDEFGH$ est un parallélépipède rectangle tel que
$AB = 5$, $AD = 3$ et $AE = 2$.
L’espace est muni d’un repère orthonormé d’origine $A$ dans lequel les points $B$, $D$ et $E$ ont respectivement pour coordonnées $(5; 0; 0)$, $(0; 3; 0)$ et $(0; 0; 2)$.

  1. a. Donner, dans le repère considéré, les coordonnées des points $H$ et $G$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(GH)$.
    $\quad$
  2. Soit $M$ un point du segment $[GH]$ tel que $\vect{HM}=k\vect{HG}$ avec $k$ un nombre réel de l’intervalle $[0; 1]$.
    a. Justifier que les coordonnées de $M$ sont $(5k ; 3 ; 2)$.
    $\quad$
    b. En déduire que $\vect{AM}.\vect{CM}=25k^2-25k+4$
    $\quad$
    c. Déterminer les valeurs de $k$ pour lesquelles $AMC$ est un triangle rectangle en $M$.
    $\quad$

Dans toute la suite de l’exercice, on considère que le point $M$ a pour coordonnées $(1; 3; 2)$.
On admet que le triangle $AMC$ est rectangle en $M$ .
On rappelle que le volume d’un tétraèdre est donné par la formule  $\dfrac{1}{3}\times$ Aire de la base $\times h$ où $h$ est la hauteur relative à la base.

  1. On considère le point $K$ de coordonnées $(1; 3; 0)$.
    a. Déterminer une équation cartésienne du plan $(ACD)$.
    $\quad$
    b. Justifier que le point $K$ est le projeté orthogonal du point $M$ sur le plan $(ACD)$.
    $\quad$
    c. En déduire le volume du tétraèdre $MACD$.
    $\quad$
  2. On note $P$ le projeté orthogonal du point $D$ sur le plan $(AMC)$.
    Calculer la distance $DP$ en donner une valeur arrondie à $10^{-1}$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Asie – sujet 2 – 18 mai 2022

Centres étrangers – Asie – 18 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. $\vect{AB}\begin{pmatrix} 5\\1\\0\end{pmatrix}$, $\vect{DC}\begin{pmatrix} 5\\1\\0\end{pmatrix}$ et $\vect{AD}\begin{pmatrix} -1\\5\\-4\end{pmatrix}$.
    $\quad$
    b. $\vect{AB}=\vect{DC}$ donc $ABCD$ est un parallélogramme.
    De plus
    $\begin{align*} \vect{AB}.\vect{AD}&=5\times (-1)+1\times 5+0\times (-4) \\
    &=-5+5+0\\
    &=0\end{align*}$
    $ABCD$ est donc un parallélogramme dont deux côtés consécutifs sont perpendiculaires.
    Par conséquent $ABCD$ est un rectangle.
    $\quad$
    c. On a
    $\begin{align*} AB&=\sqrt{5^2+1^2+0^2} \\
    &=\sqrt{26}\end{align*}$
    et
    $\begin{align*} AD&=\sqrt{(-1)^2+5^2+(-4)^2} \\
    &=\sqrt{42}\end{align*}$
    L’aire du rectangle $ABCD$ est donc
    $\begin{align*} \mathscr{A}&=AB\times AD \\
    &=\sqrt{26}\times \sqrt{42}\\
    &=2\sqrt{273}\end{align*}$
    $\quad$
  2. a. Les vecteurs $\vect{AB}$ et $\vect{AD}$ ne sont pas colinéaires (une des coordonnées de $\vect{AB}$ est nulle tandis que la même coordonnée de $\vect{AD}$ ne l’est pas).
    Ainsi $A$, $B$ et $D$ définissent bien un plan.
    $\quad$
    b. D’une part
    $\begin{align*} \vec{n}.\vect{AB}&=-2\times 5+10\times 1+13\times 0\\
    &=-10+10+0\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{n}.\vect{AD}&=-2\times (-1)+10\times 5+13\times (-4)\\
    &=2+50-52\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABD)$.
    $\vec{n}$ est donc normal au plan $(ABD)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABD)$ est donc de la forme $-2x+10y+13z+d=0$.
    Le point $A(-3;1;3)$ appartient à ce plan.
    Par conséquent $6+10+39+d=0\ssi d=-55$
    Une équation cartésienne du plan $(ABD)$ est donc $-2x+10y+13z-55=0$.
    $\quad$
  3. a. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Une représentation paramétrique de la droite $\Delta$ est donc $$\begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\end{cases} \quad t\in \R$$
    $\quad$
    b. Les coordonnées du point $I$ sont solution du système:
    $\begin{align*} \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\-2x+10y+13z-55=0\end{cases}&\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\-2(-3-2t)+10(14+10t)+13(14+13t)-55=0\end{cases} \\
    &\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\6+4t+140+100t+182+169t-55=0\end{cases}\\
    &\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\273t+273=0\end{cases}\\
    &\ssi \begin{cases} t=-1\\x=-1\\y=4\\z=1\end{cases}\end{align*}$
    Le point $I$ a donc pour coordonnées $(-1;4;1)$.
    $\quad$
    c. $\vect{IK}\begin{pmatrix} -2\\10\\13\end{pmatrix}$
    Donc
    $\begin{align*} IK&=\sqrt{(-2)^2+10^2+13^2} \\
    &=\sqrt{273}\end{align*}$
    Ainsi la hauteur de la pyramide $KABCD$ de base $ABCD$ et de sommet $K$ vaut bien $\sqrt{273}$.
    $\quad$
  4. Le volume de la pyramide $KABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times IK \\
    &=\dfrac{1}{3}\times 2\sqrt{273}\times \sqrt{273} \\
    &=182\end{align*}$
    $\quad$

 

 

Ex 2

Exercice 2

Partie A

  1. La courbe $\mathscr{C}_2$ représente une fonction qui semble être strictement positive et strictement décroissante sur $]3;+\infty[$. La courbe de sa fonction dérivée est  strictement située en dessous de l’axe des abscisses ce qui n’est pas le cas de la courbe $\mathscr{C}_1$.
    En revanche la courbe $\mathscr{C}_1$ semble représenter une fonction strictement croissante. La courbe de sa fonction dérivée est donc située strictement au-dessus de l’axe des abscisses.
    Ainsi $f$ est représentée par $\mathscr{C}_1$ et $f’$ par $\mathscr{C}_2$.
    $\quad$
  2. Graphiquement l’équation $f(x)=3$ admet une unique solution qui vaut environ $5,6$.
    $\quad$
  3. Graphiquement la fonction $f$ semble être concave sur $\R$.
    $\quad$

Partie B

  1. On étudie le signe de la fonction $g$ définie sur $]3;+\infty[$ par $g(x)=x^2-x-6$.
    Le discriminant est $\Delta =25>0$.
    Les racines de $x^2-x-6$ sont donc $x_1=\dfrac{1-\sqrt{25}}{2}=-2$ et $x_2=\dfrac{1+\sqrt{25}}{2}=3$.
    Le coefficient principale de $x^2-x-6$ est $a=1>0$.
    Ainsi $g(x)>0$ sur $]3;+\infty[$.
    Par conséquent $\ln\left(x^2-x-6\right)$ est bien définie sur $]3;+\infty[$.
    $\quad$
  2. $\lim\limits_{x\to 3^+} x^2-x-6=0$ et $\lim\limits_{X\to 0^+} \ln(X)=-\infty$ donc $\lim\limits_{x\to 3^+} f(x)=-\infty$.
    $\lim\limits_{x\to +\infty} x^2-x-6=+\infty$ (fonction du second degré dont le coefficient principal est positif) et $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
    La droite d’équation $x=3$ est donc asymptote à la courbe représentative de la fonction $f$.
    $\quad$
  3. a. La fonction $f$ est dérivable sur $I$ en tant que composée de fonctions dérivables.
    Pour tout réel $x\in I$ on a $f'(x)=\dfrac{2x-1}{x^2-x-6}$.
    $\quad$
    b. Pour tout réel $x\in I$ on a $x^2-x-6>0$. Ainsi, $f'(x)$ est du signe de $2x-1$.
    $2x-1=0\ssi 2x=1\ssi x=\dfrac{1}{2}$
    $2x-1>0 \ssi 2x>1\ssi x>\dfrac{1}{2}$
    Or $\dfrac{1}{2}<3$. Ainsi, pour tout réel $x\in I$, $f'(x)>0$.
    On obtient donc le tableau de variations suivant :$\quad$
  4. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]3;+\infty[$ et donc sur $]5;6[$.
    De plus $f(5)\approx 2,64<3$ et $f(6)\approx 3,18>3$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=3$ admet une unique solution sur l’intervalle $]5;6[$.
    $\quad$
    b. D’après la calculatrice $5,63<\alpha<5,64$.
    $\quad$
  5. a. La fonction $f’$ est dérivable sur $]3;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Ainsi, pour tout réel $x\in I$
    $\begin{align*} f\dsec(x)&=\dfrac{2\left(x^2-x-6\right)-(2x-1)^2}{\left(x^2-x-6\right)^2} \\
    &=\dfrac{2x^2-2x-12-\left(4x^2-4x+1\right)}{\left(x^2-x-6\right)^2} \\
    &=\dfrac{-2x^2+2x-13}{\left(x^2-x-6\right)^2} \end{align*}$
    $\quad$
    b. Un carré étant toujours positif, le signe de $f\dsec(x)$ ne dépend que de celui de $-2x^2+2x-13$.
    Son discriminant est $\Delta=-100<0$
    Le coefficient principal du polynôme du second degré est $a=-2<0$.
    Ainsi, pour tout réel $x\in I$, $-2x^2+2x-13<0$.
    Par conséquent, pour tout réel $x\in I$, $f\dsec(x)<0$ et la fonction $f$ est concave sur $I$.
    $\quad$

Ex 3

Exercice 3

Partie 1

  1. S’il prend le bus de 8 h, il est sûr d’être à l’heure à l’aéroport à temps pour son vol. Donc $P_B(V)=1$.
    $\quad$
  2. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  3. $\left(B,\conj{B}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(V)&=P(B\cap V)+P\left(\conj{B}\cap V\right) \\
    &=P(B)\times P_B(V)+P\left(\conj{B}\right)\times P_{\conj{B}}(V) \\
    &=0,2\times 1+0,8\times 0,5 \\
    &=0,6\end{align*}$
    $\quad$
  4. On veut calculer
    $\begin{align*} P_V(B)&=\dfrac{P(V\cap B)}{P(V)} \\
    &=\dfrac{0,2\times 1}{0,6}\\
    &=\dfrac{1}{3}\end{align*}$
    La probabilité que Julien soit arrivé à l’aéroport en bus sachant qu’il est à l’heure à l’aéroport pour son vol est égale à $\dfrac{1}{3}$.
    $\quad$

Partie 2

  1. On répète, de façon indépendante, $206$ fois la même expérience de Bernoulli. $X$ compte le nombre de passagers se présentant à l’embarquement.
    Donc $X$ suit la loi binomiale de paramètres $n=206$ et $p=0,95$.
    $\quad$
  2. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=206\times 0,95 \\
    &=195,7\end{align*}$
    En moyenne, $195,7$ (soit environ $196$) passagers vont se présenter à l’embarquement.
    $\quad$
  3. On a
    $\begin{align*} P(X=201)&=\dbinom{206}{201} \times 0,95^{201}\times 0,05^5 \\
    &\approx 0,031\end{align*}$
    La probabilité que $201$ passagers se présentent à l’embarquement est environ égale à $0,031$.
    $\quad$
  4. D’après la calculatrice, $P(X\pp 200)\approx 0,948$.
    La probabilité que le nombre de passagers se présentant à l’embarquement soit inférieur à la capacité de l’avion est environ égale à $0,948$.
    $\quad$
  5. a. On a :
    $\begin{align*} P(Y=6)&=1-\left(P(Y=0)+P(Y=1)+\ldots+P(Y=5)\right) \\
    &=0,000~03\end{align*}$
    $\quad$
    b. $206$ billets ont été vendus. La compagnie a donc encaissé $206\times 250=51~500$ euros.
    Pour chaque passager lésé la compagnie doit payer $250+600=850$ euros.
    Il y a $Y$ passagers lésés.
    Ainsi $C=51~500-850Y$.
    $\quad$
    c. La loi de probabilité de $C$ est donc donnée par le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|}
    \hline
    c_i&51~500&50~650&49~800&48~950&48100&47~250&46~400 \\
    \hline
    P\left(C=c_i\right)&0,947~75&0,030~63&0,014~41&0,005~39&0,001~51&0,000~28&0,000~03\\
    \hline
    \end{array}$$
    L’espérance mathématique de $C$ est
    $\begin{align*} E(C)&=51~500\times P(C=51~500)+49~800\times P(C=50~650)+\ldots+46~400\times P(C=46~400) \\
    &=51~429,25\end{align*}$
    $\quad$
    Remarque : On pouvait également procéder autrement :
    Par linéarité de l’espérance on a :
    $\begin{align*} E(C)&=E(51~500-850Y)\\
    &=51~ 500-850E(Y)\end{align*}$
    On calcule maintenant l’espérance de $Y$.
    $\begin{align*} E(Y)&=1\times P(Y=1)+2\times P(Y=2)+\ldots+6\times P(Y=6) \\
    &= 0,083~24\end{align*}$
    Donc
    $\begin{align*} E(C)&=51~500-850\times 0,083~24 \\
    &=51~429,25\end{align*}$
    $\quad$
    d. En vendant $200$ billets le chiffre d’affaires est $200\times 250=50~000$ euros.
    Ainsi le chiffre d’affaires moyen en pratiquant le surbooking est supérieur à celui obtenu en vendant exactement $200$ billets.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a
    $\begin{align*} p_1&=0,3+0,7p_0^2 \\
    &=0,3+0,7\times 0,3^2 \\
    &=0,363\end{align*}$
    et
    $\begin{align*} p_2&=0,3+0,7p_1^2 \\
    &=0,3+0,7\times 0,363^2 \\
    &=0,392~238~3\end{align*}$
    La probabilité que la bactérie ait au plus une seule descendance est égale à $0,363$ et la probabilité qu’elle ait au plus deux descendance est égale à $0,392~238~3$.
    $\quad$
    b. La probabilité d’obtenir au moins $11$ générations de bactérie est $1-p_{10}\approx 0,572$.
    $\quad$
    c. La suite $\left(p_n\right)$ semble être croissante et converger vers un réel sont la valeur est environ égale à $0,428~5$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $R(n):~0\pp p_n\pp p_{n+1} \pp 0,5$.
    Initialisation : $p_0=0,3$ et $p_1=0,363$ donc $0\pp p_0\pp p_1 \pp 0,5$.
    Par conséquent $R(0)$ est vraie.
    $\quad$Hérédité : Soit $n\in \N$. On suppose $R(n)$ vraie.
    $\begin{align*} 0\pp p_n\pp p_{n+1}\pp 0,5&\Rightarrow 0 \pp p_n^2\pp p_{n+1}^2 \pp 0,25 \\
    &\Rightarrow 0 \pp 0,7p_n^2\pp 0,7p_{n+1}^2 \pp 0,175 \\
    &\Rightarrow 0,3 \pp 0,3+0,7p_n^2\pp 0,3+0,7p_{n+1}^2 \pp 0,475 \end{align*}$
    Par conséquent $0\pp 0,3\pp p_{n+1}\pp p_{n+2} \pp 0,475\pp 0,5$ et $R(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp p_n\pp p_{n+1} \pp 0,5$.
    $\quad$
    b. La suite $\left(p_n\right)$ est croissante et majorée par $0,5$; elle converge donc vers un réel $L$.
    $\quad$
  3. a. La fonction $f:~x\mapsto 0,3+0,7x^2$ est continue sur $\R$ et, pour tout $n\in \N$, $p_{n+1}=f\left(p_n\right)$.
    Ainsi $L$ est solution de l’équation $x=f(x)$ soit $0,7x^2-x+0,3=0$.
    $\quad$
    b. Le discriminant de $0,7x^2-x+0,3$ est $\Delta =0,16>0$.
    Ce polynôme du second degré admet donc deux racines : $x_1=\dfrac{1-\sqrt{0,16}}{1,4}=\dfrac{3}{7}$ et $x_2=\dfrac{1+\sqrt{0,16}}{1,4}=1$.
    Seule $x_1$ appartient à l’intervalle $[0;0,5]$.
    Donc $L=\dfrac{3}{7}$.
    $\quad$
  4. On obtient la fonction suivante :
    $$\begin{array}{|l|}
    \hline
    \text{def suite(n) :}\\
    \quad \text{p = 0.3}\\
    \quad \text{s= [p]}\\
    \quad \text{for i in range(n – 1):}\\
    \qquad \text{p = 0.3 + 0.7 * p ** 2}\\
    \qquad \text{s.append(p)}\\
    \quad \text{return (s)}\\
    \hline
    \end{array}$$
    $\quad$

 

Énoncé

Exercice 1     7 points

Principaux domaines abordés : Manipulation des vecteurs, des droites et des plans de l’espace. Orthogonalité et distances dans l’espace. Représentations paramétriques et équations cartésiennes.

Dans un repère orthonormé $\Oijk$ de l’espace, on considère les points $$A(-3 ; 1 ; 3),~B(2 ; 2 ; 3),~C(1 ; 7 ; -1),~D(-4 ; 6 ; -1) \text{ et } K(-3 ; 14 ; 14)$$

  1. a. Calculer les coordonnées des vecteurs $\vect{AB}$, $\vect{DC}$ et $\vect{AD}$.
    $\quad$
    b. Montrer que le quadrilatère $ABCD$ est un rectangle.
    $\quad$
    c. Calculer l’aire du rectangle $ABCD$.
    $\quad$
  2. a. Justifier que les points $A$, $B$ et $D$ définissent un plan.
    $\quad$
    b. Montrer que le vecteur $\vec{n}(-2 ; 10 ; 13)$ est un vecteur normal au plan $(ABD)$.
    $\quad$
    c. En déduire une équation cartésienne du plan $(ABD)$.
    $\quad$
  3. a. Donner une représentation paramétrique de la droite $\Delta$ orthogonale au plan $(ABD)$ et qui passe par le point $K$.
    $\quad$
    b. Déterminer les coordonnées du point $I$, projeté orthogonal du point $K$ sur le plan $(ABD)$.
    $\quad$
    c. Montrer que la hauteur de la pyramide $KABCD$ de base $ABCD$ et de sommet $K$ vaut $\sqrt{273}$.
    $\quad$
  4. Calculer le volume $V$ de la pyramide $KABCD$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule : $$V =\dfrac{1}{3}\times \text{aire de la base} \times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : Étude des fonctions. Fonction logarithme.

Partie A

 

Dans le repère orthonormé ci-dessus, sont tracées les courbes représentatives d’une fonction $f$ et de sa fonction dérivée, notée $f’$
, toutes deux définies sur $]3 ; +\infty[$.

  1. Associer à chaque courbe la fonction qu’elle représente. Justifier.
    $\quad$
  2. Déterminer graphiquement la ou les solutions éventuelles de l’équation $f (x) = 3$.
    $\quad$
  3. Indiquer, par lecture graphique, la convexité de la fonction $f$.
    $\quad$

Partie B

  1. Justifier que la quantité $\ln\left(x^2-x-6\right)$ est bien définie pour les valeurs $x$ de l’intervalle $]3 ; +\infty[$, que l’on nommera $I$ dans la suite.
    $\quad$
  2. On admet que la fonction $f$ de la Partie A est définie par $f(x)=\ln\left(x^2-x-6\right)$ sur $I$.
    Calculer les limites de la fonction $f$ aux deux bornes de l’intervalle $I$.
    En déduire une équation d’une asymptote à la courbe représentative de la fonction $f$ sur $I$.
    $\quad$
  3. a. Calculer $f'(x)$ pour tout $x$ appartenant à $I$.
    $\quad$
    b. Étudier le sens de variation de la fonction $f$ sur $I$.
    Dresser le tableau des variations de la fonction $f$ en y faisant figurer les limites aux bornes de $I$.
    $\quad$
  4. a. Justifier que l’équation $f(x) = 3$ admet une unique solution $\alpha$ sur l’intervalle $]5; 6[.$
    $\quad$
    b. Déterminer, à l’aide de la calculatrice, un encadrement de $\alpha$ à $10^{-2}$ près.
    $\quad$
  5. a. Justifier que $f\dsec(x)=\dfrac{-2x^2+2x-13}{\left(x^2-x-6\right)^2}$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $I$.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés: Probabilités conditionnelles et indépendance. Variables aléatoires.

Les deux parties de cet exercice sont indépendantes

Partie 1
Julien doit prendre l’avion; il a prévu de prendre le bus pour se rendre à l’aéroport.
S’il prend le bus de 8 h, il est sûr d’être à l’aéroport à temps pour son vol.
Par contre, le bus suivant ne lui permettrait pas d’arriver à temps à l’aéroport.
Julien est parti en retard de son appartement et la probabilité qu’il manque son bus est de $0,8$.
S’il manque son bus, il se rend à l’aéroport en prenant une compagnie de voitures privées; il a alors une probabilité de $0,5$ d’être à l’heure à l’aéroport.
On notera :

  • $B$ l’évènement : « Julien réussit à prendre son bus »;
  • $V$ l’évènement : « Julien est à l’heure à l’aéroport pour son vol ».
  1. Donner la valeur de $P_B (V )$.
    $\quad$
  2. Représenter la situation par un arbre pondéré.
    $\quad$
  3. Montrer que $P(V) = 0,6$.
    $\quad$
  4. Si Julien est à l’heure à l’aéroport pour son vol, quelle est la probabilité qu’il soit arrivé à l’aéroport en bus ? Justifier.
    $\quad$

Partie 2

Les compagnies aériennes vendent plus de billets qu’il n’y a de places dans les avions car certains passagers ne se présentent pas à l’embarquement du vol sur lequel ils ont réservé.
On appelle cette pratique le surbooking.
Au vu des statistiques des vols précédents, la compagnie aérienne estime que chaque passager a $5 \%$ de chance de ne pas se présenter à l’embarquement.
Considérons un vol dans un avion de $200$ places pour lequel $206$ billets ont été vendus. On suppose que la présence à l’embarquement de chaque passager est indépendante des autres passagers et on appelle $X$ la variable aléatoire qui compte le nombre de passagers se présentant à l’embarquement.

  1. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
  2. En moyenne, combien de passagers vont-ils se présenter à l’embarquement ?
    $\quad$
  3. Calculer la probabilité que $201$ passagers se présentent à l’embarquement. Le résultat sera arrondi à $10^{-3}$ près.
    $\quad$
  4. Calculer $P(X \pp 200)$, le résultat sera arrondi à $10^{-3}$ près. Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  5. La compagnie aérienne vend chaque billet à $250$ euros.
    Si plus de $200$ passagers se présentent à l’embarquement, la compagnie doit rembourser le billet d’avion et payer une pénalité de $600$ euros à chaque passager lésé.
    On appelle :
    $\bullet~~Y$ la variable aléatoire égale au nombre de passagers qui ne peuvent pas embarquer bien qu’ayant acheté un billet;
    $\bullet~~C$ la variable aléatoire qui totalise le chiffre d’affaire de la compagnie aérienne sur ce vol.
    $\quad$
    On admet que $Y$ suit la loi de probabilité donnée par le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|}
    \hline
    y_i& 0& 1& 2& 3& 4& 5& 6\\
    \hline
    P\left(Y = y_i\right)&0,947~75& 0,030~63 &0,014~41 &0,005 ~39 &0,001~51& 0,000~28&\phantom{0,000~28}\\
    \hline
    \end{array}$$
    a. Compléter la loi de probabilité donnée ci-dessus en calculant $P(Y = 6)$.
    $\quad$
    b. Justifier que : $C = 51500−850Y$.
    $\quad$
    c. Donner la loi de probabilité de la variable aléatoire $C$ sous forme d’un tableau.
    Calculer l’espérance de la variable aléatoire $C$ à l’euro près.
    $\quad$
    d. Comparer le chiffre d’affaires obtenu en vendant exactement $200$ billets et le chiffre d’affaires moyen obtenu en pratiquant le surbooking.
    $\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés: Suites numériques. Algorithmique et programmation.

On s’intéresse au développement d’une bactérie.
Dans cet exercice, on modélise son développement avec les hypothèses suivantes : cette bactérie a une probabilité $0,3$ de mourir sans descendance et une probabilité $0,7$ de se diviser en deux bactéries filles.
Dans le cadre de cette expérience, on admet que les lois de reproduction des bactéries sont les mêmes pour toutes les générations de bactéries qu’elles soient mère ou fille.
Pour tout entier naturel $n$, on appelle $p_n$ la probabilité d’obtenir au plus $n$ descendances pour une bactérie.
On admet que, d’après ce modèle, la suite $\left(p_n\right)$ est définie de la façon suivante :
$p_0 = 0,3$ et, pour tout entier naturel $n$, $$p_{n+1} = 0,3+0,7p_n^2$$

  1. La feuille de calcul ci-dessous donne des valeurs approchées de la suite $\left(p_n\right)$.
    $\quad$
    $\quad$
    a. Déterminer les valeurs exactes de $p_1$ et $p_2$ (masquées dans la feuille de calcul) et interpréter ces valeurs dans le contexte de l’énoncé.
    $\quad$
    b. Quelle est la probabilité, arrondie à $10^{-3}$ près, d’obtenir au moins $11$ générations de bactéries à partir d’une bactérie de ce type ?
    $\quad$
    c. Formuler des conjectures sur les variations et la convergence de la suite $\left(p_n\right)$.
    $\quad$
  2. a. Démontrer par récurrence sur $n$ que, pour tout entier naturel $n$, $0\pp p_n \pp p_{n+1}\pp 0,5$.
    $\quad$
    b. Justifier que la suite $\left(p_n\right)$ est convergente.
    $\quad$
  3. On appelle $L$ la limite de la suite $\left(p_n\right)$.
    a. Justifier que $L$ est solution de l’équation $0,7x
    2- x+0,3 = 0$
    $\quad$
    b. Déterminer alors la limite de la suite $\left(p_n\right)$.
    $\quad$
  4. La fonction suivante, écrite en langage Python, a pour objectif de renvoyer les $n$ premiers termes de la suite $\left(p_n\right)$.
    $$\begin{array}{ll}
    \begin{array}{l} 1\\2\\3\\4\\5\\6\\7\end{array}&\begin{array}{|l|}\hline\text{def suite(n) :}\\
    \quad \text{p = …}\\
    \quad \text{s = [p]}\\
    \quad \text{for i in range (…):}\\
    \quad \text{p = …}\\
    \quad \text{s.append(p)}\\
    \quad \text{return (s)}\\
    \hline
    \end{array}\end{array}$$
    Recopier, sur votre copie, cette fonction en complétant les lignes 2, 4 et 5 de façon à ce que la fonction $\texttt{suite(n)}$ retourne, sous forme de liste, les $n$ premiers termes de la suite.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Asie – sujet 1 – 17 mai 2022

Centres étrangers – Asie – 17 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. Parmi les $5$ jetons, seuls $1$, $3$ et $5$ sont impairs.
    Donc $P_B(G)=\dfrac{3}{5}$.
    $\quad$
    b. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. $P(B)=\dfrac{4}{12}=\dfrac{1}{3}$.
    $(B,~R)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} P(G)&=P(G\cap B)+P(G\cap R)\\
    &=P(B)\times P_B(G)+P(R)\times P_R(G)\\
    &=\dfrac{1}{3}\times \dfrac{3}{5}+\dfrac{2}{3}\times 0,3 \\
    &=0,4\end{align*}$
    $\quad$
    b. On veut calculer
    $\begin{align*} P_G(B)&=\dfrac{P(G\cap B)}{P(G)} \\
    &=\dfrac{\dfrac{1}{3}\times \dfrac{3}{5}}{0,4}\\
    &=\dfrac{1}{2}\end{align*}$
    La probabilité que le joueur ait obtenu une case blanche en lançant la roue sachant qu’il a gagner la partie est égale à $\dfrac{1}{2}$.
    $\quad$
  3. $P(G)=0,4$ et $P_B(G)=0,6$ donc $P(G)\neq P_B(G)$
    Les événements $B$ et $G$ ne sont pas indépendants.
    $\quad$
  4. a. On effectue de façon indépendante $10$ expériences de Bernoulli identiques.
    $X$ est égale au nombre de parties gagnées.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,4$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X=3)&=\dbinom{10}{3}0,4^3\times 0,6^7 \\
    &\approx 0,215\end{align*}$
    La probabilité que le joueur gagne exactement trois parties sur les dix parties jouées est environ égale à $0,215$.
    $\quad$
    c. On a
    $\begin{align*} P(X\pg 4)&=1-P(X<4) \\
    &=1-P(X\pp 3) \\
    &\approx 0,618\end{align*}$
    La probabilité de remporter au moins $4$ parties sur les $10$ jouées est environ égale à $0,618$.
    $\quad$
  5. a. On effectue de façon indépendante $n$ expériences de Bernoulli identiques.
    On appelle $Y$ la variable aléatoire égale au nombre de parties gagnées.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,4$.
    $\begin{align*} p_n&=P(Y\pg 1) \\
    &=1-P(Y=0) \\
    &=1-0,6^n \end{align*}$
    $\quad$
    b. $\quad$
    $\begin{align*} p_n\pg 0,99&\ssi 1-0,6^n \pg 0,99 \\
    &\ssi -0,6^n \pg -0,01 \\
    &\ssi 0,6^n \pp 0,01 \\
    &\ssi n\ln(0,6) \pp \ln(0,01) \\
    &\ssi n \pg \dfrac{\ln(0,01)}{\ln(0,6)} \qquad \text{car } \ln(0,6)<0\end{align*}$
    Or $\dfrac{\ln(0,1)}{\ln(0,6)}\approx 9,02$
    Le plus petit entier naturel $n$ pour lequel la probabilité de gagner au moins une partie est supérieur ou égale à $0,99$ est donc $10$.
    $\quad$

 

Ex 2

Exercice 2

Partie A : modèle discret de la quantité médicamenteuse

  1. $\quad$
    $\begin{align*} u_1&=\left(1-\dfrac{1}{10}\right)\times u_0+0,25 \\
    &=0,9\times 1+0,25\\
    &=1,15\end{align*}$
    Au bout d’une demi-heure il y avait donc $1,15$ mg de médicament dans le sang.
    $\quad$
  2. Toutes les $30$ minutes l’organisme élimine $10\%$ de la quantité de médicament présente dans le sang. Il reste donc $90\%$ de la quantité de médicament soit $0,9u_n$.
    Il reçoit une dose supplémentaire de $0,25$ mg de la substance médicamenteuse.
    Donc $u_{n+1}=0,9u_n+0,25$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on pose $P(n):~u_n\pp u_{n+1} <5$.
    Initialisation : $u_0=1$ et $u_1=1,15$ donc $u_0\pp u_1<5$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <5 &\ssi 0,9u_n\pp 0,9u_{n+1} < 4,5 \\
    &\ssi 0,9u_n+0,25\pp 0,9u_{n+1}+0,25<4,75\end{align*}$
    Donc $u_{n+1}\pp u_{n+2} <4,75<5$ et $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n \pp u_{n+1} <5$.
    $\quad$
    b. La suite $\left(u_n\right)$ est  croissante et majorée par $5$. Par conséquent elle converge vers un réel $\ell$.
    $\quad$
  4. a. On obtient le script suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def efficace():}\\
    \quad \text{u = 1}\\
    \quad \text{n = 0}\\
    \quad \text{while u < 1.8:}\\
    \qquad \text{u = 0.9 * u + 0.25}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. On a $u_7 \approx 1,78$ et $u_8\approx 1,85$.
    Par conséquent le script renvoie la valeur $8$.
    C’est donc au bout de $4$ heures que le médicament est réellement efficace.
    $\quad$
  5. a. Soit $n\in \N$. $v_n=2,5-u_n$ donc $u_n=2,5-v_n$.
    $\begin{align*} v_{n+1}&=2,5-u_{n+1} \\
    &=2,5-0,9u_n-0,25 \\
    &=-0,9u_n+2,25 \\
    &=-0,9\left(2,5-v_n\right)+2,25 \\
    &=0,9v_n-2,25+2,25 \\
    &=0,9v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,9$ et de premier terme $v_0=1,5$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$ on a $v_n=1,5\times 0,9^n$.
    Par conséquent :
    $\begin{align*} u_n&=2,5-v_n\\
    &=2,5-1,5\times 0,9^n\end{align*}$
    $\quad$
    c. Pour tout entier naturel $n$ on a $1,5\times 0,9^n>0$ donc $u_n<2,5<3$.
    Le traitement de présente donc aucun risque pour le patient.
    $\quad$

Partie B : modèle continu de la quantité médicamenteuse

  1. $f(3,75)\approx 1,791<1,8$.
    Le médicament n’est donc pas réellement efficace au bout de $3$ h $45$ min.
    $\quad$
  2. $\quad$
    $\begin{align*} f(t)\pg 1,8 &\ssi 2,5-1,5\e^{-0,2t}\pg 1,8 \\
    &\ssi -1,5\e^{-0,2t}\pg -0,7 \\
    &\ssi \e^{-0,2t}\pp \dfrac{7}{15} \\
    &\ssi -0,2t\pp \ln\left(\dfrac{7}{15}\right) \\
    &\ssi t\pg -5\ln\left(\dfrac{7}{15}\right) \end{align*}$
    Le médicament est donc efficace au bout d’environ $3,810~7$ heures soit environ $3$ h $49$ min.
    $\quad$
  3. Selon le modèle de la partie A, le médicament était réellement efficace au bout de $4$ heures.
    Le modèle continu est donc réellement efficace plus rapidement.
    $\quad$

 

Ex 3

Exercice 3

  1. On obtient la figure suivante :
    $\quad$
  2. On a $\vect{RP}\begin{pmatrix}-1\\0\\-2\end{pmatrix}$ et $\vect{RQ}\begin{pmatrix}-1\\2\\0\end{pmatrix}$
    Donc
    $\begin{align*} RP&=\sqrt{(-1)^2+0^2+(-2)^2} \\
    &=\sqrt{5}\end{align*}$
    et
    $\begin{align*} RQ&=\sqrt{(-1)^2+2^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    Donc $RP=RQ$.
    Le triangle $RPQ$ est bien isocèle en $R$.
    $\quad$
  3. Les vecteurs $\vect{RP}$ et $\vect{RQ}$ ne sont clairement pas colinéaires (le coefficient $0$ ne se trouve à la même coordonnée). Les points $P$, $R$ et $Q$ définissent donc un plan.
    $\quad$
  4. a. D’une part
    $\begin{align*} \vec{u}.\vect{PR}&=2\times (-1)+1\times 0+(-1)\times (-2) \\
    &=-2+0+2 \\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{u}.\vect{PQ}&=2\times (-1)+1\times 2+(-1)\times 0 \\
    &=-2+2+0 \\
    &=0\end{align*}$
    Le vecteur $\vec{u}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(PQR)$.
    $\vec{u}$ est par conséquent un vecteur normal au plan $(PQR)$.
    $\quad$
    b. Ainsi une équation cartésienne du plan $(PQR)$ est de la forme $2x+y-z+d=0$.
    Or $P(0;0;1)$ appartient au plan $(PQR)$.
    Par conséquent $0+0-1+d=0\ssi d=1$.
    Une équation cartésienne du plan $(PQR)$ est $2x+y-z+1=0$.
    $\quad$
    c. Le vecteur $\vec{u}$ est un vecteur directeur de la droite $(d)$.
    Une représentation paramétrique de la droite $(d)$ est donc : $$\begin{cases} x=2t\\y=t\\z=3-t\end{cases} \qquad t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{1}{3}$ dans la représentation paramétrique de la droite $(d)$ on obtient le point de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$.
    $2\times \dfrac{2}{3}+\dfrac{1}{3}-\dfrac{8}{3}+1=-\dfrac{3}{3}+1=0$ : le point de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$ appartient donc au plan $(PQR)$.
    Le point $L\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$ est par conséquent le projeté orthogonal du point $E$ sur le plan $(PQR)$.
    $\quad$
    e. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]\dfrac{1}{3}\\[3pt]-\dfrac{1}{3}\end{pmatrix}$
    Par conséquent :
    $\begin{align*} EL&=\sqrt{\left(\dfrac{2}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{3}\right)^2} \\
    &=\sqrt{\dfrac{6}{9}} \\
    &=\dfrac{\sqrt{6}}{3}\end{align*}$
    La distance du point $E$ au plan $(PQR)$ est donc égale à $\dfrac{\sqrt{6}}{3}$.
    $\quad$
  5. Le triangle $EQR$ est, par construction, rectangle en $E$. Son aire est donc
    $\begin{align*} \mathscr{A}&=\dfrac{EQ\times ER}{2} \\
    &=\dfrac{2\times 1}{2} \\
    &=1\end{align*}$
    Ainsi, le volume du tétraèdre $EPQR$ est
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times \mathscr{A}\times EP \\
    &=\dfrac{1}{3}\times 1\times 2 \\
    &=\dfrac{2}{3}\end{align*}$$\quad$
  6. On a également $\mathscr{V}=\dfrac{1}{3}\times \mathscr{A}_{PQR}\times EL$ où $\mathscr{A}_{PQR}$ est l’aire du triangle $PQR$
    Ainsi
    $\dfrac{2}{3}=\dfrac{1}{3}\times \mathscr{A}_{PQR}\times \dfrac{\sqrt{6}}{3} \ssi \mathscr{A}_{PQR}=\dfrac{6}{\sqrt{6}}$
    Ainsi l’aire du triangle $PQR$ est égale à $\sqrt{6}$ unités d’aire.
    $\quad$

 

 

Ex 4

Exercice 4

Partie A

  1. Graphiquement $f(1)=3$ et $f'(1)$ est le coefficient directeur de la droite $(AB)$. Par conséquent $f'(1)=1$.
    $\quad$
  2. a. D’après l’énoncé, la fonction $f$ est dérivable sur $\R$.
    Pour tout réel $x$ on a $f'(x)=\dfrac{2ax}{ax^2+1}$.
    $\quad$
    b. $f(1)=3\ssi \ln(a+1)+b=3$.
    $f'(1)=1 \ssi \dfrac{2a}{a+1}=1$
    On résout donc le système
    $\begin{align*} \begin{cases} \ln(a+1)+b=3\\\dfrac{2a}{a+1}=1\end{cases} &\ssi \begin{cases} 2a=a+1 \\b=3-\ln(a+1)\end{cases} \\
    &\ssi \begin{cases} a=1\\b=3-\ln(2)\end{cases}\end{align*}$
    Par conséquent, pour tout réel $x$ on a $f(x)=\ln\left(x^2+1\right)+3-\ln(2)$.
    $\quad$

Partie B

  1. Pour tout réel $x$ on a
    $\begin{align*} f(-x)&=\ln\left((-x)^2+1\right)+3-\ln(2) \\
    &=\ln\left(x^2+1\right)+3-\ln(2) \\
    &=f(x)\end{align*}$
    Par conséquent $f$ est paire.
    $\quad$
  2. $\lim\limits_{x\to +\infty} x^2+1=+\infty$ et $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ par conséquent $\lim\limits_{x\to +\infty} \ln\left(x^2+1\right)=+\infty$
    Ainsi, $\lim\limits_{x\to +\infty} f(x)=+\infty$ et par parité $\lim\limits_{x\to -\infty} f(x)=+\infty$.
    $\quad$
  3. D’après la question A.2. on a, pour tout réel $x$, $f'(x)=\dfrac{2x}{x^2+1}$.
    Pour tout réel $x$, on a $x^2+1>0$.
    Donc $f'(x)$ est du signe de $2x$.
    Par conséquent :
    $\bullet~~f'(x)<0$ sur $]-\infty;0[$;
    $\bullet~~f'(0)=0$;
    $\bullet~~f'(x)>0$ sur $]0;\infty[$.On obtient donc le tableau de variations suivant :
    $\quad$
  4. D’après le tableau de variations, l’équation $f(x)=k$ admet deux solutions si, et seulement si, $k>3-\ln(2)$.
    Remarque : Pour le montrer rigoureusement, il faut utiliser le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires).
    $\quad$
  5. $\quad$
    $\begin{align*} f(x)=3+\ln(2)&\ssi \ln\left(x^2+1\right)+3-\ln(2)=3+\ln(2) \\
    &\ssi \ln\left(x^2+1\right)=2\ln(2)\\
    &\ssi \ln\left(x^2+1\right)=\ln(4) \\
    &\ssi x^2+1=4 \qquad \text{car la fonction $\ln$ est strictement croissante sur $]0;+\infty[$}\\
    &\ssi x^2=3 \\
    &\ssi x=\sqrt{3} \text{ ou } x=-\sqrt{3}\end{align*}$
    L’équation $f(x)=3+\ln(2)$ admet donc deux solutions $-\sqrt{3}$ et $\sqrt{3}$.
    $\quad$

Partie C

  1. Graphiquement $\mathscr{C}_f$ semble avoir deux points d’inflexion d’abscisse $-1$ et $1$.
    $\quad$
  2. Pour tout réel $x$ on a $f'(x)=\dfrac{2x}{x^2+1}$.
    La fonction $f’$ est dérivable sur $\R$ en tant que somme et quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=2\times \dfrac{x^2+1-x\times 2x}{\left(x^2+1\right)^2} \\
    &=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\end{align*}$
    $\quad$
  3. Ainsi $f\dsec(x)\pg 0 \ssi 1-x^2\pg 0 \ssi x\in [-1;1]$.
    Le plus grand intervalle sur lequel la fonction $f$ est convexe est donc $[-1;1]$.
    $\quad$

 

 

Énoncé

Exercice 1     7 points

Principaux domaines abordés : Probabilités conditionnelles et indépendance. Variables aléatoires

Lors d’une kermesse, un organisateur de jeux dispose, d’une part, d’une roue comportant quatre cases blanches et huit cases rouges et, d’autre part, d’un sac contenant cinq jetons portant les numéros $1$, $2$, $3$,  $4$ et $5$.
Le jeu consiste à faire tourner la roue, chaque case ayant la même probabilité d’être obtenue, puis à extraire un ou deux jetons du sac selon la règle suivante :

  •  si la case obtenue par la roue est blanche, alors le joueur extrait un jeton du sac;
  • si la case obtenue par la roue est rouge, alors le joueur extrait successivement et sans remise deux jetons du sac.

Le joueur gagne si le ou les jetons tirés portent tous un numéro impair.

  1. Un joueur fait une partie et on note $B$ l’évènement « la case obtenue est blanche », $R$ l’évènement « la case obtenue est rouge » et $G$ l’évènement « le joueur gagne la partie ».
    a. Donner la valeur de la probabilité conditionnelle $P_B (G)$.
    $\quad$
    b. On admettra que la probabilité de tirer successivement et sans remise deux jetons impairs est égale à $0,3$.
    Recopier et compléter l’arbre de probabilité suivant :
    $\quad$

    $\quad$
  2. a. Montrer que $P(G) = 0,4$.
    $\quad$
    b. Un joueur gagne la partie.
    Quelle est la probabilité qu’il ait obtenu une case blanche en lançant la roue ?
    $\quad$
  3. Les évènements $B$ et $G$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Un même joueur fait dix parties. Les jetons tirés sont remis dans le sac après chaque partie.
    On note $X$ la variable aléatoire égale au nombre de parties gagnées.
    a. Expliquer pourquoi $X$ suit une loi binomiale et préciser ses paramètres.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$ près, que le joueur gagne exactement trois parties sur les dix parties jouées.
    $\quad$
    c. Calculer $P(X \pg 4)$ arrondie à $10^{-3}$ près.
    Donner une interprétation du résultat obtenu.
    $\quad$
  5. Un joueur fait $n$ parties et on note $p_n$ la probabilité de l’évènement « le joueur gagne au moins une partie ».
    a. Montrer que $p_n = 1-0,6n$.
    $\quad$
    b. Déterminer la plus petite valeur de l’entier n pour laquelle la probabilité de gagner au moins une partie est supérieure ou égale à $0,99$.
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : Suites numériques. Algorithmique et programmation.

Un médicament est administré à un patient par voie intraveineuse.

Partie A : modèle discret de la quantité médicamenteuse

Après une première injection de $1$ mg de médicament, le patient est placé sous perfusion.
On estime que, toutes les $30$ minutes, l’organisme du patient élimine $10 \%$ de la quantité de médicament présente dans le sang et qu’il reçoit une dose supplémentaire de $0,25$ mg de la substance médicamenteuse.
On étudie l’évolution de la quantité de médicament dans le sang avec le modèle suivant : pour tout entier naturel $n$, on note $u_n$ la quantité, en mg, de médicament dans le sang du patient au bout de $n$ périodes de trente minutes. On a donc $u_0 = 1$.

  1. Calculer la quantité de médicament dans le sang au bout d’une demi-heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, $u_{n+1} = 0,9u_n +0,25$.
    $\quad$
  3. a. Montrer par récurrence sur $n$ que, pour tout entier naturel $n$, $u_n \pp u_{n+1} < 5$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  4. On estime que le médicament est réellement efficace lorsque sa quantité dans le sang du patient est supérieure ou égale à $1,8$ mg.
    a. Recopier et compléter le script écrit en langage Python suivant de manière à déterminer au bout de combien de périodes de trente minutes le médicament commence à être réellement efficace.
    $$\begin{array}{|l|}
    \hline
    \text{def efficace():}\\
    \quad\text{u = 1}\\
    \quad\text{n = 0}\\
    \quad\text{while ……:}\\
    \qquad\text{u = ……}\\
    \qquad\text{n = n + 1}\\
    \quad\text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. Quelle est la valeur renvoyée par ce script ? Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  5. Soit $\left(v_n\right)$ la suite définie, pour tout entier naturel $n$, par $v_n = 2,5-u_n$.
    a. Montrer que $\left(v_n\right)$ est une suite géométrique dont on précisera la raison et le premier terme $v_0$.
    $\quad$
    b. Montrer que, pour tout entier naturel $n$, $u_n = 2,5-1,5×0,9^n$.
    $\quad$
    c. Le médicament devient toxique lorsque sa quantité présente dans le sang du patient dépasse $3$ mg.
    D’après le modèle choisi, le traitement présente-t-il un risque pour le patient ?
    Justifier.
    $\quad$

Partie B : modèle continu de la quantité médicamenteuse

Après une injection initiale de $1$ mg de médicament, le patient est placé sous perfusion.
Le débit de la substance médicamenteuse administrée au patient est de $0,5$ mg par heure.
La quantité de médicament dans le sang du patient, en fonction du temps, est modélisée par la fonction $f$ , définie sur $[0 ; +\infty[$, par $$f (t) = 2,5-1,5\e^{-0,2t}$$
où $t$ désigne la durée de la perfusion exprimée en heure.
On rappelle que ce médicament est réellement efficace lorsque sa quantité dans le sang du patient est supérieure ou égale à $1,8$ mg.

  1. Le médicament est-il réellement efficace au bout de $3$ h $45$ min ?
    $\quad$
  2. Selon ce modèle, déterminer au bout de combien de temps le médicament devient réellement efficace.
    $\quad$
  3. Comparer le résultat obtenu avec celui obtenu à la question 4. b. du modèle discret de la Partie A.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés : Manipulation des vecteurs, des droites et des plans de l’espace. Orthogonalité et distances dans l’espace. Représentations paramétriques et équations cartésiennes.

Le solide $ABCDEFGH$ est un cube. On se place dans le repère orthonormé $\left(A,\vec{i},\vec{j},\vec{k}\right)$ de l’espace dans lequel les coordonnées des points $B$, $D$ et $E$ sont : $$B(3 ; 0 ; 0),~D(0 ; 3 ; 0) \text{ et } E(0 ; 0 ; 3)$$

 

On considère les points $P(0; 0; 1)$, $Q(0; 2; 3)$ et $R(1; 0; 3)$.

  1. Placer les points $P$, $Q$ et $R$ sur la figure en ANNEXE qui sera à rendre avec la copie.
    $\quad$
  2. Montrer que le triangle $PQR$ est isocèle en $R$.
    $\quad$
  3. Justifier que les points $P$, $Q$ et $R$ définissent un plan.
    $\quad$
  4. On s’intéresse à présent à la distance entre le point $E$ et le plan $(PQR)$.
    a. Montrer que le vecteur $\vec{u} (2 ; 1 ; -1)$ est normal au plan $(PQR)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(PQR)$.
    $\quad$
    c. Déterminer une représentation paramétrique de la droite $(d)$ passant par le point $E$ et orthogonale au plan $(PQR)$.
    $\quad$
    d. Montrer que le point $L\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$ est le projeté orthogonal du point $E$ sur le plan $(PQR)$.
    $\quad$
    e. Déterminer la distance entre le point $E$ et le plan $(PQR)$.
    $\quad$
  5. En choisissant le triangle $EQR$ comme base, montrer que le volume du tétraèdre $EPQR$ est $\dfrac{2}{3}$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V =\dfrac{1}{3}\times \text{aire d’une base}\times \text{hauteur correspondante}$$
    $\quad$
  6. Trouver, à l’aide des deux questions précédentes, l’aire du triangle $PQR$.
    $\quad$

ANNEXE

$\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés : Étude de fonctions. Fonction logarithme.

Soit $f$ une fonction définie et dérivable sur $\R$. On considère les points $A(1; 3)$ et $B(3; 5)$.
On donne ci-dessous $\mathscr{C}_f$ la courbe représentative de $f$ dans un repère orthogonal du plan, ainsi que la tangente $(AB)$ à la courbe $\mathscr{C}_f$ au point $A$.

Les trois parties de l’exercice peuvent être traitées de manière indépendante.

Partie A

  1. Déterminer graphiquement les valeurs de $f(1)$ et $f'(1)$.
    $\quad$
  2. La fonction $f$ est définie par l’expression $f (x) = \ln\left(ax^2+1\right)+b$, où $a$ et $b$ sont des nombres réels positifs.
    a. Déterminer l’expression de $f'(x)$.
    $\quad$
    b. Déterminer les valeurs de $a$ et $b$ à l’aide des résultats précédents.
    $\quad$

Partie B

On admet que la fonction $f$ est définie sur $\R$ par $$f(x) = \ln\left(x^2+1\right)+3-\ln(2)$$

  1. Montrer que $f$ est une fonction paire.
    $\quad$
  2. Déterminer les limites de $f$ en $+\infty$ et en $-\infty$.
    $\quad$
  3. Déterminer l’expression de $f'(x)$.
    Étudier le sens de variation de la fonction $f$ sur $\R$.
    Dresser le tableau des variations de $f$ en y faisant figurer la valeur exacte du minimum ainsi que les limites de $f$ en $-\infty$ et $+\infty$.
    $\quad$
  4. À l’aide du tableau des variations de $f$ , donner les valeurs du réel $k$ pour lesquelles l’équation $f (x) = k$ admet deux solutions.
    $\quad$
  5. Résoudre l’équation $f (x) = 3+\ln 2$.
    $\quad$

Partie C
On rappelle que la fonction $f$ est définie sur $\R$ par $f(x) = \ln\left(x^2+1\right)+3-\ln(2)$.

  1. Conjecturer, par lecture graphique, les abscisses des éventuels points d’inflexion de la courbe $\mathscr{C}_f$.
    $\quad$
  2. Montrer que, pour tout nombre réel $x$, on a : $f\dsec(x)=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}$.
    $\quad$
  3. En déduire le plus grand intervalle sur lequel la fonction $f$ est convexe.
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Amérique du Nord – sujet 2 – 19 mai 2022

Amérique du nord – 19 mai 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. $\left(A_1,B_1\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} a_2&=P\left(A_2\right) \\
    &=P\left(A_1\cap A_2\right)+P\left(B_1\cap A_2\right) \\
    &=P\left(A_1\right)\times P_{A_1}\left(A_2\right)+P\left(B_1\right)\times P_{B_1}\left(A_2\right) \\
    &=0,5\times 0,84+0,5\times 0,24 \\
    &=0,54\end{align*}$
    $\quad$
    b. On veut calculer :
    $\begin{align*} P_{A_2}\left(B_1\right)&=\dfrac{P\left(A_2\cap B_1\right)}{P\left(A_2\right)} \\
    &=\dfrac{0,5\times 0,24}{0,54}\\
    &=\dfrac{2}{9}\end{align*}$
    La probabilité que le vélo se trouve au point B le premier matin sachant qu’il se trouve au point A le deuxième matin est égale à $\dfrac{2}{9}$ soit environ égale à $0,222$.
    $\quad$
  3. a. On obtient l’arbre suivant :$\quad$
    b. Soit $n\in \N^*$. $\left(A_n,B_n\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} a_{n+1}&=P\left(A_{n+1}\right) \\
    &=P\left(A_n\cap A_{n+1}\right)+P\left(B_n\cap A_{n+1}\right) \\
    &=P\left(A_n\right)\times P_{A_n}\left(A_{n+1}\right)+P\left(B_n\right)\times P_{B_n}\left(A_{n+1}\right) \\
    &=0,84a_n+0,24\left(1-a_n\right) \\
    &=0,6a_n+0,24\end{align*}$
    $\quad$
  4. Pour tout entier naturel $n$ non nul on pose $R(n):~a_n=0,6-0,1\times 0,6^{n-1}$.
    Initialisation : $a_1=0,5$ et $0,6-0,1^1=0,5$ donc $R(1)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $R(n)$ vraie.
    $\begin{align*} a_{n+1}&=0,6a_n+0,24 \\
    &=0,6\left(0,6-0,1\times 0,6^{n-1}\right)+0,24\\
    &=0,36-0,1\times 0,6^n+0,24 \\
    &=0,6-0,1\times 0,6^n\end{align*}$
    Donc $R(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $1$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $a_n=0,6-0,1\times 0,6^{n-1}$.
    $\quad$
  5. $-1<0,6<1$ donc $\lim\limits_{n\to +\infty} 0,6^n=0$ et $\lim\limits_{n\to +\infty} a_n=0,6$.
    Sur le long terme, la probabilité que le vélo se trouve au point $A$ est égale à $0,6$.
    $\quad$
  6. $\quad$
    $\begin{align*} a_n\pg 0,599&\ssi 0,6-0,1\times 0,6^{n-1}\pg 0,599 \\
    &\ssi -0,1\times 0,6^{n-1} \pg -0,001 \\
    &\ssi 0,6^{n-1} \pp 0,01 \\
    &\ssi (n-1)\ln(0,6)\pp \ln(0,01) \\
    &\ssi n-1\pg \dfrac{\ln(0,01)}{\ln(0,6)} \quad \text{car } \ln(0,6)<0\\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,6)}+1\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,6)}+1\approx 10,02$
    Le plus petit entier naturel $n$ tel que $a_n\pg 0,599$ est donc $11$.
    La probabilité que le vélo se trouve au point $A$ est supérieure à $0,599$ à partir du $11$-ième jour.
    $\quad$

 

Ex 2

Exercice 2

Partie A

  1. La fonction $p$ est dérivable sur $[-3;4]$ en tant que fonction polynôme.
    Pour tout réel $x\in [-3;4]$ on a $p'(x)=3x^2-6x+5$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=-24<0$
    Ainsi $p'(x)$ est du signe du coefficient principal $a=3>0$.
    Par conséquent $p$ est strictement croissante sur $[-3;4]$.
    $\quad$
  2. La fonction $p$ est continue (car dérivable) et strictement croissante sur $[-3;4]$.
    $p(-3)=-68<0$ et $p(4)=37>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $p(x)=0$ admet une unique solution $\alpha$ sur $[-3;4]$.
    $\quad$
  3. D’après la calculatrice $\alpha\approx -0,2$.
    $\quad$
  4. La fonction $p$ est strictement croissante sur $[-3;4]$ et s’annule en $\alpha$. On obtient alors le tableau de signes suivant :
    $\quad$

Partie B

  1. a. La fonction $f$ est dérivable sur $[-3;4]$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in [-3;4]$ on a :
    $\begin{align*} f'(x)&=\dfrac{\e^x\left(1+x^2\right)-2x\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{\left(x^2-2x+1\right)\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{(x-1)^2\e^x}{\left(1+x^2\right)^2} \end{align*}$
    $\quad$
    b. On a fonc $f'(1)=0$.
    La courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. a. Il semblerait que la fonction change de convexité (et donc $\mathscr{C}_f$ possède un point d’inflexion) environ en $0$ et en $1$.
    Le toboggan semble dont assurer de bonnes sensations.
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$ et pour tout réel $x\in [-3;4]$ on a $\left(1+x^2\right)^3>0$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $p(x)(x-1)$.
    $x-1=0 \ssi x=1$ et $x-1>0\ssi x>1$.
    D’après le tableau de signes obtenu à la question A.4. on obtient le tableau de signes de $f\dsec(x)$.
    La fonction $f$ est donc convexe sur $[-3;\alpha]$ et $[1;4]$ et concave sur $[\alpha;1]$. $f\dsec(x)$ s’annule en $\alpha$ et $1$.
    Donc $\mathscr{C}_f$ possède deux points d’inflexion et le toboggan assurera de bonnes sensations.
    $\quad$

 

Ex 3

Exercice 3

  1. a. $\vect{AR}\begin{pmatrix}0\\3\\2\end{pmatrix}$ et $\vect{AT}\begin{pmatrix}-3\\0\\2\end{pmatrix}$
    Par conséquent
    $\begin{align*} AR&=\sqrt{0^2+3^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    $\begin{align*} AT&=\sqrt{(-3)^2+0^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    Ainsi $AR=AT$. Le triangle $ART$ est isocèle en $A$.
    b. $\quad$
    $\begin{align*} \vect{AR}.\vect{AT}&=0\times -(-3)+3\times 0+2\times 2\\
    &=4\end{align*}$
    $\quad$
    c. On a également $\vect{AR}.\vect{AT}=AR\times AT\times \cos \widehat{RAT}$.
    Par conséquent
    $\begin{align*} \cos \widehat{RAT}&=\dfrac{\vect{AR}.\vect{AT}}{AR\times AT} \\
    &=\dfrac{4}{13} \end{align*}$
    Donc $\widehat{RAT}\approx 72,1$°
    $\quad$
  2. a. D’une part
    $\begin{align*} \vec{n}.\vect{AR}&=2\times 0+(-2)\times 3+3\times 2\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{n}.\vect{AT}&=2\times (-3)+(-2)\times 0+3\times 2\\
    &=0\end{align*}$
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires (l’angle $\widehat{RAT}$ n’est ni plat ni nul) du plan $(ART)$.
    $\vec{n}$ est donc un vecteur normal au plan $(ART)$.
    $\quad$
    b. Une équation du plan $(ART)$ est par conséquent de la forme $2x-2y+3z+d=0$.
    Or $A(6;0;2)$ appartient à ce plan.
    Donc $12-0+6+d=0 \ssi d=-18$
    Une équation cartésienne du plan $(ART)$ est $2x-2y+3z-18=0$.
    $\quad$
  3. a. $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$ et le point $S\left(3;\dfrac{5}{2};0\right)$ appartient à cette droite.
    Une représentation paramétrique de la droite $\Delta$ est bien $\begin{cases} x=3+2k\\y=\dfrac{5}{2}-2k\\z=3k\end{cases} \quad k\in \R$.
    $\quad$
    b. Prenons $k=1$ dans la représentation paramétrique précédente. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient à la droite $\Delta$.
    $2\times 5-2\times \dfrac{1}{2}+3\times 3-18=10-1+9-18=0$. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient au plan $(ART)$.
    Ainsi $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. a. On a $D(0,8,0)$ et $K(0;4;4)$ donc $\vect{DK}\begin{pmatrix}0\\-4\\4\end{pmatrix}$ et $\vect{DN}\begin{pmatrix} 0\\-4t\\4t\end{pmatrix}$
    Par conséquent $\vect{DN}=t\vect{DK}$.
    Les points $D$, $N$ et $K$ sont alignés.
    $T\in[0;1]$ donc $N$ appartient au segment $[DK]$.
    $\quad$
    b. On a $\vect{SL}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ et $\vect{SN}\begin{pmatrix} -3\\\dfrac{11}{2}-4t\\4t\end{pmatrix}$.$\begin{align*} &(SL) \text{ et }(SN)\text{ sont perpendiculaires}\\
    &\ssi\vect{SL}.\vect{SN}=0 \\
    &\ssi 2\times (-3)+(-2)\times  \left(\dfrac{11}{2}-4t\right)+3\times 4t=0 \\
    &\ssi -6-11+8t+12t=0 \\
    &\ssi 20t=17 \\
    &\ssi t=0,85\end{align*}$
    Le point $N$ doit donc avoir pour coordonnées $(0;4,6;3,4)$ pour que les deux rayons lasers soient perpendiculaires.
    $\quad$

 

Ex 4

Exercice 4

  1. $\quad$
    $\begin{align*}a&=\ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right) \\
    &=\ln(9)+\ln\left(\sqrt{3}\right)-\ln(3)-\ln(9)\\
    &=\dfrac{1}{2}\ln(3)-\ln(3) \\
    &=-\dfrac{1}{2}\ln(3)\end{align*}$
    Réponse d
    $\quad$
  2. $x-10>0\ssi x>10$ : l’équation est définie sur $]10;+\infty[$
    Sur $]10;+\infty[$
    $\begin{align*} &\ln(x)+\ln(x-10)=\ln(3)+\ln(7) \\
    &\ssi \ln\left(x(x-10)\right)=\ln(21) \\
    &\ssi x(x-10)=21 \\
    &\ssi x^2-10x-21=0\end{align*}$
    Le discriminant de $x^2-10x-21$ est $\Delta=184>0$.
    Les racines de ce polynômes sont $x_1=\dfrac{10-\sqrt{184}}{2}<0$ et $x_2=\dfrac{10+\sqrt{184}}{2}>10$
    Donc l’unique solution de $(E)$ est $\dfrac{10+\sqrt{184}}{2}$.
    Réponse c
    $\quad$
  3. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$,
    $\begin{align*} f'(x)&=2x\left(-1+\ln(x)\right)+x^2\times \dfrac{1}{x} \\
    &=-2x+2x\ln(x)+x \\
    &=x\left(2\ln(x)-1\right)\end{align*}$
    $\ln\left(\sqrt{e}\right)=\dfrac{1}{2}$
    Par conséquent $f’\left(\sqrt{e}\right)=0$.
    Une équation de la tangente au point d’abscisse $\sqrt{e}$ est donc $y=f\left(\sqrt{e}\right)$ soit $y=-\dfrac{1}{2}\e$.
    Réponse d
    $\quad$
  4. On répète $5$ fois de façon indépendante la même expérience de Bernoulli. On appelle $X$ la variable aléatoire qui compte le nombre de jetons jaunes tirés.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=\dfrac{2}{5}$
    Ainsi
    $\begin{align*} P(X=2)&=\dbinom{5}{2}\left(\dfrac{2}{5}\right)^2\left(\dfrac{3}{5}\right)^3\\
    &\approx 0,346\end{align*}$
    Réponse b
    $\quad$
  5. On reprend la variable aléatoire $X$ définie à la question précédente.
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-\left(\dfrac{3}{5}\right)^5\\
    &\approx 0,922\end{align*}$
    Réponse d
    $\quad$
  6. On reprend la variable aléatoire $X$ définie à la question 4..
    Son espérance mathématiques est :
    $\begin{align*} E(X)&=np\\
    &=5\times \dfrac{2}{5} \\
    &=2\end{align*}$
    Réponse c
    $\quad$

Énoncé

Exercice 1     7 points

Thème : probabilités, suites

Dans une région touristique, une société propose un service de location de vélos pour la journée.
La société dispose de deux points de location distinctes, le point A et le point B. Les vélos peuvent être empruntés et restitués indifféremment dans l’un où l’autre des deux points de location.
On admettra que le nombre total de vélos est constant et que tous les matins, à l’ouverture du service, chaque vélo se trouve au point A ou au point B.

D’après une étude statistique :

  • Si un vélo se trouve au point A un matin, la probabilité qu’il se trouve au point A le matin suivant est égale à $0,84$;
  • Si un vélo se trouve au point B un matin la probabilité qu’il se trouve au point B le matin suivant est égale à $0,76$.

À l’ouverture du service le premier matin, la société a disposé la moitié de ses vélos au point A, l’autre moitié au point B.

On considère un vélo de la société pris au hasard.

Pour tout entier naturel non nul n, on définit les évènements suivants :

  • $A_n$ : « le vélo se trouve au point A le $n$-ième matin »
  • $B_n$ : « le vélo se trouve au point B le $n$-ième matin ».

Pour tout entier naturel non nul $n$, on note $a_n$ la probabilité de l’évènement $A_n$ et $b_n$ la probabilité de l’évènement $B_n$. Ainsi $a_1 = 0,5$ et $b_1 = 0,5$.

  1. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les deux premiers matins :$\quad$
  2. a. Calculer $a_2$.
    $\quad$
    b. Le vélo se trouve au point A le deuxième matin. Calculer la probabilité qu’il se soit trouvé au point B le premier matin. La probabilité sera arrondie au millième.
    $\quad$
  3. a. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les $n$-ième et $n +1$-ième matins.
    $\quad$
    b. Justifier que pour tout entier naturel non nul $n$, $a_{n+1} = 0,6a_n +0,24$.
    $\quad$
  4. Montrer par récurrence que, pour tout entier naturel non nul $n$, $a_n = 0,6−0,1×0,6^{n−1}$.
    $\quad$
  5. Déterminer la limite de la suite $\left(a_n\right)$ et interpréter cette limite dans le contexte de l’exercice.
    $\quad$
  6. Déterminer le plus petit entier naturel $n$ tel que $a_n > 0,599$ et interpréter le résultat obtenu dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : fonctions, fonction exponentielle

Partie A

Soit p la fonction définie sur l’intervalle $[-3 ; 4]$ par : $$p(x)=x^3-3x^2+5x+1$$

  1. Déterminer les variations de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
  2. Justifier que l’équation $p(x) = 0$ admet dans l’intervalle $[-3 ; 4]$ une unique solution qui sera notée $\alpha$.
    $\quad$
  3. Déterminer une valeur approchée du réel $\alpha$ au dixième près.
    $\quad$
  4. Donner le tableau de signes de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$

Partie B

Soit $f$ la fonction définie sur l’intervalle $[-3 ; 4]$ par :$$f(x)=\dfrac{\e^x}{1+x^2}$$
On note $\mathscr{C}_f$ sa courbe représentative dans un repère orthogonal.

  1. a. Déterminer la dérivée de la fonction $f$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
    b. Justifier que la courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. Les concepteurs d’un toboggan utilisent la courbe $\mathscr{C}_f$ comme profil d’un toboggan. Ils estiment que le toboggan assure de bonnes sensations si le profil possède au moins deux points d’inflexion.
    $\quad$
    a. D’après le graphique ci-dessus, le toboggan semble-t-il assurer de bonnes sensations ?
    Argumenter.
    b. On admet que la fonction $f\dsec$, dérivée seconde de la fonction $f$ , a pour expression pour tout réel $x$ de l’intervalle $[-3 ; 4]$ :
    $$f\dsec(x)=\dfrac{p(x)(x-1)\e^x}{\left(1+x^2\right)^3}$$
    où $p$ est la fonction définie dans la partie A.
    En utilisant l’expression précédente de $f\dsec$, répondre à la question : « le toboggan assure-t-il de bonnes sensations ? ». Justifier.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Une exposition d’art contemporain a lieu dans une salle en forme de pavé droit de largeur $6$ m, de longueur $8$ m et de hauteur $4$ m.
Elle est représentée par le parallélépipède rectangle $OBCDEFGH$ où $OB = 6$ m, $OD = 8$ m et $OE = 4$ m.
On utilise le repère orthonormé $\Oijk$ tel que $\vec{i}=\dfrac{1}{6}\vect{OB}$, $\vec{j}=\dfrac{1}{8}\vect{OD}$ et $\vec{k}=\dfrac{1}{4}\vect{OE}$.

 

Dans ce repère on a, en particulier $C(6; 8; 0)$, $F(6; 0; 4)$ et $G(6; 8; 4)$.
Une des œuvres exposées est un triangle de verre représenté par le triangle $ART$ qui a pour sommets $A(6; 0; 2)$, $R(6; 3; 4)$ et $T(3; 0; 4)$, Enfin, $S$ est le point de coordonnées $\left(3;\dfrac{5}{2};0\right)$.

  1. a. Vérifier que le triangle $ART$ est isocèle en $A$.
    $\quad$
    b. Calculer le produit scalaire $\vect{AR}.\vect{AT}$.
    $\quad$
    c. En déduire une valeur approchée à $0,1$ degré près de l’angle $\widehat{RAT}$.
    $\quad$
  2. a. Justifier que le vecteur $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur normal au plan $(ART)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(ART)$.
    $\quad$
  3. Un rayon laser dirigé vers le triangle $ART$ est émis du plancher à partir du point $S$. On admet que ce rayon est orthogonal au plan $(ART)$.
    a. Soit $\Delta$ la droite orthogonale au plan $(ART)$ et passant par le point $S$.
    Justifier que le système ci-dessous est une représentation paramétrique de la droite $\Delta$ : $$\begin{cases} x=3+2k\\[3pt]y=\dfrac{5}{2}-2k\\[3pt]z=3k\end{cases} \quad, \text{avec } k\in \R$$
    $\quad$
    b. Soit $L$ le point d’intersection de la droite $\Delta$, avec le plan $(ART)$.
    Démontrer que $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. L’artiste installe un rail représenté par le segment $[DK]$ ou $K$ est le milieu du segment $[EH]$.
    Sur ce rail, il positionne une source lumineuse laser en un point $N$ du segment $[DK]$ et il oriente ce second rayon laser vers le point $S$.
    $\quad$
    $\quad$
    a. Montrer que, pour tout réel $t$ de l’intervalle $[0; 1]$, le point $N$ de coordonnées $(0 ; 8−4t ; 4t)$ est un point du segment $[DK]$.
    $\quad$
    b. Calculer les coordonnées exactes du point $N$ tel que les deux rayons laser représentés par les segments $[SL]$ et $[SN]$ soient perpendiculaires.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : : fonction logarithme népérien, probabilités

Cet exercice est un questionnaire à choix multiples (QCM) qui comprend six questions. Les six questions sont indépendantes. Pour chacune des questions, une seule des quatre réponses est exacte. Le candidat indiquera sur sa copie le numéro de la question suivi de la lettre correspondant à la réponse exacte.
Aucune justification n’est demandée.
Une réponse fausse, une réponse multiple ou une absence de réponse ne rapporte ni n’enlève aucun point.

Question 1

Le réel $a$ est définie par $a = \ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right)$ est égal à :
a. $1-\dfrac{1}{2}\ln(3)$
b. $\dfrac{1}{2}\ln(3)$
c. $3\ln(3)-\dfrac{1}{2}$
d. $-\dfrac{1}{2}\ln(3)$
$\quad$

Question 2

On note $(E)$ l’équation suivante $\ln(x) +\ln(x −10) = ln (3)+ln (7)$ d’inconnue le réel $x$.
a. $3$ est solution de $(E)$.
b. $5-\sqrt{46}$ est solution de $(E)$.
c. L’équation $(E)$ admet une unique solution réelle.
d. L’équation $(E)$ admet deux solutions réelles.
$\quad$

Question 3

La fonction $f$ est définie sur l’intervalle $]0 ; +\infty[$ par l’expression $f(x)=x^2\left(-1+\ln(x)\right)$.
On note $\mathscr{C}_f$ sa courbe représentative dans le plan muni d’un repère.
a. Pour tout réel $x$ de l’intervalle $]0 ; +\infty[$, $f'(x)=2x+\dfrac{1}{x}$.
b. La fonction $f$ est croissante sur l’intervalle $]0 ; +\infty[$.
c. $f’\left(\sqrt{\e}\right)$ est différent de $0$.
d. La droite d’équation $y=-\dfrac{1}{2}\e$ est tangente à la courbe $\mathscr{C}_f$ au point d’abscisse $\sqrt{\e}$.
$\quad$

Question 4

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer exactement $2$ jetons jaunes, arrondie au millième, est :
a. $0,683$
b. $0,346$
c. $0,230$
d. $0,165$
$\quad$

Question 5

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer au moins un jeton jaune, arrondie au millième, est :
a. $0,078$
b. $0,259$
c. $0,337$
d. $0,922$
$\quad$

Question 6

Un sac contient $20$ jetons jaunes et $30$ jetons bleus.
On réalise l’expérience aléatoire suivante : on tire successivement et avec remise cinq jetons du sac.
On note le nombre de jetons jaunes obtenus après ces cinq tirages.
Si on répète cette expérience aléatoire un très grand nombre de fois alors, en moyenne, le nombre de jetons jaunes est égal à:
a. $0,4$
b. $1,2$
c. $2$
d. $2,5$
$\quad$

$\quad$

 

Bac – Spécialité mathématiques – Amérique du Nord – sujet 1 – 18 mai 2022

Amérique du nord – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant:
    $\quad$
    $\quad$
    b. $\left(V,\conj{V}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(R)&=P(R\cap V)+P\left(R\cap \conj{V}\right) \\
    &=P(V)\times P_V(R)+P\left(\conj{V}\right)\times P_{\conj{V}}(R)\\
    &=\dfrac{2}{3}\times \dfrac{1}{50}+\dfrac{1}{3}\times \dfrac{1}{10} \\
    &=\dfrac{7}{150}\end{align*}$
    La probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} P_R(V)&=\dfrac{P(R\cap V)}{P(R)} \\
    &=\dfrac{~\dfrac{2}{150}~}{\dfrac{7}{150}} \\
    &=\dfrac{2}{7}\end{align*}$
    La probabilité que Paul ait pris son vélo pour rejoindre la gare sachant qu’il a raté son train est égale à $\dfrac{2}{7}$.
    $\quad$
  2. a. On répète $20$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{3}$.
    $\quad$
    b.
    $\begin{align*} P(X=10)&=\dbinom{20}{10}\times \left(\dfrac{2}{3}\right)^{10}\times \left(\dfrac{1}{3}\right)^{10} \\
    &\approx 0,054\end{align*}$
    La probabilité que Paul prenne son vélo exactement $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,054$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 10)&=1-P(X\pp 9) \\
    &\approx 0,962\end{align*}$
    La probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,962$.
    d. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=20\times \dfrac{2}{3}\\
    &=\dfrac{40}{3}\end{align*}$
    En moyenne, sur un période choisie au hasard de $20$ jours, Paul prend son vélo environ $13$ jours pour se rendre à la gare.
    $\quad$
  3. L’espérance mathématique de $T$ est :
    $\begin{align*} E(T)&=10\times P(T=10)+11\times P(T=11)+\ldots+18\times P(T=18) \\
    &=13,5\end{align*}$
    En moyenne Paul met $13,5$ minutes pour se rendre à la gare en voiture.
    $\quad$

Ex 2

Exercice 2

  1. a. Pour tout entier naturel $n$ on note $P(n):~T_n\pg 20$.
    Initialisation : $T_0=180\pg 20$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} T_n\pg 20&\ssi 0,955T_n \pg 19,1 \\
    &\ssi 0,955T_n+0,9 \pg 20 \\
    &\ssi T_{n+1} \pg 20\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $T_n\pg 20$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} T_{n+1}-T_n&=0,955T_n+0,9 -T_n \\
    &=-0,045T_n+0,9 \\
    &=-0,045\left(T_n-20\right)\end{align*}$
    $\quad$
    Pour tout $n\in \N$ on a $T_n\pg 20 \ssi T_n-20\pg 0$.
    Ainsi $T_{n+1}-T_n\pp 0$.
    Par conséquent $\left(T_n\right)$ est décroissante.
    $\quad$
    c. La suite $\left(T_n\right)$ est décroissante et minorée par $20$. Elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. Soit $n\in \N$. $u_n=T_n-20\ssi T_n=u_n+20$
    $\begin{align*} u_{n+1}&=T_{n+1}-20 \\
    &=0,955T_n+0,9-20 \\
    &=0,955T_n-19,1\\
    &=0,955\left(u_n+20\right)-19,1 \\
    &=0,955u_n+19,1-19,1\\
    &=0,955u_n\end{align*}$
    Par conséquent, la suite $\left(u_n\right)$ est géométrique de raison $0,955$ et de premier terme $u_0=160$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $u_n=160\times 0,955^n$.
    Donc $T_n=u_n+20=20+160\times 0,955^n$.
    $\quad$
    c. $-1<0,955<1$ donc $\lim\limits_{n\to +\infty} 0,955^n=0$.
    Par conséquent $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    d.
    $\begin{align*} T_n\pp 120&\ssi 20+160\times 0,955^n \pp 120 \\
    &\ssi 160\times 0,955^n \pp 100 \\
    &\ssi 0,955^n \pp 0,625 \\
    &\ssi n\ln(0,955) \pp \ln(0,625) \\
    &\ssi n\pg \dfrac{\ln(0,625)}{\ln(0,955)} \end{align*}$
    Or $\dfrac{\ln(0,625)}{\ln(0,955)} \approx 10,2$.
    L’ensemble solution de $T_n\pp 120$ est l’ensemble des entiers naturels supérieurs ou égaux à $11$.
    $\quad$
  3. a. La température au centre du gâteau va décroitre jusqu’à atteindre la température ambiante.
    Il était donc prévisible que $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    b. La fonction $\texttt{temp}$ renvoie le plus petit entier naturel $n$ tel que $T_n\pp x$.
    D’après la question 2.d. la commande $\texttt{temp(120)}$ renvoie $11$.
    Cela signifie que la température au centre du gâteau devient inférieure à $120$ degré Celsius au bout de $11$ minutes.
    $\quad$

Ex 3

Exercice 3

  1. a. $\vect{JK}\begin{pmatrix} -1\\2\\0\end{pmatrix}$ et $\vect{JL}\begin{pmatrix} -4\\-2\\-3\end{pmatrix}$
    Donc
    $\begin{align*} \vect{JK}.\vect{JL}&=-1\times (-4)+2\times (-2)+0\times (-3) \\
    &=4-4\\
    &=0\end{align*}$
    Les vecteurs $\vect{JK}$ et $\vect{JL}$ sont donc orthogonaux. Le triangle $JKL$ est par conséquent rectangle en $J$.
    $\quad$
    b.
    $\begin{align*} JK&=\sqrt{(-1)^2+2^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} JL&=\sqrt{(-4)^2+(-2)^2+(-3)^2} \\
    &=\sqrt{29}\end{align*}$
    L’aire du triangle $JKL$ est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{JK\times JL}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{29}}{2} \\
    &=\dfrac{\sqrt{145}}{2} \text{ cm}^2\end{align*}$
    c. Dans le triangle $JKL$ rectangle en $J$ on a $\tan \widehat{JKL}=\dfrac{JL}{JK}$
    Soit $\tan \widehat{JKL}=\dfrac{\sqrt{29}}{\sqrt{5}}$
    Par conséquent $\widehat{JKL} \approx 67,5$°
    $\quad$
  2. a. D’une part :
    $\begin{align*}\vect{JK}.\vec{n}&=6\times (-1)+3\times 2+0\times (-10) \\
    &=-6+6\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*}\vect{JL}.\vec{n}&=6\times (-4)+3\times (-2)+(-10)\times (-3)
    &=-24-6+30\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteur non colinéaires (puisqu’orthogonaux) du plan $(JKL)$.
    $\vec{n}$ est par conséquent un vecteur normal au plan $(JKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(JKL)$ est donc de la forme $6x+3y-10z+d=0$.
    Le point $J(2;0;1)$ appartient au plan $(JKL)$.
    Par conséquent $12+0-10+d=0 \ssi d=-2$
    Une équation cartésienne du plan $(JKL)$ est $6x+3y-10z-2=0$.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $\Delta$.
    Une représentation paramétrique de $\Delta$ est donc $\begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\end{cases} \qquad ,t\in \R$.
    $\quad$
    b. On résout le système :
    $\begin{align*} \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6x+3y-10z-2=0\end{cases}&\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6(10+6t)+3(9+3t)-10(-6-10t)-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\60+36t+27+9t+60+100t-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\145t+145=0\end{cases}\\
    &\ssi \begin{cases}t=-1\\ x=4\\y=6\\z=4\end{cases}\end{align*}$
    Ainsi $H$ a pour coordonnées $(4;6;4)$.
    $\quad$
    c. $\vect{HT}\begin{pmatrix} 6\\3\\-10\end{pmatrix}$
    Donc
    $\begin{align*} HT&=\sqrt{6^2+3^2+(-10)^2} \\
    &=\sqrt{145}\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\mathscr{A}\times HT \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{145}}{2}\times \sqrt{145}\\
    &=\dfrac{145}{6} \text{ cm}^3\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. Soit $x\in \R$
    $\begin{align*} 1-\dfrac{1-\e^x}{1+\e^x}&=\dfrac{1+\e^x-1+\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{\e^x\left(\e^{-x}+1\right)} \\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Affirmation 1 vraie
    $\quad$
  2. $\quad$
    $\begin{align*} g(x)=\dfrac{1}{2} &\ssi \dfrac{\e^x}{\e^x+1}=\dfrac{1}{2} \\
    &\ssi 2\e^x=\e^x+1 \\
    &\ssi \e^x=1 \\
    &\ssi x=0\end{align*}$
    L’équation $g(x)=\dfrac{1}{2}$ admet une unique solution : $0$.
    Affirmation 2 vraie
    $\quad$
  3. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=2x\e^{-x}-x^2\e^{-x} \\
    &=\left(2x-x^2\right)\e^{-x} \\
    &=x(2-x)\e^{-x}\end{align*}$
    Si l’axe des abscisses est tangent à la courbe $C$ en $A\left(x_A;y_A\right)$ alors $f’\left(x_A\right)=0$.
    Or $f'(x)=0 \ssi x(2-x)=0$ car la fonction exponentielle est strictement positive.
    $x(2-x)=0 \ssi x=0$ ou $x=2$.
    Cependant $f(0)=0$ et $f(2)=4\e^{-2}\neq 0$. Le point de coordonnées $(0;0)$ appartient à l’axe des abscisses mais le point de coordonnées $\left(2;4\e^{-2}\right)$ n’appartient pas à cet axe.
    L’axe des abscisses est tangent à la courbe $C$ qu’en l’origine du repère.
    Affirmation 3 vraie
    $\quad$
  4. La fonction $h$ est deux fois dérivable sur $\R$ en tant que produit de fonctions deux fois dérivables.
    Soit $x\in \R$
    $\begin{align*} h'(x)&=\e^x\left(1-x^2\right)-2x\e^x \\
    &=\e^x\left(-x^2-2x+1\right)\end{align*}$
    $\begin{align*} h\dsec(x)&=\e^x\left(-x^2-2x+1\right)+\e^{-x}(-2x-2)\\
    &=\e^x\left(-x^2-2x+1-2x-2\right) \\
    &=\e^x\left(-x^2-4x-1\right)\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$. Le signe de $h\dsec(x)$ ne dépend donc que de celui de $-x^2-4x-1$.
    Le discriminant de ce polynôme du second degré est $\Delta=12>0$.
    Ainsi l’équation $-x^2-4x-1=0$ admet $2$ solutions distinctes et $h\dsec(x)$ change deux fois de signe en s’annulant.
    La courbe représentative de la fonction $h$ admet donc deux points d’inflexion.
    Affirmation 4 fausse
    $\quad$
  5. Soit $x>0$. $\dfrac{\e^x}{\e^x+x}=\dfrac{1}{1+\dfrac{x}{\e^x}}$
    Or, par croissances comparées $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    Par conséquent $\lim\limits_{x\to +\infty} \dfrac{1}{1+\dfrac{x}{\e^x}}=1$
    Affirmation 5 fausse
    $\quad$
  6. $\quad$
    $\begin{align*} 1+\e^{2x}\pg 2\e^x &\ssi \left(\e^x\right)^2-2\e^x+1 \pg 0\\
    &\ssi \left(\e^x-1\right)^2 \pg 0\end{align*}$
    Cette dernière inégalité est vraie pour tout réel $x$.
    Affirmation 6 vraie
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Chaque chaque jour où il travaille, Paul doit se rendre à la gare pour rejoindre son lieu de travail en train. Pour cela, il prend son vélo deux fois sur trois et, si il ne prend pas son vélo, il prend sa voiture.

  1. lorsqu’il prend son vélo pour rejoindre la gare, Paul ne rate le train qu’une fois sur $50$ alors que, lorsqu’il prend sa voiture pour rejoindre la gare Paul rate son train une fois sur $10$.
    On considère une journée au hasard lors de laquelle Paul sera à la gare pour prendre le train qui le conduira au travail.
    On note :
    • $V$ l’évènement « Paul prend son vélo pour rejoindre la gare »;
    • $R$ l’évènement « Paul rate son train ».
    a. Faire un arbre pondéré résumant la situation.
    $\quad$
    b. Montrer que la probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. Paul a raté son train. Déterminer la valeur exacte de la probabilité qu’il ait pris son vélo pour rejoindre la gare.
    $\quad$
  2. On choisit au hasard un mois pendant lequel Paul s’est rendu $20$ jours à la gare pour rejoindre son lieu de travail selon les modalités décrites en préambule.
    On suppose que, pour chacun de ces $20$ jours, le choix entre le vélo et la voiture est indépendant des choix des autres jours.
    On note $X$ la variable aléatoire donnant le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    a. Déterminer la loi suivie par la variable aléatoire $X$. Préciser ses paramètres.
    $\quad$
    b. Quelle est la probabilité que Paul prenne son vélo exactement 10 jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    c. Quelle est la probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    d. En moyenne, combien de jours sur une période choisie au hasard de $20$ jours pour se rendre à la gare, Paul prend-il son vélo ? On arrondira la réponse à l’entier.
    $\quad$
  3. Dans le cas où Paul se rend à la gare en voiture, on note $T$ la variable aléatoire donnant le temps de trajet nécessaire pour se rendre à la gare. La durée du trajet est donnée en minutes, arrondie à la minute. La loi de probabilité de $T$ est donnée par le tableau ci-dessous :
    $\begin{array}{|l|c|c|c|c|c|c|c|c|c|}
    \hline
    k\text{ (en minutes)}&10&11&12&13&14&15&16&17&18\\
    \hline
    P(T=k)&0,14&0,13&0,13&0,12&0,12&0,11&0,10&0,08&0,07\\
    \hline
    \end{array}$
    Déterminer l’espérance de la variable aléatoire $T$ et interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites

Dans cet exercice, on considère la suite $\left(T_n\right)$ définie par :
$$T_0 = 180 \text{ et, pour tout entier naturel }n,~ T_{n+1} = 0,955T_n +0,9$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$, $T_n \pg 20$.
    $\quad$
    b. Vérifier que pour tout entier naturel $n$, $T_{n+1}-T_n = −0,045\left(T_n-20\right))$. En déduire le sens de
    variation de la suite $\left(T_n\right)$.
    $\quad$
    c. Conclure de ce qui précède que la suite $\left(T_n\right)$ est convergente. Justifier.
    $\quad$
  2. Pour tout entier naturel $n$, on pose : $u_n = T_n-20$.
    a. Montrer que la suite $\left(u_n\right)$ est une suite géométrique dont on précisera la raison.
    $\quad$
    b. En déduire que pour tout entier naturel $n$, $T_n = 20+160\times 0,955^n$.
    $\quad$
    c. Calculer la limite de la suite $\left(T_n\right)$.
    $\quad$
    d. Résoudre l’inéquation $T_n\pp 120$ d’inconnue $n$ entier naturel.
    $\quad$
  3. Dans cette partie, on s’intéresse à l’évolution de la température au centre d’un gâteau après sa sortie du four.
    On considère qu’à la sortie du four, la température au centre du gâteau est de $180$° C et celle de l’air ambiant de $20$° C.
    La loi de refroidissement de Newton permet de modéliser la température au centre du gâteau par la suite précédente $\left(T_n\right)$. Plus précisément, $T_n$ représente la température au centre du gâteau, exprimée en degré Celsius, n minutes après sa sortie du four.
    a. Expliquer pourquoi la limite de la suite $\left(T_n\right)$ déterminée à la question 2. c. était prévisible dans le contexte de l’exercice.
    $\quad$
    b. On considère la fonction Python ci-dessous :
    $$\begin{array}{|l|}
    \hline
    \text{def temp(x):}\\
    \quad \text{T = 180} \\
    \quad \text{n = 0}\\
    \quad \text{while T > x:} \\
    \qquad \text{T = 0.955 * T + 0.9}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner le résultat obtenu en exécutant la commande $\texttt{temp(120)}$.
    Interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Dans l’espace muni d’un repère orthonormé $\Oijk$ d’unité $1$ cm, on considère les points suivants :
$$J(2 ; 0 ; 1),~~ K(1 ; 2 ; 1) \text{ et } L(−2 ; −2 ; −2)$$

  1. a. Montrer que le triangle $JKL$ est rectangle en $J$.
    $\quad$
    b. Calculer la valeur exacte de l’aire du triangle $JKL$ en cm$^2$.
    $\quad$
    c. Déterminer une valeur approchée au dixième près de l’angle géométrique $\widehat{JKL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vec{n}$ de coordonnées$\begin{pmatrix}6\\3\\-10\end{pmatrix}$ est un vecteur normal au plan $(JKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(JKL)$.

$\quad$
Dans la suite, $T$ désigne le point de coordonnées $(10 ; 9 ; −6)$.

  1. a. Déterminer une représentation paramétrique de la droite $\Delta$ orthogonale au plan $(JKL)$ et passant par $T$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $T$ sur le plan $(JKL)$.
    $\quad$
    c. On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{B}\times h \text{où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur correspondante}$$
    Calculer la valeur exacte du volume du tétraèdre $JKLT$ en cm$^3$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonction exponentielle

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Justifier chaque réponse.

  1. Affirmation 1 : Pour tout réel $x$ : $1-\dfrac{1-\e^x}{1+\e^x}=\dfrac{2}{1+\e^{-x}}$.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par $g(x) =
    \dfrac{\e^x}{\e^x+1}$.
    Affirmation 2 : L’équation $g(x) = \dfrac{1}{2}$ admet une unique solution dans $\R$.
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par $f(x) = x^2\e^{-x}$ et on note $\mathscr{C}$ sa courbe dans un repère orthonormé.
    Affirmation 3 : L’axe des abscisses est tangent à la courbe $\mathscr{C}$ en un seul point.
    $\quad$
  4. On considère la fonction $h$ définie sur $\R$ par $h(x)=\e^x\left(1-x^2\right)$.
    Affirmation 4 : Dans le plan muni d’un repère orthonormé, la courbe représentative de la fonction $h$ n’admet pas de point d’inflexion.
    $\quad$
  5. Affirmation 5 : $\lim\limits_{x\to +\infty} \dfrac{\e^x}{\e^x+x}=0$.
    $\quad$
  6. Affirmation 6 : Pour tout réel $x$, $1+\e^{2x}\pg 2\e^x$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 18 mai 2022

Centres étrangers – Liban – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On a
    $\begin{align*} P(J\cap C)&=P(J)\times P_J(C)\\
    &=0,2\times 0,06 \\
    &=0,012\end{align*}$
    $\quad$
  3. $\left(J,\conj{J}\right)$ forme un système complet d’événements.
    D’après la formule des probabilités totales :
    $\begin{align*} P(C)&=P(J\cap C)+P\left(\conj{J}\cap C\right) \\
    &=0,012+P\left(\conj{J}\right)P_{\conj{J}}(C)\\
    &=0,012+0,8\times 0,125 \\
    &=0,112\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_C\left(\conj{J}\right)&=\dfrac{P\left(C\cap \conj{J}\right)}{P(C)} \\
    &=\dfrac{0,8\times 0,125}{0,112} \\
    &\approx 0,893\end{align*}$
    La probabilité que le skieur ait un forfait SÉNIOR sachant qu’il a choisi l’option coupe-file est environ égale à $0,893$.
    $\quad$
  5. Un skieur ayant choisi l’option coupe-file a moins de vingt-cinq ans ou plus de vingt-cinq ans.
    Ainsi :
    $\begin{align*} P_C(J)&=1-P_C\left(\conj{J}\right) \\
    &\approx 0,107\\
    &<0,15\end{align*}$
    L’affirmation est donc vraie.
    $\quad$

Partie B

  1. $X$ suit la loi binomiale de paramètres $n=30$ et $p=0,112$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,112)^{30} \\
    &=1-0,888^{30} \\
    &\approx 0,972\end{align*}$
    La probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,972$.
    $\quad$
  3. On veut calculer :
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,888^{30}+\dbinom{30}{1}0,112^1\times 0,888^{29} \\
    &\approx 0,136\end{align*}$
    La probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,136$.
    $\quad$
  4. L’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=np\\
    &=30\times 0,112 \\
    &=3,36\end{align*}$
    $\quad$

Ex 2

Exercice 2

  1. On appelle $v_n$ le volume d’eau, en litres, contenu dans la bouteille au bout de $n$ heures.
    On a donc, pour tout entier naturel $n$, $v_{n+1}=(1-0,15)v_n$ soit $v_{n+1}=0,85 v_n$.
    $\left(v_n\right)$ est donc une suite géométrique de raison $0,85$ et de premier terme $1$.
    Par conséquent, pour tout entier naturel $n$, $v_n=0,85^n$.
    $\begin{align*} u_n \pp 0,25&\ssi 0,85^n \pp 0,25 \\
    &\ssi n\ln(0,85)\pp \ln(0,25) \\
    &\ssi n\pg \dfrac{\ln(0,25)}{\ln(0,85)} \qquad \text{car } \ln(0,85)<0 \end{align*}$
    Or $\dfrac{\ln(0,25)}{\ln(0,85)}\approx 8,53$.
    C’est donc au bout de $9$ heures que le volume d’eau devient inférieur à un quart de litre.
    Réponse c
    $\quad$
  2. Pour tout $n\in \N$, on pose $P(n):~u_n=6$.
    Initialisation : $u_0=6$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_{n+1}&=\dfrac{1}{2} u_n+3 \\
    &=\dfrac{1}{2}\times 6+3 \\
    &=6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n,~ u_n=6$.
    Réponse d
    $\quad$
  3. Soit $x\in ]0;+\infty[$
    $\begin{align*} f(2x)&=4\ln(3\times 2x) \\
    &=4\left(\ln(2)+\ln(3x)\right) \\
    &=4\ln(2)+4\ln(3x)\\
    &=\ln\left(2^4\right)+f(x)\\
    &=\ln(16)+f(x)\end{align*}$
    Réponse b
    $\quad$
  4. Pour tout réel $x>1$ on a $g(x)=\dfrac{\ln(x)}{x}\times \dfrac{x}{x-1}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$
    D’après la limite du quotient des termes de plus haut degré $\lim\limits_{x\to +\infty} \dfrac{x}{x-1}=\lim\limits_{x\to +\infty} \dfrac{x}{x}=1$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=0$ : $C_g$ admet une asymptote horizontale d’équation $y=0$.
    $\quad$
    $C_g$ ne peut avoir d’asymptote verticale qu’en $1$.
    Pour tout réel $x\in ]1;+\infty[$ on a $g(x)=\dfrac{\ln(x)-\ln(1)}{x-1}$.
    Ainsi $g(x)$ est le taux d’accroissement de la fonction $\ln$ entre $1$ et $x$.
    Donc $\lim\limits_{x\to 1^+} g(x)=\ln'(1)=\dfrac{1}{1}$.
    $C_g$ n’a pas d’asymptote verticale.
    Réponse c
    $\quad$
  5. $h$ est définie sur $]0;2]$. Par conséquent :
    $\begin{align*} h(x)=0&\ssi 1+2\ln(x)=0 \\
    &\ssi 2\ln(x)=-1 \\
    &\ssi \ln(x)=-0,5 \\
    &\ssi x=\e^{-0,5}\end{align*}$
    Or $\e^{-0,5}\in \left[\dfrac{1}{\e};2\right]$.
    Réponse b
    $\quad$
  6. D’une part
    $\begin{align*} h\left(\sqrt{\e}\right)&=\left(\sqrt{\e}\right)^2\left(1+2\ln\left(\sqrt{\e}\right)\right) \\
    &=\e\left(1+2\times \dfrac{1}{2}\ln(\e)\right) \\
    &=2\e\end{align*}$
    D’autre part
    $\begin{align*} h’\left(\sqrt{\e}\right)&=4\left(\sqrt{\e}\right)\left(1+\ln\left(\sqrt{\e}\right)\right) \\
    &=4\sqrt{e}\left(1+\dfrac{1}{2}\right)\\
    &=6\sqrt{\e}\end{align*}$
    Une équation de la tangente à $C_h$ au point d’abscisse $\sqrt{\e}$ est donc $y=6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e$
    Or
    $\begin{align*} 6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e&=6\sqrt{\e}x-6\e+2\e \\
    &=6\sqrt{\e}x-4\e \\
    &=\left(6\e^{1/2}\right).x-4\e\end{align*}$
    Réponse d
    $\quad$
  7. Pour tout réel $x\in ]0;2]$ on a
    $\begin{align*} h\dsec(x)&=4\left(1+\ln(x)\right)+4x\times \dfrac{1}{x} \\
    &=4+4\ln(x)+4 \\
    &=8+4\ln(x)\end{align*}$
    $\begin{align*} h\dsec(x)>0&\ssi 8+4\ln(x)>0 \\
    &\ssi 4\ln(x)>-8 \\
    &\ssi \ln(x)>-2 \\
    &\ssi x>\e^{-2}\end{align*}$.
    On a, de même, $h\dsec(x)=0 \ssi x=\e^{-2}$.
    $\e^{-2}\in ]0;2]$.
    La courbe $C_h$ possède donc un unique point d’inflexion sur $]0;2]$.
    Réponse b
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. a. $\lim\limits_{x\to -\infty} 0,5x-2=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to -\infty} \e^{0,5x-2}=0$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$.
    $\quad$
    b. Pour tout réel $x$ non nul on a
    $\begin{align*} 1+0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right) &=1+x-\e^{-0,5x}\times \e^{-2} \\
    &=f(x)\end{align*}$
    $\lim\limits_{x\to +\infty} 0,5x=+\infty$ et, par croissances comparées, $\lim\limits_{X\to +\infty} \dfrac{\e^X}{X}=+\infty$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^{0,5x}}{0,5x}=+\infty$.
    Par produit des limites, $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a $f'(x)=1-0,5\e^{0,5x-2}$
    $\quad$
    b.
    $\begin{align*} f'(x)<0&\ssi 1-0,5\e^{0,5x-2}<0 \\
    &\ssi -0,5\e^{0,5x-2}<-1 \\
    &\ssi \e^{0,5x-2}>2 \\
    &\ssi 0,5x-2>\ln(2) \\
    &\ssi 0,5x>2+\ln(2) \\
    &\ssi x>4+2\ln(2)\end{align*}$
    Ainsi l’ensemble des solutions de l’inéquation $f'(x)<0$ est bien $\left]4+2\ln(2);+\infty\right[$.
    $\quad$
  3. En raisonnant de la même façon on obtient $f'(x)=0 \ssi x=4+2\ln(2)$.
    On obtient donc le tableau de variations suivant :

    $\begin{align*} f\left(4+2\ln(2)\right)&=1+4+2\ln(2)-\e^{2+\ln(2)-2} \\
    &=5+2\ln(2)-2\\
    &=3+2\ln(2)\end{align*}$
    $\quad$
  4. $4+2\ln(2)>0$.
    La fonction $f$ est donc continue (car dérivable) et strictement croissante sur $[-1;0]$.
    $f(-1)=-\e^{-2,5}<0$ et $f(0)=1-\e^{-2}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet donc une unique solution sur l’intervalle $[-1;0]$.
    $\quad$

Partie B

  1. a. Pour tout entier naturel $n$ on pose $P(n):~u_n\pp u_{n+1} \pp 4$
    Initialisation : $u_0=0$ et $u_1=1-\e^{-2}\approx 0,86$
    Donc $u_0\pp u_1\pp 4$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    La fonction $f$ est strictement croissante sur $\left]-\infty;4+2\ln(2)\right]$ donc sur $[0;4]$.
    $\begin{align*} u_n\pp u_{n+1} \pp 4&\Rightarrow f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(4) \\
    &\Rightarrow u_{n+1}\pp u_{n+2}\pp 5-1\end{align*}$
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n \pp u_{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $4$; elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. $\ell$ est solution de l’équation $x=f(x)$
    $\begin{align*} x=f(x)&\ssi 1+x-\e^{0,5x-2}=x \\
    &\ssi 1-\e^{0,5x-2}=0 \\
    &\ssi \e^{0,5x-2}=1 \\
    &\ssi 0,5x-2=0 \\
    &\ssi 0,5x=2 \\
    &\ssi x=4\end{align*}$
    Ainsi $\ell =4$.
    $\quad$
    b. La fonction $\texttt{valeur}$ renvoie le plus petit entier naturel $n$ tel que $u_n>a$.
    Cela signifie donc le plus petit entier naturel $n$ tel que $u_n>3,99$ est $12$.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a $R(3;2;-1)$ et $\vect{AB}\begin{pmatrix} -4\\4\\0\end{pmatrix}$
    $\quad$
    b. Une équation du plan $\mathscr{P}_1$ est donc de la forme $-4x+4y+d=0$.
    $R(3;2;-1)$ appartient au plan $\mathscr{P}_1$ donc $-12+8+d=0 \ssi d=4$.
    Une équation de $\mathscr{P}_1$ est donc $-4x+4y+4=0$ soit $x-y-1=0$.
    $\quad$
    c. $10-9-1=0$ donc $E(10;9;8)$ appartient à $\mathscr{P}_1$.
    $\vect{EA}\begin{pmatrix} -5\\-9\\-9\end{pmatrix}$ et $\vect{EB}\begin{pmatrix} -9\\-5\\-9\end{pmatrix}$
    $\begin{align*} EA&=\sqrt{(-5)^2+(-9)^2+(-9)^2}\\
    &=\sqrt{25+81+81} \\
    &=\sqrt{187}\end{align*}$
    $\begin{align*} EB&=\sqrt{(-9)^2+(-5)^2+(-9)^2}\\
    &=\sqrt{187}\end{align*}$
    On a donc $EA=EB$.
    $\quad$
  2. a. Un vecteur normal au plan $\mathscr{P}_2$ est $\vec{n}\begin{pmatrix}1\\0\\-1\end{pmatrix}$
    $\vect{AB}$ et $\vec{n}$ ne sont pas colinéaires.
    Les plans $\mathscr{P}_1$ et $\mathscr{P}_2$ sont par conséquent sécants.
    $\quad$
    b. Soit $t\in \R$.
    $\begin{align*} (2+t)-(1+t)-1&=2+t-1-t-1 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_1$.
    $\begin{align*} (2+t)-t-2&=2+t-t-2 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_2$.
    L’intersection de deux plans est une droite.
    Ainsi une représentation paramétrique de $\Delta$ est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$.
    $\quad$
  3. $\quad$
    $\begin{align*} \begin{cases} x=2+t\\y=1+t\\z=t\\y+z-3=0\end{cases} &\ssi  \begin{cases} x=2+t\\y=1+t\\z=t\\1+t+t-3=0\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=1+t\\z=t\\t=1\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=2\\z=1\end{cases}\end{align*}$
    La droite $\Delta$ est sécante au plan $\mathscr{P}_3$ en $\Omega(3;2;1)$.
    $\quad$
  4. a. $\Omega$ appartient au plan médiateur de $[AB]$ donc $\Omega A=\Omega B$.
    $\Omega$ appartient au plan médiateur de $[AC]$ donc $\Omega A=\Omega C$.
    $\Omega$ appartient au plan médiateur de $[AD]$ donc $\Omega A=\Omega D$.
    Ainsi $\Omega A=\Omega B=\Omega C=\Omega D$.
    $\quad$
    b. Les points $A$, $B$, $C$ et $D$ appartiennent donc à la sphère de centre $\Omega$ et de rayon $\Omega A$.
    Or
    $\begin{align*} \Omega A&=\sqrt{(5-3)^2+(0-2)^2+(-1-1)^2} \\
    &=\sqrt{4+4+4} \\
    &=2\sqrt{3}\end{align*}$
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Dans une station de ski, il existe deux types de forfait selon l’âge du skieur :

  • un forfait JUNIOR pour les personnes de moins de vingt-cinq ans ;
  • un forfait SÉNIOR pour les autres.

Par ailleurs, un usager peut choisir, en plus du forfait correspondant à son âge,
l’option coupe-file qui permet d’écourter le temps d’attente aux remontées
mécaniques.

On admet que :

  • $20\%$ des skieurs ont un forfait JUNIOR ;
  • $80\%$ des skieurs ont un forfait SÉNIOR ;
  • parmi les skieurs ayant un forfait JUNIOR, $6\%$ choisissent l’option coupe-file ;
  • parmi les skieurs ayant un forfait SÉNIOR, $12,5\%$ choisissent l’option coupe-file.

On interroge un skieur au hasard et on considère les événements :

  • $J$ : « le skieur a un forfait JUNIOR » ;
  • $C$ : « le skieur choisit l’option coupe-file ».

Les deux parties peuvent être traitées de manière indépendante.

Partie A

  1. Traduire la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité $P(J\cap C)$.
    $\quad$
  3. Démontrer que la probabilité que le skieur choisisse l’option coupe-file
    est égale à $0,112$.
    $\quad$
  4. Le skieur a choisi l’option coupe-file. Quelle est la probabilité qu’il s’agisse d’un skieur ayant un forfait SÉNIOR ? Arrondir le résultat à $10^{-3}$.
    $\quad$
  5. Est-il vrai que les personnes de moins de vingt-cinq ans représentent moins de $15\%$ des skieurs ayant choisi l’option coupe-file ? Expliquer.
    $\quad$

Partie B
On rappelle que la probabilité qu’un skieur choisisse l’option coupe-file est
égale à $0,112$.

On considère un échantillon de $30$ skieurs choisis au hasard.

Soit $X$ la variable aléatoire qui compte le nombre des skieurs de l’échantillon ayant choisi l’option coupe-file.

  1. On admet que la variable aléatoire $X$ suit une loi binomiale.
    Donner les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  3. Calculer la probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  4. Calculer l’espérance mathématique de la variable aléatoire $X$.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites, fonctions, fonction logarithme

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. Un récipient contenant initialement $1$ litre d’eau est laissé au soleil.
    Toutes les heures, le volume d’eau diminue de $15\%$.
    Au bout de quel nombre entier d’heures le volume d’eau devient-il inférieur à un quart de litre ?
    a. $2$ heures
    b. $8$ heures
    c. $9$ heures
    d. $13$ heures
    $\quad$
  2. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_{n+1}=\dfrac{1}{2}u_n+3$ et $u_0=6$. On peut affirmer que :
    a. la suite $\left(u_n\right)$ est strictement croissante.
    b. la suite $\left(u_n\right)$ est strictement décroissante.
    c. la suite $\left(u_n\right)$ n’est pas monotone.
    d. la suite $\left(u_n\right)$ est constante.
    $\quad$
  3. On considère la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=4\ln(3x)$
    Pour tout réel $x$ de l’intervalle $]0;+\infty[$ , on a :
    a. $f(2x)=f(x)+\ln(24)$
    b. $f(2x)=f(x)+\ln(16)$
    c. $f(2x)=\ln(2)+f(x)$
    d. $f(2x)=2f(x)$
    $\quad$
  4. On considère la fonction $g$ définie sur l’intervalle $]1;+\infty[$ par :
    $$g(x)\dfrac{\ln(x)}{x-1}$$
    On note $\mathcal{C}_g$ la courbe représentative de la fonction $g$ dans un repère orthogonal.
    La courbe $\mathcal{C}_g$ admet :
    a. une asymptote verticale et une asymptote horizontale.
    b. une asymptote verticale et aucune asymptote horizontale.
    c. aucune asymptote verticale et une asymptote horizontale.
    d. aucune asymptote verticale et aucune asymptote horizontale.
    $\quad$

Dans la suite de l’exercice, on considère la fonction $h$ définie sur l’intervalle $]0 ; 2]$ par : $$h(x) = x^2\left(1 + 2 \ln(x)\right)$$
On note $\mathcal{C}_h$ la courbe représentative de $h$ dans un repère du plan.
On admet que $h$ est deux fois dérivable sur l’intervalle $]0 ; 2]$.
On note $h’$ sa dérivée et $h\dsec$ sa dérivée seconde.

On admet que, pour tout réel $x$ de l’intervalle $]0 ; 2]$, on a :$$h'(x)=4x\left(1+\ln(x)\right)$$

  1. Sur l’intervalle $\left[\dfrac{1}{\e};2\right]$, la fonction $h$ s’annule :
    a. exactement $0$ fois.
    b. exactement $1$ fois.
    c. exactement $2$ fois.
    d. exactement $3$ fois.
    $\quad$
  2. Une équation de la tangente à $\mathcal{C}_h$ au point d’abscisse $\sqrt{\e}$ est :
    a. $y=\left(6\e^{\frac{1}{2}}\right).x$
    b. $y=\left(6\sqrt{\e}\right).x+2\e$
    c. $y=6\e^{\frac{x}{2}}$
    d. $y=\left(6\e^{\frac{1}{2}}\right).x-4\e$
    $\quad$
  3. Sur l’intervalle $]0 ; 2]$, le nombre de points d’inflexion de la courbe $\mathcal{C}_h$ est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. $3$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : suites, fonctions, fonction exponentielle

Partie A

On considère la fonction $f$ définie pour tout réel $x$ par : $$f(x)=1+x-\e^{0,5x-2}$$
On admet que la fonction $f$ est dérivable sur $\R$. On note $f’$ sa dérivée.

  1. a. Déterminer la limite de la fonction $f$ en $-\infty$.
    $\quad$
    b. Démontrer que, pour tout réel $x$ non nul, $f(x) = 1 + 0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right)$.
    En déduire la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. a. Déterminer $f'(x)$ pour tout réel $x$.
    $\quad$
    b. Démontrer que l’ensemble des solutions de l’inéquation $f'(x)<0$ est
    l’intervalle $]4 + 2\ln(2) ; +\infty[$.
    $\quad$
  3. Déduire des questions précédentes le tableau de variation de la fonction $f$ sur $\R$.
    On fera figurer la valeur exacte de l’image de $4 + 2\ln(2)$ par $f$.
    $\quad$
  4. Montrer que l’équation $f(x) = 0$ admet une unique solution sur l’intervalle $[-1; 0]$.
    $\quad$

Partie B

On considère la suite $\left(u_n\right)$ définie par $u_0=0$ et, pour tout entier naturel $n$ ,
$$u_{n+1}=f\left(u_n\right) \text{ où } f \text{ est la fonction définie à la }\textbf{ partie A.}$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$ , on a : $$u_n\pp u_{n+1}\pp 4$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ converge. On notera $\ell$ la limite.
    $\quad$
  2. a. On rappelle que $\ell$ vérifie la relation $\ell=f(\ell)$.
    Démontrer que $\ell = 4$.
    $\quad$
    b. On considère la fonction $\texttt{valeur}$ écrite ci-dessous dans le langage Python :
    $\begin{array}{|l|}
    \hline
    \text{def valeur(a):}\\
    \quad\text{u=0}\\
    \quad\text{n=0}\\
    \quad\text{while u<=a:}\\
    \qquad\text{u=1+u-exp(0.5*u-2)}\\
    \qquad\text{n=n+1}\\
    \quad\text{return n}\\
    \hline
    \end{array}$
    L’instruction $\texttt{valeur(3.99)}$ renvoie la valeur $12$.
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $\Oijk$.
On considère les points $A(5 ; 0 ; -1)$, $B(1 ; 4 ; -1)$, $C(1 ; 0 ; 3)$, $D(5 ; 4 ; 3)$ et $E(10 ; 9 ; 8)$

  1. a. Soit $R$ le milieu du segment $[AB]$.
    Calculer les coordonnées du point $R$ ainsi que les coordonnées du vecteur $\vect{AB}$.
    $\quad$
    b. Soit $\mathcal{P}_1$ le plan passant par le point $R$ et dont $\vect{AB}$ est un vecteur normal.
    Démontrer qu’une équation cartésienne du plan $\mathcal{P}_1$ est :
    $$x-y-1=0$$
    $\quad$
    c. Démontrer que le point $E$ appartient au plan $\mathcal{P}_1$ et que $EA = EB$.
    $\quad$
  2. On considère le plan $\mathcal{P}_2$ d’équation cartésienne $x-z-2=0$.
    a. Justifier que les plans $\mathcal{P}_1$ et $\mathcal{P}_2$ sont sécants.
    $\quad$
    b. On note $\Delta$ la droite d’intersection de $\mathcal{P}_1$ et $\mathcal{P}_2$ .
    Démontrer qu’une représentation paramétrique de la droite $\Delta$ est :$$\begin{cases} x=2+t\\y=1+t\\z=t\end{cases} \quad (t\in \R)$$
    $\quad$
  3. On considère le plan $\mathcal{P}_3$ d’équation cartésienne $y+z-3=0$.
    Justifier que la droite $\Delta$ est sécante au plan $\mathcal{P}_3$ en un point $\Omega$ dont on déterminera les coordonnées.

Si $S$ et $T$ sont deux points distincts de l’espace, on rappelle que l’ensemble des points $M$ de l’espace tels que $MS = MT$ est un plan, appelé plan médiateur du segment $[ST]$.
On admet que les plans $\mathcal{P}_1$, $\mathcal{P}_2$ et $\mathcal{P}_3$ sont les plans médiateurs respectifs des segments $[AB]$, $[AC]$ et $[AD]$.

  1. a. Justifier que $\Omega A = \Omega B = \Omega C = \Omega D$.
    $\quad$
    b. En déduire que les points $A$, $B$, $C$ et $D$ appartiennent à une même sphère dont on précisera le centre et le rayon.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Métropole – sujet 2 – 12 mai 2022

Métropole – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(M\cap T)&=P(M)\times P_M(T) \\
    &=0,7\times 0,97 \\
    &=0,679\end{align*}$
    La probabilité que le coyote soit malade et que son test soit positif est égale à $0,679$.
    $\quad$
  3. $\left(M,\conj{M}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales :
    $\begin{align*} P(T)&=P(M\cap T)+P\left(\conj{M}\cap T\right)
    &=0,679+P\left(\conj{M}\right)\times P_{\conj{M}}(T)\\
    &=0,679+0,3\times 0,05 \\
    &=0,694\end{align*}$
    La probabilité de $T$ est égale à $0,694$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_T(M)&=\dfrac{P(T\cap M)}{P(T)} \\
    &=\dfrac{0,679}{0,694} \\
    &\approx 0,978\end{align*}$
    La valeur prédictive positive du test est environ égale à $0,978$.
    $\quad$
  5. a. La valeur prédictive négative du test est la probabilité que le coyote ne soit pas malade sachant que son test est négatif.
    On veut calculer :
    $\begin{align*} P_{\conj{T}}\left(\conj{M}\right))&=\dfrac{P\left(\conj{T}\cap \conj{M}\right)}{P\left(\conj{T}\right)} \\
    &=\dfrac{0,3\times 0,95}{1-0,694} \\
    &\approx 0,931 \end{align*}$
    La valeur prédictive négative du test est environ égale à $0,931$.
    $\quad$
    b. La valeur prédictive positive du test est donc supérieure à la valeur prédictive négative du test.
    Il est donc plus probable que le coyote soit malade quand le test est positif qu’il ne soit pas malade quand le test est négatif.
    $\quad$

Partie B

  1. a. On répète $5$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de coyote ayant un test positif.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,694$.
    $\quad$
    b.
    $\begin{align*} P(X=1)&=\dbinom{5}{1}\times 0,694^1 \times (1-0,694)^{5-1} \\
    &\approx 0,03\end{align*}$.
    La probabilité que dans cet échantillon de cinq coyote capturés au hasard, un seul ait un test positif est environ égale à $0,03$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 4)&=P(X=4)+P(X=5) \\
    &=\dbinom{5}{4}\times 0,694^4 \times (1-0,694)^{1}+\dbinom{5}{5}\times 0,694^5 \\
    &\approx 0,516\\
    &>0,5\end{align*}$
    L’affirmation est donc vraie.
    $\quad$
  2. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. La variable aléatoire $Y$ compte le nombre de coyote ayant un test positif.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,694$.
    $\begin{align*} P(Y\pg 1)>0,99&\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01 \\
    &\ssi (1-0,694)^n<0,01 \\
    &\ssi 0,306^n <0,01 \\
    &\ssi n\ln(0,306)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,306)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,306)} \approx 3,89$
    Il faut donc capturer au moins $4$ coyotes pour que la probabilité qu’au moins l’un d’entre eux présente un test positif soit supérieur à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. La fonction $f’$ semble donc strictement positive sur $\left]-\infty;-\dfrac{1}{2}\right[$ et strictement négative sur $\left]-\dfrac{1}{2};+\infty\right[$.
    $f$ présente donc un maximum en $-\dfrac{1}{2}$.
    Réponse B
    $\quad$
  2. La fonction $f’$ semble strictement croissante sur $\left]-\infty;-\dfrac{3}{2}\right]$ et strictement décroissante sur $\left[-\dfrac{3}{2};+\infty\right[$.
    Par conséquent $f$ est convexe sur $\left]-\infty;-\dfrac{3}{2}\right]$.
    Réponse A
    $\quad$
  3. La fonction $f’$ semble strictement croissante sur $\left]-\infty;-\dfrac{3}{2}\right]$ et strictement décroissante sur $\left[-\dfrac{3}{2};+\infty\right[$.
    Par conséquent $f\dsec(x)>0$ sur $\left]-\infty;-\dfrac{3}{2}\right[$, $f\dsec{x)}<0$ sur $\left[-\dfrac{3}{2};+\infty\right[$ et $f\dsec(x)\left(-\dfrac{3}{2}\right)=0$.
    Réponse C
    $\quad$
  4. Si la suite $\left(v_n\right)$ est croissante alors, pour tout entier naturel $n$, on a :
    $u_0\pp v_0 \pp v_1 \pp \ldots \pp v_n$.
    Ainsi, la suite $\left(v_n\right)$ est minorée par $u_0$.
    Réponse B
    $\quad$
  5. Pour tout entier naturel $n$ non nul on a $u_n\pp u_{n+1}$ : la suite $\left(u_n\right)$ est donc croissante.
    Pour tout entier naturel non nul on a $\dfrac{1}{n}\pp 1$.
    Donc, pour tout entier naturel $n$ non nul on a $u_n\pp u_{n+1} \pp \dfrac{1}{n}\pp 1$.
    La suite $\left(u_n\right)$ est donc croissante et majorée par $1$.
    Par conséquent elle converge.
    Réponse B
    $\quad$
  6. Pour tout entier naturel $n$ on a $n<u_n<n+1$ donc $n+1<u_{n+1}<n+2$
    Par conséquent $n<u_n<n+1<u_{n+1}$.
    La suite $\left(u_n\right)$ est croissante.
    Réponse B
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $E$ a pour coordonnées $(0;0;1)$.
    $F$ a pour coordonnées $(1;0;1)$.
    $G$ a pour coordonnées $(1;1;1)$.
    $K$ a pour coordonnées $\left(1;\dfrac{1}{2};0\right)$.
    $\quad$
  2. $\vect{EG}\begin{pmatrix}1\\1\\0\end{pmatrix}$ donc
    $\begin{align*} \vect{EG}.\vec{n}&=1\times 2+1\times (-2)+0\times 1\\
    &=0\end{align*}$
    $\vect{EK}\begin{pmatrix}1\\\dfrac{1}{2}\\-1\end{pmatrix}$ donc
    $\begin{align*} \vect{EG}.\vec{n}&=1\times 2+\dfrac{1}{2}\times (-2)+(-1)\times 1\\
    &=0\end{align*}$
    Les vecteurs $\vect{EG}$ et $\vect{EK}$ ne sont pas colinéaires car une coordonnées de $\vect{EG}$ est nulle et ce n’est pas le cas pour $\vect{EK}$.
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(EGK)$.
    $\vec{n}\begin{pmatrix} 2\\-2\\1\end{pmatrix}$  est orthogonal au plan $(EGK)$.
    $\quad$
  3. Une équation cartésienne du plan $(EGK)$ est donc de la forme : $2x-2y+z+d=0$
    Or $E(0;0;1)$ appartient à ce plan.
    Donc $0-0+1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(EGK)$ est $2x-2y+z-1=0$.
    $\quad$
  4. $\vec{n}$ est un vecteur directeur de cette droite.
    Ainsi une représentation paramétrique de $(d)$ est $\begin{cases} x=1+2t\\y=-2t\\z=1+t\end{cases} \quad ,t\in \R$
    $\quad$
  5. $2\times \dfrac{5}{9}-2\times \dfrac{4}{9}+\dfrac{7}{9}-1=\dfrac{9}{9}-1=0$ : le point de coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$ appartient au plan $(EGK)$.
    Prenons $t=-\dfrac{2}{9}$ dans la représentation paramétrique de $(d)$.
    On obtient $x=\dfrac{5}{9}$, $y=\dfrac{4}{9}$ et $z=\dfrac{7}{9}$.
    Le point de coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$ appartient à la droite $(d)$.
    Donc $L$ a pour coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$.
    $\quad$
  6. $\vect{LF}\begin{pmatrix} \dfrac{4}{9}\\-\dfrac{4}{9}\\\dfrac{2}{9} \end{pmatrix}$
    $\begin{align*} LF&=\sqrt{\left(\dfrac{4}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2+\left(\dfrac{2}{9}\right)^2} \\
    &=\sqrt{\dfrac{16}{81}+\dfrac{16}{81}+\dfrac{4}{81}}\\
    &=\sqrt{\dfrac{36}{81}}\\
    &=\dfrac{6}{9} \\
    &=\dfrac{2}{3}\end{align*}$
    $\quad$
  7. Le triangle $EFG$ est rectangle en $F$.
    Son aire est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{EF\times FG}{2}\\
    &=\dfrac{1\times 1}{2}\\
    &=\dfrac{1}{2}\end{align*}$
    $\quad$
    Le volume du tétraèdre $EFGK$ est donc :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times BF\times \mathscr{A}  \qquad (*)\\
    &=\dfrac{1}{3} \times 1 \times \dfrac{1}{2} \\
    &=\dfrac{1}{6}\end{align*}$
    $(*)$ : la hauteur du tétraèdre issue de $K$ a une longueur égale à $BF$.
    $\quad$
  8. On appelle $\mathscr{B}$ l’aire du triangle $EGK$.
    On a donc également
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times LF\times \mathscr{B} &\ssi \dfrac{1}{6}=\dfrac{1}{3}\times \dfrac{2}{3}\times \mathscr{B}\\
    &\ssi \dfrac{1}{6}=\dfrac{2}{9}\times \mathscr{B} \\
    &\ssi \mathscr{B}=\dfrac{3}{4}\end{align*}$
    $\quad$
  9. En appliquant le théorème des milieux (ou la réciproque du théorème de Thalès suivi du théorème de Thalès) on montre que les longueurs des côtés du triangle $PMN$ sont égales à la moitié des longueurs des côtés du triangle $EGK$.
    Le triangle $PMN$ est donc une réduction du triangle $EGK$ de rapport $\dfrac{1}{2}$.
    Ainsi l’aire du triangle $PMN$ est
    $\begin{align*} \mathscr{B}’&=\left(\dfrac{1}{2}\right)^2\times \mathscr{B} \\
    &=\dfrac{1}{4}\times \dfrac{3}{4} \\
    &=\dfrac{3}{16}\end{align*}$
    Le volume du tetraèdre $FPMN$ est donc :
    $\begin{align*} \mathscr{V}’&=\dfrac{1}{3}\times LF\times \mathscr{B}’ \\
    &=\dfrac{1}{3}\times \dfrac{2}{3}\times \dfrac{3}{16} \\
    &=\dfrac{1}{24}\end{align*}$
    Remarque 1: Le triangle $PMN$ est inclus dans le plan $(EGK)$. La hauteur du tétraèdre $FPMN$ est donc la même que celle du tétraèdre $EFGK$.
    Remarque 2 : La rédaction du théorème des milieux est un peu rapide ici. Il faudrait, en toute rigueur, proposer une démarche plus détaillée mais je ne suis pas certain que ce soit réellement un attendu du sujet.
    $\quad$

Ex 4

Exercice 4

Partie A : études de deux fonctions

  1. a. D’après la limite des termes de plus haut degré $\lim\limits_{x\to +\infty} -x^2+13,7x=\lim\limits_{x\to +\infty} -x^2=-\infty$ donc $\lim\limits_{x\to +\infty} -f(x)=-\infty$
    $\quad$
    b. $f$ est une fonction polynôme du second degré dont le coefficient principal est $a=-0,06<0$.
    Elle atteint donc son maximum en $-\dfrac{b}{2a}=\dfrac{13,7}{2}=6,85$.
    La fonction $f$ est donc strictement croissante sur $[0;6,85]$ et strictement décroissante sur $[6,85;+\infty[$.
    $\quad$
    c.
    $\begin{align*} f(x)=0&\ssi 0,06\left(-x^2+13,7x\right)=0 \\
    &\ssi -x^2+13,7x=0 \\
    &\ssi x(-x+13,7)=0 \\
    &\ssi x=0 \text{ ou } -x+13,7=0\\
    &\ssi x=0 \text{ ou } x=13,7\end{align*}$
    Les solutions de l’équation $f(x)=0$ sont donc $0$ et $13,7$.
    $\quad$
  2. a. $\lim\limits_{x\to +\infty} 0,2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to +\infty} \e^{0,2x}=+\infty$
    $\lim\limits_{x\to +\infty} -0,15x+2,2=-\infty$
    Donc par produit $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
    b. Pour tout réel $x\in [0;+\infty[$
    $\begin{align*} g'(x)&=-0,15\e^{0,2x}+(-0,15x+2,2)\times 0,2\e^{0,2x} \\
    &=(-0,15-0,03x+0,44)\e^{0,2x} \\
    &=(-0,03x+0,29)\e^{0,2x}\end{align*}$
    $\quad$
    c. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $g'(x)$ ne dépend donc que de celui de $-0,03x+0,29$.
    $-0,03x+0,29=0 \ssi x=\dfrac{29}{3}$
    $-0,03x+0,29>0 \ssi -0,03x>-0,29 \ssi x<\dfrac{29}{3}$
    On obtient donc le tableau de variations suivant :
    $\quad$
    où $\alpha \approx 2,98$.
    $\quad$
    d. La fonction $g$ est strictement croissante sur $\left[0;\dfrac{29}{3}\right]$ et $g(0)=0$.
    L’équation $g(x)=0$ n’admet donc pas de solution non nulle sur cet intervalle.
    $\quad$
    La fonction $f$ est dérivable donc continue et strictement décroissante sur $\left[\dfrac{29}{3};+\infty\right[$.
    De plus $g\left(\dfrac{29}{3}\right)>0$ et $\lim\limits_{x\to +\infty} g(x)=-\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution sur $\left[\dfrac{29}{3};+\infty\right[$.
    $\quad$
    L’équation $g(x)=0$ admet donc une unique solution non nulle sur $[0;+\infty[$ dont une valeur approchée est, d’après la calculatrice, $13,72$.
    $\quad$

Partie B : trajectoires d’une balle de golf

  1. a. On a $f(6,85)\approx 2,815$
    La hauteur maximale atteinte par la balle est donc environ égale à $28,15$ yards.
    $\quad$
    b. Pour tout réel $x$ strictement positif on a $f'(x)=0,06(-2x+13,7)$
    Donc $f'(0)=0,06\times 13,7=0,822$.
    $\quad$
    c. $f'(0)$ est le coefficient directeur de la tangente à la courbe $C_f$ au point d’abscisse $0$.
    Ainsi $\tan(d)=0,822$. Donc $d\approx 39,4$°.
    L’angle de décollage de la balle est donc environ égal à $39,4$°.
    $\quad$
    d. La courbe $C_f$ est symétrique par rapport à la droite d’équation $x=6,85$. Donc les angles de décollage et d’atterrissage de la balle sont égaux.
    $\quad$
  2. a. $g$ atteint son maximum pour $x=\dfrac{29}{3}$ et $\alpha \approx 2,98$.
    La hauteur maximale de balle est donc environ égale à $29,8$ yards.
    $\quad$
    b. On a $g'(0)=0,29$ donc $\tan(d)=0,29$ et $d\approx 16,2$°.
    L’angle de décollage de la balle est donc environ égal à $16,2$°.
    $\quad$
    c. On a $g'(13,7)\approx -1,87$ donc $\tan(a)\approx 1,87$ et $a\approx 62$°
    L’angle d’atterrissage de la balle est donc environ égal à $62$°.
    $\quad$

Partie C

Aucun des deux modèles ne semble estimer correctement les angles de décollage.

Le second modèle semble mieux estimer la hauteur maximale.

Le second modèle semble mieux estimer l’angle d’atterrissage.

Les deux modèle estiment correctement la distance au point de chute.

Le second modèle semble par conséquent le plus adapté pour décrire la frappe de la balle par un joueur professionnel.

$\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Le coyote est un animal sauvage proche du loup, qui vit en Amérique du Nord.
Dans l’état d’Oklahoma, aux États-Unis, $70 \%$ des coyotes sont touchés par une maladie appelée ehrlichiose.

Il existe un test aidant à la détection de cette maladie. Lorsque ce test est appliqué à un coyote, son résultat est soit positif, soit négatif, et on sait que:

  • Si le coyote est malade, le test est positif dans $97 \%$ des cas.
  • Si le coyote n’est pas malade, le test est négatif dans $95\%$ des cas.

Partie A

Des vétérinaires capturent un coyote d’Oklahoma au hasard et lui font subir un test pour l’ehrlichiose.
On considère les événements suivants :

  • $M$ : « le coyote est malade » ;
  • $T$ : « le test du coyote est positif ».

On note $\conj{M}$ et $\conj{T}$ respectivement les événements contraires de $M$ et $T$.

  1. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation.
    $\quad$
  2. Déterminer la probabilité que le coyote soit malade et que son test soit positif.
    $\quad$
  3. Démontrer que la probabilité de $T$ est égale à $0,694$.
    $\quad$
  4. On appelle « valeur prédictive positive du test » la probabilité que le coyote soit effectivement malade sachant que son test est positif.
    Calculer la valeur prédictive positive du test. On arrondira le résultat au millième.
    $\quad$
  5. a. Par analogie avec la question précédente, proposer une définition de la « valeur prédictive négative du test », et calculer cette valeur en arrondissant au millième.
    $\quad$
    b. Comparer les valeurs prédictives positive et négative du test, et interpréter.
    $\quad$

Partie B

On rappelle que la probabilité qu’un coyote capturé au hasard présente un test positif est de $0,694$.

  1. Lorsqu’on capture au hasard cinq coyotes, on assimile ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire qui à un échantillon de cinq coyotes capturés au hasard associe le nombre de coyotes dans cet échantillon ayant un test positif.
    a. Quelle est la loi de probabilité suivie par $X$ ? Justifier et préciser ses paramètres.
    $\quad$
    b. Calculer la probabilité que dans un échantillon de cinq coyotes capturés au hasard, un seul ait un test positif. On arrondira le résultat au centième.
    $\quad$
    c. Un vétérinaire affirme qu’il y a plus d’une chance sur deux qu’au moins quatre coyotes sur cinq aient un test positif : cette affirmation est-elle vraie ? Justifier la réponse.
    $\quad$
  2. Pour tester des médicaments, les vétérinaires ont besoin de disposer d’un coyote présentant un test positif. Combien doivent-ils capturer de coyotes pour que la probabilité qu’au moins l’un d’entre eux présente un test positif soit supérieure à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thèmes : fonctions numériques et suites

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

Pour les questions 1 à 3 ci-dessous, on considère une fonction $f$ définie et deux fois dérivable sur $\R$.
La courbe de sa fonction dérivée $f’$ est donnée ci-dessous.
On admet que $f’$ admet un maximum en $-\dfrac{3}{2}$ et que sa courbe coupe l’axe des abscisses au point de coordonnées $\left(-\dfrac{1}{2};0\right)$.

Question 1 :
a.
La fonction $f$ admet un maximum en $-\dfrac{3}{2}$;
b. La fonction $f$ admet un maximum en $-\dfrac{1}{2}$;
c. La fonction $f$ admet un minimum en $-\dfrac{1}{2}$;
d. Au point d’abscisse $-1$, la courbe de la fonction $f$ admet une tangente horizontale.
$\quad$

Question 2 :
a.
La fonction $f$ est convexe sur $\left]-\infty;-\dfrac{3}{2}\right[$;
b. La fonction $f$ est convexe sur $\left]-\infty;-\dfrac{1}{2}\right[$;
c. La courbe $C_f$ représentant la fonction $f$ n’admet pas de point d’inflexion;
d. La fonction $f$ est concave sur $\left]-\infty;-\dfrac{1}{2}\right[$.
$\quad$

Question 3 :
La dérivée seconde $f\dsec$ de la fonction $f$ vérifie :
a. $f\dsec(x)\pg 0$ pour $x\in \left]-\infty;-\dfrac{1}{2}\right[$;
b. $f\dsec(x)\pg 0$ pour $x\in [-2;-1]$;
c. $f\dsec\left(-\dfrac{3}{2}\right)=0$;
d. $f\dsec(-3)=0$.
$\quad$

Question 4 : On considère trois suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$.
On sait que, pour tout entier naturel $n$, on a $u_n \pp v_n \pp w_n$ et de plus : $\lim\limits_{n\to +\infty} u_n=1$ et $\lim\limits_{n\to +\infty} w_n=3$.
On peut alors affirmer que :
a. La suite $\left(v_n\right)$ converge;
b. Si la suite $\left(u_n\right)$ est croissante alors la suite $\left(v_n\right)$ est minorée par $u_0$;
c. $1\pp v_0\pp 3$;
d. La suite $\left(v_n\right)$ diverge.
$\quad$

Question 5 :
On considère une suite $\left(u_n\right)$ telle que, pour tout entier naturel $n$ non nul : $u_n \pp u_{n+1} \pp \dfrac{1}{n}$.
On peut alors affirmer que :
a. La suite $\left(u_n\right)$ diverge;
b. La suite $\left(u_n\right)$ converge;
c. $\lim\limits_{n\to +\infty} u_n=0$;
d. $\lim\limits_{n\to +\infty} u_n=1$;
$\quad$

Question 6 :
On considère $\left(u_n\right)$ une suite réelle telle que pour tout entier naturel $n$, on a $n<u_n<n+1$.
On peut affirmer que :
a. Il existe un entier naturel $N$ tel que $u_N$ est un entier;
b. La suite $\left(u_n\right)$ est croissante;
c. La suite $\left(u_n\right)$ est convergente;
d. La suite $\left(u_n\right)$ n’a pas de limite.
$\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

On considère un cube $ABCDEFGH$ et on appelle $K$ le milieu su segment $[BC]$.
On se place dans le repère $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$ et on considère le tétraèdre $EFGK$.

On rappelle que le volume d’un tétraèdre est donné par : $$V=\dfrac{1}{3}\times \mathscr{B}\times h$$
où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.

  1. Préciser les coordonnées des points $E$, $F$, $G$ et $K$.
    $\quad$
  2. Montrer que le vecteur $\vec{n}\begin{pmatrix}2\\-2\\1\end{pmatrix}$ est orthogonal au plan $(EGK)$.
    $\quad$
  3. Démontrer que le plan $(EGK)$ admet pour équation cartésienne : $2x-2y+z-1=0$.
    $\quad$
  4. Déterminer une représentation paramétrique de la droite $(d)$ orthogonale au plan $(EGK)$ passant par $F$.
    $\quad$
  5. Montrer que le projeté orthogonal $L$ de $F$ sur le plan $(EGK)$ a pour coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$.
    $\quad$
  6. Justifier que la longueur $LF$ est égale à $\dfrac{2}{3}$.
    $\quad$
  7. Calculer l’aire du triangle $EFG$. En déduire que le volume du tétraèdre $EFGK$ est égal à $\dfrac{1}{6}$.
    $\quad$
  8. Déduire des questions précédentes l’aire du triangle $EGK$.
    $\quad$
  9. On considère les points $P$ milieu du segment $[EG]$, $M$ milieu du segment $[EK]$ et $N$ milieu du segment $[GK]$. Déterminer le volume du tétraèdre $FPMN$.
    $\quad$

$\quad$

Exercice 4     7 points

Thèmes : fonctions numériques, fonction exponentielle

Partie A : étude de deux fonctions

On considère les deux fonctions $f$ et $g$ définies sur l’intervalle $[0;+\infty[$ par : $$f(x)=0,06\left(-x^2+13,7x\right) \text{ et } g(x)=(-0,15x+2,2)\e^{0,2x}-2,2.$$
On admet que les fonctions $f$ et $g$ sont dérivables et on note $f’$ et $g’$ leurs fonctions dérivées respectives.

  1. On donne le tableau de variations complet de la fonction $f$ sur l’intervalle $[0;+\infty[$.
    a. Justifier la limite de $f$ en $+\infty$.
    $\quad$
    b. Justifier les variations de la fonction $f$.
    $\quad$
    c. Résoudre l’équation $f(x)=0$.
    $\quad$
  2. a. Déterminer la limite de $g$ en $+\infty$.
    $\quad$
    b. Démontrer que, pour tout réel $x$ appartenant à $[0;+\infty[$ on a : $g'(x)=(-0,03x+0,29)\e^{0,2x}$.
    $\quad$
    c. Étudier les variations de la fonction ? et dresser son tableau de variations sur $[0;+\infty[$.
    Préciser une valeur approchée à $10^{-2}$ près du maximum de $g$.
    $\quad$
    d. Montrer que l’équation $g(x)=0$ admet une unique solution non nulle et déterminer, à $10^{-2}$ près, une valeur approchée de cette solution.
    $\quad$

Partie B : trajectoires d’une balle de golf

Pour frapper la balle, un joueur de golf utilise un instrument appelé « club » de golf.
On souhaite exploiter les fonctions $f$ et $g$ étudiées en Partie A pour modéliser de deux façons différentes la trajectoire d’une balle de golf. On suppose que le terrain est parfaitement plat.

On admettra ici que $13,7$ est la valeur qui annule la fonction $f$ et une approximation de la valeur qui annule la fonction $g$.
On donne ci-dessous les représentations graphiques de  $f$ et $g$ sur l’intervalle $[0; 13,7]$.

Pour $x$ représentant la distance horizontale parcourue par la balle en dizaine de yards après la frappe, (avec $0\pp x\pp 13,7$), $f(x)$ (ou $g(x)$ selon le modèle) représente la hauteur correspondante de la balle par rapport au sol, en dizaine de yards ($1$ yard correspond à environ $0,914$ mètre).

On appelle « angle de décollage » de la balle, l’angle entre l’axe des abscisses et la tangente à la courbe ($C_f$ ou $C_g$ selon le modèle) en son point d’abscisse $0$. Une mesure de l’angle de décollage de la balle est un nombre réel $d$ tel que $\tan(d)$ est égal au coefficient directeur de cette tangente.
De même, on appelle « angle d’atterrissage » de la balle, l’angle entre l’axe des abscisses et la tangente à la courbe ($C_f$ ou $C_g$ selon le modèle) en son point d’abscisse $13,7$. Une mesure de l’angle d’atterrissage de la balle est un nombre réel $a$ tel que $\tan(a)$ est égal à l’opposé du coefficient directeur de cette tangente.
Tous les angles sont mesurés en degré.

  1. Première modélisation : on rappelle qu’ici, l’unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $f(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    a. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    $\quad$
    b. Vérifier que $f'(0) = 0,822$.
    $\quad$
    c. Donner une mesure en degré de l’angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    $\quad$
    d. Quelle propriété graphique de la courbe $C_f$ permet de justifier que les angles de décollage et d’atterrissage de la balle sont égaux ?
    $\quad$
  2. Seconde modélisation : on rappelle qu’ici, l’unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $g(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    a. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    On précise que $g'(0) = 0,29$ et $g'(13,7)\approx −1,87$.
    $\quad$
    b. Donner une mesure en degré de l’angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    $\quad$
    c. Justifier que $62$ est une valeur approchée, arrondie à l’unité près, d’une mesure en degré de l’angle d’atterrissage de la balle.
    $\quad$

Tableau : extrait d’une feuille de calcul donnant une mesure en degré d’un angle quand on connait sa tangente :

$\quad$

Partie C : interrogation des modèles

À partir d’un grand nombre d’observations des performances de joueurs professionnels, on a obtenu les résultats moyens suivants :

$\begin{array}{|c|c|c|c|}
\hline
\text{Angle de décollage en}&\text{Hauteur maximale en}&\text{Angle d’atterrissage en}&\text{Distance horizontale}\\
\text{degré}&\text{yard}&\text{degré}&\text{en yard au point de}\\
&&&\text{chute}\\
\hline
\boldsymbol{24}&\boldsymbol{32}&\boldsymbol{52}&\boldsymbol{137}\\
\hline
\end{array}$

Quel modèle, parmi les deux étudiés précédemment, semble le plus adapté pour décrire la frappe de la balle par un joueur professionnel? La réponse sera justifiée.

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 11 mai 2022

Centres étrangers – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $\quad$
    $\begin{align*} f(x)=2~022 &\ssi \ln\left(1+x^2\right)=2~022\\
    &\ssi 1+x^2=\e^{2~022} \\
    &\ssi x^2=\e^{2~022}-1 \end{align*}$
    Or $\e^{2~022}-1>0$
    Les solutions de l’équation $x^2=\e^{2~022}-1$ sont donc $\sqrt{\e^{2~022}-1}$ et $-\sqrt{\e^{2~022}-1}$.
    Réponse C
    $\quad$
  2. La fonction $g$ dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g'(x)&=\ln(x)+x\times \dfrac{1}{x}-2x \\
    &=\ln(x)+1-2x\end{align*}$
    La fonction $g’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g\dsec(x)&=\dfrac{1}{x}-2 \\
    &=\dfrac{1-2x}{x}\end{align*}$
    Sur $]0;+\infty[$, $g\dsec(x)$ ne dépend que du signe de $1-2x$.
    Or $1-2x>0\ssi -2x>-1 \ssi x<\dfrac{1}{2}$ et $1-2x=0 \ssi x=\dfrac{1}{2}$.
    Ainsi $g\dsec(x)$ s’annule en changeant de signes qu’une seule fois pour $x=\dfrac{1}{2}$.
    La courbe $C_g$ admet donc exactement un point d’inflexion sur $]0;+\infty[$.
    Réponse C
    $\quad$
  3. Pour tout réel $x\in ]-1;1[$ on a $f(x)=-\dfrac{1}{2}\times \dfrac{-2x}{1-x^2}$
    On reconnaît une dérivée de la forme $\dfrac{u’}{u}$ dont une primitive est $\ln(u)$ avec $u(x)=1-x^2$.
    Une primitive de $f$ est donc la fonction $g$ définie sur $]-1;1[$ par $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$.
    Réponse A
    $\quad$
  4. La fonction $\ln$ est définie sur $]0;+\infty[$.
    $-x^2-x+6$ a pour discriminant $\Delta = 25>0$.
    Les solutions de l’équation $-x^2-x+6=0$ sont $x_1=2$ et $x_2=-3$.
    Le coefficient principal est $a=-1<0$.
    Ainsi $-x^2-x+6>0$ sur $]-3;2[$.
    Réponse A
    $\quad$
  5. La fonction $f$ est dérivable sur $]0,5;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout réel $x\in ]0,5;+\infty[$ on a $f'(x)=-2x-4+\dfrac{6}{2x-1}$
    Par conséquent $f'(1)=4$ et $f(1)=-3$.
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est $y=4(x-1)-3$ soit $y=4x-7$.
    Réponse A
    $\quad$
    Remarque : On pouvait se contenter de calculer $f'(1)$ car tous les coefficients directeurs fournis sont différents les uns des autres. Le reste du calcul permet de vérifier que l’ordonnée à l’origine est bien égale à ce qui est proposé.
     $\quad$
  6. $x+3>0\ssi x>-3$ et $x+1>0\ssi x>-1$.
    L’inégalité n’est donc définie que sur $]-1;+\infty[$.
    $\begin{align*} \ln(x+3)<2\ln(x+1)&\Rightarrow \ln(x+3) <\ln\left((x+1)^2\right) \\
    &\Rightarrow x+3<(x+1)^2 \\
    &\Rightarrow x+3<x^2+2x+1\\
    &\Rightarrow x^2+x-2>0\end{align*}$
    Le discriminant est $\Delta=9>0$.
    Les solutions de $x^2+x-2=0$ sont donc $-2$ et $1$.
    Le coefficient principal est $a=1>0$ donc $x^2+x-2>0$ sur $]-\infty;-2[\cup]1;+\infty[$.
    Ainsi
    $\begin{align*} \mathscr{S}&=]-1;+\infty[ \cap \left(]-\infty;-2[\cup]1;+\infty[\right) \\
    &=]1;+\infty[\end{align*}$
    Réponse B
    $\quad$

Ex 2

Exercice 2

  1. Calcul d’un angle
    a.
    On a $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    $\dfrac{-3}{-2}=1,5$ et $\dfrac{-1}{2}=-0,5$. Or $1,5\neq -0,5$.
    Les deux vecteurs ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b.
    $\begin{align*} AB&=\sqrt{(-2)^2+2^2+(-2)^2} \\
    &=\sqrt{12} \\
    &=2\sqrt{3}\end{align*}$
    $\begin{align*} AC&=\sqrt{(-3)^2+(-1)^2+(-1)^2} \\
    &=\sqrt{11}\end{align*}$
    $\quad$
    c.
    $\begin{align*} \vect{AB}.\vect{AC}&=-2\times (-3)+2\times (-1)+(-2)\times (-1) \\
    &=6\end{align*}$
    $\quad$
    $\begin{align*} \vect{AB}.\vect{AC}=AB\times AC\times \cos\left(\widehat{BAC}\right) &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{\vect{AB}.\vect{AC}}{AB\times AC} \\
    &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{6}{2\sqrt{3}\times \sqrt{11}} \\
    &=\dfrac{3}{\sqrt{33}}\end{align*}$
    Par conséquent $\widehat{BAC}\approx 58,5$°
    $\quad$
  2. Calcul d’une aire
    a.
    $\vect{AB}$ est donc un vecteur normal au plan $P$
    Une équation de $P$ est donc de la forme $-2x+2y-2z+d=0$.
    $C(-1;-1;2)$ appartient à $P$. Donc $2-2-4+d=0 \ssi d=4$.
    Une équation cartésienne de $P$ est $-2x+2y-2z+4=0$ ou encore $-x+y-z+2=0$.
    $\quad$
    b. Une représentation paramétrique de la droite $(AB)$ est $\begin{cases} x=2-2t\\y=2t\\z=3-2t\end{cases}$.
    $\quad$
    c.
    $\begin{align*}\begin{cases} x=2-2t\\y=2t\\z=3-2t\\-x+y-z+2=0\end{cases} &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-(2-2t)+2t-(3-2t)+2=0\end{cases} \\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-2+2t+2t-3+2t+2=0\end{cases}\\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\6t =3\end{cases}\\
    &\ssi \begin{cases} x=\dfrac{1}{2}\\x=1\\y=1\\z=2\end{cases}\end{align*}$
    Le point $E$ a donc pour coordonnées $(1;1;2)$.
    $\quad$
    d. L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{1}{2}\times AB\times AC\times \sin\left(\widehat{ABC}\right) \\
    &=\dfrac{1}{2}\times 2\sqrt{3}\times \sqrt{11}\times \sin\left(\widehat{ABC}\right) \\
    &=\sqrt{33}\times \sin\left(\widehat{ABC}\right)\\
    &=2\sqrt{6}\\
    &\approx 4,899\end{align*}$
    $\quad$
    Remarque : Pour calculer la valeur exacte de $\sin\left(\widehat{ABC}\right)$ on peut utiliser la propriété suivante : pour tout réel $x$, $\sin^2x+\cos^2 x=1$, connaissant la valeur de $\cos\left(\widehat{ABC}\right)=\dfrac{3}{\sqrt{33}}$
    On a donc $\sin^2\left(\widehat{ABC}\right)+\dfrac{9}{33}=1$ soit $\sin^2\left(\widehat{ABC}\right)=\dfrac{8}{11}$.
    Or $\sin\left(\widehat{ABC}\right)>0$ (sinon l’aire est négative!) donc $\sin\left(\widehat{ABC}\right)=\dfrac{2\sqrt{2}}{\sqrt{11}}$
    $\quad$
  3. Calcul d’un volume
    a.
    $\vect{AF}(-1;-1;0)$ or $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    Par conséquent (après résolution d’un système éventuellement) $\vect{AF}=-\dfrac{1}{4}\vect{AB}+\dfrac{1}{2}\vect{AC}$.
    Ainsi, les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. $\vect{FD}(2;-2;-4)$.
    $\begin{align*} \vect{FD}.\vect{AB}&=2\times (-2)-2\times 2-4\times (-2) \\
    &=0\end{align*}$
    $\begin{align*} \vect{FD}.\vect{AC}&=2\times (-3)-2\times (-1)-4\times (-1) \\
    &=0\end{align*}$
    Le vecteur $\vect{FD}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    $(FD)$ est orthogonale au plan $(ABC)$.
    c.
    $\begin{align*} FD&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    Le volume de $ABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times FD\times \mathscr{A} \\
    &=8\end{align*}$
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. $\lim\limits_{x\to -\infty} \e^x=0$ et $\lim\limits_{x\to -\infty} -x=+\infty$ donc $\lim\limits_{x\to -\infty} h(x)=+\infty$
    Pour tout réel $x$, $h(x)=\e^x\left(1-\dfrac{x}{\e^x}\right)$. $\lim\limits_{x\to +\infty} \e^x=+\infty$ et par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$.
    Donc $\lim\limits_{x\to +\infty} h(x)=+\infty$
    $\quad$
  2. La fonction $h$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $h'(x)=\e^x-1$.
    Or $\e^x-1=0 \ssi x=0$ et $\e^x-1>0 \ssi x>0$.
    La fonction $h$ est donc strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;+\infty[$.
    On obtient alors le tableau de variations suivant :$\quad$
  3. La fonction $h$ est strictement croissante sur $[0;+\infty[$.
    Donc, pour tous réels $a$ et $b$ tels que $0\pp a\pp b$ on a $h(a)\pp h(b)$ c’est-à-dire $h(a)-h(b) \pp 0$.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $\R$ en tant que fonction exponentielle.
    Pour tout réel $x$ on a $f'(x)=\e^x$.
    $f(0)=1$ et $f'(0)=1$.
    Une équation de $T$ est donc $y=x+1$.
    $\quad$
  2. $\lim\limits_{n\to +\infty } \dfrac{1}{n}=0$ et $\lim\limits_{x\to 0} \e^x=1$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  3. a. Soit $n$ un entier naturel non nul.
    $\begin{align*} u_{n+1}-u_n&=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-1-\left(\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1\right) \\
    &=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-\exp\left(\dfrac{1}{n}\right)+\dfrac{1}{n} \\
    &=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ non nul on a $\dfrac{1}{n+1}<\dfrac{1}{n}$.
    Donc d’après la question A.3. $h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\pp 0$.
    Donc $u_{n+1}-u_n\pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  4. D’après le tableau de valeurs $u_n<10^{-2}$ à partir de $n=8$.
    C’est donc à partir de $n=8$ que l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

Ex 4

Exercice 4

  1. On obtient le tableau suivant :
    $\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&0,05&0,15&0,2\\
    \hline
    \conj{B}&0,05&0,75&0,8 \\
    \hline
    \text{Total}&0,1&0,9&1\\
    \hline
    \end{array}$
    $\quad$
  2. a. On veut calculer
    $\begin{align*} P(A\cup B)&=1-P\left(\conj{A}\cap \conj{B}\right) \\
    &=1-0,75 \\
    &=0,25\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour au moins un des deux traitements est donc égale à $0,25$.
    $\quad$
    b. On veut calculer $P(A\cap B)=0,05$.
    La probabilité qu’une paire de verres présente un défaut pour les deux traitements est donc égale à $0,05$.
    $\quad$
    c. $P(A)\times P(B)=0,02$ et $P(A\cap B)=0,05$.
    Donc $P(A)P(B)\neq P(A\cap B)$
    Les événements $A$ et $B$ ne sont pas indépendants.
    $\quad$
  3. On veut calculer
    $\begin{align*} P\left(A\cap \conj{B}\right)+P\left(B\cap \conj{A}\right) &=0,15+0,05 \\
    &=0,2\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour un seul des deux traitements est donc égale à $0,2$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_A(B)&=\dfrac{P(A\cap B)}{P(A)} \\
    &=\dfrac{0,05}{0,1} \\
    &=0,5\end{align*}$
    La probabilité qu’une paire de verres présente un défaut de traitement T2 sachant qu’elle présente un défaut de traitement T1 est égale à $0,5$.
    $\quad$

Partie B

  1. On répète indépendamment $50$ fois la même expérience de Bernoulli. $X$ compte le nombre de paires de verres qui présentent le défaut pour le traitement T1.
    Donc $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,1$.
    $\quad$
  2. On veut calculer
    $\begin{align*} P(X=10)&=\dbinom{50}{10}\times 0,1^{10} \times (1-0,1)^{50-10} \\
    &\approx 0,015\end{align*}$
    La probabilité qu’exactement $10$ paires de verres présentent ce défaut dans l’échantillon est environ égale à $0,015$.
    $\quad$
  3. L’espérance de $X$ est $E(X)=50\times 0,1=5$.
    Ainsi, en moyenne, on peut trouver $5$ paires de verres ayant ce défaut dans un échantillon de $50$ paires.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction logarithme

Cet exercice est un questionnaire d choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Les six questions sont indépendantes.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $f$ définie pour tout réel $x$ par $f(x)=\ln\left(1+x^2\right)$.
    Sur $\R$, l’équation $f(x)=2~022$
    a. n’admet aucune solution.
    b. admet exactement une solution.
    c. admet exactement deux solutions.
    d. admet une infinité de solutions.
    $\quad$
  2. Soit la fonction $g$ définie pour tout réel $x$ strictement positif par : $$g(x) = x \ln(x)− x^2$$
    On note $\mathscr{C}_g$ sa courbe représentative dans un repère du plan.
    a. La fonction $g$ est convexe sur $]0 ; +\infty[$.
    b. La fonction $g$ est concave sur $]0 ; +\infty[$.
    c. La courbe $\mathscr{C}_g$ admet exactement un point
    d’inflexion sur $]0 ; +\infty[$.
    d. La courbe $\mathscr{C}_g$ admet exactement deux
    points d’inflexion sur $]0 ; +\infty[$.
    $\quad$
  3. On considère la fonction $f$ définie sur $]-1;1[$ par $$f(x)=\dfrac{x}{1-x^2}$$
    Une primitive de la fonction $f$ est la fonction $g$ définie sur l’intervalle $]-1;1[$ par :
    a. $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$
    b. $g(x)=\dfrac{1+x^2}{\left(1-x^2\right)^2}$
    c. $g(x)=\dfrac{x^2}{2\left(x-\dfrac{x^3}{3}\right)}$
    d. $g(x)=\dfrac{x^2}{2}\ln\left(1-x^2\right)$
    $\quad$
  4. La fonction $x\mapsto \ln\left(-x^2-x+6\right)$ est définie sur
    a. $]-3;2[$
    b. $]-\infty;6[$
    c. $]0;+\infty[$
    d. $]2;+\infty[$
    $\quad$
  5. On considère la fonction $f$ définie sur $]0,5;+\infty[$ par $$f(x)=x^2-4x+3\ln(2x-1)$$
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est :
    a. $y=4x-7$
    b. $y=2x-4$
    c. $y=-3(x-1)+4$
    d. $y=2x-1$
    $\quad$
  6. L’ensemble $\mathscr{S}$ des solutions dans $\R$ de l’inéquation $\ln(x+3)<2\ln(x+1)$ est :
    a. $\mathscr{S}=]-\infty;-2[\cup]1;+\infty[$
    b. $\mathscr{S}=]1;+\infty[$
    c. $\mathscr{S}=\emptyset$
    d. $\mathscr{S}=]-1;1[$
    $\quad$

$\quad$

Exercice 2     7 points

Thème : Géométrie dans l’espace

Dans l’espace, rapporté à un repère orthonormé $\Oijk$, on considère les points : $$A(2;0;3),~B(0;2;1),~C(-1;-1;2) \text{ et } D(3;-3;-1)$$

  1. Calcul d’un angle.
    a.
     Calculer les coordonnées des vecteurs $\vect{AB}$ et
    $\vect{AC}$ et en déduire que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b. Calculer les longueurs $AB$ et $AC$.
    $\quad$
    c. À l’aide du produit scalaire $\vect{AB}.\vect{AC}$, déterminer la valeur du cosinus de l’angle $\widehat{BAC}$ puis donner une valeur approchée de la mesure de l’angle $\widehat{BAC}$ au dixième de degré.
    $\quad$
  2. Calcul d’une aire.
    a.
    Déterminer une équation du plan $P$ passant par le point $C$ et perpendiculaire à la droite $(AB)$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(AB)$.
    $\quad$
    c. En déduire les coordonnées du projeté orthogonal $E$ du point $C$ sur la droite $(AB)$, c’est-à-dire du point d’intersection de la droite $(AB)$ et du plan $P$.
    $\quad$
    d. Calculer l’aire du triangle $ABC$.
    $\quad$
  3. Calcul d’un volume.
    a.
    Soit le point $F(1 ; −1 ; 3)$. Montrer que les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. Vérifier que la droite $(FD)$ est orthogonale au plan $(ABC)$.
    $\quad$
    c. Sachant que le volume d’un tétraèdre est égal au tiers de l’aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre $ABCD$.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonction exponentielle et suite

Partie A :

Soit $h$ la fonction définie sur $\R$ par $$h(x)=\e^x-x$$

  1. Déterminer les limites de $h$ en $-\infty$ et $+\infty$.
    $\quad$
  2. Étudier les variations de $h$ et dresser son tableau de variation.
    $\quad$
  3. En déduire que :
    si $a$ et $b$ sont deux réels tels que $0\pp a\pp b$ alors $h(a)-h(b)\pp 0$.
    $\quad$

Partie B :

Soit $f$ la fonction définie sur $\R$ par $$f(x)=\e^x$$

On note $C_f$ sa courbe représentative dans un repère $\Oij$.

  1. Déterminer une équation de la tangente $T$ à $C_f$ au point d’abscisse $0$.

Dans la suite de l’exercice on s’intéresse à l’écart entre $T$ et $C_f$ au voisinage de $0$. Cet écart est défini comme la différence des ordonnées des points de $T$ et $C_f$ de même abscisse.

On s’intéresse aux points d’abscisse $\dfrac{1}{n}$, avec $n$ entier naturel non nul.

On considère alors la suite $\left(u_n\right)$ définie pour tout entier naturel non nul $n$ par : $$u_n=\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1$$

  1. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$
  2. a. Démontrer que, pour tout entier naturel non nul $n$, $$u_{n+1}-u_n=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)$$
    où $h$ est la fonction définie à la partie A.
    $\quad$
    b. En déduire le sens de variation de la suite $\left(u_n\right)$.
    $\quad$
  3. Le tableau ci-dessous donne des valeurs approchées à $10^{-9}$ des premiers termes de la suite $\left(u_n\right)$.
    $$\begin{array}{|c|c|}
    \hline
    n &u_n \\ \hline
    1 &0,718281828\\ \hline
    2& 0,148721271\\ \hline
    3& 0,062279092 \\ \hline
    4& 0,034025417\\ \hline
    5& 0,021402758\\ \hline
    6& 0,014693746\\ \hline
    7& 0,010707852\\ \hline
    8& 0,008148453\\ \hline
    9& 0,006407958\\ \hline
    10& 0,005170918\\ \hline
    \end{array}$$
    Donner la plus petite valeur de l’entier naturel $n$ pour laquelle l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Les parties A et B peuvent être traitées de façon indépendante.

Au cours de la fabrication d’une paire de lunettes, la paire de verres doit subir deux traitements notés T1 et T2.

Partie A

On prélève au hasard une paire de verres dans la production.

On désigne par $A$ l’évènement : « la paire de verres présente un défaut pour le traitement T1 ».

On désigne par $B$ l’évènement : « la paire de verres présente un défaut pour le traitement T2 ».

On note respectivement $\conj{A}$ et $\conj{B}$ les évènements contraires de $A$ et $B$.

Une étude a montré que :

  •  la probabilité qu’une paire de verres présente un défaut pour le traitement T1 notée $P(A)$ est égale à $0,1$.
  • la probabilité qu’une paire de verres présente un défaut pour le traitement T2 notée $P(B)$ est égale à $0,2$.
  • la probabilité qu’une paire de verres ne présente aucun des deux défauts est $0,75$.
  1. Recopier et compléter le tableau suivant avec les probabilités correspondantes $$\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \conj{B}&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \text{Total}&\phantom{123}&\phantom{123}&1\\
    \hline
    \end{array}$$
    $\quad$
  2. a. Déterminer, en justifiant la réponse, la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour au moins un des deux traitements T1 ou T2.
    $\quad$
    b. Donner la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente deux défauts, un pour chaque traitement T1 et T2.
    $\quad$
    c. Les évènements A et B sont-ils indépendants ? Justifier la réponse.
    $\quad$
  3. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour un seul des deux traitements.
    $\quad$
  4. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour le traitement T2, sachant que cette paire de verres présente un défaut pour le traitement T1.
    $\quad$

Partie B

On prélève, au hasard, un échantillon de $50$ paires de verres dans la production. On suppose que la production est suffisamment importante pour assimiler ce prélèvement à un tirage avec remise. On note $X$ la variable aléatoire qui, à chaque échantillon de ce type, associe le nombre de paires de verres qui présentent le défaut pour le traitement T1.

  1. Justifier que la variable aléatoire $X$ suit une loi binomiale et préciser les paramètres de cette loi.
    $\quad$
  2. Donner l’expression permettant de calculer la probabilité d’avoir, dans un tel échantillon, exactement $10$ paires de verres qui présentent ce défaut.
    Effectuer ce calcul et arrondir le résultat à $10^{-3}$.
    $\quad$
  3. En moyenne, combien de paires de verres ayant ce défaut peut-on trouver dans un échantillon de $50$ paires ?
    $\quad$

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – 11 mai 2022

Métropole – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A : Étude du premier protocole

  1. a. Pour tout $t\in[0;10]$ on a
    $\begin{align*} f'(t)&=3\e^{-0,5t+1}+3t\times (-0,5)\e^{-0,5t+1} \\
    &=3(-0,5t+1)\e^{-0,5t+1}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $-0,5t+1$.
    Or $-0,5t+1=0 \ssi -0,5t=-1 \ssi t=2$
    et $-0,5t+1>0 \ssi -0,5t>-1 \ssi t<2$
    On obtient donc le tableau de variations suivant :$\quad$
    c. D’après le tableau de variations, la fonction $f$ atteint son maximum pour $t=2$ et celui-ci vaut $f(2)=6$.
    La quantité de médicament présente dans le sang est donc maximale au bout de $2$ h et elle vaut alors $6$ mg.
    $\quad$
  2. a. La fonction $f$ est continue et strictement croissante sur $[0;2]$.
    De plus, $f(0)=0<5$ et $f(2)=6>5$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(t)=5$ admet une unique solution $\alpha$ sur $[0;2]$.
    D’après la calculatrice $\alpha \approx 1,02$.
    $\quad$
    b. $\beta-\alpha \approx 2,44$. Le médicament est donc efficace environ $2,44$ heures soit $2$ heures et $26$ minutes.
    $\quad$

Partie B : Étude du deuxième protocole

  1. La quantité de médicament baisse de $30\%$ au bout d’une heure. Il en reste donc $70\%$ soit $0,7u_0=1,4$.
    On réinjecte $1,8$ mg
    Donc $u_1=1,4+1,8=3,2$.
    Après l’injection de la première heure, il y a donc $3,2$ mg de médicament dans le sang.
    $\quad$
  2. La quantité de médicament baisse de $30\%$ en une heure. Il est donc $70\%$ soit $0,7u_n$.
    On réinjecte $1,8$ mg.
    Donc, pour tout $n\in \N$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on note $P(n):~u_b \pp u_{n+1} <6$.
    Initialisation : $u_0=2$ et $u_1=3,2$. Donc $u_0\pp u_1<6$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <6 &\ssi 0,7u_n \pp 0,7u_{n+1} < 4,2 \\
    &\ssi 0,7u_n+1,8 \pp 0,7u_{n+1}+1,8<6 \\
    &\ssi u_{n+1} \pp u_{n+2}<6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n\pp u_{n+1} <6$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $6$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. On considère la fonction $g$ définie sur $\R$ par $g(x)=0,7x+1,8$.
    La fonction $f$ est continue sur $\R$ en tant que fonction affine et, pour tout $n\in \N$ on a $u_{n+1}=g\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $g(x)=x$
    $\begin{align*} 0,7x+1,8=x&\ssi 0,3x=1,8 \\
    &\ssi x=6\end{align*}$
    Donc $\ell=6$.
    Sur le long terme, le patient aura $6$ mg de médicament dans le sang.
    $\quad$
  4. a. Pour tout $n\in \N$
    $\begin{align*} v_{n+1}&=6-u_{n+1} \\
    &=6-0,7u_n-1,8 \\
    &=4,2-0,7u_n \\
    &=0,7\left(6-u_n\right)\\
    &=0,7v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,7$ et de premier terme $v_0=6-u_0=4$.
    $\quad$
    b. On a donc, pour tout $n\in \N$, $v_n=4\times 0,7^n$.
    Par conséquent $u_n=6-v_n=6-4\times 0,7^n$.
    $\quad$
    c. $\quad$
    $\begin{align*} u_n\pg 5,5&\ssi 6-4\times 0,7^n \pg 5,5 \\
    &\ssi -4\times 0,7^n \pg 0,5 \\
    &\ssi 0,7^n \pp 0,125 \\
    &\ssi n\ln(0,7) \pp \ln(0,125) \\
    &\ssi n \pg \dfrac{\ln(0,125)}{\ln(0,7)} \qquad \text{car } \ln(0,7)<0\end{align*}$
    Or $\dfrac{\ln(0,125)}{\ln(0,7)}\approx 5,8$. Par conséquent $n\pg 6$.
    Il faudra donc réaliser $7$ injections (l’injection initiale plus les $6$ autres).
    $\quad$

 

Ex 2

Exercice 2

  1. a. On a $\vec{u}(2;-1;2)$.
    $\quad$
    b. Si $t=-1$ alors $x=-1$, $y=3$ et $z=0$ donc $B(-1;3;0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. $\vect{AB}(0;2;-3)$.
    Donc
    $\begin{align*} \vect{AB}.\vec{u}&=0\times 2+2\times (-1)+2\times (-3) \\
    &=-8\end{align*}$
    $\quad$
  2. a. $\vec{u}$ est donc un vecteur normal au plan $\mathscr{P}$.
    Une équation cartésienne de ce plan est par conséquent de la forme : $2x-y+2z+d=0$.
    Or $A(-1;1;3)$ appartient à $\mathscr{P}$.
    Donc $-2-1+6+d=0\ssi d=-3$.
    Une équation cartésienne de $\mathscr{P}$ est $2x-y+2z-3=0$.
    $\quad$
    b. $2\times \dfrac{7}{9}-\dfrac{19}{9}+2\times \dfrac{16}{9}-3=\dfrac{27}{9}-3=0$ : le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{P}$.
    $1+2t=\dfrac{7}{9}\ssi 2t=\dfrac{-2}{9}\ssi t=\dfrac{-1}{9}$.
    En prenant $t=-\dfrac{1}{9}$ dans l’équation de $\mathscr{D}$ on obtient $\begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}$ donc le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{D}$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$
    c. $\vect{AH}\left(\dfrac{16}{9};\dfrac{10}{9};-\dfrac{11}{9}\right)$
    Donc
    $\begin{align*} AH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{10}{9}\right)^2+\left(\dfrac{-11}{9}\right)^2} \\
    &=\dfrac{\sqrt{477}}{9} \\
    &=\dfrac{\sqrt{53}}{3}\end{align*}$
    $\quad$
  3. a. $(HB)$ est orthogonale au plan $\mathscr{P}$. Par conséquent $\vect{HB}$ et $\vec{u}$ sont colinéaires.
    Il existe donc un réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b.
    $\begin{align*} \vect{AB}.\vec{u}&=\left(\vect{AH}+\vect{HB}\right).\vec{u} \\
    &= \vect{AH}.\vec{u}+ \vect{HB}.\vec{u} \\
    &=0+k\vec{u}.\vec{u} \\
    &=k\left\|\vec{u}\right\|^2\end{align*}$
    Ainsi $k=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. On a $\left\|\vec{u}\right\|^2=2^2+(-1)^2+2^2=9$.
    Ainsi $k=-\dfrac{8}{9}$
    $\quad$
    Soit $H(x;y;z)$
    $\vect{HB}(-1-x;3-x;-z)$.
    $\begin{align*} \vect{HB}=-\dfrac{8}{9}\vec{u}&\ssi \begin{cases} 1-x=-\dfrac{8}{9}\times 2\\3-y=-\dfrac{8}{9}\times (-1)\\-z=-\dfrac{8}{9}\times 2\end{cases} \\
    &\ssi \begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}\end{align*}$
    On retrouve donc les coordonnées du point $H$ trouvées à la question 2.b.
    $\quad$
  4. $\vect{BH}\left(\dfrac{16}{9};\dfrac{-8}{9};\dfrac{16}{9}\right)$
    Donc
    $\begin{align*} BH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{-8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2} \\
    &=\dfrac{8}{3}\end{align*}$
    On appelle $\mathscr{B}$ l’aire du triangle $ACH$.
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times BH\times \mathscr{B} &\ssi \dfrac{8}{9}&=\dfrac{1}{3}\times \dfrac{8}{3}\times \mathscr{B} \\
    &\ssi \mathscr{B}=1\end{align*}$
    L’aire du triangle $ACH$ vaut $1$ unité d’aire.
    $\quad$

 

 

Ex 3

Exercice 3

  1. a. D’après l’énoncé $P(S)=0,25$.
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    $\quad$
    c. On a
    $\begin{align*} P(F\cap S)&=P(F)\times P_F(S) \\
    &=0,52\times 0,4\\
    &=0,208\end{align*}$
    La probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On veut calculer
    $\begin{align*} P_F(S)&=\dfrac{P(S\cap F)}{P(S)} \\
    &=\dfrac{0,208}{0,25} \\
    &=0,832\end{align*}$
    La probabilité que la personne interrogée soit une femme sachant qu’elle a suivi le stage est égale à $0,832$.
    $\quad$
    e. $\left(F,\conj{F}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales
    $\begin{align*} P(S)=P(S\cap F)+P\left(S\cap \conj{F}\right) &\ssi P\left(S\cap \conj{F}\right)=P(S)-P(S\cap F)\\
    &\ssi P\left(S\cap \conj{F}\right)=0,042\end{align*}$
    Par conséquent
    $\begin{align*} P_F(S)&=\dfrac{P\left(S\cap \conj{F}\right)}{P\left(\conj{F}\right)} \\
    &=\dfrac{0,042}{0,48} \\
    &=0,0875 \\
    &<0,1\end{align*}$
    $\quad$
  2. a. On répète indépendamment $20$ fois  la même expérience de Bernoulli. $X$ compte le nombre de salariés ayant suivi le stage.
    Donc $X$ suit la loi binomiale de paramètres $n=20$ et $p=0,25$.
    $\quad$
    b.
    $\begin{align*} P(X=5)&=\dbinom{10}{5}\times 0,25^5\times (1-0,25)^{10-5} \\
    &\approx 0,202\end{align*}$
    La probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage est environ égale à $0,202$.
    $\quad$
    c. Ce programme calcule $P(X\pp k)$.
    D’après la calculatrice $P(X\pp 5) \approx 0,617$.
    Le programme renvoie donc $0,617$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} P(X\pg 6)&=1-P(X<6) \\
    &=1-P(X\pp 5) \\
    &\approx 0,383\end{align*}$
    $\quad$
  3. $1,05\times 0,25+1,02\times 0,75=1,0275$.
    Le pourcentage moyen d’augmentation des salaires de cette entreprise est donc de $2,75\%$.
    $\quad$

Ex 4

Exercice 4

  1. D’après la limite des termes de plus haut degré
    $\begin{align*} \lim\limits_{x\to +\infty} f(x)&=\lim\limits_{x\to +\infty} \dfrac{-2x^2}{x^2} \\
    &=-2\end{align*}$
    La droite d’équation $y=-2$ est donc asymptote à la courbe représentative de la fonction $f$.
    Réponse C
    $\quad$
  2. Une primitive de $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2}+K$
    $F(0)=1 \ssi \dfrac{1}{2}+K=1 \ssi K=\dfrac{1}{2}$
    Réponse D
    $\quad$
  3. $f’$ semble être strictement croissante sur $]-\infty;4[$ et strictement décroissante sur $[4;+\infty[$.
    Donc $f$ est convexe sur $]-\infty;4]$ et concave sur $[4;+\infty[$.
    Réponse C
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$. Par conséquent, pour tout réel $x$, $f(x)>0$ sur $\R$. $f$ est la dérivée de chacune de ses primitives.
    Réponse A
    $\quad$
  5. Pour tout réel $x$, $f(x)=\dfrac{2\ln(x)}{3x^2}\times \dfrac{1}{1+\dfrac{1}{3x^2}}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$
    De plus $\lim\limits_{x\to +\infty}  \dfrac{1}{1+\dfrac{1}{3x^2}}=1$
    Par conséquent $\lim\limits_{x\to +\infty}f(x)=0$.
    Réponse D
    $\quad$
  6. L’équation peut s’écrire $\left(\e^x\right)^2+\e^x-12=0 \ssi \begin{cases} X=\e^x\\X^2+X-12=0\end{cases}$
    $X^2+X-12=0$ a pour discriminant $\Delta=49>0$
    Ses racines sont donc $X_1=-4$ et $X_2=3$.
    Or $\e^x=-4$ n’admet pas de solution et $\e^x=3$ admet une unique solution $x=\ln(3)$.
    Réponse C
    $\quad$

 

Énoncé

Exercice 1     7 points

Thèmes : fonction exponentielle, suites

Dans le cadre d’un essai clinique, on envisage deux protocoles de traitement d’une maladie.
L’objectif de cet exercice est d’étudier, pour ces deux protocoles, l’évolution de la quantité de médicament présente dans le sang d’un patient en fonction du temps.

Les parties A et B sont indépendantes.

Partie A : Étude du premier protocole

Le premier protocole consiste à faire absorber un médicament, sous forme de comprimé, au patient.
On modélise la quantité de médicament présente dans le sang du patient, exprimée en mg, par la fonction $f$ définie sur l’intervalle $[0; 10]$ par $f(t)=3t\e^{-0,5t+1}$, où $t$ désigne le temps, exprimé en heure, écoulé depuis la prise du comprimé.

  1. a. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 10]$ et on note $f’$ sa fonction dérivée.
    Montrer que, pour tout nombre réel $t$ de $[0; 10]$, on a : $f'(t)=3(-0,5t+1)\e^{-0,5t+1}$.
    $\quad$
    b. En déduire le tableau de variations de la fonction $f$ sur l’intervalle $[0; 10]$.
    $\quad$
    c. Selon cette modélisation, au bout de combien de temps la quantité de médicament présente dans le sang du patient sera-t-elle maximale ? Quelle est alors cette quantité maximale ?
    $\quad$
  2. a. Montrer que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[0; 2]$, notée $\alpha$, dont
    on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
    On admet que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[2; 10]$, notée $\beta$, et qu’une
    valeur approchée de $\beta$ à $10^{-2}$ près est $3,46$.
    $\quad$
    b. On considère que ce traitement est efficace lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5$ mg.
    Déterminer, à la minute près, la durée d’efficacité du  médicament dans le cas de ce protocole.
    $\quad$

Partie B : Étude du deuxième protocole

Le deuxième protocole consiste à injecter initialement au patient, par piqûre intraveineuse, une dose de $2$ mg de médicament puis à réinjecter toutes les heures une dose de $1,8$ mg.

On suppose que le médicament se diffuse instantanément dans le sang et qu’il est ensuite progressivement éliminé.

On estime que lorsqu’une heure s’est écoulée après une injection, la quantité de médicament dans le sang a diminué de $30 \%$ par rapport à la quantité présente immédiatement après cette injection.

On modélise cette situation à l’aide de la suite $\left(u_n\right)$ où, pour tout entier naturel $n$, $u_n$ désigne la quantité de médicament, exprimée en mg, présente dans le sang du patient immédiatement après l’injection de la $n$-ème heure. On a donc $u_0=2$.

  1. Calculer, selon cette modélisation, la quantité $u_1$ de médicament (en mg) présente dans le sang du patient immédiatement après l’injection de la première heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pp u_{n+1} <6$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
    c. Déterminer la valeur de $\ell$. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par $v_n=6-u_n$.
    a. Montrer que la suite $\left(v_bn\right)$ est une suite géométrique de raison $0,7$ dont on précisera le premier terme.
    $\quad$
    b. Déterminer l’expression de $v_n$ en fonction de $n$, puis de $u_n$ en fonction de $n$.
    $\quad$
    c. Avec ce protocole, on arrête les injections lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5,5$ mg.
    Déterminer, en détaillant les calculs, le nombre d’injections réalisées en appliquant ce protocole.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$ on considère :

  • Le point $A$ de coordonnées $(-1;1;3)$;
  • La droite $\mathscr{D}$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=2-t\\z=2+2t\end{cases} \quad ,t\in \R$.

On admet que le point $A$ n’appartient pas à la droite $\mathscr{D}$.

  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u}$ de la droite $\mathscr{D}$.
    $\quad$
    b. Montrer que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. Calculer le produit scalaire $\vect{AB}.\vec{u}$.
    $\quad$
  2. On note $\mathscr{P}$ le plan passant par le point $A$ et orthogonal à la droite $\mathscr{D}$, et on appelle $H$ le point d’intersection du plan $\mathscr{P}$ et de la droite $\mathscr{D}$. Ainsi, $H$ est le projeté orthogonal de $A$ sur la droite $\mathscr{D}$.
    a. Montrer que le plan $\mathscr{P}$ admet pour équation cartésienne : $2x-y+2z-3=0$.
    $\quad$
    b. En déduire que le point $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    c. Calculer la longueur $AH$. On donnera une valeur exacte.
    $\quad$
  3. Dans cette question, on se propose de retrouver les coordonnées du point $H$, projeté orthogonal du point $A$ sur la droite $\mathscr{D}$, par une autre méthode.On rappelle que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$ et que le vecteur $\vec{u}$ est un vecteur directeur de la droite $\mathscr{D}$.
    a. Justifier qu’il existe un nombre réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b. Montrer que $k=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. Calculer la valeur du nombre réel $k$ et retrouver les coordonnées du point $H$.
    $\quad$
  4. On considère un point $C$ appartenant au plan $\mathscr{P}$ tel que le volume du tétraèdre $ABCH$ soit égal à $\dfrac{8}{9}$.
    Calculer l’aire du triangle $ACH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : probabilités

Le directeur d’une grande entreprise a proposé à l’ensemble de ses salariés un stage de formation à l’utilisation d’un nouveau logiciel.

Ce stage a été suivi par $25 \%$ des salariés.

  1. Dans cette entreprise, $52 \%$ des salariés sont des femmes, parmi lesquelles $40 \%$ ont suivi le stage.
    On interroge au hasard un salarié de l’entreprise et on considère les événements :
    $\bullet$ $F$ : « le salarié interrogé est une femme »,
    $\bullet$ $S$ : « le salarié interrogé a suivi le stage ».
    $\conj{F}$ et $\conj{S}$ désignent les événements contraires des événements $F$ et $S$.
    a. Donner la probabilité de l’événement $S$.
    $\quad$
    b. Recopier et compléter les pointillés de l’arbre pondéré ci-dessous sur les quatre branches indiquées.$\quad$
    c. Démontrer que la probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On sait que la personne interrogée a suivi le stage. Quelle est la probabilité que ce soit une femme ?
    $\quad$
    e. Le directeur affirme que, parmi les hommes salariés de l’entreprise, moins de $10 \%$ ont suivi le stage.
    Justifier l’affirmation du directeur.
    $\quad$
  2. On note $X$ la variable aléatoire qui à un échantillon de $20$ salariés de cette entreprise choisis au hasard associe le nombre de salariés de cet échantillon ayant suivi le stage. On suppose que l’effectif des salariés de l’entreprise est suffisamment important pour assimiler ce choix à un tirage avec remise.
    a. Déterminer, en justifiant, la loi de probabilité suivie par la variable aléatoire $X$.
    $\quad$
    b. Déterminer, à $10^{-3}$ près, la probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
    c. Le programme ci-dessous, écrit en langage Python, utilise la fonction $\texttt{binomiale(i,n,p)}$ créée pour l’occasion qui renvoie la valeur de la probabilité $P(X=i)$ dans le cas où la variable aléatoire $X$ suit une loi binomiale de paramètres $n$ et $p$.
    $\begin{array}{|l|}
    \hline
    \textbf{def proba}\text{(k):}\\
    \quad \text{P = 0}\\
    \quad \text{for i in range(0 , k + 1):}\\
    \qquad \text{P = P + binomiale(i,20,0.25)}\\
    \quad \textbf{return P}\\
    \hline
    \end{array}$
    Déterminer, à $10^{-3}$ près, la valeur renvoyée par ce programme lorsque l’on saisit $\texttt{proba(5)}$ dans la console Python. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
    d. Déterminer, à $10^{-3}$ près, la probabilité qu’au  moins $6$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
  3. Cette question est indépendante des questions 1 et 2.
    Pour inciter les salariés à suivre le stage, l’entreprise avait décidé d’augmenter les salaires des salariés ayant suivi le stage de $5\%$, contre $2\%$ d’augmentation pour les salariés n’ayant pas suivi le stage.
    Quel est le pourcentage moyen d’augmentation des salaires de cette entreprise dans ces conditions ?
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonctions numériques

Cet exercice est un questionnaire à choix multiple.
Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la réponse choisie. Aucune justification n’est  demandée.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Les six questions sont indépendantes.

  1. La courbe représentative de la fonction $f$ définie sur $\R$ par $f(x)=\dfrac{-2x^2+3x-1}{x^2+1}$ admet pour asymptote la droite d’équation :
    a. $x=-2$;
    b. $y=-1$;
    c. $y=-2$;
    d. $y=0$.
    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=x\e^{x^2}$.
    La primitive $F$ de $f$ sur $\R$ qui vérifie $F(0)=1$ est définie par :
    a. $F(x)=\dfrac{x^2}{2}\e^{x^2}$;
    b. $F(x)=\dfrac{1}{2}\e^{x^2}$;
    c. $F(x)=\left(1+2x^2\right)\e^{x^2}$;
    d. $F(x)=\dfrac{1}{2}\e^{x^2}+\dfrac{1}{2}$.
    $\quad$
  3. On donne ci-dessous la représentation graphique $\mathscr{C}_{f’}$ de la fonction dérivée $f’$ d’une fonction $f$ définie sur ℝ.
    On peut affirmer que la fonction $f$ est :
    a. concave sur $]0; +\infty[$ ;
    b. convexe sur $]0; +\infty[$ ;
    c. convexe sur $[0; 2]$ ;
    d. convexe sur $[2; +\infty[$.
    $\quad$
  4. Parmi les primitives de la fonction $f$ définie sur $\R$ par $f(x)=3\e^{-x^2}+2$:
    a. toutes sont croissantes sur $\R$ ;
    b. toutes sont décroissantes sur $\R$ ;
    c. certaines sont croissantes sur $\R$ et d’autres décroissantes sur $\R$ ;
    d. toutes sont croissantes sur $]−\infty; 0]$ et décroissantes sur $[0; +\infty[$.
    $\quad$
  5. La limite en $+\infty$ de la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=\dfrac{2\ln(x)}{3x^2+1}$ est égale à :
    a. $\dfrac{2}{3}$ ;
    b. $+\infty$ ;
    c. $-\infty$ ;
    d. $0$.
    $\quad$
  6. L’équation $\e^{2x}+\e^x-12=0$ admet dans $\R$ :
    a. trois solutions ;
    b. deux solutions ;
    c. une seule solution ;
    d. aucune solution.
    $\quad$

 

Bac – Spécialité mathématiques – Polynésie – sujet 2 – 5 mai 2022

Polynésie – 5 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1     7 points

Thèmes : fonctions, primitives

  1. Pour tout $x\in ]0;+\infty[$ on a
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)\end{align*}$
    Réponse a
    $\quad$
  2. Pour tout réel $x\in ]0;+\infty[$ on a $g(x)=x^2-x^2\ln(x)$
    Or $\lim\limits_{x\to 0} x^2=0$ et, par croissances comparées, $\lim\limits_{x\to 0} x^2\ln(x)=0$.
    Donc $\lim\limits_{x\to 0} g(x)=0$.
    Réponse c
    $\quad$
  3. Pour tout réel $x$ on a $f(x)=x\left(x^2-0,9x-0,1\right)$
    $f(x)=0\ssi x=0$ ou $x^2-0,9x-0,1=0$.
    Le discriminant de $x^2-0,9x-0,1$ est $\Delta=(-0,9)^2-4\times \times 1\times (-0,1)=1,21>0$.
    L’équation $x^2-0,9x-0,1=0$ possède donc deux solutions distinctes. $0$ n’est pas solution de cette équation.
    Ainsi l’équation $f(x)=0$ admet exactement $3$ solutions.
    Réponse d
    $\quad$
  4. On considère la fonction $K$ définie sur $\R$ par $K(x)=\dfrac{1}{2}H(2x)$
    La fonction $K$ est dérivable sur $\R$ en tant que composée de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} K'(x)&=\dfrac{1}{2}\times 2H'(2x)\\
    &=H'(2x) \\
    &=h(2x)\\
    &=k(x)\end{align*}$
    Réponse c
    $\quad$
  5. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*}f'(x)&=\e^x+x\e^x \\
    &=(1+x)\e^x\end{align*}$
    Donc $f'(1)=2\e$.
    De plus $f(1)=\e$.
    Une équation de la tangente au point d’abscisse $1$ de la courbe de la fonction $f$ est donc $y=2\e(x-1)+\e$
    Soit $y=2\e x-\e$.
    Réponse b
    $\quad$
  6. $\quad$
    $\begin{align*} (0,2)^n<0,001&\ssi n\ln(0,2)<\ln(0,001) \\
    &\ssi n>\dfrac{\ln(0,001)}{\ln(0,2)}\qquad \text{(car $\ln(0,2)<0$)}\end{align*}$
    Or $\dfrac{\ln(0,001)}{\ln(0,2)}\approx 4,29$.
    L’ensemble solution de l’inéquation est donc l’ensemble des entiers naturels supérieurs ou égaux à $5$.
    Réponse d
    $\quad$

Ex 2

Exercice 2     7 points

Thème : probabilités

Partie 1

  1. On a $P(C)=0,2$ et $P_C(D)=0,1$
    Donc
    $\begin{align*} P(C\cap D)&=P(C)\times P_C(D) \\
    &=0,2\times 0,1\\
    &=0,02\end{align*}$
    $\quad$
  2. $\left(C,\conj{C}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales :
    $\begin{align*} P(D)&=P(C\cap D)+P\left(\conj{C}\cap D\right) \\
    &=0,02+P\left(\conj{C}\right)\times P_{\conj{C}}(D) \\
    &=0,02+0,8\times 0,02 \\
    &=0,036\end{align*}$
    $\quad$
  3. On veut calculer
    $\begin{align*} P_D(C)&=\dfrac{P(C\cap D)}{P(D)} \\
    &=\dfrac{0,02}{0,036} \\
    &=\dfrac{5}{9}\end{align*}$
    La probabilité que le casque soit contrefait sachant qu’il a un défaut est égale à $\dfrac{5}{9}$.
    $\quad$

Partie 2

  1. a. On répète $35$ fois la même expérience de Bernoulli de paramètre $0,036$. $X$ est égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n=35$ et $p=0,036$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X=1)&=\dbinom{35}{1}\times 0,036^1\times (1-0,036)^{35-1} \\
    &=35\times 0,036\times 0,964^{34} \\
    &\approx 0,362\end{align*}$
    La probabilité qu’il y ait parmi les casques commandés exactement un casque présentant un défaut de conception est environ égale à $0,362$.
    $\quad$
    c. 
    $\begin{align*}P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,964^{35}+35\times 0,036\times 0,964^{34} \\
    &\approx 0,639\end{align*}$
    $\quad$
  2. On répète $n$ fois la même expérience de Bernoulli de paramètre $0,036$. On appelle $Y$ la variable aléatoire égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n$ et $p=0,036$.
    $\begin{align*} P(Y\pg 1)>0,99 &\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01  \\
    &\ssi 0,964^n <0,01 \\
    &\ssi n\ln(0,964)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,964)} \qquad \text{(car $\ln(0,964)<0$)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,964)} \approx 125,6$.
    Il faut donc commander au moins $126$ casques pour que la probabilité qu’au moins un casque présente un défaut soit supérieure à $0,99$.
    $\quad$

Ex 3

Exercice 3     7 points

Thème : suites, fonctions

  1. $\quad$
    $\begin{align*} u_1&=0,008u_1\left(200-u_1\right) \\
    &=0,008\times 40(200-40)\\
    &=51,2\end{align*}$
    Selon ce modèle il y avait environ $52$ oiseaux dans la colonie au début de l’année 2022.
    $\quad$
  2. $\quad$
    $\begin{align*}
    f(x)=x&\ssi 0,008x(200-x)=x \\
    &\ssi 0,008x(200-x)-x=0 \\
    &\ssi x\left(0,008(200-x)-1\right)=0 \\
    &\ssi x(1,6-0,008x-1)=0 \\
    &\ssi (0,6-0,008x)=0\\
    &\ssi x=0 \text{ ou } 0,6-0,008x=0 \\
    &\ssi x=0 \text{ ou } x=\dfrac{0,6}{0,008} \\
    &\ssi x=0 \text{ ou } x=75 \end{align*}$
    Les solutions de l’équation $f(x)=x$ sont donc $0$ et $75$.
    $\quad$
  3. a. Il y a au moins deux méthodes pour répondre à la question :
    – étudier le signe de $f'(x)$;
    – utiliser les propriétés sur les variations des fonctions polynômes du second degré (ce qui va être fait ici)
    Pour tout réel $x$ on a
    $f(x)=-0,008x^2+1,6x$
    Le coefficient principal est $a=-0,008<0$.
    Ainsi $f$ admet un maximum au point d’abscisse $\dfrac{-1,6}{2\times (-0,008)} =100$.
    La fonction est donc strictement croissante sur l’intervalle $[0;100]$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
    b. Pour tout entier naturel $n$ on a $u_{n+1}=0,008u_n\left(200-u_n\right)$
    Donc $u_{n+1}=f\left(u_n\right)$.
    Pour tout entier naturel $n$ on pose $P(n):~0\pp u_n \pp u_{n+1}\pp 100$.
    Initialisation : $u_0=40$ et $u_1=51,2$. Or $0\pp 40\pp 51,2\pp 100$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp u_n \pp u_{n+1} \pp 100$.
    La fonction $f$ est croissante sur $[0;100]$.
    Donc $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(100)$
    Soit $0\pp u_{n+1} \pp u_{n+2} \pp 80\pp 100$. $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $0\pp u_n \pp u_{n+1} \pp 100$.
    $\quad$
    c. La suite $\left(u_n\right)$ est donc croissante et majorée par $100$.
    Elle converge donc vers un réel $\ell$.
    $\quad$
    d. La fonction $f$ est continue sur $[0;100]$.
    Donc $\ell$ est solution de l’équation $f(x)=x$ dont l’unique solution est $75$ d’après la question 2.
    Ainsi $\ell=75$.
    Cela signifie que sur le long terme la colonie comptera $75$ individus.
    $\quad$
  4. La fonction renvoie l’année où la population dépasse la valeur $p$ envoyée en paramètre.
    La suite $\left(u_n\right)$ est majorée par $75$. Elle ne peut donc pas prendre de valeurs supérieures à $100$.
    Cela explique donc pourquoi $\texttt{seuil(100)}$ ne renvoie aucune valeur.
    Remarque : On se retrouve dans une boucle infinie!
    $\quad$

Ex 4

Exercice 4     7 points

Thème : géométrie dans le plan et l’espace

Partie 1. Première méthode

  1. On a $A(0;0;0)$ , $B(1;0;0)$ et $G(1;1;1)$.
    $\quad$
  2. $\vect{BK}\left(-1;\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\vect{AI}\left(\dfrac{1}{2};0;1\right)$ et $\vect{AG}(1;1;1)$.
    Les vecteurs $\vect{AI}$ et $\vect{AG}$ ne sont pas colinéaires.
    $\begin{align*} \vect{BK}.\vect{AI}&=-1\times \dfrac{1}{2}+\dfrac{1}{2}\times 0+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    $\begin{align*} \vect{BK}.\vect{AG}&=-1\times 1+\dfrac{1}{2}\times 1+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    Le vecteur $\vect{BK}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AIG)$.
    Par conséquent la droite $(BK)$ est orthogonale au plan $(AIG)$.
    $\quad$
  3. $-2\vect{BK}(2;-1;-1)$ est normal au plan $(AIG)$.
    Une équation cartésienne du plan $(AIG)$ est donc de la forme $2x-y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Ainsi, une équation cartésienne du plan $(AIG)$ est $2x-y-z=0$.
    $\quad$
  4. Une représentation paramétrique de la droite $(BK)$ est :
    $\begin{cases} x=1+2t\\y=-t\\z=-t\end{cases} \qquad ,\forall t\in \R$.
    Remarque : plutôt que de prendre le vecteur $\vect{BK}$ comme vecteur directeur, on peut choisir $2\vect{BK}$ dont les coordonnées sont entières.
    $\quad$
  5. $2\times \dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{3}=0$ donc $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ appartient au plan $(AIG)$.
    En prenant $t=-\dfrac{1}{3}$ dans la représentation paramétrique de la droite $(BK)$ on retrouve les coordonnées du point $L$.
    Ainsi $L$ appartient à la fois à la droite $(BK)$ et au plan $(AIG)$.
    $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ est le projeté orthogonal du point $B$ sur le plan $(AIG)$.
    $\quad$
  6. $\vect{BL}\left(-\dfrac{2}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$
    $\begin{align*} BL&=\sqrt{\left(-\dfrac{2}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2} \\
    &=\sqrt{\dfrac{6}{9}} \\
    &=\sqrt{\dfrac{2}{3}}\end{align*}$
    La distance du point $B$ au plan $(AIG)$ est donc égale à $\sqrt{\dfrac{2}{3}}$.
    $\quad$

Partie 2. Deuxième méthode

  1. a. $ABCDEFGH$ est un cube. L’arête $[FG]$ est perpendiculaire au plan $(ABF)$ auquel appartient le point $I$.
    Donc, dans le tétraèdre $ABIG$, $[GF]$ est la hauteur relative à la base $AIB$.
    $\quad$
    b. L’aire de $AIB$ est :
    $\begin{align*} \mathscr{B}&=\dfrac{AE\times AB}{2} \\
    &=\dfrac{1}{2}\end{align*}$
    De plus $GF=1$
    Ainsi, le volume de $ABIG$ est :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times GF\times \mathscr{B} \\
    &=\dfrac{1}{6}\end{align*}$
    $\quad$
  2. Le triangle $AIG$ est donc isocèle en $I$.
    La hauteur issue de $I$ coupe donc le côté $[AG]$ en son milieu $0$.
    Ainsi $AO=\dfrac{\sqrt{3}}{2}$.
    Dans le triangle $AOI$ rectangle en $O$ on applique le théorème de Pythagore.
    $\begin{align*}AI^2=AO^2+OI^2 &\ssi OI^2=AI^2-AO^2 \\
    &\ssi OI^2=\dfrac{5}{4}-\dfrac{3}{4} \\
    &\ssi OI^2=\dfrac{1}{2}\end{align*}$
    Donc $OI=\dfrac{1}{\sqrt{2}}$.
    L’aire du triangle $AIG$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{OI\times AG}{2} \\
    &=\dfrac{\dfrac{1}{\sqrt{2}}\times \sqrt{3}}{2} \\
    &=\dfrac{\sqrt{3}}{2\sqrt{2}} \\
    &=\dfrac{\sqrt{6}}{4}\end{align*}$
    $\quad$
  3. On appelle $h$ la longueur de la hauteur issue de $B$ dans le tétraèdre $ABIG$
    Ainsi
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times h\times \mathscr{A} &\ssi
    \dfrac{1}{6}=\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}h\\
    &\ssi h=\dfrac{\dfrac{1}{6}}{\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}} \\
    &\ssi h=\dfrac{\sqrt{6}}{3}\end{align*}$
    On retrouve bien la valeur trouvée à la question 6. puisque :
    $\begin{align*} \sqrt{\dfrac{2}{3}}&=\sqrt{\dfrac{2}{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}} \\
    &=\dfrac{\sqrt{6}}{3}\end{align*}$
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices
Chaque exercice est noté sur 7 points (le total sera ramené sur 20 points).
Les traces de recherche, même incomplètes ou infructueuses, seront prises en compte.

Exercice 1     7 points

Thèmes : fonctions, primitives, probabilités

Cet exercice est un questionnaire à choix multiples. Pour chacune des six questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $f$ définie et dérivable sur $] 0 ;+\infty[$ par :
    $$
    f(x)=x \ln (x)-x+1
    $$
    Parmi les quatre expressions suivantes, laquelle est celle de la fonction dérivée de $f$ ?
    a. $\ln (x)$
    b. $\dfrac{1}{x}-1$
    c. $\ln (x)-2$
    d. $\ln (x)-1$
    $\quad$
  2. On considère la fonction $g$ définie sur $] 0 ;+\infty[$ par $g(x)=x^2\left[1-\ln (x)\right]$. Parmi les quatre affirmations suivantes, laquelle est correcte?
    a. $\lim\limits_{x \to 0} g(x)=+\infty$
    b. $\lim\limits_{x \to 0} g(x)=-\infty$
    c. $\lim\limits_{x  \to 0} g(x)=0$
    d. La fonction $g$ n’admet pas de limite en $0$.
    $\quad$
  3. On considère la fonction $f$ définie sur $\mathbb{R}$ par $f(x)=x^3-0,9 x^2-0,1 x$.
    Le nombre de solutions de l’équation $f(x)=0$ sur $\mathbb{R}$ est :
    a. $0$
    b. $1$
    c. $2$
    d. $3$
    $\quad$
  4. Si $H$ est une primitive d’une fonction $h$ définie et continue sur $\mathbb{R}$, et si $k$ est la fonction définie sur $\mathbb{R}$ par $k(x)=h(2x)$, alors, une primitive $K$ de $k$ est définie sur $\mathbb{R}$ par :
    a. $K(x)=H(2 x)$
    b. $K(x)=2 H(2 x)$
    c. $K(x)=\dfrac{1}{2} H(2x)$
    d. $K(x)=2 H(x)$
    $\quad$
  5. L’équation réduite de la tangente au point d’abscisse $1$ de la courbe de la fonction $f$ définie sur $\mathbf{R}$ par $f(x)=x \e^x$ est :
    a. $y=\e x+\e$
    b. $y=2 \e x-\e$
    c. $y=2 \e x+\e$
    d. $y=\e x$
    $\quad$
  6. Les nombres entiers $n$ solutions de l’inéquation $(0,2)^n<0,001$ sont tous les nombres entiers $n$ tels que :
    a. $n \pp 4$
    b. $n \pp 5$
    c. $n \pg 4$
    d. $n \pg 5$
    $\quad$

$\quad$

 

Exercice 2     7 points

Thèmes : probabilités

Les douanes s’intéressent aux importations de casques audio portant le logo d’une certaine marque. Les saisies des douanes permettent d’estimer que :

  • $20 \%$ des casques audio portant le logo de cette marque sont des contrefaçons ;
  • $2 \%$ des casques non contrefaits présentent un défaut de conception ;
  • $10 \%$ des casques contrefaits présentent un défaut de conception.

L’agence des fraudes commande au hasard sur un site internet un casque affichant le logo de la marque. On considère les événements suivants :

  • $C:$ «le casque est contrefait »;
  • $D:$ : le casque présente un défaut de conception “;
  • $\conj{C}$ et $\conj{D}$ désignent respectivement les événements contraires de $C$ et $D$.

Dans l’ensemble de l’exercice, les probabilités seront arrondies à $10^{-3}$ si nécessaire.

Partie 1

  1. Calculer $P(C \cap D)$. On pourra s’appuyer sur un arbre pondéré.
    $\quad$
  2. Démontrer que $P(D)=0,036$.
    $\quad$
  3. Le casque a un défaut. Quelle est la probabilité qu’il soit contrefait ?
    $\quad$

Partie 2
On commande $n$ casques portant le logo de cette marque. On assimile cette expérience à un tirage aléatoire avec remise. On note $X$ la variable aléatoire qui donne le nombre de casques présentant un défaut de conception dans ce lot.

  1. Dans cette question, $n=35$.
    a. Justifier que $X$ suit une loi binomiale $\mathcal{B}(n, p)$ où $n=35$ et $p=0,036$.
    $\quad$
    b. Calculer la probabilité qu’il y ait parmi les casques commandés, exactement un casque présentant un défaut de conception.
    $\quad$
    c. Calculer $P(X \pp 1)$.
    $\quad$
  2. Dans cette question, $n$ n’est pas fixé.
    Quel doit être le nombre minimal de casques à commander pour que la probabilité qu’au moins un casque présente un défaut soit supérieure à $0,99$ ?
    $\quad$

$\quad$

 

Exercice 3     7 points

Thèmes : suites, fonctions

Au début de l’année 2021, une colonie d’oiseaux comptait 40 individus. L’observation conduit à modéliser l’évolution de la population par la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par :
$$
\left\{\begin{aligned}
u_0 & =40 \\
u_{n+1} & =0,008 u_n\left(200-u_n\right)
\end{aligned}\right.
$$
où $u_n$ désigne le nombre d’individus au début de l’année $(2021+n)$.

 

  1. Donner une estimation, selon ce modèle, du nombre d’oiseaux dans la colonie au début de l’année 2022.
    On considère la fonction $f$ définie sur l’intervalle $[0 ; 100]$ par $f(x)=0,008 x(200-x)$.
    $\quad$
  2. Résoudre dans l’intervalle $[0 ; 100]$ l’équation $f(x)=x$.
    $\quad$
  3. a. Démontrer que la fonction $f$ est croissante sur l’intervalle $[0 ; 100]$ et dresser son tableau de variations.
    $\quad$
    b. En remarquant que, pour tout entier naturel $n, u_{n+1}=f\left(u_n\right)$, démontrer par récurrence que, pour tout entier naturel $n$ :
    $$
    0 \pp u_n \pp u_{n+1} \pp 100 .
    $$
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    d. Déterminer la limite $\ell$ de la suite $\left(u_n\right)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  4. On considère l’algorithme suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(p) :}\\
    \quad \text{n = 0}\\
    \quad \text{u = 40}\\
    \quad \text{while u < p :}\\
    \qquad \text{n = n + 1}\\
    \qquad \text{u = 0.008 * u * (200 – u)}\\
    \quad \text{return (n+2021)}\\
    \hline
    \end{array}$$
    L’exécution de $\text{seuil(100)}$ ne renvoie aucune valeur. Expliquer pourquoi à l’aide de la question 3.
    $\quad$

$\quad$

Exercice 4     7 points

Thèmes : géométrie dans le plan et dans l’espace

On considère le cube $ABCDEFGH$ d’arête de longueur $1$.
L’espace est muni du repère orthonormé $\left(A ; \vect{AB}, \vect{AD}, \vect{AE}\right)$. Le point $I$ est le milieu du segment $[EF]$, $K$ le centre du carré $ADHE$ et $O$ le milieu du segment $[AG]$.

Le but de l’exercice est de calculer de deux manières différentes, la distance du point $B$ au plan $(AIG)$.

Partie 1. Première méthode

  1. Donner, sans justification, les coordonnées des points $A$, $B$, et $G$.
    On admet que les points $I$ et $K$ ont pour coordonnées $I\left(\dfrac{1}{2} ; 0 ; 1\right)$ et $K\left(0 ; \dfrac{1}{2} ; \dfrac{1}{2}\right)$.
    $\quad$
  2. Démontrer que la droite $(BK)$ est orthogonale au plan $(AIG)$.
    $\quad$
  3. Vérifier qu’une équation cartésienne du plan $(AIG)$ est : $2x-y-z=0$.
    $\quad$
  4. Donner une représentation paramétrique de la droite $(BK)$.
    $\quad$
  5. En déduire que le projeté orthogonal $L$ du point $B$ sur le plan $(AIG)$ a pour coordonnées $L\left(\dfrac{1}{3} ; \dfrac{1}{3} ; \dfrac{1}{3}\right)$.
    $\quad$
  6. Déterminer la distance du point $B$ au plan $(AIG)$.
    $\quad$

Partie 2. Deuxième méthode

On rappelle que le volume $V$ d’une pyramide est donné par la formule $V=\dfrac{1}{3} \times b \times h$, où $b$ est l’aire d’une base et $h$ la hauteur associée à cette base.

  1. a. Justifier que dans le tétraèdre $ABIG$, $[GF]$ est la hauteur relative à la base $AIB$.
    $\quad$
    b. En déduire le volume du tétraèdre $ABIG$.
    $\quad$
  2. On admet que $AI=IG=\dfrac{\sqrt{5}}{2}$ et que $AG=\sqrt{3}$.
    Démontrer que l’aire du triangle isocèle $AIG$ est égale à $\dfrac{\sqrt{6}}{4}$ unité d’aire.
    $\quad$
  3. En déduire la distance du point $B$ au plan $(AIG)$.
    $\quad$

$\quad$