E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la
lettre correspondante à la réponse choisie.

Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des
recherches au brouillon pour aider à déterminer votre réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question
sans réponse n’apporte ni ne retire de point.

Question 1

On considère la loi de probabilité de la variable aléatoire $X$ donnée par le tableau ci-dessous :

$$\begin{array}{|c|c|c|c|c|c|}
\hline
k&-5&0&10&20&50\\
\hline
P(X=k)&0,71&0,03&0,01&0,05&0,2\\
\hline
\end{array}$$
L’espérance de $X$ est :

a. $15$
b. $0,2$
c. $7,55$
d. $17$

$\quad$

Correction Question 1

L’espérance de $X$ est :

$\begin{align*} E(X)&=\small{-5\times 0,71+0\times 0,03+10\times 0,01+20\times 0,05+50\times 0,2} \\
&=7,55\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On se place dans un repère orthonormé.
Le cercle de centre A( -2 ; 4) et de rayon 9 a pour équation :

a. $(x+2)^2+(y-4)^2=81$
b. $(x-2)^2+(y+4)^2=81$
c. $(x+2)^2+(y-4)^2=9$
d. $(x-2)^2+(y+4)^2=9$

$\quad$

Correction Question 2

Une équation du cercle est $\left(x-(-2)\right)^2+(y-4)^2=9^2$ soit $(x+2)^2+(y-4)^2=81$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

Soit $f$ la fonction définie par $f(x)=ax^2+bx+c$ où $a$, $b$ et $c$ sont des réels.

On considère dans un repère la courbe représentative de $f$ tracée ci-dessous.

On appelle $\Delta$ son discriminant.

On peut affirmer que :

a. $a>0$ ou $c<0$
b. $c$ et $\Delta$ sont du même signe
c. $a<0$ et $c<0$
d. $a<0$ et $\Delta<0$

$\quad$

Correction Question 3

D’après le graphique $a<0$ (la fonction $f$ admet un maximum) et $\Delta>0$ (il y a deux racines)
Les deux racines $x_1$ et $x_2$ sont de signes différents.
Or $ax_1x_2=c$ donc $c>0$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la suite $\left(U_n\right)$ définie par $U_0=-2$ et $U_{n+1}=2U_n-5$.
Un algorithme permettant de calculer la somme $S=U_0+U_1+\ldots+U_{36}$ est :

$\begin{array}{llll}
\textbf{a.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=0}\\
\text{Pour i de 1 à 37}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}&\textbf{b.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=0}\\
\text{Pour i de 1 à 36}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}\\\\
\textbf{c.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=-2}\\
\text{Pour i de 1 à 37}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\text{Fin Pour}\\
\hline\end{array}&\textbf{d.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=-2}\\
\text{Pour i de 1 à 36}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}\end{array}$

$\quad$

Correction Question 4

Si la variable $\text{U}$ est transformée avant la variable $\text{S}$ alors $\text{S}$ doit être initialisée à $-2$.
Dans l’algorithme c., quand $\text{i}=1$, la variable $S$ prend la valeur $u_0+u_0$ au lieu de $u_0+u_1$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

La suite $\left(U_n\right)$ définie par $U_0=-2$ et $U_{n+1}=2U_n-5$ est :

a. arithmétique mais pas géométrique
b. géométrique mais pas arithmétique
c. ni arithmétique, ni géométrique
d. à la fois arithmétique et géométrique

$\quad$

Correction Question 5

On $U_0=-2$
$\begin{align*} U_1&=2U_0-5\\
&=2\times (-2)-5 \\
&=-9\end{align*}$
$\begin{align*} U_2&=2U_1-5\\
&=2\times (-9)-5\\
&=-23\end{align*}$

Ainsi :

  • $U_1-U_0=-7$ et $U_2-U_1=-14$
    Ces différences ne sont pas égales : la suite n’est pas arithmétique
  • $\dfrac{U_1}{U_0}=\dfrac{9}{2}$ et $\dfrac{U_2}{U_1}=\dfrac{23}{9}$
    Ces quotients ne sont pas égaux : la suite n’est pas géométrique

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.

Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

$EFG$ est un triangle tel que $EF = 8$, $FG = 5$ et $\widehat{EFG}=\dfrac{3\pi}{4}$. Alors $\vect{FE}.\vect{FG}$ est égal à :

a. $20\sqrt{2}$
b. $-20\sqrt{2}$
c. $20\sqrt{3}$
d. $20\sqrt{3}$

$\quad$

Correction Question 1

$\begin{align*} \vect{FE}.\vect{FG}&=FE\times FG\times \cos \widehat{EFG}\\
&=8\times 5\times \cos \dfrac{3\pi}{4}\\
&=-20\sqrt{2}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère orthonormé, on a tracé la courbe représentative d’une fonction $f$ et
sa tangente au point $A$ d’abscisse $0$.

On note $f’$ la dérivée de la fonction $f$. On a :

a. $f'(0)=2$
b. $f'(0)=-1$
c. $f'(2)=-1$
d. $f'(-2)=0$

$\quad$

Correction Question 2

Graphiquement le coefficient directeur de la tangente à la courbe au point $A$ est $-1$.
Donc $f'(0)=-1$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

On se place dans un repère orthonormé. Une équation du cercle de centre $B( 2 ; 3)$
et de rayon $4$ est :

a. $(x+2)^2+(y+3)^2=4$
b. $(x-2)^2+(y-3)^2=4$
c. $(x-2)^2+(y-3)^2=16$
d. $(x+2)^2+(y+3)^2=16$

$\quad$

Correction Question 3

Une équation cartésienne de ce cercle est $(x-2)^2+(y-3)^2=4^2$ soit $(x-2)^2+(y-3)^2=16$.

Réponse c

$\quad$

$\quad$

[collapse]

$\quad$

Question 4

On se place dans un repère orthonormé du plan. On a tracé ci-dessous la courbe représentative d’une fonction $f$ définie sur $\R$.

L’équation $f(x) = -3$ a pour solution(s) :

a. $3$
b. $0$
c. $-3$
d. $0$ et $-1$

$\quad$

Correction Question 4

Graphiquement la droite d’équation $y=-3$ semble couper la courbe en deux points d’abscisse $0$ et $1$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

Un vecteur normal à la droite d’équation cartésienne -3x-2y+5=0$ est :

a. $\begin{pmatrix}2\\-3\end{pmatrix}$
b. $\begin{pmatrix}3\\-2\end{pmatrix}$
c. $\begin{pmatrix}-3\\2\end{pmatrix}$
d. $\begin{pmatrix}3\\2\end{pmatrix}$

$\quad$

Correction Question 5

Un vecteur normal a une droite dont une équation cartésienne est $ax+by+x=0$ est $\vec{n}\begin{pmatrix}a\\b\end{pmatrix}$.
Donc ici, un vecteur normal à cette droite est $\vec{n}\begin{pmatrix}-3\\-2\end{pmatrix}$.
$-\vec{n}\begin{pmatrix}3\\2\end{pmatrix}$ est par conséquent un vecteur normal à cette droite.

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque question, une seule des quatre réponses proposées est exacte. Une bonne réponse rapporte un point. Une mauvaise réponse, une réponse multiple ou l’absence de réponse ne rapporte ni n’enlève aucun point.
Relevez sur votre copie le numéro de la question ainsi que la lettre correspondant à la réponse choisie. Aucune justification n’est demandée.

Question 1

Quelle est la forme factorisée de $f(x)=0,5(x-2)^2-8$?

a. $0,5x^2-2x-6$
b. $0,5(x-6)(x+2)$
c. $0,5(x+10)(x-6)$
d. $0,5(x-10)(x+6)$

$\quad$

Correction Question 1

$\begin{align*} f(x)&=0,5(x-2)^2-8 \\
&=0,5\left[(x-2)^2-16\right]\\
&=0,5\left[(x-2)^2-4^2\right]\\
&=0,5\left[(x-2)-4\right]\left[(x-2)+4\right] \\
&=0,5(x-6)(x+2)\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

$\left(u_n\right)$ est une suite arithmétique de raison $r = 0,5$ telle que $u_{10} = -4$. Quelle est la valeur du terme $u_2$ ?

a. $8$
b. $0$
c. $-10$
d. $-8$

$\quad$

Correction Question 2

On a $u_{10}=u_2+8r$
Donc $u_2=u_{10}-8r$ soit $u_2=-8$

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Soit la fonction $f$ définie pour tout $x\neq -2$ par : $f(x)=\dfrac{2x-1}{x+2}$.
Parmi les expressions suivantes, laquelle définit la dérivée $f’$ de la fonction $f$ sur $\R\backslash \lbrace -2\rbrace$ ?

a. $f'(x)=-\dfrac{5}{(x+2)^2}$
b. $f'(x)=\dfrac{5}{(x+2)^2}$
c. $f'(x)=\dfrac{3}{(x+2)^2}$
d. $f'(x)=2$

$\quad$

Correction Question 3

$f$ est dérivable sur $]-\infty;-2[\cup]-2;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
Pour tout réel $x \neq -2$ on a :
$\begin{align*} f'(x)&=\dfrac{2\times(x+2)-1\times(2x-1)}{(x+2)^2} \\
&=\dfrac{2x+4-2x+1}{(x+2)^2} \\
&=\dfrac{5}{(x+2)^2}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On se place dans un repère orthonormé $\Oij$. Laquelle de ces équations est une équation cartésienne de la droite $\Delta$ de vecteur directeur $\vec{u}\begin{pmatrix}-1\\2\end{pmatrix}$ et passant par le point $A(-1;3)$?

a. $2x-y+1=0$
b. $-x+2y-7=0$
c. $x+2y+1=0$
d. $-2x-2y+1=0$

$\quad$

Correction Question 4

$\vec{u}\begin{pmatrix}-1\\2\end{pmatrix}$ est un vecteur directeur de $\Delta$.
Une équation de $\Delta$ est donc de la forme $2x+y+c=0$
Le point $A(-1;3)$ appartient à $\Delta$.
Donc $^2\times (-1)+3+c=0 \ssi c=-1$.
Une équation de $\Delta$ est donc $2x+y-1=0$.
En multipliant les deux membres par $-1$ on obtient l’équation $-2x-y+1=0$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

On se place dans un repère orthonormé $\Oij$. Parmi ces propositions, quelle est l’équation cartésienne du cercle de centre $A(2 ; 4)$ et de rayon $3$ ?

a. $(x-2)^2+(y-4)^2=3$
b. $(x+2)^2+(y+4)^2=9$
c. $x^2+y^2-4x-8y+11=0$
d. $x^2+y^2+11=0$

$\quad$

Correction Question 5

Une équation du cercle est :
$\begin{align*} &(x-2)^2+(y-4)^2=3^2 \\
\ssi~&x^2-4x+4+y^2-8y+16=9 \\
\ssi~&x^2-4x+y^2-8y+11=0\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.
Dans cet exercice, on se place dans un repère orthonormé.

Question 1

Un vecteur normal à la droite d’équation cartésienne $2x-5y+3=0$ a pour coordonnées :

a. $\begin{pmatrix} -5\\2\end{pmatrix}$
b. $\begin{pmatrix} 2\\5\end{pmatrix}$
c. $\begin{pmatrix} 5\\2\end{pmatrix}$
d. $\begin{pmatrix} -2\\5\end{pmatrix}$

$\quad$

Correction Question 1

Un vecteur normal à la cette droite est le vecteur $\vec{n}\begin{pmatrix}2\\-5\end{pmatrix}$.
Le vecteur $-\vec{n}$ de coordonnées $\begin{pmatrix}-2\\5\end{pmatrix}$ est donc également normal à cette droite.

Réponse d

$\quad$

[collapse]

$\quad$

Question 2

Le centre $A$ du cercle d’équation $x^2+y^2+6x-8y=0$ est :

a. $A(3;4)$
b. $A(-3;4)$
c. $A(-4;3)$
d. $A(4;-3)$

$\quad$

Correction Question 2

$\begin{align*} &x^2+y^2+6x-8y=0\\
\ssi~&x^2+2\times 3x+y^2-2\times 4y=0\\
\ssi~&x^2+2\times 3x+3^2-3^2+y^2-2\times 4y+4^2-4^2=0\\
\ssi~&(x+3)^2-9+(y-4)^2-16=0\\
\ssi~&(x+3)^2+(y-4)^2=25\\
\ssi~&\left((x-(-3)\right)^2+(y-4)^2=5^2\end{align*}$
Il s’agit donc de l’équation cartésienne du cercle de centre $A(-3;4)$ et de rayon $5$.

Réponse B

$\quad$

[collapse]

$\quad$

Question 3

On considère un triangle $ABC$ tel que $AB = 3$, $BC = 5$ et $AC = 6$, on a alors $\vect{AB}.\vect{AC}$ égal à :

a. $-18$
b. $10$
c. $26$
d. $0$

$\quad$

Correction Question 3

D’après la propriété 7 on a
$\begin{align*} \vect{AB}.\vect{AC}&=\dfrac{1}{2}\left(AB^2+AC^2-BC^2\right) \\
&=\dfrac{1}{2}\left(3^2+6^2-5^2\right) \\
&=10\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$


$\quad$

Question 4

Le nombre réel $\dfrac{-3\pi}{4}$ est associé au même point du cercle trigonométrique que le réel :

a. $\dfrac{-14\pi}{4}$
b. $\dfrac{7\pi}{4}$
c. $\dfrac{13\pi}{4}$
d. $\dfrac{19\pi}{4}$

$\quad$

Correction Question 4

Deux réels $x$ et $y$ sont associés au même point du cercle si, et seulement si, $x-y=2k\pi$ où $k\in \Z$.

Or :
$\begin{array}{l}\dfrac{-3\pi}{4}-\left(\dfrac{-14\pi}{4}\right)=\dfrac{11\pi}{4}\\
\dfrac{-3\pi}{4}-\dfrac{7\pi}{4}=\dfrac{-5\pi}{2}\\
\dfrac{-3\pi}{4}-\dfrac{13\pi}{4}=-4\pi=-2\times 2\pi \checkmark\\
\dfrac{-3\pi}{4}-\dfrac{19\pi}{4}=\dfrac{-11\pi}{2}\end{array}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

La fonction $g$ définie sur $\R$ par $g(x)=(4x-7)^3$ a pour fonction dérivée :

a. $g'(x)=3(4x-7)^2$
b. $g'(x)=12(4x-7)$
c. $g'(x)=12x-21$
d. $g'(x)=12(4x-7)^2$

$\quad$

Correction Question 5

On appelle $f$ la fonction définie sur $\R$ par $f(x)=x^3$.
Ainsi $g(x)=f(4x-7)$.
$f$ est dérivable sur $\R$ et pour tout réel $x$ on a $f'(x)=3x^2$
Donc, par composition, $g$ l’est aussi.
Pour tout réel $x$ on a :
$\begin{align*} g'(x)&=4f'(4x-7) \\
&=4\times 3(4x-7)^2 \\
&=12(4x-7)^2\end{align*}$

Réponse d

$\quad$

Remarque : Les calculatrices savent calculer des nombres dérivés. On pouvait donc faire calculer d’un côté, par exemple, $g'(\pi)$ et de l’autre côté faire calculer les images de $\pi$ par chacune des fonctions et comparer les résultats. On peut bien évidemment remplacer $\pi$^par la valeur de son choix. S’il est impossible, pour une valeur donnée, de choisir une proposition il faut alors changer de valeur. Cette méthode peu élégante permet de trouver la bonne réponse dans des situations désespérées.

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Géométrie repérée – 2020

Géométrie repérée

E3C2 – 1ère

Le logo d’une entreprise est constitué d’un carré, d’un cercle et d’un triangle.
Il a été représenté ci-dessous dans un repère orthonormé $\Oij$.

On donne les coordonnées des sommets du carré :
$$A(-3 ; 3) , B(3 ; 3) , C(3 ; 3) ,D(-3 ; -3)$$
On considère le point $E\left(-2;3+\sqrt{5}\right)$.

On admettra que $E$ est situé sur le cercle de diamètre $[AB]$.

On note $I$ le milieu de $[AB]$.

  1. Donner une équation cartésienne de la droite $(BD)$ et une équation du cercle de diamètre $[AB]$.
    $\quad$
  2. Montrer que la hauteur du triangle $BDE$ issue de $E$ admet pour équation cartésienne $$x+y-\left(1+\sqrt{5}\right)=0$$
  3. Déterminer les coordonnées du projeté orthogonal $H$ du point $E$ sur la droite $(BD)$.
    $\quad$
  4. Calculer l’aire du triangle $BDE$ (en unités d’aire).
    $\quad$
  5. Montrer que $\vect{DB}.\vect{DE}=42+6\sqrt{5}$.
    On admet que $\norme{\vect{DE}}=\sqrt{42+12\sqrt{5}}$; en déduire la mesure de l’angle $\widehat{BDE}$ au degré près.
    $\quad$


$\quad$

Correction Exercice

  1. Un vecteur directeur de la droite $(BD)$ est $\vect{BD}\begin{pmatrix}-6\\-6\end{pmatrix}$.
    Une équation cartésienne de la droite $(BD)$ est donc de la forme $-6x+6y+c=0$
    Le point $B(3;3)$ appartient à la droite $(BD)$.
    Par conséquent $-18+18+c=0\ssi c=0$.
    Une équation cartésienne de la droite $(BD)$ est donc $-6x+6y=0$ ou encore $-x+y=0$.
    $\quad$
    On appelle $M$ le milieu de $[AB]$. $M$ a donc pour coordonnées $(0;3)$.
    $A$ et $B$ ont la même ordonnée donc :
    $AB=\left|x_B-x_A\right|$ soit $AB=6$.
    Le rayon du cercle est $R=\dfrac{AB}{2}$ donc $R=3$.
    Ainsi une équation cartésienne du cercle de diamètre $[AB]$ est :
    $(x-0)^2+(y-3)^2=3^2$ soit $x^2+(y-3)^2=9$.
    $\quad$
  2. On appelle $d$ la hauteur du triangle $BDE$ issue de $E$.
    Le vecteur $\vect{BD}$ est donc normal à la droite $d$.
    Une équation cartésienne de $d$ est par conséquent de la forme $-6x-6y+d=0$
    Le point $E\left(-2;3+\sqrt{5}\right)$ appartient à la droite $d$.
    Par conséquent $12-6\left(3+\sqrt{5}\right)+d=0 \ssi d=6+6\sqrt{5}$.
    Une équation cartésienne de $d$ est donc $-6x-6y+6+6\sqrt{5}$ ou encore, en divisant les deux membres par $-6$,$ x+y-\left(1+\sqrt{5}\right)$.
    $\quad$
  3. Le point $H$ appartient à la fois à la droite $(BD)$ et à la droite $d$.
    Ses coordonnées sont donc solution du système :
    $\begin{align*}\begin{cases}-x+y=0\\x+y-\left(1+\sqrt{5}\right)=0\end{cases}&\ssi \begin{cases}x=y\\x+x-\left(1+\sqrt{5}\right)=0\end{cases} \\
    &\ssi \begin{cases}x=y\\2x=1+\sqrt{5}\end{cases} \\
    &\ssi \begin{cases}x=y\\x=\dfrac{1+\sqrt{5}}{2}\end{cases}\end{align*}$
    Le point $H$ a donc pour coordonnées $\left(\dfrac{1+\sqrt{5}}{2};\dfrac{1+\sqrt{5}}{2}\right)$.
    $\quad$
  4. L’aire du triangle $BDE$ est $\mathscr{A}=\dfrac{BD\times EH}{2}$
    Or $BD=\sqrt{(-3-3)^2+(-3-3)^2}$ soit $BD=6\sqrt{2}$
    et
    $\begin{align*} EH&=\sqrt{\left(\dfrac{1+\sqrt{5}}{2}+2\right)^2+\left(\dfrac{1+\sqrt{5}}{2}-3-\sqrt{5}\right)^2}\\
    &=\sqrt{\dfrac{15+5\sqrt{5}}{2}+\dfrac{15+5\sqrt{5}}{2}}\\
    &=\sqrt{15+5\sqrt{5}}\end{align*}$
    Par conséquent :
    $\begin{align*} \mathscr{A}&=\dfrac{6\sqrt{2}\times \sqrt{15+5\sqrt{5}}}{2} \\
    &=15+3\sqrt{5}\end{align*}$
    $\quad$
  5. On a $\vect{DB}\begin{pmatrix}6\\6\end{pmatrix}$ et $\vect{DE}\begin{pmatrix}1\\6+\sqrt{5}\end{pmatrix}$.
    Par conséquent :
    $\begin{align*}\vect{DB}.\vect{DE}&=6+6\left(6+\sqrt{5}\right) \\
    &=42+6\sqrt{5}\end{align*}$
    $\quad$
    On a également $\vect{DB}.\vect{DE}=DB\times DE\times \cos \widehat{BDE}$
    Par conséquent :
    $\begin{align*}\cos \widehat{BDE}&=\dfrac{\vect{DB}.\vect{DE}}{DB\times DE}\\
    &=\dfrac{42+6\sqrt{5}}{6\sqrt{2}\times \sqrt{42+12\sqrt{5}}}\end{align*}$
    Donc $\widehat{BDE}\approx 38$°.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

L’inéquation $\e^{-2x}>0$ d’inconnue $x$ a pour ensemble de solutions :

a. $\R$
b. $]0;+\infty[$
c. $]-\infty;0[$
d. $\emptyset$

$\quad$

Correction Question 1

La fonction exponentielle est strictement positive sur $\R$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Pour tout réel $x$, $\left(\e^x-1\right)^2$ est égal à :

a. $\e^{2x}-1$
b. $\e^{2x}+1$
c. $\e^{2x}-2\e^x+1$
d. $\e^{\left(x^2\right)}-1$

$\quad$

Correction Question 2

Pour tout réel $x$ on a :
$\begin{align*} \left(\e^x-1\right)^2&=\left(\e^x\right)^2-2\times 1 \times \e^x +1^2\\
&=\e^{2x}-2\e^x+1\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

Soit $f$ la fonction définie sur $\R$ par : $f(x)=\e^{5x-1}$. Pour tout réel $x$, $f'(x)$ est égal à :

a. $\e^{5x-1}$
b. $5\e^{5x}$
c. $5\e^{5x-1}$
d. $5x\e^{5x-1}$

$\quad$

Correction Question 3

$f(x)$ est de la forme $e^{ax+b}$.
$f$ est donc dérivable sur $\R$ et $f'(x)=a\e^{ax+b}$
Or $a=5$ et $b=-1$.
Par conséquent $f'(x)=5\e^{5x-1}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Dans un repère orthonormé, la droite passant par $A(4;7)$ et de vecteur normal $\vec{n}\begin{pmatrix}-1\\3\end{pmatrix}$ a pour équation

a. $3x+y-19=0$
b. $3x+y+19=0$
c. $-x+3y+17=0$
d. $-x+3y-17=0$

$\quad$

Correction Question 4

Une équation cartésienne de la droite est de la forme $-x+3y+c=0$
Le point $A(4;7)$ appartient à la droite.
Donc $-4+3\times 7+c=0 \ssi c=-17$
Une équation cartésienne de la droite est $-x+3y-17=0$

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

Le plan est muni d’un repère orthonormé.
On considère l’équation de cercle $x^2-4x+(y+3)^2=3$. Son centre a pour coordonnées :

a. $(-2;-3)$
b. $(2;-3)$
c. $(-4;3)$
d. $(4;-3)$

$\quad$

Correction Question 5

$\begin{align*} &x^2-4x+(y+3)^2=3 \\
\ssi~&x^2-4x+4-4+(y+3)^2=3 \\
\ssi~&(x-2)^2+(y+3)^2=7 \\
\ssi~&(x-2)^2+\left(y-(-3)\right)^2=7\end{align*}$
Le centre du cercle a pour coordonnées $(2;-3)$.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence