Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – mars 2021

Centres étrangers – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Question 1 : La fonction $g$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
Pour tout réel $x\pg 0$, $g'(x)= 2x+2+\dfrac{3}{x^2}$.
Une équation de cette tangente est de la forme $y=g'(1)(x-1)+g(1)$.
Or $g(1)=0$ et $g'(1)=7$.
Une équation de cette tangente est donc $y=7(x-1)$.
Réponse a
$\quad$

Question 2 : Pour tout entier naturel $n$ on a $v_n=\dfrac{3}{1+\dfrac{2}{n}}$
Or $\lim\limits_{n\to +\infty} \dfrac{2}{n}=0$ donc $\lim\limits_{n\to +\infty} v_n=3$.
Remarque : On pouvait également utiliser la limite des termes de plus haut degré.
Réponse b
$\quad$

Question 3 : On appelle $X$ la variable comptant le nombre de boules noires tirées. On effectue $10$ tirages aléatoires, indépendants et identiques. À chaque tirage il n’y a que deux issues $N$ « La boule tirée est noire » et $\conj{N}$. De plus $p(N)=0,6$.
$X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,6$.
Ainsi $P(X=4) = \dbinom{10}{4} 0,6^4 \times 0,4^6 \approx 0,111~5$
Réponse c
$\quad$

Question 5 : Pour tout réel $x$ on a $f(x)=\e^{x}\left(3-\dfrac{x}{\e^x}\right)$.
Or, par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} {x}\dfrac{e^x}=0$
De plus $\lim\limits_{x\to +\infty} \e^x=+\infty$
Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$
Réponse b
$\quad$

Question 5 : Il y a $36^8$ combinaisons possibles.
Il faut donc au maximum $\dfrac{36^8}{10^8} \approx 28~211$ secondes pour découvrir le code.
Cela correspond à environ $8$ heures.
Réponse b
$\quad$

 

 

Ex 2

Exercice 2

Partie A – Modélisation à l’aide d’une suite

  1. a. Si $2\%$ des panneaux se sont détériorés cela signifie que $98\%$ sont en état de fonctionner. Pour tout entier naturel $n$, cela correspond donc à $0,98u_n$ panneaux.
    Chaque année $250$ nouveaux panneaux sont installés.
    Par conséquent $u_{n+1}=0,98u_n+250$.
    En 2020, la société possédait $10~560$ panneaux. Donc $u_0=10~560$.
    $\quad$
    b. D’après la calculatrice, c’est-à-partir du rang $68$ que $u_n\pg 12~000$.
    Il faut $68$ ans pour que le nombre de panneaux solaires soit strictement supérieur à $12~000$.
    $\quad$
    c.
    $$\begin{array}{|l|}
    \hline
    \text{u = 10560} \\
    \text{n = 0} \\
    \textbf{while }\text{u  < 12000 :} \\
    \quad \text{u =  0.98 * u + 250}\\
    \quad \text{n = n + 1}\\
    \hline
    \end{array}$$
    $\quad$
  2. Initialisation : On a $u_0 = 10~560 < 12~500$
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n \in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} u_{n+1} &= 0,98u_n +250 \\
    &\pp 0,98 \times 12~500+250 \\
    &\pp 12~250+250\\
    &\pp 12~500\end{align*}$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $u_n \pp 12~500$.
    $\quad$
  3. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}-u_n&=0,98u_n+250-u_n \\
    &=-0,02u_n+250 \\
    &=0,02\left(-u_n+12~500\right)\end{align*}$
    Or, pour tout entier naturel $n$, on a $u_n\pp 12~500$.
    Par conséquent $u_{n+1}-u_n\pg 0$.
    La suite $\left(u_n\right)$ est croissante.
    $\quad$
  4. La suite $\left(u_n\right)$ est croissante et majorée par $12~500$. Elle converge donc.
    $\quad$
  5. a. Pour tout entier naturel $n$,
    $\begin{align*} v_{n+1}&=u_{n+1}-12~500 \\
    &=0,98u_n+250-12~500 \\
    &=0,98u_n-12~250 \\
    &=0,98\left(u_n-12~500\right)\\
    &=0,98v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $q=0,98$ et de premier terme $v_0=u_0-12~500=-1~940$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$ on a $v_n=-1~940\times 0,98^n$.
    $\quad$
    c. Donc, pour tout entier naturel $n$, $u_n=v_n+12~500=12~500-1~940\times 0,98^n$.
    $\quad$
    d. $-1<0,98<1$ donc $\lim\limits_{n\to +\infty} -1~940\times 0,98^n=0$.
    Donc $\lim\limits_{n\to +\infty} u_n=12~500$.
    Sur le long terme, la centra solaire Big Sun possèdera $12~500$ panneaux solaires.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que composée et somme de fonctions dérivables.
    Pour tout réel $x\pg 0$
    $\begin{align*} f'(x)&=-500\times (-0,02)\e^{-0,02x+1,4} \\
    &=10\e^{-0,02x+1,4}\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$ donc $f'(x)>0$.
    La fonction $f$ est par conséquent strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. $\lim\limits_{x\to +\infty} -0,02x+1,4=-\infty$ or $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{x\to +\infty} \e^{-0,02x+1,4}=0$ et $\lim\limits_{x\to +\infty} f(x)=12~500$.
    $\quad$
  3. On veut résoudre l’inéquation :
    $\begin{align*} f(x)>12~000 &\ssi 12~500-500\e^{-0,02x+1,4} > 12~000 \\
    &\ssi -500\e^{-0,02x+1,4} > -500 \\
    &\ssi \e^{-0,02x+1,4} < 1 \\
    &\ssi -0,02x+1,4< 0\\
    &\ssi -0,02x<-1,4 \\
    &\ssi x> 70\end{align*}$
    C’est donc au bout de $70$ ans, selon ce modèle, que le nombre de panneaux solaires dépassera $12~000$.
    $\quad$

 

 

 

Ex 3

Exercice 3

Partie A

  1. On a $F(1;0;1)$, $I(0;0,5;0,5)$ et $J\left(1;1;\dfrac{2}{3}\right)$
    $\quad$
  2. Ainsi $\vect{FJ}\begin{pmatrix} 0\\1\\-\dfrac{1}{3}\end{pmatrix}$
    Une représentation paramétrique de la droite $(d)$ est par conséquent $$\begin{cases} x=0\\y=0,5+t\\z=0,5-\dfrac{1}{3}t\end{cases} \quad, t\in \R$$
    $\quad$
  3. a. Le point de coordonnées $\left(0;0;\dfrac{2}{3}\right)$ appartient bien à la droite $(AE)$.
    En prenant $t=-0,5$, dans la représentation paramétrique de $(d)$, on trouve $\begin{cases} x=0\\y=0\\z=\dfrac{2}{3}\end{cases}$.
    Le point de coordonnées $\left(0;0;\dfrac{2}{3}\right)$ appartient aux droites $(d)$ et $(AE)$. C’est donc le point $K$.
    $\quad$
    b. Le point $L$ appartient à la droite $(DH)$. Ses coordonnées sont donc de la forme $(0;1;\gamma)$.
    En prenant $t=0,5$, dans la représentation paramétrique de (d)$, on trouve $\begin{cases} x=0\\y=1\\z=\dfrac{1}{3}\end{cases}$.
    Ainsi, le point $L$ a pour coordonnées $\left(0;1;\dfrac{1}{3}\right)$.
    $\quad$
  4. a. On a $\vect{LK}\begin{pmatrix} 0\\1\\-\dfrac{1}{3}\end{pmatrix}$.
    Par conséquent $\vect{LK}=\vect{FJ}$ et $FJLK$ est un paralélogramme.
    $\quad$
    b. $FJ=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}}$
    $\vect{FK}\begin{pmatrix} -1\\0\\-\dfrac{1}{3}\end{pmatrix}$ donc $FK=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}}$
    Le parallélogramme $FJLK$ possède deux côtés consécutifs de même longueur. C’est donc un losange.
    $\quad$
    c. $\vect{FJ}.\vect{FK}=0+0+\dfrac{1}{9}\neq 0$
    Ces deux vecteurs ne sont pas orthogonaux. Par conséquent $FJLK$ n’est pas un carré.
    $\quad$

Partie B : Cas général

  1. On a $\vect{CG}\begin{pmatrix}0\\0\\1\end{pmatrix}$
    Donc
    $\begin{align*} \vect{CJ}=a\vect{CG}&\ssi \begin{cases} x_J-1=0\\y_J=1=0\\z_J-0=a\end{cases} \\
    &\ssi \begin{cases} x_j=1\\y_J=1\\z_J=a\end{cases}\end{align*}$
    $\quad$
  2. Ainsi $\vect{FJ}\begin{pmatrix} 0\\1\\a-1\end{pmatrix}$ et $\vect{KL}\begin{pmatrix} 0\\1\\a-1\end{pmatrix}$
    Donc $\vect{FJ}=\vect{KL}$ et $FJKL$ est un parallélogramme.
    $\quad$
  3. D’après la question A.4.b. si $a=\dfrac{2}{3}$ alors $FJKL$ est un losange.
    $\quad$
  4. On a $\vect{FK}\begin{pmatrix} -1\\0\\-\dfrac{a}{2}\end{pmatrix}$
    $\begin{align*} \vect{FK}.\vect{FJ}=0&\ssi 0+0-\dfrac{a}{2}(a-1)=0 \\
    &\ssi a=0\text{ ou } a=1\end{align*}$
    Ainsi, les deux seules valeurs de $a$ pour lesquelles $\vect{FK}$ et $\vect{FJ}$ soient orthogonaux sont $0$ et $1$.
    Or si $a=0$ alors $FJ=FC=\sqrt{2}$ (d’après le théorème de Pythagore) et $FK=FE=1$. $FJLK$ n’est pas un losange et donc pas un carré.
    Si $a=1$ alors $FJ=FG=1$ et $FK=FA=\sqrt{2}$ et ce n’est toujours pas un carré.
    Il n’existe donc pas de valeurs de $a$ telles que le quadrilatère $FJLK$ soit un carré.
    $\quad$

 

 

Ex A

Exercice A

Partie A

  1. Si le test du mélange est négatif alors on n’a fait qu’un seul test et $X_n$ prend la valeur $1$.
    Si le test est positif alors on teste tous les individus. On a donc fait $1+n$ tests au total et $X$ prend la valeur $n+1$.
    $\quad$
  2. Si l’événement $\left[X_n=1\right]$  est réalisé alors aucun individu n’est positif. La probabilité qu’un individu ne soit pas malade est égale à $0,95$.
    Par conséquent, la probabilité que tous les individus ne soient pas malade est $0,95^n$.
    Donc $P\left(X_n=n+1\right)=1-0,95^n$.
    On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|}
    \hline
    x_i&1&n+1\\
    \hline
    P\left(X_n=x_i\right)&0,95^n&1-0,95^n\\
    \hline
    \end{array}$$
    $\quad$
  3. L’espérance de $X_n$ indique le nombre moyen qu’on va réaliser.
    $\begin{align*}
    E\left(X_n\right)&=1\times 0,95^n+(n+1)\times \left(1-0,95^n\right)\\
    &=0,95^n +n+1 -(n+1)\times 0,95^n \\
    &=n+1-n\times 0,95^n\end{align*}$
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[20;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x\pg 20$, $f'(x)=\dfrac{1}{x}+\ln(0,95)$
    $\begin{align*} f(x)<0 &\ssi \dfrac{1}{x} < -\ln(0,95)\\
    &\ssi x>-\dfrac{1}{\ln(0,95)}\end{align*}$
    Or $-\dfrac{1}{\ln(0,95)} \approx 19,5<20$
    Donc $f'(x)<0$ sur $[20;+\infty[$.
    $f$ est strictement décroissante sur $[20;+\infty[$.
    $\quad$
  2. Pour tout réel $x$ on a $f(x)=x\left(\dfrac{\ln(x)}{x}+\ln(0,95)\right)$
    Or, par croissance comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}+\ln(0,95)=\ln(0,95)<0$
    Ainsi, $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. La fonction $f$ est strictement décroissante et continue (car dérivable) sur $[20;+\infty[$.
    De plus $f(20) \approx 4,02>0$ et $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $[20;+\infty[$.
    D’après la calculatrice, $87<\alpha \approx< 87,1$.
    $\quad$
  4. La fonction $f$ est strictement décroissante sur $[20;+\infty[$ et s’annule en $\alpha$.
    Par conséquent :
    $\bullet f(x)>0$ sur $[20;\alpha[$;
    $\bullet f(\alpha)=0$;
    $\bullet f(x)<0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie C

$\begin{align*} E\left(X_n\right)<n &\ssi n+1-n\times 0,95^n < n\\
&\ssi -n\times 0,95^n <-1 \\
&\ssi 0,95^n > \dfrac{1}{n} \\
&\ssi n\ln(0,95) > \ln\left(\dfrac{1}{n}\right) \\
&\ssi n\ln(0,95)> -\ln(n) \\
&\ssi n\ln(0,95)+\ln(n)>0\\
&\ssi f(n)>0\end{align*}$

D’après la partie B, cela signifie que $n<\alpha$.
La première méthode diminue le nombre d’analysés pour des échantillons comportant au maximum $87$ personnes.
$\quad$

 

 

 

Ex B

Exercice B

Partie A : : Détermination d’une fonction $\boldsymbol{f}$ et résolution d’une équation différentielle

  1. Graphiquement $f(0)=3$ et $f'(0)=-2$.
    $\quad$
  2. On a $f(0)=1+b$.
    Donc $1+b=3 \ssi b=2$.
    $\quad$
  3. a. Pour tout réel $x$ on a $f'(x)=\e^x+a-b\e^{-x}$.
    Soit $f'(x)=\e^x+a-2\e^{-x}$
    $\quad$
    b. Par conséquent $f'(0)=1+a-2=a-1$.
    $\quad$
    c. $f'(0)=-2 \ssi a-1=-2 \ssi a=-1$.
    Par conséquent, pour tout réel $x$, $f(x)=\e^x-x+2\e{-x}$.
    $\quad$
  4. a. La fonction $g$ est dérivable sur $\R$ en tant que somme de fonction dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    g'(x)+g(x)&=\left(e^x-1-2\e^{-x}\right)+\left(\e^x-x+2\e^{-x}\right)\\
    &=2e^x-1-x\end{align*}$
    La fonction $g$ est donc solution de l’équation $(E)$.
    $\quad$
    b. $y’+y=0 \ssi y’=-y$
    Les solutions de cette équation sont les fonctions $h$ définies sur $\R$ par $h(x)=K\e^{-x}$ où $K\in \R$.
    $\quad$
    c. Soit $j$ une solution de l’équation $(E)$.
    Ainsi $j-g$ est solution de l’équation différentielle homogène $y’-y=0$.
    Par conséquent, pour tout réel $x$ on a $j(x)-g(x)=K\e^{-x}$.
    Soit $j(x)=\e^x-x+(2+K)\e^{-x}$
    Les solutions de l’équation $(E)$ sont les fonctions $j$ définies sur $\R$ par $j(x)=\e^x-x+(2+K)\e^{-x}$ où $K\in \R$.
    $\quad$

Partie B : Étude de la fonction $\boldsymbol{g} sur $\boldsymbol{[1;+\infty[}$

  1. Pour tout réel $x$ on a
    $\begin{align*} \left(\e^x-2\right)\left(\e^x+1\right) &=\e^{2x}+\e^x-2\e^x-2 \\
    &=\e^{2x}-\e^x-2\end{align*}$
    $\quad$
  2. Pour tout réel $x$ on a
    $\begin{align*}
    g'(x)&=\e^x-2\e^{-x} \\
    &=\e^{-x}\left(\e^{2x}-2\e^x-2\right) \\
    &=\e^{-x}\left(\e^x-2\right)\left(\e^x+1\right)\end{align*}$
    $\quad$
  3. Pour tout réel $x$ on a $\e^x>0$ donc $e^x+1>0$.
    Par conséquent $g'(x)>0$ sur $[1;+\infty[$.
    La fonction $g$ est donc strictement croissante sur $[1;+\infty[$.
    $\quad$

 

Énoncé

Exercice 1     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des cinq questions, quatre réponses sont proposées ; une seule de ces réponses est exacte.

Indiquer sur la copie le numéro de la question et recopier la réponse exacte sans justifier le choix effectué.

Barème : une bonne réponse rapporte un point. Une réponse inexacte ou une absence de réponse n’apporte ni n’enlève aucun point.

Question 1 :

On considère la fonction $g$ définie sur $]0;+\infty[$ par $g(x)=x^2+2x-\dfrac{3}{x}$.
Une équation de la tangente à la courbe représentative de $g$ au point d’abscisse $1$ est :

a. $y=7(x-1)$
b. $y=x-1$
c. $y=7x+7$
d. $y=x+1$
$\quad$

Question 2 :

On considère la suite $\left(v_n\right)$ définie sur $\N$ par $v_n=\dfrac{3n}{n+2}$. On cherche à déterminer la limite de $v_n$ lorsque $n$ tend vers $+\infty$.

a. $\lim\limits_{n\to +\infty} v_n=1$
b. $\lim\limits_{n\to +\infty} v_n=3$
c. $\lim\limits_{n\to +\infty} v_n=\dfrac{3}{2}$
d. On ne peut pas la déterminer
$\quad$

Question 3 :

Dans une urne il y a $6$ boules noires et $4$ boules rouges. On effectue successivement $10$ tirages aléatoires avec remise. Quelle est la probabilité (à $10^{-4}$ près) d’avoir $4$ boules noires et $6$ boules rouges ?

a. $0,166~2$
b. $0,4$
c. $0,111~5$
d. $0,888~6$
$\quad$

Question 4 :

On considère la fonction $f$ définie sur $\R$ par $f(x)=3\e^x-x$.

a. $\lim\limits_{x\to +\infty} f(x)=3$
b. $\lim\limits_{x\to +\infty} f(x)=+\infty$
c. $\lim\limits_{x\to +\infty} f(x)=-\infty$
d. On ne peut pas déterminer la limite de la fonction $f$ lorsque $x$ tend vers $+\infty$.
$\quad$

Question 5 :

On code inconnu est constitué de $8$ signes. Chaque signe peut être une lettre ou un chiffre. Il y a donc $36$ signes utilisables pour chacune des positions.
Un logiciel de cassage de code teste environ cent millions de codes par seconde.
En combien de temps au maximum le logiciel peut-il découvrir le code ?

a. environ $0,3$ seconde
b. environ $8$ heures
c. environ $3$ heures
d. environ $470$ heures
$\quad$

$\quad$

Exercice 2     5 points

Au 1$\ier$ janvier 2020, la centrale solaire de Big Sun possédait $10~560$ panneaux solaires. On observe, chaque année, que $2 \%$ des panneaux se sont détériorés et nécessitent d’être retirés tandis que $250$ nouveaux panneaux solaires sont installés.

Partie A – Modélisation à l’aide d’une suite

On modélise l’évolution du nombre de panneaux solaires par la suite $\left(u_n\right)$ définie par $u_0 = 10~560$ et, pour tout entier naturel $n$, $u{n+1}= 0,98u_n + 250$, où $u_n$ est le nombre de panneaux solaires au 1er janvier de l’année 2020 $+ n$.

  1. a. Expliquer en quoi cette modélisation correspond à la situation étudiée.
    $\quad$
    b. On souhaite savoir au bout de combien d’années le nombre de panneaux solaires sera strictement supérieur à $12~000$. À l’aide de la calculatrice, donner la réponse à ce problème.
    $\quad$
    c. Recopier et compléter le programme en Python ci-dessous de sorte que la valeur cherchée à la question précédente soit stockée dans la variable $\text{n}$ à l’issue de l’exécution de ce dernier.
    $$\begin{array}{|l|}
    \hline
    \text{u = 10560} \\
    \text{n = 0} \\
    \textbf{while } \text{……….} \\
    \quad \text{u = ……….}\\
    \quad \text{n = ……….}\\
    \hline
    \end{array}$$
  2. Démontrer par récurrence que, pour tout entier naturel $n$, on a $u_n < 12~500$.
    $\quad$
  3. Démontrer que la suite $\left(u_n\right)$ est croissante.
    $\quad$
  4. En déduire que la suite $\left(u_n\right)$ converge. Il n’est pas demandé, ici, de calculer sa limite.
    $\quad$
  5. On définit la suite $\left(v_n\right)$ par $v_n=u_n-12~500$, pour tout entier naturel $n$.
    a. Démontrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,98$ dont in précisera le premier terme.
    $\quad$
    b. Exprimer, pour tout entier naturel $n$, $v_n$ en fonction de $n$.
    $\quad$
    c. En déduire, pour tout entier naturel $n$, $u_n$ en fonction de $n$.
    $\quad$
    d. Déterminer la limite de la suite $\left(u_n\right)$. Interpréter ce résultat dans le contexte du modèle.
    $\quad$

Partie B – Modélisation à l’aide d’une fonction

Une modélisation plus précise a permis d’estimer le nombre de panneaux solaires de la centrale à l’aide de la fonction $f$ définie pour tout $x \in [0 ; +\infty[$ par $f(x) = 12~500-500\e^{-0,02x+1,4}$, où $x$ représente le nombre d’années écoulées depuis le 1$\ier$ janvier 2020.

  1. Étudier le sens de variation de la fonction $f$.
    $\quad$
  2. Déterminer la limite de la fonction $f$ en $+\infty$.
    $\quad$
  3. En utilisant ce modèle, déterminer au bout de combien d’années le nombre de panneaux solaires dépassera $12~000$.
    $\quad$

$\quad$

Exercice 3     5 points

$ABCDEFGH$ est un cube. $I$ est le centre de la face $ADHE$ et $J$ est un point du segment $[CG]$. Il existe donc $a \in [0 ; 1] $tel que $\vect{CJ}=a\vect{CG}$.

On note $(d)$ la droite passant par $I$ et parallèle à $(FJ)$.

On note $K$ et $L$ les points d’intersection de la droite $(d)$ et des droites $(AE)$ et $(DH)$.

On se place dans le repère $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

Partie A : Dans cette partie $a=\dfrac{2}{3}$

 

 

  1. Donner les coordonnées des points $F$, $I$ et $J$.
    $\quad$
  2. Déterminer une représentation paramétrique de la droite $(d)$.
    $\quad$
  3. a. Montrer que le point de coordonnées $\left(0;0;\dfrac{2}{3}\right)$ est le point $K$.
    $\quad$
    b. Déterminer les coordonnées du point $L$, intersection des droites $(d)$ et $(DH)$.
    $\quad$
  4. a. Démontrer que le quadrilatère $FJLK$ est un parallélogramme.
    $\quad$
    b. Démontrer que le quadrilatère $FJLK$ est un losange.
    $\quad$
    c. Le quadrilatère $FJLK$ est-il un carré?
    $\quad$

Partie B : Cas général

On admet que les coordonnées des points $K$ et $L$ sont : $K\left(o; 0; 1-\dfrac{a}{2}\right)$ et $L\left(0; 1; \dfrac{a}{2}\right)$.
On rappelle que $a \in [0 ; 1]$.

  1. Déterminer les coordonnées de $J$ en fonction de $a$.
    $\quad$
  2. Montrer que le quadrilatère $FJLK$ est un parallélogramme.
    $\quad$
  3. Existe-t-il des valeurs de $a$ telles que le quadrilatère $FJLK$ soit un losange ? Justifier.
    $\quad$
  4. Existe-t-il des valeurs de $a$ telles que le quadrilatère $FJLK$ soit un carré ? Justifier.
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Exercice A

Fonction $\boldsymbol{\ln}$

Partie A

Dans un pays, une maladie touche la population avec une probabilité de $0,05$. On possède un test de dépistage de cette maladie.
On considère un échantillon de $n$ personnes $(n \pg 20)$ prises au hasard dans la population assimilé à un tirage avec remise.

On teste l’échantillon suivant cette méthode : on mélange le sang de ces $n$ individus, on teste le mélange. Si le test est positif, on effectue une analyse individuelle de chaque personne.
Soit $X_n$ la variable aléatoire qui donne le nombre d’analyses effectuées.

  1.  Montrer $X_n$ prend les valeurs $1$ et $(n + 1)$.
    $\quad$
  2. Prouver que $P\left(X_n = 1\right) = 0,95^n$.
    Établir la loi de $X_n$ en recopiant sur la copie et en complétant le tableau suivant :
    $$\begin{array}{|c|c|c|}
    \hline
    x_i&1&n+1\\
    \hline
    P\left(X_n=x_i\right)&\phantom{123456}&\phantom{123456}\\
    \hline
    \end{array}$$
    $\quad$
  3.  Que représente l’espérance de $X_n$ dans le cadre de l’expérience ?
    Montrer que $E\left(X_ n\right) = n + 1-n \times 0,95^n$.
    $\quad$

Partie B

  1. On considère la fonction $f$ définie sur $[20;+\infty[$ par $f(x)=\ln(x)+x\ln(0,95)$.
    Montrer que $f$ est décroissante sur $[20;+\infty[$.
    $\quad$
  2. On rappelle que $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$. Montrer que $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. Montrer que $f(x)=0$ admet une unique solution $\alpha$ sur $[20;+\infty[$.
    Donner un encadrement à $0,1$ près de cette solution.
    $\quad$
  4. En déduire le signe de $f$ sur $[20;+\infty[$.
    $\quad$

Partie C

On cherche à comparer deux types de dépistages. La première méthode est décrite dans la partie A, la seconde, plus classique, consiste à tester tous les individus.
La première méthode permet de diminuer le nombre d’analyses dès que $E\left(X_n\right) < n$.

En utilisant la partie B, montrer que la première méthode diminue le nombre d’analyses pour des échantillons comportant $87$ personnes maximum.
$\quad$

$\quad$

Exercice B

Équation différentielle

Partie A : Détermination d’une fonction $\boldsymbol{f}$ et résolution d’une équation différentielle

On considère la fonction $f$ définie sur $\R$ par : $$f(x)=\e^x+ax+b\e^{-x}$$
où $a$ et $b$ sont des nombres réels que l’on propose de déterminer dans cette partie.

Dans le plan muni d’un repère d’origine $O$, on a représenté ci-dessous la courbe $\mathcal{C}$, représentant la fonction $f$, et la tangente $(T)$ à la courbe $\mathcal{C}$ au point d’abscisse $0$.

  1.  Par lecture graphique, donner les valeurs de $f(0)$ et de $f'(0)$.
    $\quad$
  2. En utilisant l’expression de la fonction $f$, exprimer $f(0)$ en fonction de $b$ et en déduire la valeur de $b$.
    $\quad$
  3. On admet que la fonction $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. Donner, pour tout réel $x$, l’expression de $f'(x)$.
    $\quad$
    b. Exprimer $f'(0)$ en fonction de $a$.
    $\quad$
    c. En utilisant les questions précédentes, déterminera, puis en déduire l’expression de $f(x)$.
    $\quad$
  4. On considère l’équation différentielle : $$(E) : y’ + y = 2\e^x-x-1$$
    a. Vérifier que la fonction $g$ définie sur $\R$ par : $$g(x) = \e^x-x+2\e^{-x}$$
    est solution de l’équation $(E)$.
    $\quad$
    b. Résoudre l’équation différentielle $y’ + y = 0$.
    $\quad$
    c. En déduire toutes les solutions de l’équation $(E)$.
    $\quad$

Partie B : Étude de la fonction $\boldsymbol{[g}$ sur $\boldsymbol{[1 ; +oo[}$

  1. Vérifier que pour tout réel $x$, on a $$\e^{2x}-\e^x-2=\left(\e^x-2\right)\left(\e^x+1\right)$$
    $\quad$
  2. En déduire une epression factorisée de $g'(x)$, pour tout réel $x$.
    $\quad$
  3. On admettra que, pour tout $x\in [1;+\infty[$, $\e^x-2>0$.
    Étudier le sens de variation de la fonction $g$ sur $[1 ; +\infty[$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – mars 2021

Centres étrangers – mars 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\e^{-2x}+x\times \left(-2\e^{-2x}\right)\\
    &=(1-2x)\e^{-2x}\end{align*}$
    La fonction $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f\dsec(x)&=-2\e^{-2x}+(1-2x)\times \left(-2\e^{-2x}\right)\\
    &=\left(-2-2(1-2x)\right)\e^{-2x} \\
    &=(-4+4x)\e^{-2x} \\
    &=4(x-1)\e^{-2x}\end{align*}$
    Réponse b
    $\quad$
  2. Le nombre de combinaisons possibles est :
    $\begin{align*} N&=\dbinom{12}{3} \\
    &=220\end{align*}$
    Réponse c
    $\quad$
  3. $f'(x)>0$ sur $[2;5]$.
    Réponse b
    $\quad$
  4. On appelle $A$ l’événement « La puce possède le défaut A » et $B$ l’événement « La puce possède le défaut B ».
    Ainsi $p(A)=0,028$, $p(B)=0,022$ et $p\left(\conj{A\cup B}\right)=0,954$.
    Par conséquent $p(A\cup B)=1-0,954=0,046$.
    Or
    $\begin{align*} p(A\cap B)&=p(A)+p(B)-p(A\cap B) \\
    &=0,028+0,022-0,046\\
    &=0,004\end{align*}$
    Réponse b
    $\quad$
  5. La fonction $f$ est strictement croissante sur $]-\infty;-1]$ donc $f’$ est positive sur cet intervalle.
    Réponse b
    $\quad$

Ex 2

Exercice 2

Partie A

  1. On obtient l’arbre pondéré suivant :

    $\quad$

  2. On a
    $\begin{align*} P(R\cap J)&=P(R)\times P_R(J) \\
    &=0,17\times 0,32\\
    &=0,0544\end{align*}$
    $\quad$
  3. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} &P(J)=P(R)\times P_R(J)+P\left(\conj{R}\cap J\right) \\
    \ssi&0,11=0,0544+P\left(\conj{R}\cap J\right) \\
    \ssi&0,0556=P\left(\conj{R}\cap J\right) \end{align*}$
    La probabilité que la personne interrogée soit un jeune de 18 à 24 ans n’utilisant pas régulièrement les transports en commun est $0,056$ à $10^{-3}$ près.
    $\quad$
  4. Ainsi :
    $\begin{align*} P_{\conj{R}}(J)&=\dfrac{P\left(\conj{R}\cap J\right) }{P\left(\conj{R}\right)} \\
    &\approx \dfrac{0,056}{1-0,17} \\
    &\approx 0,067\end{align*}$
    La proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun est environ égale à $0,067$.
    $\quad$

Partie B

  1. On réalise $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues $R$ et $\conj{R}$.
    Ainsi $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,17$.
    $\quad$
  2. On a
    $\begin{align*} P(X=5)&=\dbinom{50}{5}\times 0,17^5 \times 0,83^{45} \\
    &\approx 0,069\end{align*}$
    La probabilité d’avoir $5$ personnes utilisant les transports en commun parmi les $50$ interrogées est environ égale à $0,069$.
    $\quad$
  3. D’après la calculatrice $P(X\pp 13)\approx 0,964>0,95$
    L’affirmation est donc vraie.
    $\quad$
  4. L’espérance de $X$ est $E(X)=np=8,5$.
    Il y a donc en moyenne $8,5$ personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. On a
    $\begin{align*} a_1&=0,85\times 5~000+450 \\
    &=4~700\end{align*}$
    $\quad$
  2. Soit $n\in \N$.
    Chaque mois, depuis la mise en place de cette mesure, les dirigeants de l’entreprise constatent que $85 \%$ de ceux qui avaient choisi le télétravail le mois précédent choisissent de continuer. Cela représente donc $0,85a_n$.
    Chaque mois, $450$ collaborateurs supplémentaires choisissent le télétravail.
    Par conséquent $a_{n+1}=0,85a_n+450$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on a $v_n=a_n-3~000 \ssi a_n=v_n+3~000$.
    $\begin{align*} v_{n+1}&=a_{n+1}-3~000\\
    &=0,85a_n+450-3~000\\
    &=0,85a_n-2~550\\
    &=0,85\left(v_n+3~000\right)-2~550 \\
    &=0,85v_n+2~550-2~550\\
    &=0,85v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,85$ et de premier terme $v_0=200-3~000=-2~800$.
    $\quad$
    b. Pour tout entier naturel $n$, $v_n=-2~800\times 0,85^n$.
    $\quad$
    c. Par conséquent, pour tout entier naturel $n$ on a
    \begin{align*} a_n&=v_n+3~000 \\
    &=-2~800\times 0,85^n+3~000\end{align*}$
    $\quad$
  4. On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} a_n>2~500 &\ssi -2~800\times 0,85^n+3~000>2~500 \\
    &\ssi -2~800 \times 0,85^n >-500 \\
    &\ssi 0,85^n <\dfrac{5}{28} \\
    &\ssi n\ln(0,85)<\ln\left(\dfrac{5}{28}\right) \\
    &\ssi n > \dfrac{\ln\left(\dfrac{5}{28}\right)}{\ln(0,85)} \end{align*}$
    Or $\dfrac{\ln\left(\dfrac{5}{28}\right)}{\ln(0,85)} \approx 10,6$
    C’est donc au bout du $11$ème mois que le nombre de télétravailleurs sera strictement supérieur à $2~500$, après la mise en place de cette mesure dans l’entreprise.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout réel $x>0$
    $\begin{align*} f'(x)&=\dfrac{5(x+2)-(5x+4)}{(x+2)^2} \\
    &=\dfrac{5x+10-5x-4}{(x+2)^2} \\
    &=\dfrac{6}{(x+2)^2} \\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. a. Initialisation : $u_0=1$ et $u_1=3$
    Ainsi $0\pp u_0 \pp u_1 \pp 4$ et la propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    Donc $0\pp u_n \pp u_{n+1} \pp 4$
    La fonction $f$ est strictement croissante sur $[0;+\infty[$.
    Par conséquent $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(4)$
    Soit $0\pp 2 \pp u_{n+1} \pp u_{n+2} \pp 4$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp u_n\pp _{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(u_n\right)$ est donc croissante et majorée par $4$. Elle converge.
    $\quad$
  3. $-1< \dfrac{1}{2}<1$ donc $\lim\limits_{n\to +\infty} 3\times \left(\dfrac{1}{2}\right)^n=0$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} 4-u_n=0$ soit $\lim\limits_{n\to +\infty} u_n=4$.
    Sur le long terme, $4~000$ collaborateurs seront satisfaits par cette mesure.
    $\quad$

Ex A

Exercice A

  1. $\vect{AB}\begin{pmatrix} 1\\0\\2\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}-2\\5\\1\end{pmatrix}$
    Par conséquent $\vect{AB}.\vect{AC}=-2+0+2=0$.
    Ces deux vecteurs sont donc orthogonaux et le triangle $ABC$ est rectangle en $A$.
    $\quad$
  2. a. $\vec{n}.\vect{AB}=2+0-2=0$ et $\vec{n}.\vect{AC}=-4+5-1=0$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$. Il est par conséquent normal au plan $(ABC)$.
    $\quad$
    b. Une équation cartésienne du plan $(ABC)$ est donc de la forme $2x+y-z+d=0$.
    Le point $A$ appartient au plan $(ABC)$
    Par conséquent $4-1+d=0 \ssi d=-3$.
    Une équation cartésienne du plan $(ABC)$ est donc $2x+y-z-3=0$.
    $\quad$
    c. $2\times 0+1-4-3=-6\neq 0$.
    Le point $S$ n’appartient donc pas au plan $(ABC)$.
    Les points $A$, $B$, $C$ et $S$ ne sont, par conséquent, pas coplanaires.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $(d)$.
    Une représentation paramétrique de la droite $(d)$ est donc $\begin{cases} x=2t\\y=1+t\\z=4-t\end{cases} \quad t\in \R$.
    $\quad$
    b. $2\times 2\times 2+2-3-3=0$ : le point de coordonnées $(2;2;3)$ appartient au plan $(ABC)$
    En prenant $t=1$ dans la représentation paramétrique de $(d)$ on retrouve le point de coordonnées $(2;2;3)$. Il appartient ainsi à la droite $(d)$.
    Les coordonnées du point $H$ sont donc $(2;2;3)$.
    $\quad$
  4. Aire de la base :
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2}\\
    &=\dfrac{\sqrt{1^2+0^2+2^2}\times \sqrt{(-2)^2+5^2+1^2}}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{30}}{2} \\
    &=\dfrac{\sqrt{150}}{2}\end{align*}$
    Hauteur :
    $\begin{align*} SH&=\sqrt{2^2+(2-1)^2+(3-4)$2} \\
    &=\sqrt{6}\end{align*}$
    Le volume du tétraèdre est donc
    $\begin{align*} V&=\dfrac{\dfrac{\sqrt{150}}{2}\times \sqrt{6}}{3}\\
    &=5\end{align*}$
    $\quad$
  5. a. $SA\begin{pmatrix}2\\-2\\-4\end{pmatrix}$
    $\begin{align*} SA&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    $\quad$
    b. $SB\begin{pmatrix}3\\-2\\-2\end{pmatrix}$
    D’une part $\vect{SA}.\vect{SB}=6+4+8=18$;
    D’autre part $\vect{SA}.\vect{SB}=SA\times SB\times \cos\widehat{ASB}$

    Donc $\sqrt{24}\times \sqrt{17} \cos\widehat{ASB}=18$
    D’où $ \cos\widehat{ASB}=\dfrac{18}{\sqrt{408}}$
    Donc $ \widehat{ASB} \approx 27,0$°
    $\quad$

 

Ex B

Exercice B

Partie A

  1. Pour tout réel $x$ on a
    $\begin{align*} g'(x)&=2\times \left(-\dfrac{1}{3}\e^{\frac{-1}{3}x}\right)+\dfrac{2}{3} \\
    &=-\dfrac{2}{3}\e^{\frac{-1}{3}x}+\dfrac{2}{3}\end{align*}$
    $\quad$
  2. On a $g'(x)=\dfrac{2}{3}\left(1-\e^{\frac{-1}{3}x}\right)$
    Ainsi $g'(x)=0 \ssi 1-\e^{\frac{-1}{3}x}=0 \ssi \dfrac{-1}{3}x=0 \ssi x=0$
    $g'(x)>0 \ssi 1-\e^{\frac{-1}{3}x}>0 \ssi \e^{\frac{-1}{3}x}<1 \ssi x<0$
    La fonction $g$ est donc strictement croissante sur $]-\infty;0]$ et strictement décroissante sur $[0;+\infty[$.
    $\quad$
  3. Or $g(0)=2-2=0$.
    Ainsi $g(x)<0$ pour tout réel $x$ non nul et $g(0)=0$.
    $\quad$

Partie B

  1. $3y’+y=0 \ssi y’=-\dfrac{1}{3}y$
    Les solutions de cette équation sont donc les fonctions $f$ définies sur $\R$ par $f(x)=K\e^{\frac{-1}{3}x}$ où $K\in \R$.
    $\quad$
  2. On veut que $f(0)=2$ soit $K=2$.
    Par conséquent la fonction $f$ est définie sur $\R$ par $f(x)=2\e^{\frac{-1}{3}x}$.
    $\quad$
  3. a. Pour tout réel $x$ on a $f'(x)=-\dfrac{2}{3}\e^{\frac{-1}{3}x}$.
    Ainsi $f'(0)=-\dfrac{2}{3}$ et $f(0)=2$.
    Une équation de $\left(\Delta_0\right)$ est donc $y=-\dfrac{2}{3}x+2$.
    $\quad$
    b. Pour tout réel $x$ on a
    $\begin{align*} f(x)-\left(-\dfrac{2}{3}x+2\right) &=g(x) \\
    &\pp 0\end{align*}$
    La courbe $\mathcal{C}_f$ est donc toujours située sous la droite $\left(\Delta_0\right)$.
    $\quad$

Partie B

  1. Une équation de $\left(\Delta_a\right)$ est $y=-\dfrac{2}{3}\e^{\frac{-a}{3}}(x-a)+2\e^{\frac{-a}{3}}$
    Soit $y=2\e^{\frac{-a}{3}}\left(-\dfrac{1}{3}(x-a)+1\right)$.
    L’abscisse du point d’intersection de cette droite avec l’axe des abscisses vérifie donc
    $-\dfrac{1}{3}(x-a)+1=0\ssi x-a=3 \ssi x=a+3$.
    La tangente $\left(\Delta_a\right)$ coupe l’axe des abscisses au point $P$ d’abscisse $a+3$.
    $\quad$
  2. La droite $\left(\Delta_{-2}\right)$ coupe donc l’axe des abscisses au point d’abscisse $1$.
    Ainsi la droite $\left(\Delta_{-2}\right)$ passe par le point $B$ et le point de coordonnées $(1;0)$.
    $\quad$

 

Énoncé

Exercice 1     5 points

Ceci est un questionnaire à choix multiples (QCM). Pour chacune des questions, une
seule des quatre affirmations est exacte. Le candidat recopiera sur sa copie le numéro de la question et la réponse correspondante. Aucune justification n’est demandée.

Une réponse exacte rapporte un point, une réponse fausse ou une absence de réponse
ne rapporte ni n’enlève aucun point.

  1. On considère la fonction définie sur $\R$ par $f(x)=x\e^{-2x}$. On note $f\dsec$ la dérivée seconde de la fonction $f$.
    Quel que soit le réel $x$, $f\dsec(x)$ est égal à :
    a. $(1-2x)\e^{-2x}$
    b. $4(x-1)\e^{-2x}$
    c. $4\e^{-2x}$
    d. $(x+2)\e^{-2x}$
    $\quad$
  2. Un élève de première générale choisit trois spécialités parmi les douze proposées.
    Le nombre de combinaisons possibles est :
    a. $1~728$
    b. $1~320$
    c. $220$
    d. $33$
    $\quad$
  3. On donne ci-dessous la représentation graphique de $f’$ fonction dérivée d’une fonction $f$ définie sur $[0 ; 7]$.


    Le tableau de variations de $f$ sur l’intervalle $[0;7]$ est :


    $\quad$

  4. Une entreprise fabrique des cartes à puces. Chaque puce peut présenter deux défauts notés A et B.
    Une étude statistique montre que $2,8 \%$ des puces ont le défaut A, $2,2 \%$ des puces ont le défaut B et, heureusement, $95,4 \%$ des puces n’ont aucun des deux défauts.
    La probabilité qu’une puce prélevée au hasard ait les deux défauts est :
    a. $0,05$
    b. $0,004$
    c. $0,046$
    d. On ne peut pas le savoir
    $\quad$
  5. On se donne une fonction $f$, supposée dérivable sur $\R$, et on note $f’$ sa fonction dérivée.
    On donne ci-dessous le tableau de variation de $f$ :

    D’après ce tableau de variation :
    a. $f’$ est positive sur $\R$
    b. $f’$ est positive sur $]-\infty;-1[$
    c. $f’$ est négative sur $\R$
    d. $f’$ est positive sur $[-1;+\infty[$.
    $\quad$

$\quad$

Exercice 2     5 points

Dans tout cet exercice, les probabilités seront arrondies, si nécessaire, à $10^{-3}$.

D’après une étude, les utilisateurs réguliers de transports en commun représentent $17 \%$ de la population française. Parmi ces utilisateurs réguliers, $32 \%$ sont des jeunes âgés de 18 à 24 ans.

(Source : TNS-Sofres)

Partie A

On interroge une personne au hasard et on note :

  • $R$ l’événement : « La personne interrogée utilise régulièrement les transports en commun ».
  • $J$ l’événement : « La personne interrogée est âgée de 18 à 24 ans ».
  1. Représentez la situation à l’aide de cet arbre pondéré, que vous recopierez sur votre copie, en y reportant les données de l’énoncé.

    $\quad$

  2. Calculer la probabilité $P(R\cap J)$.
    $\quad$
  3. D’après cette même étude, les jeunes de 18 à 24 ans représentent $11 \%$ de la
    population française.
    Montrer que la probabilité que la personne interrogée soit un jeune de 18 à 24 ans n’utilisant pas régulièrement les transports en commun est $0,056$ à $10^{-3}$ près.
    $\quad$
  4. En déduire la proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun.
    $\quad$

Partie B :

Lors d’un recensement sur la population française, un recenseur interroge au hasard $50$ personnes en une journée sur leur pratique des transports en commun.
La population française est suffisamment importante pour assimiler ce recensement à un tirage avec remise.

Soit $X$ la variable aléatoire dénombrant les personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées.

  1. Déterminer, en justifiant, la loi de $X$ et préciser ses paramètres.
    $\quad$
  2. Calculer $P(X=5)$ et interpréter le résultat.
    $\quad$
  3. Le recenseur indique qu’il y a plus de $95 \%$ de chance pour que, parmi les $50$ personnes interrogées, moins de $13$ d’entre elles utilisent régulièrement les transports en commun.
    Cette affirmation est-elle vraie ? Justifier votre réponse.
    $\quad$
  4. Quel est le nombre moyen de personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées ?
    $\quad$

$\quad$

Exercice 3     5 points

En mai 2020, une entreprise fait le choix de développer le télétravail afin de s’inscrire dans une démarche écoresponsable.
Elle propose alors à ses $5~000$ collaborateurs en France de choisir entre le télétravail et le travail au sein des locaux de l’entreprise.
En mai 2020, seuls $200$ d’entre eux ont choisi le télétravail.
Chaque mois, depuis la mise en place de cette mesure, les dirigeants de l’entreprise constatent que $85 \%$ de ceux qui avaient choisi le télétravail le mois précédent choisissent de continuer, et que, chaque mois, $450$ collaborateurs supplémentaires choisissent le télétravail.

On modélise le nombre de collaborateurs de cette entreprise en télétravail par la suite $\left(a_n\right)$.

Le terme $a_n$ désigne ainsi une estimation du nombre de collaborateurs en télétravail le $n$-ième mois après le mois de mai 2020. Ainsi $a_0=200$.

Partie A :

  1. Calculer $a_1$.
    $\quad$
  2. Justifier que pour tout entier naturel $n$, $$a_{n+1}=0,85a_n+450$$
    $\quad$
  3. On considère la suite $\left(v_n\right)$ définie pour tout entier naturel $n$ par : $$v_n=a_n-3~000$$
    a. Démontrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,85$.
    $\quad$
    b. Exprimer $v_n$ en fonction de $n$ pour tout entier naturel $n$.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $$a_n=-2~800\times 0,85^n+3~0000$$
    $\quad$
  4. Déterminer le nombre de mois au bout duquel le nombre de télétravailleurs sera strictement supérieur à $2~500$, après la mise en place de cette mesure dans l’entreprise.
    $\quad$

Partie B :

Afin d’évaluer l’impact de cette mesure sur son personnel, les dirigeants de l’entreprise sont parvenus à modéliser le nombre de collaborateurs satisfaits par ce dispositif à l’aide de la suite $\left(u_n\right)$ définie par $u_0 = 1$ et, pour tout entier naturel $n$, $$u_{n+1}=\dfrac{5u_n+4}{u_n+2}$$
où $u_n$ désigne le nombre de milliers de collaborateurs satisfaits par cette nouvelle mesure au bout de 푛 mois après le mois de mai 2020.

  1. Démontrer que la fonction $f$ définie pour tout $x\in [0;+\infty[$ par $f(x)=\dfrac{5x+4}{x+2}$ est strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. a. Démontrer par récurrence que pour tout entier naturel $n$, $$0\pp u_n\pp u_{n+1} \pp 4$$
    $\quad$
    b. Justifier que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  3. On admet que pour tout entier naturel $$0\pp 4-u_n\pp 3\times \left(\dfrac{1}{2}\right)^n$$
    En déduire la limite de la suite $\left(u_n\right)$ et l’interpréter dans le contexte de la modélisation.
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Exercice A

Géométrie dans l’espace

Dans un repère orthonormé de l’espace, on considère les points suivants : $$A(2;-1;0) ; B(3;-1;2) ; C(0;4;1) \text{ et } S(0;1;4)$$

  1. Montrer que le triangle $ABC$ est rectangle en $A$
    $\quad$
  2. a. Montrer que le vecteur$\vec{n}\begin{pmatrix} 2\\1\\-1\end{pmatrix}$ est orthogonal au plan $(ABC)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(ABC)$.
    $\quad$
    c. Montrer que les points $A$, $B$, $C$ et $S$ ne sont pas coplanaires.
    $\quad$
  3. Soit $(d)$ la droite orthogonale au plan $(ABC)$ passant par $S$. Elle coupe le plan
    $(ABC)$ en $H$.
    a. Déterminer une représentation paramétrique de la droite $(d)$.
    $\quad$
    b. Montrer que les coordonnées du point $H$ sont $H(2;2;3)$.
    $\quad$
  4. On rappelle que le volume $V$ d’un tétraèdre est $V =  \dfrac{\text{Aire de la base $\times$ hauteur}}{3}$.
    Calculer le volume du tétraèdre $SABC$.
    $\quad$
  5. a. Calculer la longueur $SA$.
    $\quad$
    b. On indique que $SB=\sqrt{17}$.
    En déduire une mesure de l’angle $\widehat{ASB}$ approchée au dixième de degré.
    $\quad$

$\quad$

Exercice B

Équations différentielles

Partie A :

Soit $g$ la fonction définie sur $\R$ par : $$g(x)=2\e^{\frac{-1}{3}x}+\dfrac{2}{3}x-2$$

  1. On admet que la fonction $g$ est dérivable sur $\R$ et on note $g’$ sa fonction dérivée. Montrer que, pour tout réel $x$ :$$g'(x)=\dfrac{-2}{3}\e^{\frac{-1}{3}x}+\dfrac{2}{3}$$
    $\quad$
  2. En déduire le sens de variations de la fonction $g$ sur $\R$.
    $\quad$
  3. Déterminer le signe de $g(x)$, pour tout $x$ réel.
    $\quad$

Partie B

  1. On considère l’équation différentielle $$(E): \quad 3y’+y=0$$
    Résoudre l’équation différentielle $(E)$.
    $\quad$
  2. Déterminer la solution particulière dont la courbe représentative, dans un repère du plan, passe par le point $M(0;2)$.
    $\quad$
  3. Soit $f$ la fonction définie sur $\R$ par : $$f(x)=2\e^{-\dfrac{1}{3}x}$$
    et $\mathcal{C}_f$ sa courbe représentative.
    a. Montrer que la tangente $\left(\Delta_0\right)$ à la courbe $\mathcal{C}_f$ au point $M(0;2)$ admet une équation de la forme : $$y=-\dfrac{2}{3}x+2$$
    $\quad$
    b. Étudier, sur $\R$, la position de cette courbe $\mathcal{C}_f$ par rapport à la tangente $\left(\Delta_0\right)$.
    $\quad$

Partie C :

  1. Soit $A$ le point de la courbe $\mathcal{C}_f$ d’abscisse $a$, $a$ réel quelconque.
    Montrer que la tangente $\left(\Delta_0\right)$ à la courbe $\mathcal{C}_f$ au point $a$ coupe l’axe des abscisses en un point $P$ d’abscisse $a+3$.
    $\quad$
  2. Expliquer la construction de la tangente $\left(\Delta_{-2}\right)$ à la courbe $\mathcal{C}_f$ au point $B$ d’abscisse $-2$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 1 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $f$ est dérivable sur $]0;+\infty [$ puisque $f\dsec$ existe.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=\dfrac{2\e^{2x}\times x-\e^{2x}}{x^2} \\
    &=\dfrac{(2x-1)\e^{2x}}{x^2}\end{align*}$
    Réponse c
    $\quad$
  2. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $2x-1$.
    Or $2x-1>0 \ssi x>\dfrac{1}{2}$
    Par conséquent $f$ est strictement décroissante sur $\left]0;\dfrac{1}{2}\right]$ et strictement croissante sur $\left[\dfrac{1}{2};+\infty\right[$.
    Elle admet donc un minimum en $\dfrac{1}{2}$.
    $\quad$
    Remarque : On pouvait répondre à cette question en traçant la courbe représentant la fonction sur la calculatrice.
    $\quad$
    Réponse c
    $\quad$
  3. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\e^{2x}}{x}=+\infty$
    Réponse a
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $2x^2-2x+1$.
    Son discriminant est :
    $\Delta=(-2)^2-2\times 4\times 1=-4<0$.
    Le coefficient principal est $a=2>0$.
    Par conséquent $f\dsec(x)>0$ sur $]0;+\infty[$ et $f$ est convexe sur $]0;+\infty[$.
    Réponse b
    $\quad$

Ex 2

Exercice 2

PARTIE I

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(D\cap T)&=p(D)\times p_D(T)\\
    &=0,05\times 0,98\\
    &=0,049\end{align*}$
    La probabilité qu’une pièce choisie au hasard dans la production de la
    chaîne soit défectueuse et présente un test positif est égale à $0,049$.
    $\quad$
    b. $D$ et $\conj{D}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(D)\times p_D(T)+p\left(\conj{D}\right)\times p_{\conj{D}}(T)\\
    &=0,05\times 0,98+0,95\times 0,03\\
    &=0,077~5\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} p_T(D)&=\dfrac{p(T\cap D)}{p(T)} \\
    &=\dfrac{0,049}{0,077~5}\\
    &\approx 0,63\end{align*}$
    La valeur prédictive positive de ce test est environ égale à $0,63<0,95$.
    Ce test n’est donc pas efficace.
    $\quad$

PARTIE II

  1. On effectue $20$ tirages aléatoires, indépendants et identiques. À chaque tirage il n’y a que deux issues : $D$ et $\conj{D}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,05$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-0,95^{20} \\
    &\approx 0,64\end{align*}$
    La probabilité pour que cet échantillon contienne au moins une pièce défectueuse est environ égale à $0,64$.
    $\quad$
  3. L’espérance est $E(X)=20 \times 0,05=1$.
    Cela signifie qu’en moyenne il y a une pièce défectueuse par échantillon de $20$ pièces.
    $\quad$

Ex 3

Exercice 3

I – Premier modèle

$1,3-(-19)=20,3$. Cela signifie qu’à chaque minute la température augmente de $2,03$ °C.
Au bout de $25$ minutes, selon ce modèle, la température des gâteaux serait donc de $-19+25\times 2,03=31,75$ °C.
La température ambiante est de $25$ °C. Les gâteaux ne peuvent pas avoir une température supérieure à la température ambiante.
Ce modèle n’est donc pas pertinent.
$\quad$

II – Second modèle 

  1. Pour tout entier naturel $n$ on a :
    $\begin{align*} T_{n+1}&=T_n-0,06\left(T_n-25\right) \\
    &=T_n-0,06T_n+1,5\\
    &=0,94T_n+1,5\end{align*}$
    $\quad$
  2. On a donc $T_1=0,94\times (-19)+1,5\approx -16,4$
    $T_2=0,94 \times T_1+1,5 \approx -13,9$
    $\quad$
  3. Initialisation : Si $n=0$ alors $T_0=-19 \pp 25$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} T_{n+1}&=0,94T_n+1,5\\
    &\pp 0,94 \times 25+1,5 \\
    &\pp 25\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, on a $T_n\pp 25$.
    $\quad$
  4. Pour tout entier naturel $n$, $T_{n+1}-T_n=-0,06\times \left(T_n-25\right)$
    Or $T_n-25 \pp 0$. Donc $T_{n+1}-T_n\pg 0$.
    La suite $\left(T_n\right)$ est par conséquent croissante.
    $\quad$
  5. La suite $\left(T_n\right)$ est croissante et majorée par $25$. Elle est donc convergente.
    $\quad$
  6. a. Pour tout entier naturel $n$ on a
    $\begin{align*} U_{n+1}&=T_{n+1}-25 \\
    &=0,94T_n+1,5-25 \\
    &=0,94T_n-23,5 \\
    &=0,94\left(U_n+25\right)-23,5 \\
    &=0,94U_n+23,5-23,5\\
    &=0,94U_n\end{align*}$
    La suite $\left(U_n\right)$ est donc géométrique de raison $0,94$ et de premier terme $U_0=T_0-25=-44$.
    $\quad$
    b. Pour tout entier naturel $n$ on a donc $U_n=-44 \times 0,94^n$.
    Donc $T_n=U_n+25=-44\times 0,94^n+25$.
    $\quad$
    c. $-1<0,94<1$ donc $\lim\limits_{n\to +\infty} 0,94^n =0$
    Par conséquent $\lim\limits_{n\to +\infty} T_n=25$.
    $\quad$
  7. a. On a $T_{30}\approx 18$.
    La température des gâteaux est donc environ égale à $18$ °C au bout d’une demi-heure.
    $\quad$
    b. À l’aide de la calculatrice on trouve que $T_{17} \approx 9,6$ et $T_{18} \approx 10,6$. De plus la suite $\left(T_n\right)$ est croissante.
    Cécile doit donc attendre entre $17$ et $18$ minutes pour déguster son gâteau.
    $\quad$
    c. On obtient le programme suivant :
    $$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = -19} \\
    \hspace{1.5cm} \textbf{while } \text{T < 10} : \hspace{1cm} \\
    \hspace{2cm} \text{T = 0.94 * T + 1.5}  \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$
    $\quad$

 

 

Ex A

Exercice A

  1. La droite $d$ a pour vecteur directeur le vecteur $\vec{u}$ et passe par le point $0$.
    Une représentation paramétrique de la droite $d$ est donc $\begin{cases} x=t\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  2. a. On a
    $\begin{align*} AM^2&=(t-1)^2+(t-3)^2+2^2 \\
    &=t^2-2t+1+t^2-6t+9+4\\
    &=2t^2-8t+14\end{align*}$
    $\quad$
    b. Le coefficient principal de l’expression du second degré $2t^2-8t+14$ est $2>0$.
    Elle admet donc un minimum atteint pour $t=\dfrac{8}{2\times 2}=2$.
    Ainsi le point $M_0(2;2;0)$ est le point de la droite $d$ pour lequel $AM^2$ est minimal et donc pour lequel la distance $AM$ est minimale.
    $\quad$
  3. $\vect{AM_0}\begin{pmatrix} 1\\-1\\2\end{pmatrix}$
    Donc $\vect{AM_0}.\vec{u}=1-1+0=0$
    Ces deux vecteurs sont donc orthogonaux et les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. Le vecteur $\vec{u}$ est orthogonal au plan d’équation $z=0$. Les points $A’$ et $M_0$ appartiennent à ce plan. Par conséquent $\vec{u}.\vect{A’M_0}=0$.
    Le vecteur $\vec{u}$ est donc orthogonal aux vecteurs (non colinéaires) $\vect{A’M_0}$ et $\vect{AM_0}$.
    La droite $d$ est par conséquent orthogonale au plan $\left(AA’M_0\right)$.
    $M_0$ appartient à la droite $d$, droite qui passe par le point $O$..
    Le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$.
    $\quad$
  5. On a $AA’=2$ et $M_0A’=\sqrt{(2-1)^2+(2-3)^2+0^2}=\sqrt{2}$.
    De plus $OM_0=\sqrt{2^2+2^2}=\sqrt{8}$
    Ainsi le volume de la pyramide $OM_0A’A$ est :
    $\begin{align*} V&=\dfrac{1}{3}\times \dfrac{2\times \sqrt{2}}{2}\times \sqrt{8} \\
    &=\dfrac{4}{3}\end{align*}$
    $\quad$

Ex B

Exercice B

  1. Pour tout réel $x$ on a :
    $\begin{align*} u'(x)&=2x\e^x+x^2\times \e^x \\
    &=2x\e^x+u(x)\end{align*}$
    Par conséquent $u$ est une solution particulière de $(E)$.
    $\quad$
  2. a. Si $f $est solution de l’équation différentielle $(E)$ alors $g$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$ et
    $\begin{align*} g'(x)&=f'(x)-u'(x) \\
    &=f(x)+2x\e^x-\left(u(x)+2x\e^x\right) \\
    &=f(x)+2x\e^x-u(x)-2x\e^x\\
    &=f(x)-u(x)\\
    &=g(x) \end{align*}$
    $g$ est donc solution de l’équation différentielle $y’=y$.
    $\quad$
    b. Une solution de l’équation $y’=y$ est la fonction $g$ définie sur $\R$ par $g(x)=\e^x$.
    Ainsi, pour tout réel $x$,
    $\begin{align*} f(x)&=g(x)+u(x) \\
    &=\e^x+x^2\e^x\end{align*}$
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. et b. Pour tout réel $x$, on a d’après les calculs faits à la question 1.,  $u'(x)=(2+x)x\e^x$.
    Or $2+x=0 \ssi x=-2$ et $2+x>0 \ssi x>-2$.
    La fonction exponentielle est strictement positive sur $\R$.
    On obtient donc le tableau de signes et de variations suivant :
    $\quad$
    c. $u’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $u'(x)=2x\e^x+x^2\e^x$ donc
    $\begin{align*} u\dsec(x)&=2\e^x+2x\e^x+2x\e^x +x^2\e^x \\
    &=\left(2+4x+x^2\right)\e^x \end{align*}$
    Le signe de $u\dsec(x)$ ne dépend que de celui de $x^2+4x+2$.
    Son discriminant est $\Delta=4^2-2\times 4=8>0$.
    Ses racines sont donc $x_1=\dfrac{-4-\sqrt{8}}{2}=-2-\sqrt{2}$ et $x_2=-2+\sqrt{2}$.
    Le coefficient principal est $a=1>0$.
    Par conséquent $u\dsec(x)<0$ sur $\left]-2-\sqrt{2};-2+\sqrt{2}\right[$.
    Le plus grand intervalle sur lequel la fonction $u$ est concave est $\left[-2-\sqrt{2};-2+\sqrt{2}\right]$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

Soit $f$ la fonction définie pour tout nombre réel $x$ de l’intervalle $]0 ;+\infty[$ par:
$$f(x)=\dfrac{\e^{2 x}}{x}$$
On donne l’expression de la dérivée seconde $f\dsec$ de $f$, définie sur l’intervalle $] 0 ;+\infty[$ par:
$$f\dsec(x)=\dfrac{2 \e^{2 x}\left(2 x^{2}-2 x+1\right)}{x^{3}}$$

  1. La fonction $f’$, dérivée de $f$, est définie sur l’intervalle $] 0 ;+\infty[$ par ;
    a. $f'(x)=2 e^{2 x}$
    b. $f'(x)=\dfrac{\e^{2 x}(x-1)}{x^{2}}$
    c. $f'(x)=\dfrac{\e^{2 x}(2 x-1)}{x^{2}}$
    d. $f'(x)=\dfrac{\e^{2 x}(1+2 x)}{x^{2}}$
    $\quad$
  2. La fonction $f$ :
    a. est décroissante sur $] 0 ;+\infty[$
    b. est monotone sur $] 0 ;+\infty[$
    c. admet un minimum en $\dfrac{1}{2}$
    d. admet un maximum en $\dfrac{1}{2}$
    $\quad$
  3. La fonction $f$ admet pour limite en $+\infty$ :
    a. $+\infty$
    b. $0$
    c. $1$
    d. $\e^{2 x}$
    $\quad$
  4. La fonction $f$ :
    a. est concave sur $] 0$; $+\infty[$
    b. est convexe sur $] 0 ;+\infty[$
    c. est concave sur $\left] 0 ; \dfrac{1}{2}\right]$
    d. est représentée par une courbe admettant un point d’inflexion
    $\quad$

$\quad$

Exercice 2     5 points

Une chaîne de fabrication produit des pièces mécaniques. On estime que $5\%$ des pièces produites par cette chaîne sont défectueuses.

Un ingénieur a mis au point un test à appliquer aux pièces. Ce test a deux résultats possibles: « positif » ou bien « négatif ».

On applique ce test à une pièce choisie au hasard dans la production de la chaîne.

On note $p(E)$ la probabilité d’un événement $E$.

On considère les événements suivants:

  •  $D$ : « la pièce est défectueuse »;
  •  $T$ : « la pièce présente un test positif »;
  •  $\conj{D}$ et $\conj{T}$ désignent respectivement les évènements contraires de $D$ et $T$.

Compte tenu des caractéristiques du test, on sait que :

  • La probabilité qu’une pièce présente un test positif sachant qu’elle défectueuse est égale à $0,98$ ;
  • La probabilité qu’une pièce présente un test négatif sachant qu’elle n’est pas défectueuse est égale à $0,97$ .

Les parties I et II peuvent être traitées de façon indépendante.

PARTIE I

  1. Traduire la situation à l’aide d’un arbre pondéré.
    $\quad$
  2. a. Déterminer la probabilité qu’une pièce choisie au hasard dans la production de la chaîne soit défectueuse et présente un test positif.
    $\quad$
    b. Démontrer que : $p(T)=0,077~5$.
    $\quad$
  3. On appelle valeur prédictive positive du test la probabilité qu’une pièce soit défectueuse sachant que le test est positif. On considère que pour être efficace, un test doit avoir une valeur prédictive positive supérieure à $0,95$ . Calculer la valeur prédictive positive de ce test et préciser s’il est efficace.
    $\quad$

PARTIE II

On choisit un échantillon de $20$ pièces dans la production de la chaîne, en assimilant ce choix à un tirage avec remise. On note $X$ la variable aléatoire qui donne le nombre de pièces défectueuses dans cet échantillon. On rappelle que: $p(D)=0,05$.

  1. Justifier que $X$ suit une loi binomiale et déterminer les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité que cet échantillon contienne au moins une pièce défectueuse. On donnera un résultat arrondi au centième.
    $\quad$
  3. Calculer l’espérance de la variable aléatoire $X$ et interpréter le résultat obtenu.
    $\quad$

$\quad$

Exercice 6     6 points

Cécile a invite des amis à déjeuner sur sa terrasse. Elle a prévu en dessert un assortiment de gâteaux individuels qu’elle a achetés surgelés.

Elle sort les gâteaux du congélateur à $-19$ °C et les apporte sur la terrasse ou la température ambiante est de $25$ °C.

Au bout de $10$ minutes la température des gâteaux est de $1,3$ °C.

I – Premier modèle

On suppose que la vitesse de décongélation est constante, c’est-à-dire que l’augmentation de la température des gâteaux est la même minute après minute.

Selon ce modèle, déterminer quelle serait la température des gâteaux $25$ minutes après leur sortie du congélateur.

Ce modèle semble-t-il pertinent?
$\quad$

II – Second modèle

On note $T_{n}$ la température des gâteaux, en degré Celsius, au bout de $n$ minutes après leur sortie du congélateur; ainsi $T_{0}=-19$.

On admet que pour modéliser L’évolution de la température, an doit avoir la relation suivante:
pour tout entier naturel $n$, $T_{n+1}-T_{n}=-0,06 \times\left(T_{n}-25\right)$.

  1. Justifier que, pour tout entier naturel $n$, on a: $T_{n+1}=0,94 T_{n}+1,5$.
    $\quad$
  2. Calculer $T_{1}$ et $T_{2}$. On donnera des valeurs arrondies au dixième.
    $\quad$
  3. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $T_{n} \pp 25$. En revenant a la situation étudiée, ce résultat était-il prévisible?
    $\quad$
  4. Etudier le sens de variation de la suite $\left(T_{n}\right)$.
    $\quad$
  5. Démontrer que la suite $\left(T_{n}\right)$ est convergente.
    $\quad$
  6. On pose, pour tout entier naturel $n, U_{n}=T_{n}-25$.
    a. Montrer que la suite $\left(U_{n}\right)$ est une suite géométrique dont on précisera la raison et le premier terme $U_{0}$.
    $\quad$
    b. En déduire que pour tout entier naturel $n, T_{n}=-44 \times 0,94^{n}+25$.
    $\quad$
    c. En déduire la limite de la suite $\left(T_{n}\right)$. Interpréter ce résultat dans le contexte de la situation étudiée.
    $\quad$
  7. a. Le fabricant conseille de consommer les gâteaux au bout d’une demi-heure a température ambiante après leur sortie du congélateur. Quelle est alors la température atteinte par les gâteaux? On donnera une valeur arrondie à l’entier le plus proche.
    $\quad$
    b. Cécile est une habituée de ces gâteaux, qu’elle aime déguster lorsqu’ils sont encore frais, a la température de $10$ °C. Donner un encadrement entre deux entiers consécutifs du temps en minutes après lequel Cécile doit déguster son gâteau.
    $\quad$
    c. Le programme suivant, écrit en langage Python, doit renvoyer après son exécution la plus petite valeur de l’entier $n$ pour laquelle $T_{n} \pg  10$.$$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = } \ldots\ldots \\
    \hspace{1.5cm} \textbf{while } \text{T }\ldots\ldots : \hspace{1cm} \\
    \hspace{2cm} \text{T = } \ldots\ldots \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$Recopier ce programme sur la copie et compléter les lignes incomplètes afin que le programme renvoie la valeur attendue.
    $\quad$

$\quad$

Exercice au chois du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
II indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer le choix, les principaux domaines abordés sont indiqués en début de chaque exercice.

Exercice A

Principaux domaines abordés:

  • Géométrie de l’espace rapporté à un repère orthonormé;
  • orthogonalité dans l’espace.

Dans un repère $Oikj$ on considère :

  • le point $A$ de coordonnées $(1 ; 3 ; 2)$,
  • le vecteur $\vec{u}$ de coordonnées $\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}$,
  • la droite $d$ passant par l’origine $O$ du repère et admettant pour vecteur directeur $\vec{u}$.

 

Le but de cet exercice est de déterminer le point de $d$ le plus proche du point $A$ et d’étudier quelques propriétés de ce point.

On pourra s’appuyer sur la figure ci-contre pour raisonner au fur et à mesure des questions.

  1. Déterminer une représentation paramétrique de la droite $d$.
    $\quad$
  2. Soit $t$ un nombre réel quelconque, et $M$ un point de la droite $d$, le point $M$ ayant pour coordonnées $(t ; t ; 0)$.
    a. On note $AM$ la distance entre les points $A$ et $M$. Démontrer que :$$AM^2=2 t^{2}-8 t+14$$
    $\quad$
    b. Démontrer que le point $M_0$ de coordonnées $(2 ; 2 ; 0)$ est le point de la droite $d$ pour lequel la distance $AM$ est minimale. On admettra que la distance $AM$ est minimale lorsque son carré $AM^2$ est minimal.
    $\quad$
  3. Démontrer que les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. On appelle $A’$ le projeté orthogonal du point $A$ sur le plan d’équation cartésienne $z=0$. Le point $A’$ admet donc pour coordonnées $(1 ; 3 ; 0)$.
    Démontrer que le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$, origine du repère.
    $\quad$
  5. Calculer le volume de la pyramide $OM_0A’A$.
    On rappelle que le volume d’une pyramide est donné par: $V=\dfrac{1}{3} \mathcal{B} h$, où $\mathcal{B}$ est l’aire d’une base et $h$ est la hauteur de la pyramide correspondant à cette base.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés:

  • Équations différentielles;
  • fonction exponentielle.

On considère l’équation différentielle $(E): y’=y+2 x \e^{x}$.

On cherche l’ensemble des fonctions définies et dérivables sur l’ensemble $\R$ des nombres réels qui sont solutions de cette équation.

  1. Soit $u$ la fonction définie sur $\R$ par $u(x)=x^{2} \e^{x}$. On admet que $u$ est dérivable et on note $u’$ sa fonction dérivée. Démontrer que $u$ est une solution particulière de $(E)$.
    $\quad$
  2. Soit $f$ une fonction définie et dérivable sur $\R$. On note $g$ la fonction définie sur $\R$ par :$$g(x)=f(x)-u(x)$$
    a. Démontrer que si la fonction $f$ est solution de l’équation différentielle $(E)$ alors la fonction $g$ est solution de l’équation différentielle : $y’=y$. On admet que la réciproque de cette propriété est également vraie.
    $\quad$
    b. À l’aide de la résolution de l’équation différentielle $y’=y$, résoudre l’équation différentielle $(E)$.
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. Étudier le signe de $u'(x)$ pour $x$ variant dans $\R$.
    $\quad$
    b. Dresser le tableau de variations de la fonction $u$ sur $\R$ (les limites ne sont pas demandées).
    $\quad$
    c. Déterminer le plus grand intervalle sur lequel la fonction $u$ est concave.
    $\quad$

$\quad$