E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Mettre sous la forme d’une fraction irréductible $\dfrac{3}{4}-\dfrac{7}{5}$.
    $\quad$
    Correction Question 1

    $\begin{align*}\dfrac{3}{4}-\dfrac{7}{5}&=\dfrac{15}{20}-\dfrac{28}{20} \\
    &=-\dfrac{13}{20}\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  2. Donner l’écriture scientifique de $0,045~6$.
    $\quad$
    Correction Question 2

    $0,045~6=4,56\times 10^{-2}$
    $\quad$

    [collapse]

    $\quad$
  3. Compléter l’égalité $10^{-5}\times \ldots\ldots =10^8$.
    $\quad$
    Correction Question 3

    $10^{-5}\times 10^{13}=10^{8}$ car $-5+13=8$.
    $\quad$

    [collapse]

    $\quad$
  4. Développer l’expression $7x^2(4x-6)$.
    $\quad$
    Correction Question 4

    $7x^2(4x-6)=28x^3-42x$
    $\quad$

    [collapse]

    $\quad$
  5. Factoriser l’expression $(5x-3)(3x+1)+4x(5x-3)$.
    $\quad$
    Correction Question 5

    $\begin{align*} (5x-3)(3x+1)+4x(5x-3)&=(5x-3)\left[(3x+1)+4x\right] \\
    &=(5x-3)(7x+1)\end{align*}$
    $\quad$

    [collapse]

    $\quad$

    $\quad$

  6. Résoudre dans $\R$ l’équation $(2x-5)(-x+7) = 0$.
    $\quad$
    Correction Question 6

    Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    Donc $2x-5=0\ssi 2x=5 \ssi x=\dfrac{5}{2}$ ou $-x+7=0\ssi x=7$.
    Les solutions de l’équation sont donc $\dfrac{5}{2}$ et $7$.
    $\quad$

    [collapse]

    $\quad$
  7. Si $\dfrac{a}{b}=\dfrac{c}{d}$ alors $d=$
    $\quad$
    Correction Question 7

    $\dfrac{a}{b}=\dfrac{c}{d} \ssi ad=bc \ssi d=\dfrac{bc}{a}$
    $\quad$

    [collapse]

    $\quad$
  8. Calculer $40\%$ de $70$ €.
    $\quad$
    Correction Question 8

    $\dfrac{40}{100}\times 70=\dfrac{2~800}{100}=28$.
    $40\%$ de $70$ € représente donc $28$ €.
    $\quad$

    [collapse]

    $\quad$
  9. Un article est passé de $40$ € à $50$ €.
    Quel est le taux d’évolution en pourcentage de cet article ?
    $\quad$
    Correction Question 9

    On a $\dfrac{50-40}{40}=\dfrac{10}{40}=0,25$
    Le taux d’évolution est donc égal à $25\%$.
    $\quad$

    [collapse]

    $\quad$
  10. On a représenté une droite D dans le repère ci-dessous.

    Compléter par lecture graphique.
    L’équation réduite de la droite $D$ est : ………………………………….
    $\quad$
    Correction Question 10

    L’ordonnée à l’origine est $-3$.
    Pour chaque déplacement de $1$ unité vers la droite on descend de $3$ unités : le coefficient directeur est donc $-3$.
    L’équation réduite de $D$ est donc $y=-3x-3$.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise de recyclage peut produire au maximum $10$ tonnes de plastique recyclé par an. Elle revend la totalité de ce plastique recyclé au prix unitaire de $700$ € la tonne.
On rappelle que :

  • le coût moyen correspondant à la production de $x$ tonnes de plastique recyclé est défini par $C_M(x) = \dfrac{C_T(x)}{x}$, où $C_T(x)$ est le coût total pour la production de $x$ tonnes de plastique recyclé.
  • le coût marginal, noté $C_m(x)$, est le coût induit par la production d’une tonne de plastique recyclé supplémentaire lorsqu’on en a déjà produit $x$ tonnes.

Les courbes représentant les coûts moyen et marginal (en euro) en fonction de la quantité de plastique recyclé produite (en tonne) ainsi que le segment horizontal représentant le prix de vente unitaire sont tracés dans le repère donné en annexe à rendre avec la copie.
Répondre sur la copie aux questions suivantes avec la précision permise par le graphique.

  1. Déterminer le coût moyen issu de la production de $7$ tonnes de plastique recyclé et en déduire le coût total correspondant.
    $\quad$
  2. Quelle est la quantité de plastique recyclé que doit produire l’entreprise pour que le coût moyen soit minimal ? Donner ce coût moyen minimal et en déduire le coût total correspondant.
    $\quad$
  3. Donner le coût induit par la production d’une tonne supplémentaire lorsque l’entreprise a déjà produit $7$ tonnes de plastique recyclé.
    $\quad$

On considère que l’entreprise réalise des bénéfices lorsque le prix de vente unitaire est strictement supérieur au coût moyen.

  1. Déterminer graphiquement la quantité de plastique recyclé que doit produire et vendre l’entreprise pour réaliser des bénéfices.
    $\quad$

On admet que les bénéfices de l’entreprise sont maximum lorsque le coût marginal est égal au prix de vente unitaire.

  1. Déterminer graphiquement la quantité de plastique recyclé que doit produire et vendre l’entreprise pour que les bénéfices soient maximaux.
    $\quad$

Annexe 

$\quad$

$\quad$

Correction Exercice

  1. D’après le graphique, le coût moyen issu de la production de $7$ tonnes de plastique recyclé est de $500$ €.
    Le coût total est donc alors $500\times 7=3~500$ €.
    $\quad$
  2. D’après le graphique, le coût moyen est minimal quand l’entreprise recycle $5$ tonnes de plastique.
    Ce coût minimal est de $400$ €.
    $\quad$
  3. On veut déterminer $C_m(7)$.
    Graphiquement on lit $C_m(7)\approx 1~100$.
    Le coût induit par la production d’une tonne supplémentaire lorsque
    l’entreprise a déjà produit $7$ tonnes de plastique recyclé est environ égal à $1~100$ €.
    $\quad$
  4. Graphiquement, on lit que l’entreprise réalise des bénéfices lorsqu’elle recycle entre $2$ et $9$ tonnes de plastique.
    $\quad$
  5. Graphiquement, on lit que l’entreprise doit produire et vendre $6$ tonnes de plastique pour que les bénéfices soient maximaux.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Soit $f$ une fonction polynôme du second degré, définie sur $\R$ et représentée par la parabole ci-dessous.

  1. Par lecture graphique :
    a. Donner l’image de $0$ par $f$.
    $\quad$
    b. Déterminer les racines de la fonction $f$.
    $\quad$
    c. Donner le nombre de solutions de l’équation $f(x)=1$.
    $\quad$
  2. Expliquer pourquoi $f(x)$ peut s’écrire sous la forme $2(x+1)(x-2)$.
    $\quad$
  3. Pour trouver un encadrement de la solution de l’équation $f(x)=1$ dans l’intervalle $[2;3]$ on a écrit les fonctions Python ci-dessous.
    $$\begin{array}{|cl|}
    \hline
    1&\text{def f(x):}\\
    2&\quad \text{return 2*(x+1)*(x-2)}\\
    3&\text{def balayage(pas):}\\
    4&\quad \text{x=2}\\
    5&\quad \text{while f(x)<1:}\\
    6&\qquad \text{x=x+pas}\\
    7&\quad \text{return (x-pas,x)}\\
    \hline
    \end{array}$$
    Par exemple, l’appel $\text{balayage(1)}$ renvoie le résultat $(2,3)$:
    $$\begin{array}{|l|}
    \hline
    >>>~~\text{balayage(1)}\\
    (2,3)\\
    \hline\end{array}$$
    L’instruction $\text{balayage(0.0001)}$ renvoie le résultat $(2.1583,2.1584)$.
    Que signifie ce résultat?
    $\quad$

$\quad$

Correction Exercice

  1. a. Graphiquement on lit que $f(0)=-4$.
    $\quad$
    b. Graphiquement les racines de la fonction $f$ sont $-1$ et $2$.
    $\quad$
    c. Graphiquement, l’équation $f(x)=1$ possède deux solutions.
    $\quad$
  2. $-1$ et $2$ semblent être les racines de la fonction du second degré $f$.
    Pour tout réel $x$ on peut donc écrire $f(x)=a\left(x-(-1)\right)(x-2)$ soit $f(x)=a(x+1)(x-2)$.
    Ainsi $f(0)=a\times -2$.
    Or $f(0)=-4$ donc $-2a=-4$ soit $a=2$.
    Par conséquent $f(x)=2(x+1)(x-2)$.
    $\quad$
  3. Cela signifie qu’un encadrement à $0,000~1$ près de la solution de l’équation $f(x)=1$ dans l’intervalle $[2;3]$ est $[2,158~3;2,158~4]$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une société d’autoroute s’intéresse à l’affluence quotidienne de véhicules au niveau d’un péage.
Des observations menées entre $14$h et $23$h aboutissent au nuage de points ci-dessous représentant le nombre de véhicules présents au péage selon l’heure d’observation.

  1. Pourquoi semble-t-il pertinent de modéliser l’affluence au péage en fonction du temps par une fonction polynôme du second degré ?

Pour la suite, on décide de modéliser le nombre de véhicules présents au péage en fonction de l’heure de la journée $t$, par la fonction définie sur l’intervalle $[14 ; 23]$ par : $$f(t) = -2t^2+74t-600$$

  1. Selon ce modèle, combien de voitures seront présentes au péage à $20$h$00$ ?
    $\quad$
  2. Toujours selon ce modèle, à quelle heure de la demi-journée l’affluence au péage sera–t-elle maximale ? Quel sera alors le nombre de voitures présentes au péage ?

Pour l’affluence du début de journée (entre $t = 0$ et $t = 12$), le modèle choisi est la fonction $g$ définie sur $[0 ; 12]$ par $g(t) = -0,3t^3+5,2t^2-17,3t+18,6$ dont la courbe est fournie en annexe.
Le responsable du péage sait que lorsque l’affluence dépasse $40$ véhicules, il lui est nécessaire pour fluidifier le trafic, d’ouvrir toutes les voies de paiement.

  1. À quelle heure, à $10$ minutes près, l’affluence est-elle maximale en début de journée ? Combien de véhicules sont présents au péage à cet instant ?
    $\quad$
  2. Déterminer, avec la précision permise par le graphique, la tranche horaire durant laquelle toutes les voies doivent être ouvertes.
    $\quad$

Annexe

Le graphique original ne correspondait à la fonction donnée. 

$\quad$

$\quad$

Correction Exercice

  1. Les points du graphique semblent être placés sur une parabole. Il semble donc judicieux de modéliser l’affluence au péage par une fonction polynôme du second degré.
    $\quad$
  2. $f(20)=80$
    Selon ce modèle, $80$ voitures seront présentes au péage à $20$h$00$.
    $\quad$
  3. Le coefficient principal de la fonction $f$ est $a=-2<0$.
    La fonction $f$ admet donc un maximum atteint pour $x=-\dfrac{b}{2a}=18,5$.
    $f(18,5)=84,5$
    Selon ce modèle, l’affluence au péage sera maximale à $18$h$30$. Environ $85$ voitures seront alors présentes au péage.
    $\quad$
  4. D’après le graphique, l’affluence semble être maximale à environ $9$h$30$.
    Il y a alors environ $66$ voitures au péage à cet instant.
    $\quad$
  5. D’après le graphique, il faut ouvrir toutes les voies entre $6$h$15$ et $12$h.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Fraction irréductible égale à $\dfrac{2}{3}-\dfrac{2}{5}$.
    $\quad$
    Correction Question 1

    $\begin{align*}\dfrac{2}{3}-\dfrac{2}{5}&=\dfrac{10}{15}-\dfrac{6}{15}\\
    &=\dfrac{4}{15}\end{align*}$

    [collapse]

    $\quad$
  2. Compléter $\dfrac{14}{3}-\ldots=2$.
    $\quad$
    Correction Question 2

    $2=\dfrac{6}{3}$ on a donc $\dfrac{14}{3}-2=\dfrac{14}{3}-\dfrac{6}{3}=\dfrac{8}{3}$
    Ainsi $\dfrac{14}{3}-\dfrac{8}{3}=2$
    $\quad$

    [collapse]

    $\quad$
  3. Compléter $(2x)^3=\ldots x^3$
    $\quad$
    Correction Question 3

    $(2x)^3=2^3x^3=8x^3$
    $\quad$

    [collapse]

    $\quad$
  4. Compléter : Augmenter une quantité de $14\%$ c’est la multiplier par $\ldots$
    $\quad$
    Correction Question 4

    Augmenter une quantité de $14\%$ c’est la multiplier par $1+\dfrac{14}{100}=1,14$.
    $\quad$

    [collapse]

    $\quad$
  5. Après augmentation d’un prix de $50\%$ on obtient $36$ €. Quel est ce prix?
    $\quad$
    Correction Question 5

    On appelle $P$ le prix cherché.
    On a donc $x\times \left(1+\dfrac{50}{100}\right)=36$
    Soit $1,5x=36$
    et donc $x=\dfrac{36}{1,5}$
    C’est-à-dire $x=24$ (diviser par $1,5$ revient à diviser par $3$ puis multiplier par $2$)
    $\quad$

    [collapse]

    $\quad$

    $\quad$

  6. Factoriser $3(x+7)-(x+1)(x+7)$
    $\quad$
    Correction Question 6

    $\begin{align*} 3(x+7)-(x+1)(x+7)&=(x+7)\left[3-(x+1)\right] \\
    &=(x+7)(3-x-1)\\
    &=(x+7)(2-x)\end{align*}$
    $\quad$

    [collapse]

    $\quad$

Voici la courbe représentative d’une fonction $f$ définie sur $[-1;3]$.

Compléter par lecture graphique.

  1. $f(2)=$
    $\quad$
    Correction Question 7

    $f(2)=0$
    $\quad$

    [collapse]

    $\quad$
  2. Nombre d’antécédents de $-0,2$ par $f$ :
    $\quad$
    Correction Question 7

    Graphiquement, il semblerait que la droite d’équation $y=-0,2$ coupe $3$ fois la courbe représentant la fonction $f$.
    $-0,2$ semble donc avoir $3$ antécédents par $f$.
    $\quad$

    [collapse]

    $\quad$

On considère la droite $(D)$ ci-dessous.


Compléter par lecture graphique

  1. Équation réduite de $(D)$ : $\ldots$
    $\quad$
    Correction Question 9

    Graphiquement, il semblerait que le coefficient directeur de la droite soit $\dfrac{1}{2}$ et son ordonnée à l’origine $1$.
    Une équation réduite de $(D)$ semble donc être $y=\dfrac{1}{2}x+1$.
    $\quad$

    [collapse]

    $\quad$
  2. Si $A$ est le point de $(D)$ d’ordonnée $3$, son abscisse est : $\ldots$
    $\quad$
    Correction Question 10

    L’ordonnée augmente d’une unité quand l’abscisse augmente de deux unités.
    L’abscisse du point $A$ est donc $4$.
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise fixe à chacun de ses employés le mode de rémunération mensuel suivant : un salaire net fixe de $1~300$ € accompagné d’une prime ou d’une pénalité.
Si $𝑥$ est le chiffre d’affaire en millier d’euros réalisé par un employé dans le mois, sa prime ou pénalité exprimée en millier d’euros est de $f(x) = 0,01(x^2-2x)$.
Par exemple, si un employé réalise un chiffre d’affaire mensuel de $1~000$ €, alors $x = 1$ et $f(x) = f(1) = -0,01$. Dans ce cas, l’employé est pénalisé de $0,01$ millier d’euros, c’est-à-dire $10$ €. Son salaire net mensuel est alors de $1~300-10 = 1~290$ €.
De même, si un employé réalise un chiffre d’affaire mensuel de $10~000$ €, alors $x = 10$ et $f(x) = f(10) = 0,8$. Dans ce cas, l’employé perçoit une prime de $0,8$ millier d’euros, c’est-à-dire $800$ €. Son salaire net mensuel est alors de $1~300 + 800 = 2~100$ €.

  1. a. Si l’employé réalise un chiffre d’affaire mensuel de $1~500$ €, aura-t-il une prime ou une pénalité ? De quel montant ? Quel sera alors son salaire net mensuel ?
    $\quad$
    b. Mêmes questions avec un chiffre d’affaire mensuel de $20~000$ €.
    $\quad$
  2. La courbe $C_f$ ci-dessous représente la fonction $f$ dans un repère du plan dont la graduation de l’axe des abscisses a été effacée.

    a. Montrer que $f(x) = 0,01x(x-2)$.
    $\quad$
    b. Donner les abscisses des points d’intersection de $C_f$ avec l’axe des abscisses.
    $\quad$
    c. À partir du graphique estimer le chiffre d’affaire mensuel à réaliser afin d’obtenir un salaire net mensuel de $1~380$ €.
    $\quad$

$\quad$

Correction Exercice

  1. a. $f(1,5)=0,01(1,5^2-2\times 1,5)=-0,007~5$
    L’employé sera donc pénalisé de $0,007~5$ millier d’euros soit $0,75$ €. Son salaire net mensuel sera alors de $1~300-0,75=1~299,25$ €.
    $\quad$
    b. $f(20)=3,6$
    L’employé reçoit dont une prime de $3,6$ milliers d’euros soit $3~600$ €. Son salaire net mensuel sera alors de $1~300+3~600=4~900$ €.
    $\quad$
  2. a. Pour tout réel $x$ positif on a :
    $\begin{align*} f(x)&=0,01\left(x^2-2x\right) \\
    &=0,01\left(x\times x-2\times x\right)\\
    &=0,01x(x-2)\end{align*}$
    $\quad$
    b. Les abscisses des points d’intersection de $C_f$ avec l’axe des abscisses sont les solutions de l’équation :
    $f(x)=0 \ssi 0,01x(x-2)=0$.
    Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    Donc $0,01x=0$ ou $x-2=0$ soit $x=0$ ou $x=2$.
    $C_f$ coupe donc l’axe des abscisses aux points d’abscisses $0$ et $2$.
    $\quad$
    b. L’employé reçoit donc une prime de $80$ € soit $0,08$ millier d’euros.
    D’après le graphique cela correspond à un chiffre d’affaire mensuel de $4$ milliers d’euros, c’est-à-dire, $4~000$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Exprimer en kilogrammes $\dfrac{5}{6}$ de $360$ kg.
    $\quad$
    Correction Question 1

    $\dfrac{5}{6}\times 360=5\times 60=300$
    $\quad$

    [collapse]

    $\quad$
  2. Développer $(2x+3)^2$.
    $\quad$
    Correction Question 2

    $\begin{align*} (2x+3)^2&=(2x)^2+2\times 2x\times 3+3^2\\
    &=4x^2+12x+9\end{align*}$
    $\quad$

    [collapse]

    $\quad$
    Remarque : Dans l’énoncé original il n’y avait pas le $^2$.
    $\quad$
  3. Donner un antécédent de $0$ par $f:x\mapsto (x+3)(x-1)$.
    $\quad$
    Correction Question 3

    On veut donc résoudre l’équation $(x+3)(x-1)=0$.
    Un produit de facteurs est nul si, et seulement si, l’un de ses facteurs au moins est nul.
    Ainsi $(x+3)(x-1)=0 \ssi x+3=0$ ou $x-1=0$.
    $\ssi x=-3$ ou $x=1$
    Les antécédents de $0$ par la fonction $f$ sont donc $-3$ et $1$.
    $\quad$

    [collapse]

    $\quad$
  4. Résoudre l’inéquation : $3-2x\pg 0$
    $\quad$
    Correction Exercice 4

    $3-2x\pg 0\ssi -2x\pg -3 \ssi x\pp \dfrac{3}{2}$
    L’ensemble solution est donc $\left]-\infty;\dfrac{3}{2}\right]$.
    $\quad$

    [collapse]

    $\quad$
  5. Soit $f(x)=ax^2$ où $a$ est un nombre réel.
    Donner la valeur de $a$ sachant que $f(-2)=10$.
    $\quad$
    Correction Question 5

    $f(-2)=4a$
    Ainsi $f(-2)=10 \ssi 4a=10 \ssi a=\dfrac{5}{2}$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$
  6. Dans une classe de première, $42 \%$ des élèves sont des garçons et parmi eux, $4 \%$ sont internes.
    Donner le pourcentage de garçons internes.
    $\quad$
    Correction Question 6

    $\dfrac{42}{100}\times \dfrac{4}{100}=\dfrac{168}{10~000}=1,68\%$
    Le pourcentage de garçons internes est donc égale à $1,68\%$.
    $\quad$

    [collapse]

    $\quad$

La courbe ci-contre est la représentation graphique d’une fonction $f$ définie sur l’intervalle $[-6 ; 9]$. Cette fonction est celle qui est considérée dans les questions 7 à 10.
La droite passant par les points $A(0 ; -2)$ et $B(5 ; 0)$ est la représentation graphique d’une fonction affine $g$ définie sur $\R$.
Remarque : l’ordonnée du point $B$ a été modifiée pour correspondre à ce qui est donné sur le graphique.

 

  1. $f(-5)$ est égal à :
    $\quad$
    Correction Question 7

    D’après le graphique $f(-5)=1$.
    $\quad$

    [collapse]

    $\quad$
  2. Le nombre de solutions de l’équation $f(x)=-2$ est :
    $\quad$
    Correction Question 8

    La droite d’équation $y=-2$ coupe la courbe représentant la fonction $f$ en trois points.
    L’équation $f(x)=-2$ possède donc $3$ solutions.
    $\quad$

    [collapse]

    $\quad$
  3. L’intervalle des valeurs de $f(x)$ est :
    $\quad$
    Correction Question 9

    D’après le graphique, $f(x)\in[-6;1]$.
    $\quad$

    [collapse]

    $\quad$
  4. Le coefficient directeur de la droite $(AB)$ est :
    $\quad$
    Correction Question 10

    $A$ et $B$ n’ont pas la même abscisse.
    Le coefficient directeur de la droite $(AB)$ est donc :
    $\begin{align*} m&=\dfrac{0-(-2)}{5-0} \\
    &=\dfrac{2}{5}\end{align*}$
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. À quelle évolution globale correspond une hausse de $20\%$ suivi d’une baisse de $30\%$ ?
    $\quad$
    Correction Question 1

    Le coefficient multiplicateur est :
    $\begin{align*} m&=\left(1+\dfrac{20}{100}\right)\left(1-\dfrac{30}{100}\right)\\
    &=1,2\times 0,7\\
    &=0,84\\
    &=1-0,16\end{align*}$
    Il s’agit donc, au global, d’une baisse de $16\%$.
    $\quad$

    [collapse]

    $\quad$
  2. Convertir $3,52$ h en heure minute seconde.
    $\quad$
    Correction Question 2

    $0,52$h $=0,52\times 60$ min $= 31,2$ min
    $0,2$ min $=0,2\times 60$ s $=12$ s.
    Ainsi $3,52$h $=3$h $31$min $12$s
    $\quad$

    [collapse]

    $\quad$
  3. Soit $(d)$ la droite d’équation réduite $y = -3x + 2$.
    Le point $B\left(\dfrac{1}{3};1\right)$ appartient-il à la droite $(d)$ ?
    $\quad$
    Correction Question 3

    $-3\times \dfrac{1}{3}+2=-1+2=1$ donc $B$ appartient à la droite $(d)$.
    $\quad$

    [collapse]

    $\quad$
  4. Développer et réduite l’expression suivante :
    $A(x)=(2x-1)^2+3x+2$
    $\quad$
    Correction Question 4

    $\begin{align*} A(x)&=(2x-1)^2+3x+2 \\
    &=(2x)^2-2\times 2x\times 1+1^2+3x+2\\
    &=4x^2-4x+1+3x+2\\
    &=4x^2-x+3\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  5. Soit $f$ la fonction définie par la représentation graphique ci-dessous :

    Déterminer graphiquement l’ensemble des solutions de l’équation $f(x)=0$.
    $\quad$

    Correction Question 5

    L’ensemble solution cherché est, graphiquement, $\left\{-3;0;2;4\right\}$.
    $\quad$

    [collapse]

    $\quad$$\quad$
  6. Résoudre dans $\R$ l’inéquation d’inconnue $x$ suivante : $-2x-4\pg x+2$.
    $\quad$
    Correction Question 6

    $\begin{align*} -2x-4\pg x+2&\ssi -3x\pg 6\\
    &\ssi x\pp -2 \text{ on divise par $-3$ qui est négatif}\end{align*}$
    L’ensemble solution est donc $]-\infty;-2]$.
    $\quad$

    [collapse]

    $\quad$
  7. Quelle est la fraction irréductible égale à $\dfrac{3}{8}+\dfrac{5}{12}$?
    $\quad$
    Correction Question 7

    $\begin{align*}\dfrac{3}{8}+\dfrac{5}{12}&=\dfrac{9}{24}+\dfrac{10}{24} \\
    &=\dfrac{19}{24}\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  8. On considère le calcul suivant : $0,003\times 1,5\times 10^8$.
    Donner le résultat en écriture scientifique.
    $\quad$
    Correction Question 8

    $\begin{align*}0,003\times 1,5\times 10^8&=3\times 10^{-3}\times 15\times 10^{-1}\times 10^8 \\
    &=45\times 10^4 \\
    &=4,5\times 10^5\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  9. Résoudre dans $\R$ l’équation d’inconnue $x$ suivante : $$3x^2+1=13$$
    $\quad$
    Correction Question 9

    $\begin{align*}3x^2+1=13&\ssi 3x^2=12\\
    &\ssi x^2=4\\
    &\ssi x=2 \text{ ou } x=-2\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  10. Les tailles des élèves d’une classe de terminale ont été représentées par l’histogramme ci‐dessous :

    Trois élèves ont une taille inférieure à $160$ cm.
    Déterminer le nombre d’élèves dans cette classe de terminale.
    $\quad$
    Correction Question 10

    $6$ “petits rectangles” représentent donc $3$ élèves.
    Donc $2$ “petits rectangles” représentent $1$ élève.
    Il y a par conséquent $33$ élèves dans cette classe.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise fabrique et vend des boîtes de petits fours. La production mensuelle varie de $20$ à $150$ centaines de boîtes.
Le chiffre d’affaires en euro, obtenu pour la vente de $x$ centaines de boîtes de petits fours est donnée par la fonction $R$ définie sur l’intervalle $[20; 150]$ par $$R(x)=450x$$
Le coût total de production de $x$ centaines de boîtes de petits fours est donné en euros par la fonction $C$ définie par $$C(x) = 6x^2-246x+5~184$$
On admet dans l’étude qui suit que chaque mois toute la production est vendue.

  1. On a représenté dans le repère orthogonal ci-dessous deux courbes $C_1$ et $C_2$.
    L’une est la représentation graphique de $R$ et l’autre celle de $C$ mais on ne sait pas dans quel ordre.a.Préciser la courbe représentant la fonction $R$ et la courbe représentant la fonction $C$.
    $\quad$
    b. Déterminer avec la précision permise par le graphique dans quel intervalle doit se situer le nombre de centaines de boîtes vendues pour que l’entreprise réalise un bénéfice.
    $\quad$
  2. Le résultat de l’entreprise en euro, c’est-à-dire le bénéfice ou le déficit de l’entreprise selon que le résultat est positif ou négatif, est donné par la fonction $D$ définie sur l’intervalle $[20; 150]$ par : $$D(x)=-6x^2+696x-5~184$$
    On note $D’$ la fonction dérivée de la fonction $D$.
    a. Calculer $D'(x)$.
    $\quad$
    b. Déterminer le signe de $D'(x)$ sur l’intervalle $[20; 150]$.
    $\quad$
    c. En déduire le tableau de variation de la fonction $D$ et le nombre de boîtes que l’entreprise doit produire et vendre pour obtenir un bénéfice maximal.
    $\quad$

$\quad$

Correction Exercice

  1. a. Le fonction $R$ est une fonction linéaire. Elle est donc représentée par une droite.
    Ainsi la courbe $C_2$ représente la fonction $R$ et la courbe $C_1$ la fonction $C$.
    $\quad$
    b. L’entreprise réalise un bénéfice si $R(x)\pg C(x)$.
    Graphiquement, il faut donc que l’entreprise vendent entre $2~000$ et $10~700$ (environ) boîtes.
    $\quad$
  2. a. Pour tout réel $x\in [20;150]$ on a $D'(x)=-12x+696$.
    $\quad$
    b. $-12x+696=0 \ssi -12x=-696 \ssi x=58$
    $-12x+696>0\ssi -12x>-696 \ssi x<58$
    Ainsi :
    – $D'(x)>0$ sur $[20;58[$
    – $D'(58)=0$
    – $D'(x)<0$ sur $]58;150[$
    $\quad$
    c. On obtient donc le tableau de variations suivant :

    Le bénéfice est donc maximal quand l’entreprise produit $5~800$ boîtes.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Soit $g$ la fonction définie sur $\R$ par : $$g(x) = 0,5(x + 1)(x-3)$$

  1. a. Quelle est la nature de la fonction $g$ et celle de sa représentation graphique ?
    $\quad$
    b. Résoudre l’équation $g(x) = 0$.
    $\quad$
    c. En déduire la valeur pour laquelle $g$ admet un extremum.
    On précisera si cet extremum est un maximum ou un minimum en argumentant et on calculera sa valeur.
    $\quad$
  2. On a tracé en annexe la représentation graphique de la fonction $g$.
    Résoudre graphiquement l’équation $g(x) = 2$. On laissera sur le graphique les traces de raisonnement.
    $\quad$
  3. On appelle $x_1$ la solution de l’équation $g(x) = 2$ appartenant à l’intervalle $[-2; -1]$ et $x_2$ la solution appartenant à l’intervalle $[3; 4]$. On cherche à déterminer un encadrement de $x_2$ d’amplitude $10^{-n}$.
    Pour cela on a écrit l’algorithme ci-contre en langage Python
    $$\begin{array}{|l|}
    \hline
    \textcolor{blue}{\textbf{def }} \textcolor{Emerald}{\text{g}}\textcolor{Maroon}{(}\text{x}\textcolor{Maroon}{):} \\
    \hspace{1cm} \textcolor{blue}{\textbf{return }}\textcolor{Emerald}{0.5}\textcolor{Maroon}{*(}\text{x}\textcolor{Maroon}{+}\textcolor{Emerald}{1}\textcolor{Maroon}{)*(}\text{x}\textcolor{Maroon}{-}\textcolor{Emerald}{3}\textcolor{Maroon}{)}\\\\
    \textcolor{blue}{\textbf{def }} \textcolor{Emerald}{\text{balayage}}\textcolor{Maroon}{(}\text{n}\textcolor{Maroon}{):} \\
    \hspace{1cm} \text{x}\textcolor{Maroon}{=}\textcolor{Emerald}{3}\\
    \hspace{1cm} \text{pas}\textcolor{Maroon}{=}\textcolor{Emerald}{10}\textcolor{Maroon}{**(-}\text{n}\textcolor{Maroon}{)}\\
    \hspace{1cm}\textcolor{blue}{\textbf{while }} \text{g}\textcolor{Maroon}{(}\text{x}\textcolor{Maroon}{)<}\textcolor{Emerald}{2}\textcolor{Maroon}{:} \\
    \hspace{2cm} \text{x}\textcolor{Maroon}{=}\text{x}\textcolor{Maroon}{+}\text{pas}\\
    \hspace{1cm} \textcolor{blue}{\textbf{return }}\textcolor{Maroon}{(}\text{x}\textcolor{Maroon}{-}\text{pas}\textcolor{Maroon}{,}\text{x}\textcolor{Maroon}{)}\\
    \hline
    \end{array}$$
    Que faut-il taper dans la console pour obtenir un encadrement de $x_2$ d’amplitude $0,001$ ?
    $\quad$

Annexe

$\quad$

$\quad$

Correction Exercice

  1. a. Pour tout réel $x$ on a :
    $\begin{align*} g(x)&=0,5(x+1)(x-3)\\
    &=0,5\left(x^2-3x+x-3\right)\\
    &=0,5\left(x^2-2x-3\right)\\
    &=0,5x^2-x-1,5\end{align*}$
    $g$ est donc une fonction du second degré et sa représentation graphique est une parabole.
    $\quad$
    b. Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    Ainsi $g(x)=0 \ssi x+1=0$ ou $x-3=0$ $\ssi x=-1$ ou $x=3$.
    Les solutions de l’équation $g(x)=0$ sont donc $-1$ et $3$.
    $\quad$
    c. L’extremum est donc atteint pour $x=\dfrac{-1+3}{2}=1$.
    Le coefficient principal est $a=0,5>0$. Il s’agit donc d’un minimum.
    $g(1)=-2$.
    $\quad$
  2. À l’aide du graphique suivant

    on en déduit que, graphiquement, les solutions de l’équation $f(x)=2$ sont environ $-1,8$ et $3,8$.
    $\quad$
  3. Il faut saisir $\text{balayage(0.001)}$.
    $\quad$

[collapse]

 

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence