Bac – Métropole – jour 1 (secours) – juin 2024

Métropole – 19 juin 2024

Spécialité maths – Sujet 1 (secours) – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On a $C(4;4;0)$, $F(4;0;4)$, $G(4;4;4)$ et $H(0;4;4)$.
    $\quad$
  2. Le point $I$ a pour coordonnées $\left(\dfrac{4+0}{2};\dfrac{0+0}{2};\dfrac{4+4}{2}\right)$ c’est-à-dire $(2;0;4)$.
    De plus $\vect{IC}\begin{pmatrix} 2\\4\\-4\end{pmatrix}$
    Ainsi, une représentation paramétrique de $(IC)$ est $$\begin{cases}x=2+2t\\y=4t\\z=4-4t\end{cases}~~\text{où } t\in \R$$
    $\quad$
  3. a. $\vect{IC}$ est donc un vecteur normal à $P$.
    Une équation cartésienne de $P$ est de la forme $2x+4y-4z+d=0$.
    $G(4;4;4)$ appartient à ce plan. Donc $8+16-16+d=0\ssi d=8$.
    Une équation cartésienne de $P$ est par conséquent $2x+4y-4z+8=0$ soit $x+2y-2z+4=0$.
    $\quad$
    b. $\dfrac{28}{9}+2\times \dfrac{20}{9}-2\times \dfrac{16}{9}-4=\dfrac{36}{9}-4=0$. Le point de coordonnées $\left(\dfrac{28}{9};\dfrac{20}{9};\dfrac{16}{9}\right)$ appartient au plan $P$.
    Si on prend $t=\dfrac{5}{9}$ dans la représentation paramétrique de $(IC)$ alors $\begin{cases} x=2+\dfrac{10}{9}\\[3mm]y=\dfrac{20}{9}\\[3mm]z=4-\dfrac{20}{9}\end{cases}$ soit $\begin{cases} x=\dfrac{28}{9}\\[3mm] y=\dfrac{20}{9}\\[3mm] z=\dfrac{16}{9}\end{cases}$.
    Le point de coordonnées $\left(\dfrac{28}{9};\dfrac{20}{9};\dfrac{16}{9}\right)$ appartient à la droite $(IC)$.
    Donc $J$ a pour coordonnées $\left(\dfrac{28}{9};\dfrac{20}{9};\dfrac{16}{9}\right)$.
    $\quad$
    $J$ est par conséquent le projeté orthogonal de $C$ sur le plan $P$.
    $\quad$
    c. $0+4-0-4=0$ donc $K(0;2;0)$ appartient au plan $P$.
    $\quad$
    d. On a vu que $K$ appartenait au plan $P$.
    De plus $4+0-0-4=0$ donc $B(4;0;0)$ appartient également au plan $P$.
    Par conséquent $(BK)$ est incluse dans $P$.
    $0+0-0-4=-4\neq 0$ donc $A(0;0;0)$ n’appartient pas au plan $(P)$. Ainsi le plan $(ABC)$ et plan $(P)$ sont sécants ($B$ appartient à $P$ mais pas $A$).
    Enfin, $\vect{AK}\begin{pmatrix}0\\2\\0\end{pmatrix}$ et $\vect{BC}\begin{pmatrix} 0\\4\\0\end{pmatrix}$. Par conséquent $\vect{AK}=\dfrac{1}{2}\vect{BC}$ et $K$ appartient au plan $(ABC)$. On en déduit donc que $(BK)$ est également incluse dans le plan $(ABC)$.
    $(BK)$ appartient aux deux plans sécants $P$ et $(ABC)$. Donc $(BK)$ est l’intersection de ces deux plans.
    $\quad$
  4. a. Le triangle $BCG$ est rectangle en $C$. Son aire est :
    $\begin{align*} \mathcal{B}&=\dfrac{CB\times CG}{2} \\
    &=\dfrac{4\times 4}{2} \\
    &=8\text{ u.a.}\end{align*}$
    La hauteur issue de $K$ de la pyramide $CBKG$ mesure $4$ unités de longueur (même longueur que $[AB]$).
    Ainsi le volume de $CBKG$ est :
    $\begin{align*} V&=\dfrac{1}{3}\times 8\times 4\\
    &=\dfrac{32}{3}\text{ u.v.}\end{align*}$
    $\quad$
    b. On a $\vect{JC}\begin{pmatrix} \dfrac{8}{9}\\[3mm] \dfrac{16}{9}\\[3mm]-\dfrac{16}{9}\end{pmatrix}$.
    Donc
    $\begin{align*} JC&=\sqrt{\left(\dfrac{8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2+\left(-\dfrac{16}{9}\right)^2}\\[3mm]
    &=\sqrt{\dfrac{576}{81}}\\[3mm]
    &=\dfrac{24}{9}\end{align*}$
    On appelle $A_{BKG}$ l’aire du triangle $BKG$.
    $[CJ]$ est la hauteur issue de $C$ de la pyramide $CBKG$ d’après la question 3.b.
    Donc :
    $\begin{align*} V=\dfrac{1}{3}A_{BKG}\times JC&\ssi \dfrac{32}{3}=\dfrac{1}{3}A_{BKG}\times \dfrac{24}{9} \\
    &\ssi A_{BKG}=\dfrac{32\times 9}{24} \\
    &\ssi A_{BKG}=12 \text{ u.a.}\end{align*}$
    $\quad$
  5. $G$ appartient à $P$ par construction et $B$ appartient à $P$ d’après la question 3.d.
    Par conséquent $(BG)$ est incluse dans $P$.
    $\quad$
  6. On a donc $I'(x;0;4)$ où $x\in[0;4]$.
    Par conséquent $\vect{CI’}\begin{pmatrix}x-4\\-4\\4\end{pmatrix}$ et $\vect{BG}\begin{pmatrix}0\\4\\4\end{pmatrix}$.
    Ainsi $\vect{CI’}.\vect{BG}=0-16+16=0$.
    $\vect{CI’}$ et $\vect{BG}$ sont orthogonaux. Or $G$ appartient par construction à $P’$ donc $B$ appartient à $P’$.
    Ainsi $(BG)$ est toujours incluse dans $P’$.
    $\quad$

 

 

Ex 2

Exercice 2

Partie A

  1. On répète $10$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,25$.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,25$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(X\pg 4)&=1-P(X<4) \\
    &=1-P(X\pp 3) \\
    &\approx 0,224\end{align*}$
    La probabilité qu’au moins $4$ clients dans l’échantillon passent moins de $12$ minutes à la station est environ égale à $0,224$.
    $\quad$
  3. On a
    $\begin{align*} E(X)&=np \\
    &=10\times 0,25 \\
    &=2,5\end{align*}$
    En moyenne, sur $10$ clients $2,5$ passe moins de $12$ minutes à la station.
    $\quad$

Partie B

  1. On a $S=T_1+T_2+T_3$.
    $\quad$
  2. $S$ possède une espérance et une variance en tant que somme de variables aléatoires possédant une variance.
    a.
     Par linéarité de l’espérance on a :
    $\begin{align*}E(S)&=E\left(T_1+T_2+T_3\right) \\
    &=E\left(T_1\right)+E\left(T_2\right)+E\left(T_3\right) \\
    &=3\times 6\qquad \text{(même espérance)} \\
    &=18\end{align*}$
    Le temps d’attente total moyen est de $18$ minutes.
    $\quad$
    b. Les variables aléatoires $T_1$, $T_2$ et $T_3$ sont indépendantes. Donc :
    $\begin{align*}V(S)&=V\left(T_1+T_2+T_3\right) \\
    &=V\left(T_1\right)+V\left(T_2\right)+V\left(T_3\right) \\
    &=3\times 1\qquad \text{(même variance)} \\
    &=3\end{align*}$
    $\quad$
  3. $S$ possède une variance. On peut donc utiliser l’inégalité de Bienaymé-Tchebychev.
    $\begin{align*} P(14<S<22)&=P\left(-4<S-E(S)<4\right) \\
    &=P\left(\abs{S-E(S)}<4\right) \\
    &=1-P(\abs{S-E(S)}\pg 4) \\
    &\pg 1-\dfrac{V(S)}{4^2} \qquad \text{(inégalité de Bienaymé-Tchebychev)}\\
    &\pg 1-\dfrac{3}{16} \\
    &\pg \dfrac{13}{16} \\
    &\pg 0,812~5\end{align*}$
    La probabilité que le troisième client passe un temps strictement compris entre $14$ et $22$ minutes à la station et supérieure ou égale à $0,81$.
    $\quad$

 

Ex 3

Exercice 3

Partie A : étude d’une fonction.

  1. a. $f$ est dérivable sur $\R$ par hypothèse.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=1-\dfrac{2x}{x^2+1} \\
    &=\dfrac{x^2+1-2x}{x^2+1} \\
    &=\dfrac{(x-1)^2}{x^2+1} \end{align*}$
    $\quad$
    b. Pour tout réel $x$ on a $(x-1)^2\pg 0$ (et ne s’annule qu’en $1$) et $x^2+1>0$ donc $f'(x)\pg 0$ et ne s’annule qu’en $1$.
    La fonction $f$ est donc strictement croissante sur $\R$.
    $\quad$
  2. Pour tout réel $x>0$ on a :
    $\begin{align*} f(x)&=x-\ln\left(x^2+1\right) \\
    &=x-\ln\left(x^2\left(1+\dfrac{1}{x^2}\right)\right) \\
    &=x-\left(\ln\left(x^2\right)+\ln\left(1+\dfrac{1}{x^2}\right)\right) \\
    &=x-2\ln(x)-\ln\left(1+\dfrac{1}{x^2}\right)\end{align*}$
    $\quad$
  3. Pour tout réel $x>0$ on a $f(x)=x\left(1-\dfrac{2\ln(x)}{x}-\dfrac{1}{x}\ln\left(1+\dfrac{1}{x^2}\right)\right)$.
    $\lim\limits_{x\to +\infty}1+\dfrac{1}{x^2}=1$ donc $\lim\limits_{x\to +\infty} \ln\left(1+\dfrac{1}{x^2}\right)=0$
    Par croissances comparées $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$

Partie B : étude d’une suite.

  1. Pour tout entier naturel $n$ on pose $P(n):~u_n\pg 0$.
    Initialisation : $u_0=7\pg 0$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose que $P(n)$ est vraie.
    $u_n\pg 0$
    La fonction $f$ est strictement croissante sur $\R$
    Donc $f\left(u_n\right)\pg f(0)$
    C’est-à-dire $u_{n+1}\pg 0$ et $P(n+1)$ est vraie.
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$, on a $u_n\pg 0$.
    $\quad$
  2. Pour tout entier naturel $n$ on a :
    $\begin{align*} u_{n+1}-u_n&=u_n-\ln\left(u_n^2+2\right)-u_n \\
    &=-\ln\left(u_n^2+2\right) \end{align*}$
    Or $u_n^2+1\pg 1$ ainsi $\ln\left(u_n^2+2\right)\pg 0$.
    Donc $u_{n+1}-u_n\pp 0$
    La suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $0$. D’après le théorème de la limite monotone, $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  4. $f$ est continue (car dérivable) sur $\R$ et, pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $f(x)=x$.
    $\begin{align*} f(x)=x&\ssi x-\ln\left(x^2+1\right)=x\\
    &\ssi -\ln\left(x^2+1\right)=0\\
    &\ssi x^2+1=1 \qquad \text{(stricte croissance de la fonction exp)} \\
    &\ssi x^2=0 \\
    &\ssi x=0\end{align*}$
    Par conséquent $\ell=0$.
    $\quad$
  5. a.

    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante, $u_{96}\approx 0,1002~$ et $u_{97}\approx 0,0099$.
    $\text{seuil(0.01)}$ renvoie donc la valeur $97$.
    $\quad$

Partie C : étude d’une intégrale.

  1. La fonction $f$ est strictement croissante sur $[0;+\infty[$.
    De plus $f(0)=0$.
    Par conséquent, pour  tout réel $x>0$ on a $f(x)>f(0)$ soit $f(x)>0$.
    $\quad$
  2. $f$ est une fonction continue et positive sur $[2;4]$.
    Donc $I$ est l’aide du domaine compris entre l’axe des abscisses, la courbe représentative de la fonction $f$ et les droites d’équation $x=2$ et $x=4$.
    $\quad$
  3. Pour tout réel $x\in [2;4]$ on a $0,5x-1\pp f(x)\pp 0,25x+0,25$
    Par croissance de l’intégrale sur $[2;4]$ on obtient :
    $\ds \int_2^4 (0,5x-1)\dx \pp \int_2^4 f(x)\dx \pp \int_2^4 (0,25x+0,25)\dx$
    soit $\left[\dfrac{0,5}{2}x^2-x\right]_2^4 \pp I\pp \left[\dfrac{0,25}{2}x^2+0,25x\right]_2^4$
    donc $0-(-1) \pp I\pp 3-1$
    Finalement $1\pp I\pp 2$.
    $\quad$

Ex 4

Exercice 4

  1. a. On a $\lim\limits_{x\to -\infty} f(x)=5$. La droite d’équation $y=5$ est donc asymptote à la courbe $C_f$.
    De plus $\lim\limits_{x\to +\infty} f(x)=1$. La droite d’équation $y=1$ est donc asymptote à la courbe $C_f$.
    La droite d’équation $y=-2$ n’est, par conséquent, pas asymptote à la courbe $C_f$.
    Affirmation 1 fausse.
    $\quad$
    Remarque : La droite d’équation $x=-2$ est par contre une asymptote à la courbe $C_f$.
    $\quad$
    b. La fonction $f$ est strictement décroissante sur $]-\infty;-2[$ et $\lim\limits_{x\to -\infty} f(x)=5$.
    Par conséquent, pour tout réel $x<-2$ on a $f(x)<5$, c’est-à-dire $f(x)-5<0$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)-5=0^-$ et $\lim\limits_{x\to -\infty} \dfrac{2}{f(x)-5}=-\infty$
    Affirmation 2 fausse.
    $\quad$
  2. a. La fonction $g$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} g'(x)&=\e^{-x}-x\e^{-x} \\
    &=(1-x)\e^{-x}\end{align*}$
    $g’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    $\begin{align*} g\dsec(x)&=-\e^{-x}-(1-x)\e^{-x} \\
    &=(-1-1+x)\e^{-x} \\
    &=(x-2)\e^{-x} \end{align*}$
    La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $g\sec(x)$ ne dépend que de celui de $(x-2)$.
    Or $x-2=0\ssi x=2$ et $x-2>0\ssi x>2$
    Ainsi $g\dsec(x)$ change de signe en s’annulant en $2$.
    Le point d’abscisse $2$ est donc l’unique point d’inflexion de $C_g$.
    De plus $g(2)=2\e^{-2}=\dfrac{2}{\e^2}$
    La point $A$ est donc l’unique point d’inflexion de la courbe $C_g$.
    Affirmation 3 vraie.
    $\quad$
    b. Méthode 1 : Soit $x<2$ on a
    $\begin{align*} g(x)\pp x&\ssi x\e^{-x}-x\pp 0 \\
    &\ssi x\left(\e^{-x}-1\right) \pp 0 \end{align*}$
    Or $\e^{-x}-1>0\ssi \e^{-x}>1 \ssi -x>0 \ssi x<0$
    Ainsi :
    $\bullet$ si $x\pg 0$ alors $\e^{-x}-1\pp 0$ et donc $x\left(\e^{-x}-1\right) \pp 0$
    $\bullet$ si $x\pp 0$ alors $\e^{-x}-1\pg 0$ et donc $x\left(\e^{-x}-1\right) \pp 0$
    Dans tous les cas $x\e^{-x}-x \pp 0$ et donc $g(x)\pp x$.
    Affirmation 4 vraie.
    $\quad$
    Méthode 2 : la fonction $g$ est concave sur $\R$. Sa courbe représentative est donc située sous ses tangentes, en particulier celle passant par le point de coordonnées $\left(0;g(0)\right)$.
    $g'(0)=1$ et $g(0)=0$.
    Une équation de la tangente à la courbe représentative de $g$ u point de coordonnées $(0;0)$ est donc $y=x$.
    Par conséquent, pour tout réel $x<2$ on a $g(x)\pp x$.
    Affirmation 4 vraie.
    $\quad$
  3. On appelle $h$ la fonction définie sur $]0;+\infty[$ par $h(x)=x\ln(x)$.
    La fonction $h$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a :
    $\begin{align*} h'(x)&=\ln(x)+x\times \dfrac{1}{x} \\
    &=\ln(x)+1\end{align*}$
    Or $\ln(x)+1>0 \ssi \ln(x)>-1\ssi x>\e^{-1}$ (croissance de la fonction exp sur $\R$).
    La fonction $h$ est donc strictement décroissante sur $\left]0;\e^{-1}\right]$ et strictement croissante sur $\left[\e^{-1};+\infty\right[$.
    Par croissances comparées, $\lim\limits_{x\to 0^+} x\ln(x)=0$.
    Ainsi, pour tout réel $x\in \left]0;\e^{-1}\right]$, on a $h(x)<0$ et l’équation $h(x)=1$ n’admet aucune solution sur cet intervalle.
    $\quad$
    La fonction $h$ est continue (car dérivable) et strictement croissante sur $\left[\e^{-1};+\infty\right[$.
    $h\left(\e^{-1}\right)=-\e^{-1}<1$ et $\lim\limits_{x\to +\infty} x\ln(x)=+\infty$.
    Donc $1\in \left]-\e^{-1};+\infty\right[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=1$ admet une unique solution sur $\left[\e^{-1};+\infty\right[$.
    $\quad$
    Par conséquent, l’équation $x\ln(x)=1$ admet une unique solution sur $]0;+\infty[$.
    Affirmation 5 fausse.
    $\quad$

 

Énoncé

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.
La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses seront valorisées

Exercice 1     5 points

On considère un repère orthonormé $\left(A;\vec{i},\vec{j},\vec{k}\right)$ de l’espace dans lequel on place les points $B(4; 0; 0)$, $D(0; 4; 0)$, $E(0; 0; 4)$ et les points $C$, $F$, $G$ et $H$ de sorte que le solide $ABCDEFGH$ soit un cube.

  1. Donner les coordonnées des points $C$, $F$, $G$ et $H$.
    $\quad$
  2. On considère le point $I$ milieu de l’arête $[EF]$.
    Montrer qu’une représentation paramétrique de la droite $(IC)$ est donnée par : $$\begin{cases} x=2+2t\\y=4t\\z=4-4t\end{cases} \quad \text{où } t\in \R$$
    $\quad$
  3. On désigne par $P$ le plan orthogonal à la droite $(IC)$ passant par le point $G$, et par $J$ l’intersection de $P$ avec $(IC)$.
    a. Démontrer qu’une équation cartésienne du plan $P$ est donnée par : $x +2y-2z-4 = 0.$
    $\quad$
    b. Justifier que $J$ a pour coordonnées $\left(\dfrac{28}{9};\dfrac{20}{9};\dfrac{16}{9}\right)$.
    Que représente $J$ par rapport à $C$ ?
    $\quad$
    c. Vérifier que le point $K(0; 2; 0)$ appartient au plan $P$.
    $\quad$
    d. Justifier que $(BK)$ est l’intersection des plans $P$ et $(ABC)$.
    $\quad$
  4. On rappelle que le volume d’une pyramide est donné par la formule $V = \dfrac{B \times h}{3}$, où $B$
    est l’aire d’une base et $h$ la longueur de la hauteur relative à cette base.
    a. Déterminer le volume de la pyramide $CBKG$.
    $\quad$
    b. En déduire que l’aire du triangle $BKG$ est égale à $12$.
    $\quad$
    c. Justifier que la droite $(BG)$ est incluse dans $P$.
    $\quad$
    d. On note $I’$ un point de l’arête $[EF]$, et $P’$ le plan orthogonal à la droite $(I’C)$ passant par $G$.
    Peut-on affirmer que la droite $(BG)$ est incluse dans $P’$?
    $\quad$

$\quad$

 

Exercice 2     4 points

Partie A

Suite à une étude statistique réalisée dans la station-service Carbuplus, on évalue à $0,25$ la probabilité qu’un client venant alimenter son véhicule en carburant passe moins de $12$ minutes dans la station avant de la quitter.
On choisit au hasard et de façon indépendante $10$ clients de la station et on assimile ce choix à un tirage avec remise. On appelle $X$ la variable aléatoire qui à chaque échantillon de $10$ clients associe le nombre de ces clients ayant passé moins de $12$ minutes à la station.

  1. Quelle est la loi de probabilité suivie par la variable aléatoire $X$ ? Préciser ses paramètres.
    $\quad$
  2. Quelle est la probabilité qu’au moins $4$ clients dans un échantillon de $10$ passent moins de $12$ minutes à la station ? On arrondira si besoin le résultat à $10^{-3}$ près.
    $\quad$
  3. Calculer l’espérance $E(X)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

Partie B

Un client arrive à la station et se dirige vers une pompe. Il constate que deux voitures sont devant lui, la première accédant à la pompe au moment de son arrivée.
On désigne par $T_1$, $T_2$, $T_3$ les variables aléatoires qui modélisent les temps passés en minute par chacun des trois clients, dans leur ordre d’arrivée, pour alimenter son véhicule entre l’instant où la pompe est disponible pour lui et celui où il la libère.

On suppose que $T_1$, $T_2$, $T_3$ sont des variables aléatoires indépendantes de même espérance égale à $6$ et de même variance égale à $1$.

On note $S$ la variable aléatoire correspondant au temps d’attente total passé à la station du troisième client entre son arrivée à la station et son départ de la pompe après avoir alimenté son véhicule.

  1. Exprimer $S$ en fonction de $T_1$, $T_2$ et $T_3$.
    $\quad$
  2. a. Déterminer l’espérance de $S$ et interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
    b. Quelle est la variance du temps d’attente total $S$ de ce troisième client ?
    $\quad$
  3. Montrer que la probabilité que le troisième client passe un temps strictement compris entre $14$ et $22$ minutes à la station est supérieure ou égale à $0,81$.
    $\quad$

$\quad$

Exercice 3     6 points

Partie A : étude d’une fonction

On considère la fonction $f$ définie sur $\R$ par $$f(x)=x-\ln\left(x^2+1\right)$$
où $\ln$ désigne la fonction logarithme népérien.

  1. On admet que $f$ est dérivable sur $\R$ et on note $f’$
    sa fonction dérivée.
    a. Montrer que pour tout nombre réel $x$, on a : $$f'(x)=\dfrac{(x-1)^2}{x^2+1}$$
    $\quad$
    b. En déduire le sens de variation de la fonction $f$ sur $\R$.
    $\quad$
  2. Montrer que pour tout nombre réel $x > 0$, on a :
    $$f(x)=x-2\ln(x)-\ln\left(1+\dfrac{1}{x^2}\right)$$
    $\quad$
  3. Calculer la limite de la fonction $f$ en $+\infty$.
    $\quad$

Partie B : étude d’une suite

On considère la suite $\left(u_n\right)$ définie par : $$\begin{cases} u_0=7\\u_{n+1}=f\left(u_n\right)=u_n-\ln\left(u_n^2+1\right)\text{ pour tout } n\in \N\end{cases}$$

  1. Montrer, en utilisant un raisonnement par récurrence, que pour tout entier naturel $n$ : $u_n > 0$.
    $\quad$
  2. Montrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. En déduire la convergence de la suite $\left(u_n\right)$.
    $\quad$
  4. On note $\ell$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $\ell$.
    $\quad$
  5. a. Recopier et compléter le script ci-dessous écrit en langage Python afin qu’il renvoie la plus petite valeur de l’entier $n$ à partir de laquelle $u_n \pp h$, où $h$ est un nombre réel strictement positif.

    b. Déterminer la valeur renvoyée lorsqu’on saisit $\text {seuil(0.01)}$ dans la console Python. Justifier la réponse.
    $\quad$

Partie C : calcul intégral

  1. Étudier le signe de la fonction $f$ sur $[0 ; +\infty[$.
    $\quad$
  2. Interpréter graphiquement l’intégrale : $$I=\int_2^4 f(x)\dx$$
    $\quad$
  3. On admet dans cette question que, pour tout nombre réel $x \in [2 ; 4]$, on a l’encadrement : $$0,5x-1\pp f(x)\pp 0,25x+0,25$$
    En déduire l’encadrement : $$1\pp I\pp 2$$
    $\quad$

$\quad$

Exercice 4     5 points

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

  1. On considère ci-dessous le tableau de variations d’une fonction f définie sur $\R\setminus\acco{-2}$.
    $\quad$

    $\quad$
    a. Affirmation 1 :
    La droite d’équation $y =-2$ est asymptote horizontale à la courbe $C_f$ de la fonction $f$.
    $\quad$
    b. Affirmation 2 :
    $\lim\limits_{x\to -\infty} \dfrac{2}{f(x)-5}=+\infty$.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par $g(x)=x\e^{-x}$.
    a. Affirmation 3 :
    Le point $A\left(2;\dfrac{2}{\e^2}\right)$ est l’unique point d’inflexion de la courbe $C_g$ de la fonction $g$.
    $\quad$
    b. Affirmation 4 :
    Pour tout nombre réel $x$ appartenant à $]-\infty ; 2[$, on a $g(x) \pp x$.
    $\quad$
  3. Affirmation 5 :
    L’équation $x \ln(x) = 1$ admet exactement deux solutions sur l’intervalle $]0 ; +\infty[$.
    $\quad$

$\quad$

Bac – Métropole – jour 2 (secours) – juin 2024

Métropole – 20 juin 2024

Spécialité maths – Sujet 2 (secours) – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. D’après l’énoncé on a $P(Q)=0,917$ et $P_{\conj{R}}\left(\conj{Q}\right)=0,65$.
    $\quad$
  2. a. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
    b. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} P(Q)=P(Q\cap R)+P\left(Q\cap \conj{R}\right)&\ssi 0,917=P(R)P_R(Q)+P\left(\conj{R}\right)P_{\conj{R}}\left(\conj{Q}\right) \\
    &\ssi 0,917=0,98x+0,35(1-x) \\
    &\ssi 0,917=0,98x+0,35-0,35x \\
    &\ssi 0,567=0,63x \\
    &\ssi x=0,9\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_Q(R)&=\dfrac{P(Q\cap R)}{P(Q)} \\
    &=\dfrac{P(R)P_R(Q)}{P(Q)} \\
    &=\dfrac{0,98\times 0,9}{0,917}\\
    &\approx 0,962\end{align*}$
    La probabilité pour que l’étudiant ait réussi l’examen sachant qu’il a répondu “oui” est environ égale à $0,962$.
    $\quad$
  4. On veut déterminer le plus grand entier naturel $n$ tel que : $ P(N\pg n)\pg 0,65$.
    D’après la calculatrice $P(N\pg 11) \approx 0,797$ et $P(N\pg 12)\approx 0,649$
    Elle doit récompenser les étudiants ayant obtenus $11$ ou plus.
    $\quad$
    Remarque : Je pense que la réponse $12$ ou plus devrait être acceptée puisque $P(N  \pg 12) \approx 0,65$ (mais est légèrement inférieure)
  5. Par linéarité de l’espérance on a :
    $\begin{align*} E(S)&=E\left(N_1+\ldots+N_{10}\right) \\
    &=E\left(N_1\right)+\ldots+E\left(N_{10}\right)\\
    &=10E(N) \qquad \text{(même loi)} \\
    &=10\times 20\times 0,615 \\
    &=123\end{align*}$
    $\quad$
    Les variables aléatoires $N_1,\ldots,N_{10}$ sont indépendantes donc :
    $\begin{align*} V(S)&=V\left(N_1+\ldots+N_{10}\right) \\
    &=V\left(N_1\right)+\ldots+E\left(N_{10}\right)\\
    &=10V(N) \qquad \text{(même loi)} \\
    &=10\times 20\times 0,615 \times (1-0,615)\\
    &=47,355\end{align*}$
    $\quad$
  6. a. $M$ correspond à la moyenne des notes des $10$ candidats.
    Remarque : On l’appelle la moyenne empirique.
    $\quad$
    b. Par linéarité de l’espérance :
    $\begin{align*} E(M)&=\dfrac{1}{10}E(S) \\
    &=\dfrac{123}{10} \\
    &=12,3\end{align*}$.
    $\quad$
    On a également :
    $\begin{align*} V(M)&=\dfrac{1}{10^2}V(S) \\
    &=\dfrac{47,355}{100}\\
    &=0,473~55\end{align*}$
    $\quad$
    c. $M$ possède une variance. On peut donc lui appliquer l’inégalité de Bienaymé-Tchebychev.
    $\begin{align*} P(10,3<M<14,3)&=P\left(-2<M-E(M)<2\right) \\
    &=P\left(\abs{M-E(M)}<2\right) \\
    &=1-P\left(\abs{M-E(M)}\pg 2\right) \\
    &\pg 1-\dfrac{V(M)}{2^2} \qquad \text{(inégalité de Bienaymé-Tchebychev)} \\
    &\pg  0,882\end{align*}$
    La probabilité que la moyenne des notes de dix étudiants pris au hasard soit strictement comprise entre $10,3$ et $14,3$ est d’au moins $80\%$.
    $\quad$

 

Ex 2

Exercice 2

Partie A : étude d’un modèle discret

  1. $\dfrac{15~000}{50~000}=0,3$ mg.$^{-1}$.
    Cet ajout de chlore fait augmenter le taux de $0,3$ mg.$L^{-1}$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $P(n):~v_n\pp v_{n+1}\pp 4$.
    Initialisation : $v_0=0,7$ et $v_1=0,92\times 0,7+0,3=0,944$.
    On a bien $v_0\pp v_1\pp 4$. $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose que $P(n)$ est vraie.
    $\begin{align*} v_n\pp v_{n+1} \pp 4&\ssi 0,92v_n\pp 0,92 v_{n+1} \pp 3,68 \\
    &\ssi 0,92v_n+0,3 \pp 0,92v_{n+1}+0,3 \pp 3,98 \\
    &\ssi v_{n+1} \pp v_{n+2} \pp 3,98\end{align*}$
    Ainsi $v_{n+1} \pp v_{n+2} \pp 4$ et $P'(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$ on a $v_n\pp v_{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(v_n\right)$ est donc croissante et majorée par $4$. D’après le théorème de la limite monotone elle converge vers un réel $\ell \in [0,7;4]$.
    La fonction $f:~x\mapsto 0,92x+0,3$ est continue sur $\R$ en tant que fonction affine.
    Pour tout entier naturel $n$ on a $v_{n+1}=f\left(v_n\right)$.
    Par conséquent $\ell$ est solution de l’équation :
    $\begin{align*} f(x)=x&\ssi 0,92x+0,3=x \\
    &\ssi 0,3=0,08x \\
    &\ssi x=3,75\end{align*}$
    $\left(v_n\right)$ converge donc vers $3,75$.
    $\quad$
  3. La suite $\left(v_n\right)$ est croissante et converge vers $3,75$.
    Il existe donc un rang à partir duquel $v_n>3$.
    À long terme, le taux de chlore ne sera pas conforme à la préconisation des piscinistes.
    $\quad$
  4. On peut écrire :

    $\quad$
  5. D’après la calculatrice $v_{16} \approx 2,95$ et $v_{17} \approx 3,01$
    Cet appel renverra donc la valeur $17$.
    C’est donc à partir du $17$-ième jour que le taux de chlore ne sera pas conforme.
    $\quad$

Partie B : étude d’un modèle continu.

  1. L’équation différentielle est de la forme $y’=ay+b$ avec $a=-0,08$ et $b=\dfrac{q}{50}$.
    Les solutions de cette équation sont les fonctions $g$ définies sur $\R$ par $g(x)=C\e^{ax}-\dfrac{b}{a}$ où $C$ est un réel quelconque.
    Or $-\dfrac{b}{a}=\dfrac{q}{4}$.
    Ainsi, il existe un réel $C$ tel que pour tout réel $x$ on a $f(x)=C\e^{-0,08x}+\dfrac{q}{4}$.
    $\quad$
    Autre méthode (beaucoup plus longue) Soit $C$ un réel. On considère la fonction $g$ définie sur $\R$ par $g(x)=C\e^{-0,08x}+\dfrac{q}{4}$.
    $g$ est dérivable sur $\R$ en tant que composée et somme de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} g'(x)&=-0,08\times x\e^{-0,08x} \\
    &=-0,08x\e^{-0,08x}-0,08\times \dfrac{q}{4}+0,08\times \dfrac{q}{4} \\
    &=-0,08g(x)+\dfrac{q}{50}\end{align*}$
    Ainsi $g$ est solution de l’équation différentielle $(E)$.
    Soit $h$ un autre fonction solution de $(E)$.
    On a alors, pour tout réel $x$ :
    $\begin{align*} g'(x)-h'(x)&=-0,08g(x)+\dfrac{q}{50}+0,08h(x)-\dfrac{q}{50} \\
    &=-0,08\left(g(x)-h(x)\right)\end{align*}$
    $g-h$ est donc solution de l’équation différentielle $(H):~y’=-0,08y$ dont l’ensemble solution est $\acco{x\in \R\mapsto K\e^{-0,08x},~\forall K\in \R}$.
    Ainsi toutes les solutions de $(E)$ sont de la forme $x\mapsto C\e^{-0,08x}+\dfrac{q}{4}$.
    C’est en particulier le cas pour $f$.
    $\quad$
  2. a. $\lim\limits_{x\to +\infty} -0,08x=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$. Donc $\lim\limits_{x\to +\infty} f(x)=\dfrac{q}{4}$.
    $\quad$
    b. On souhaite donc que $\dfrac{q}{4}=2 \ssi q=8$.
    Ainsi, pour tout réel $x$ on a $f(x)=C\e^{-0,08x}+2$.
    On veut également que $f(0)=0,7 \ssi C+2=0,7 \ssi C=-1,3$.

Ex 3

Exercice 3

Partie A : exploitation du graphique

  1. Graphiquement $f(-1)=-2$ et $f'(-1)=1$ (coefficient directeur de la droite $(AB)$).
    $\quad$
  2. Il semblerait que le point d’abscisse $-1,2$ soit un point d’inflexion de $C_f$. La fonction $C_f$ n’est donc pas convexe sur son ensemble de définition.
    $\quad$
  3. Il semblerait que l’équation $f(x)=0$ admette une unique solution dont une valeur approchée est $0,1$.
    $\quad$

Partie B : étude de la fonction $\boldsymbol{f}$.

  1. $\lim\limits_{x\to -2^+} x-2=0^+$ et $\lim\limits_{X\to 0^+} \ln(X)=-\infty$ donc $\lim\limits_{x\to -2^+} \ln(x+2)=-\infty$.
    $\lim\limits_{x\to -2} x^2+2x-1=-1$
    Ainsi $\lim\limits_{x\to 2^-} f(x)=-\infty$.
    La droite d’équation $x=-2$ est donc asymptote à la courbe $C_f$.
    $\quad$
  2. La fonction $f$ est dérivable sur $]-2;+\infty[$ par hypothèse.
    Pour tout réel $x>-2$ on a :
    $\begin{align*} f'(x)&=2x+2+\dfrac{1}{x+2} \\
    &=\dfrac{(2x+2)(x+2)+1}{x+2} \\
    &=\dfrac{2x^2+4x+2x+4+1}{x+2} \\
    &=\dfrac{2x^2+6x+5}{x+2}\end{align*}$
    $\quad$
  3. Le signe de $f'(x)$ ne dépend que de celui de $2x^2+6x+5$ car $x+2>0$ sur $]-2;+\infty[$.
    Le discriminant de ce polynôme du second degré est $\Delta=6^2-4\times 2\times 5=-4<0$
    Le coefficient principal de ce polynôme est $2>0$. Par conséquent, pour tout réel $x$ on a $x^2+2x-1>0$.
    Donc, pour tout réel $x>-2$ on a $f'(x)>0$ et $f$ est une fonction strictement croissante sur $]-2;+\infty[$.
    $\quad$

    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]-2;+\infty[$.
    $\lim\limits_{x\to -2^+} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$. Or $0\in ]-\infty;+\infty[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution $\alpha$ sur $]-2;+\infty[$.
    D’après la calculatrice $\alpha \approx 0,12$.
    $\quad$
  5. La fonction $f$ est strictement croissante sur son ensemble de définition et s’annule en $\alpha$.
    Par conséquent :
    $\bullet~f(x)<0$ sur $]-2;\alpha[$ ;
    $\bullet~f(\alpha)=0$ ;
    $\bullet~f(x)>0$ sur $]-\alpha;+\infty[$.
    $\quad$
  6. $f’$ est dérivable sur $]-2;+\infty[$ par hypothèse.
    Pour tout réel $x>-2$ on a :
    $\begin{align*} f\dsec(x)&=\dfrac{(4x+6)(x+2)-\left(2x^2+6x+5\right)\times 1}{(x+2)^2 } \\
    &=\dfrac{4x^2+8x+6x+12-2x^2-6x-5}{(x+2)^2} \\
    &=\dfrac{2x^2+8x+7}{(x+2)^2} \end{align*}$
    le signe de $f\dsec(x)$ ne dépend que de celui de $2x^2+8x+7$ qui est un polynôme du second degré dont le dénominateur est $\Delta=8>0$.
    Il possède donc deux racines qui sont $\dfrac{-4-\sqrt{2}}{2}<-2$ et $\dfrac{-4+\sqrt{2}}{2}>-2$.
    $f\dsec(x)$ change de signe en s’annulant qu’une seule fois en $\dfrac{-4+\sqrt{2}}{2}$.
    $C_f$ admet donc qu’un seul point d’inflexion d’abscisse $\dfrac{-4+\sqrt{2}}{2}$.
    $\quad$

Partie C

  1. On a $J(0;1)$ et $M\left(x;g(x)\right)$.
    Par conséquent :
    $\begin{align*} h(x)&=(x-0)^2+\left(g(x)-1\right)^2 \\
    &=x^2+\left(\ln(x+2)-1\right)^2 \end{align*}$
    $\quad$
  2. a. D’après la question B.5. on obtient le tableau de variations suivant :
    $\quad$

    $\quad$
    b. D’après le tableau de variations précédent $h$ admet un minimum en $\alpha$.
    $JM^2$ est donc minimale en $\alpha$.
    La fonction racine carrée est strictement croissante sur $[0;+\infty[$. Par conséquent $JM$ est minimale en $\alpha$^.
    $\quad$
  3. a. On a :
    $\begin{align*} f(\alpha)=0&\ssi \alpha^2+2\alpha-1+\ln(\alpha+2)=0 \\
    &\ssi \ln(\alpha+2)=1-\alpha^2-2\alpha\end{align*}$
    $\quad$
    b. Le coefficient directeur de $\left(JM_{\alpha}\right)$ est $\dfrac{\ln(\alpha+2)-1}{\alpha}$ et celui de la tangente est $g'(\alpha)=\dfrac{1}{\alpha+2}$.
    Ainsi :
    $\begin{align*} g'(\alpha)\times \dfrac{\ln(\alpha+2)-1}{\alpha}&=\dfrac{1}{\alpha+2}\times \dfrac{1-2\alpha-\alpha^2-1}{\alpha} \\
    &=\dfrac{-(\alpha+2)}{\alpha+2} \\
    &=-1\end{align*}$
    La tangente à $C_g$ au poit $M_{\alpha}$ et la droite $\left(JM_{\alpha}\right)$ sont perpendiculaires.
    $\quad$
    Autre méthode : Un vecteur directeur de $\left(JM_{\alpha}\right)$ est $\vect{JM_{\alpha}}\begin{pmatrix} \alpha\\\ln(\alpha+2)-1\end{pmatrix}$ et un vecteur directeur de la tangente à $C_g$ au point $M_{\alpha}$ est $\vect{u_{\alpha}}\begin{pmatrix}1\\g'(\alpha)\end{pmatrix}$.
    Or $g'(\alpha)=\dfrac{1}{\alpha+2}$.
    Ainsi :
    $\begin{align*} \vect{JM_{\alpha}}.\vect{u_{\alpha}}&=\alpha+\dfrac{\ln(\alpha+2)-1}{\alpha+2} \\
    &=\alpha+\dfrac{1-2\alpha-\alpha^2-1}{\alpha+2} \\
    &=\dfrac{\alpha^2+2\alpha-2\alpha-\alpha^2}{\alpha+2} \\
    &=0\end{align*}$
    La tangente à $C_g$ au poit $M_{\alpha}$ et la droite $\left(JM_{\alpha}\right)$ sont perpendiculaires.
    $\quad$

Ex 4

Exercice 4

  1. $\vect{AC}\begin{pmatrix}2\\4\\1\end{pmatrix}$ et $\vect{AD}\begin{pmatrix}-2\\0\\4\end{pmatrix}$
    Ces deux vecteurs ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    Les points $A$, $C$ et $D$ définissent bien un plan.
    De plus :
    $\bullet ~8\times 2+0+0-16=16-16=0$
    $\bullet ~ 32-20+4-16=36-36=0$
    $\bullet ~0-0+16-16=0$
    Les coordonnées des points $A$, $C$ et $D$ vérifient l’équation cartésienne fournie.
    Affirmation 1 vraie
    $\quad$
  2. $0-20+12-16=12-36=-24\neq 0$
    Les coordonnées du point $B$ ne vérifient pas l’équation cartésienne du plan $\mathcal{P}$ fournie à la question précédente.
    Donc $B$ n’appartient pas à $(ACD)$.
    Les quatre points ne sont pas coplanaires.
    Affirmation 2 fausse
    $\quad$
  3. On a $\vect{BH}\begin{pmatrix}-1\\-3\\-1\end{pmatrix}$
    Les vecteurs $\vect{AC}$ et $\vect{BH}$ ne sont pas colinéaires car $\dfrac{2}{-1}\neq \dfrac{4}{-3}$.
    Ainsi les droites ne sont pas parallèles.
    Une représentation paramétrique de $(AC)$ est $\begin{cases} x=2+2t\\y=4t\\z=t\end{cases}~~ $ où $t\in \R$.
    Une représentation paramétrique de $(BH)$ est $\begin{cases} x=-k\\y=4-3k\\z=3-k\end{cases}~~ $ où $k\in \R$.
    On résout le système :
    $\begin{align*} \begin{cases} x=2+2t\\y=4t\\z=t\\x=-k\\y=4-3k\\z=3-k\end{cases}&\ssi \begin{cases} x=2+2t\\y=4t\\z=t\\2+2t=-k\\4t=4-3k\\t=3-k\end{cases}\\
    &\ssi \begin{cases} x=2+2t\\y=4t\\z=t\\2+2(3-k)=-k\\4(3-k)=4-3k\\t=3-k\end{cases} \\
    &\ssi \begin{cases} x=2+2t\\y=4t\\z=t\\8=k\\12-4k=4-3k\\t=3-k\end{cases} \\
    &\ssi \begin{cases} x=2+2t\\y=4t\\z=t\\8=k\\k=8\\t=-5\end{cases}\end{align*}$
    Les droites $(AC)$ et $(BH)$ sont donc sécantes.
    Affirmation 3 vraie
    $\quad$
  4. $-1-1+4-2=4-4=0$ : $H$ appartient au plan $(ABC)$.
    Un vecteur normal au plan $(ABC)$ est $\vec{n}\begin{align*}1\\-1\\2\end{align*}$.
    De plus $\vect{DH}\begin{align*}-1\\1\\-2\end{align*}$.
    Ainsi $\vect{DH}=-\vec{n}$ et $\vect{DH}$ est normal au plan $(ABC)$.
    Donc $H$ est le projeté orthogonal du point $D$ sur le plan $(ABC)$.
    Affirmation 4 vraie
    $\quad$

 

 

Énoncé

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées

Exercice 1     (5 points)

La directrice d’une école souhaite réaliser une étude auprès des étudiants qui ont passé l’examen de fin d’étude, pour analyser la façon dont ils pensent avoir réussi cet examen.

Pour cette étude, on demande aux étudiants à l’issue de l’examen de répondre individuellement à la question : « Pensez-vous avoir réussi l’examen ? ». Seules les réponses « oui » ou « non » sont possibles, et on observe que $91,7 \%$ des étudiants interrogés ont répondu « oui ».

Suite à la publication des résultats à l’examen, on découvre que :

  • $65 \%$ des étudiants ayant échoué ont répondu « non » ;
  • $98 \%$ des étudiants ayant réussi ont répondu « oui ».

On interroge au hasard un étudiant qui a passé l’examen.
On note $R$ l’événement « l’étudiant a réussi l’examen » et $Q$ l’événement « l’étudiant a répondu « oui » à la question ».

Pour un événement $A$ quelconque, on note $P(A)$ sa probabilité et $\conj{A}$ son événement contraire.

Dans tout l’exercice, les probabilités sont, si besoin, arrondies à $\boldsymbol{10^{-3}}$ près.

  1. Préciser les valeurs des probabilités $P(Q)$ et $P_{\conj{R}}\left(\conj{Q}\right)$.
    $\quad$
  2. On note $x$ la probabilité que l’étudiant interrogé ait réussi l’examen.
    a. Recopier et compléter l’arbre pondéré ci-dessous.
    $\quad$

    $\quad$
    b. Montrer que $x = 0,9$.
    $\quad$
  3. L’étudiant interrogé a répondu « oui » à la question.
    Quelle est la probabilité qu’il ait réussi l’examen ?
    $\quad$
  4. La note obtenue par un étudiant interrogé au hasard est un nombre entier entre $0$ et $20$. On suppose qu’elle est modélisée par une variable aléatoire $N$ qui suit la loi binomiale de paramètres $(20 ; 0,615)$. La directrice souhaite attribuer une récompense aux étudiants ayant obtenu les meilleurs résultats.
    À partir de quelle note doit-elle attribuer les récompenses pour que $65 \%$ des étudiants soient récompensés ?
    $\quad$
  5. On interroge au hasard dix étudiants.
    Les variables aléatoires $N_1$, $N_2$, $\ldots$ , $N_{10}$ modélisent la note sur 20 obtenue à l’examen par chacun d’entre eux. On admet que ces variables sont indépendantes et suivent la même loi binomiale de paramètres $(20 ; 0,615)$.
    Soit $S$ la variable définie par $S=N_1+N_2+\ldots+N_{10}$.
    Calculer l’espérance $E(S)$ et la variance $V(S)$ de la variable aléatoire $S$.
    $\quad$
  6. On considère la variable aléatoire $M=\dfrac{S}{10}$.
    a. Que modélise cette variable aléatoire $M$ dans le contexte de l’exercice ?
    $\quad$
    b. Justifier que $E(M)= 12,3$ et $V(M) = 0,47355$.
    $\quad$
    c. À l’aide de l’inégalité de Bienaymé-Tchebychev, justifier l’affirmation ci-dessous.
    « La probabilité que la moyenne des notes de dix étudiants pris au hasard soit strictement comprise entre $10,3$ et $14,3$ est d’au moins $80 \%$ ».
    $\quad$

$\quad$

Exercice 2     (5 points)

Les parties A et B sont indépendantes.

Alain possède une piscine qui contient $50$ m$^3$ d’eau. On rappelle que $1$m$^3 = 1~000$ L.
Pour désinfecter l’eau, il doit ajouter du chlore.

Le taux de chlore dans l’eau, exprimé en mg. L$^{-1}$ , est défini comme la masse de chlore par unité de volume d’eau. Les piscinistes préconisent un taux de chlore compris entre $1$ et $3$ mg. L$^{-1}$.

Sous l’action du milieu ambiant, notamment des ultraviolets, le chlore se décompose et disparaît peu à peu.

Alain réalise certains jours, à heure fixe, des mesures avec un appareil qui permet une précision à $0,01$ mg. L$^{-1}$. Le mercredi 19 juin, il mesure un taux de chlore de $0,70$ mg. L$^{-1}$.

Partie A : étude d’un modèle discret.

Pour maintenir le taux de chlore dans sa piscine, Alain décide, à partir du jeudi 20 juin, d’ajouter chaque jour une quantité de $15$ g de chlore. On admet que ce chlore se mélange uniformément dans l’eau de la piscine.

  1. Justifier que cet ajout de chlore fait augmenter le taux de $0,3$ mg. L$^{-1}$.
    $\quad$
  2. Pour tout entier naturel $n$, on note $v_n$ le taux de chlore, en mg. L$^{-1}$, obtenu avec ce nouveau protocole $n$ jours après le mercredi 19 juin. Ainsi $v_0 = 0,7$.
    On admet que pour tout entier naturel $n$, $v_{n+1}=0,92v_n+0,3$.
    a. Montrer par récurrence que pour tout entier naturel $n$, $v_n\pp v_{n+1}\pp 4$.
    $\quad$
    b. Montrer que la suite $\left(v_n\right)$ est convergente et calculer sa limite.
    $\quad$
  3. À long terme, le taux de chlore sera-t-il conforme à la préconisation des piscinistes ? Justifier la réponse.
    $\quad$
  4. Reproduire et compléter l’algorithme ci-dessous écrit en
    langage Python pour que la fonction $\text{alerte_chlore}$ renvoie, lorsqu’il existe, le plus petit entier $n$ tel que $v_n>s$.

    $\quad$
    5. Quelle valeur obtient-on en saisissant l’instruction $\text{alerte_chlore(3)}$ ? Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

Partie B : étude d’un modèle continu.

Alain décide de faire appel à un bureau d’études spécialisées. Celui-ci utilise un modèle continu pour décrire le taux de chlore dans la piscine.

Dans ce modèle, pour une durée $x$ (en jours écoulés à compter du mercredi 19 juin), $f(x)$ représente le taux de chlore, en mg. L$^{-1}$, dans la piscine.

On admet que la fonction $f$ est solution de l’équation différentielle $(E)~:~ y’=-0,08y + \dfrac{q}{50}$, où $q$ est la quantité de chlore, en gramme, rajoutée dans la piscine chaque jour.

  1. Justifier que la fonction $f$ est de la forme $f(x)=C\e^{-0,08x}+\dfrac{q}{4}$ où $C$ est une constante réelle.
    $\quad$
  2. a. Exprimer en fonction de $q$ la limite de $f$ en $+\infty$.
    $\quad$
    b. On rappelle que le taux de chlore observé le mercredi 19 juin est égal à $0,7$ mg. L$^{-1}$.
    On souhaite que le taux de chlore se stabilise à long terme autour de $2$ mg. L$^{-1}$. Déterminer
    les valeurs de $C$ et $q$ afin que ces deux conditions soient respectées.
    $\quad$

$\quad$

Exercice 3     (6 points)

On considère une fonction $f$ définie et deux fois dérivable sur $]-2 ; +\infty[$. On note $C_f$ sa courbe représentative dans un repère orthogonal du plan, $f’$ sa dérivée et $d\sec$ sa dérivée seconde.
On a tracé ci-dessous la courbe $C_f$ et sa tangente $T$ au point $B$ d’abscisse $-1$.
On précise que la droite $T$ passe par le point $A(0 ; -1)$.

Partie A : exploitation du graphique.

À l’aide du graphique, répondre aux questions ci-dessous.

  1. Préciser $f(-1)$ et $f'(-1)$.
    $\quad$
  2. La fonction $f$ est-elle convexe sur son ensemble de définition ? Justifier.
    $\quad$
  3. Conjecturer le nombre de solutions de l’équation $f(x) = 0$ et donner une valeur arrondie à $10^{-1}$ près d’une solution.
    $\quad$

Partie B : étude de la fonction $\boldsymbol{f}$.

On considère que la fonction $f$ est définie sur $]-2 ; +\infty[$ par $f(x) = x^2+2x-1+\ln(x+2)$, où $\ln$ désigne la fonction logarithme népérien.

  1. Déterminer par le calcul la limite de la fonction $f$ en $-2$. Interpréter graphiquement ce résultat.
    On admet que $\lim\limits_{x\to +\infty}f(x)=+\infty$.
    $\quad$
  2. Montrer que pour tout $x > -2$, $f'(x)=\dfrac{2x^2+6x+5}{x+2}$.
    $\quad$
  3. Étudier les variations de la fonction $f$ sur $]-2 ; +\infty[$ puis dresser son tableau de variations complet.
    $\quad$
  4. Montrer que l’équation $f(x) = 0$ admet une unique solution $\alpha$ sur $]-2 ; +\infty[$ et donner une valeur arrondie de $\alpha$ à $10^{-2}$ près.
    $\quad$
  5. En déduire le signe de $f(x)$ sur $]-2 ; +\infty[$.
    $\quad$
  6. Montrer que $C_f$ admet un unique point d’inflexion et déterminer son abscisse.
    $\quad$

Partie C : une distance minimale.

Soit $g$ la fonction définie sur $]-2 ; +\infty[$ par $g(x)=\ln(x+2)$.

On note $C_g$ sa courbe représentative dans un repère orthonormé $(O;I,J)$, représentée ci-dessous.

Soit $M$ un point de $C_g$ d’abscisse $x$.

Le but de cette partie est de déterminer pour quelle valeur de $x$ la distance $JM$ est minimale.

On considère la fonction ℎ définie sur $]-2 ; +\infty[$ par $h(x) = JM^2$.

  1. Justifier que pour tout $x>-2$, on a : $h(x)=x^2+\Big[\ln(x+2)-1\Big]^2$.
    $\quad$
  2. On admet que la fonction $h$ est dérivable sur $]-2 ; +\infty[$ et on note $h’$ sa fonction dérivée.
    On admet également que pour tout réel $x>-2$, $$h'(x)=\dfrac{2f(x)}{x+2}$$ où $f$ est la fonction étudiée en partie B.
    a. Dresser le tableau de variations de $h$ sur $]-2 ; +\infty[$.
    Les limites ne sont pas demandées.
    $\quad$
    b. En déduire que la valeur de $x$ pour laquelle la distance $JM$ est minimale est $\alpha$ où $\alpha$ est le nombre réel défini à la question 4 de la partie B.
    $\quad$
  3. On notera $M_{\alpha}$ le point de $C_g$ d’abscisse $\alpha$.
    a. Montrer que $\ln(\alpha + 2) = 1-2\alpha-\alpha^2$.
    $\quad$
    b. En déduire que la tangente à $C_g$ au point $M_{\alpha}$ et la droite $\left(JM_{\alpha}\right)$ sont perpendiculaires.
    On pourra utiliser le fait que, dans un repère orthonormé, deux droites sont perpendiculaires lorsque le produit de leurs coefficients directeurs est égal à $-1$.
    $\quad$

$\quad$

Exercice 4     (4 points)

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

Dans l’espace muni d’un repère orthonormé, on considère les points suivants : $$A(2; 0; 0), B(0; 4; 3), C(4; 4; 1), D(0; 0; 4 ) \text{ et } H(-1; 1; 2)$$

Affirmation 1 : les points $A,~C$ et $D$ définissent un plan $\mathcal{P}$ d’équation $8x-5y+4z-16=0$.
$\quad$

Affirmation 2 : les points $A,~B,~C$ et $D$ sont coplanaires.
$\quad$

Affirmation 3 : les droites $(AC)$ et $(BH)$ sont sécantes.
$\quad$

On admet que le plan $(ABC)$ a pour équation cartésienne $x-y+2z-2=0$.
Affirmation 4 : le point $H$ est le projeté orthogonal du point $D$ sur le plan $(ABC)$.
$\quad$

$\quad$

 

Bac – Métropole – jour 1 – juin 2024

Métropole – 19 juin 2024

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $\bullet$ D’après les limites composées $\lim\limits_{x\to +\infty}x\e^{-x}=0$. Donc $\lim\limits_{x\to +\infty}f(x)=0$.
    Par conséquent, l’axe des abscisses est une asymptote horizontale à la courbre $C_f$.
    Affirmation 1 vraie.
    $\quad$
    $\bullet$ La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*}f'(x)&=5\e^{-x}-5x\e^{-x} \\
    &=5(1-x)\e^{-x}\end{align*}$
    Par conséquent :
    $\begin{align*} f'(x)+f(x)&=5\e^{-x}-5x\e^{-x}+5x\e^{-x} \\
    &=5\e^{-x}\end{align*}$
    La fonction $f$ est bien solution de l’équation différentielle $(E)$.
    Affirmation 2 vraie
    $\quad$
  2. $\bullet$ Si on considère les suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$ définies pour tout $n\in\N$ par $u_n=-1$, $w_n=1$ et $v_n=(-1)^n$.
    On a bien $u_n\pp v_n \pp w_n$ ainsi que $\left(u_n\right)$ converge vers $-1$ et $\left(w_n\right)$ converge vers $1$.
    Or $\left(v_n\right)$ n’admet pas de limite.
    Affirmation 3 fausse
    $\quad$
    Remarque : Les deux suites $\left(u_n\right)$ et $\left(w_n\right)$ sont constantes. Il n’était pas précisé dans l’énoncé que les suites devaient être strictement monotones.
    On peut cependant le faire en considérant, pour tout entier naturel $n$, $u_n=-1-\dfrac{1}{n}$ et $w_n=1+\dfrac{1}{n}$.
    $\quad$
    $\bullet$ La suite $\left(u_n\right)$ est croissante donc, pour entier naturel $n$, on a $u_0 \pp u_n$.
    La suite $\left(w_n\right)$ est décroissante donc, pour tout entier naturel $n$, on a $w_n\pp w_0$.
    Or $u_n \pp v_n\pp w_n$ donc $u_0\pp u_n \pp v_n \pp w_n \pp w_0$.
    Affirmation 4 vraie
    $\quad$

Ex 2

Exercice 2

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. On veut calculer
    $\begin{align*} P(S\cap I)&=P(I)P_I(S) \\
    &=0,6\times 0,75 \\
    &=0,45\end{align*}$
    La probabilité que le client ait réalisé son achat sur internet et soit satisfait du service clientèle est égale à $0,45$.
    $\quad$
  3. $(I,M,G)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} P(S)&=P(S\cap I)+P(S\cap M)+P(S\cap G) \\
    &=P(I)P_I(S)+P(M)P_M(S)+P(G)P_G(S) \\
    &=0,6\times 0,75+0,3\times 0,9+0,1\times 0,8 \\
    &=0,8\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_S(I)&=\dfrac{P(S\cap I)}{P(S)} \\
    &=\dfrac{0,6\times 0,75}{0,8} \\
    &\approx 0,563\end{align*}$
    La probabilité que le client ait effectué son achat sur internet sachant qu’il est satisfait du service clientèle est environ égale à $0,563$.
    $\quad$
  5. a. On réalise de façon indépendante $30$ fois la même expérience de Bernoulli de paramètre $0,8$.
    $X$ suit donc la loi binomiale de paramètres $n=30$ et $p=0,8$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X\pg 25)&=1-P(X\pp 24) \\
    &\approx 0,428\end{align*}$
    La probabilité qu’au moins $25$ clients soient satisfaits est environ égale à $0,428$.
    $\quad$
  6. On appelle $Y$ la variable aléatoire comptant le nombre de clients satisfaits.
    Pour les mêmes raisons qu’à la question précédente, $Y$ suit la loi binomiale de paramètres $n$ et $p=0,8$.
    On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} P(Y\pp n-1) \pg 0,99 &\ssi 1-P(Y=n)\pg 0,99 \\
    &\ssi P(Y=n)\pp 0,01 \\
    &\ssi 0,8^n \pp 0,01 \\
    &\ssi n\ln(0,8) \pp \ln(0,01) \qquad \text{croissance de la fonction }\ln \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,8)} \qquad \text {car }\ln(0,8)<0 \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,8)}\approx 20,64$.
    Il faut donc avoir un échantillon d’au moins $21$ personnes.
    $\quad$
  7. a. On a :
    $\begin{align*} E(T)&=E\left(T_1+T_2\right) \\
    &=E\left(T_1\right)+E\left(T_2\right) \qquad \text{(linéarité de l’espérance)} \\
    &=7\end{align*}$
    $\begin{align*} V(T)&=V\left(T_1+T_2\right) \\
    &=V\left(T_1\right)+V\left(T_2\right) \qquad \text{(indépendance)} \\
    &=3\end{align*}$
    $\quad$
    b. $T$ possède une variance. On peut donc utiliser l’inégalité de Bienaymé-Tchebychev sur cette variable.
    On veut calculer :
    $\begin{align*} P(5\pp T\pp 9)&= P(4< T<10) \qquad (T \text{ est à valeur entière})\\
    &=P\left(-3 <T-E(T)< 3\right) \\
    &=P\left(\abs{T-E(T)} < 3\right) \\
    &\pg 1-P\left(\abs{T-E(T)} \pg 3\right) \\
    &\pg 1-\dfrac{V(T)}{3^2}  \qquad \text{(inégalité de Bienaymé-Tchebychev)}\\
    &\pg 1-\dfrac{3}{9} \\
    &\pg \dfrac{2}{3}\end{align*}$
    $\quad$

Ex 3

Exercice 3

  1. a. On a $\vect{AC}\begin{pmatrix} -5\\-5\\10\end{pmatrix}$ et $\vect{CD}\begin{pmatrix} 0\\0\\-25/2\end{pmatrix}$
    Ces deux vecteurs ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    D’une part $\vect{n_1}.\vect{AC}=-5+5+0=0$
    D’autre part $\vect{n_1}.\vect{CD}=0+0+0=0$
    Ainsi $\vect{n_1}$ est orthogonal à deux vecteurs non colinéaires du plan $(CAD)$.
    Il est donc normal au plan $(CAD)$.
    $\quad$
    b. Une équation cartésienne du plan $(CAD)$ est donc de la forme $x-y+d=0$
    Or $C(0;0;10)$ appartient à ce plan. Donc $0-0+d=0 \ssi d=0$.
    Une équation cartésienne du plan $(CAD)$ est donc $x-y=0$.
    $\quad$
  2. a. Si on prend $t=1$ dans la représentation paramétrique de la droite $\mathcal{D}$ on obtient le point de coordonnées $\left(\dfrac{5}{2};\dfrac{5}{2};0\right)$.
    De plus $\dfrac{5}{2}-\dfrac{5}{2}=0$ : Le point précédent appartient également au plan $(CAD)$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{5}{2};\dfrac{5}{2};0\right)$.
    $\quad$
    b. On a $\vect{BH}\begin{pmatrix}5/2\\-5/2\\0\end{pmatrix}=\dfrac{5}{2}\vect{n_1}$.
    Donc $\vect{BH}$ est normal au plan $(CAD)$.
    Par conséquent $H$ est le projeté orthogonal de $B$ sur le plan $(CAD)$.
    $\quad$
  3. a. $(BH)$ est orthogonal au plan $(CAD)$. Elle est donc en particulier orthogonale à la droite $(AH)$. $H$ appartient à ces deux droites. Elles sont donc perpendiculaires.
    Ainsi $ABH$ est rectangle en $H$.
    $\quad$
    b. On a :
    $\begin{align*} BH&=\sqrt{\left(\dfrac{5}{2}\right)^2+\left(-\dfrac{5}{2}\right)^2} \\
    &=\sqrt{\dfrac{25}{4}+\dfrac{25}{4}} \\
    &=\sqrt{\dfrac{50}{4}} \\
    &=\sqrt{\dfrac{25}{2}}\end{align*}$
    De plus $\vect{AH}\begin{pmatrix}-5/2\\-5/2\\0\end{pmatrix}$
    On a donc également $AH=\sqrt{\dfrac{25}{2}}$.
    Ainsi, l’aire du triangle $ABH$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{BH\times AH}{2} \\
    &=\dfrac{~\dfrac{25}{2}~}{2} \\[3mm]
    &=\dfrac{25}{4}\end{align*}$
    $\quad$
  4. a. On a $\vect{OC}\begin{pmatrix} 0\\0\\10\end{pmatrix}$
    D’une part $\vect{OC}.\vect{BH}=0+0+0=0$
    D’autre part $\vect{OC}.\vect{AH}=0+0+0=0$
    Les vecteurs $\vect{AH}$ et $\vect{BH}$ ne sont pas colinéaires car $\dfrac{~-\dfrac{5}{2}~}{\dfrac{5}{2}} \neq \dfrac{~-\dfrac{5}{2}~}{-\dfrac{5}{2}}$
    Ainsi $\vect{OC}$ est orthogonal à deux vecteurs non colinéaires du plan $(BAH)$.
    On a $\vect{OH}=\dfrac{1}{2}\vect{OA}$ donc $O$ appartient au plan $(BAH)$.
    Par conséquent $(CO)$ est la hauteur du tétraèdre $ABCH$ issue de $C$.
    $\quad$
    b. Le volume de ce tétraèdre est :
    $\begin{align*} V&=\dfrac{1}{3}\mathscr{A}\times OC \\
    &=\dfrac{1}{3}\times \dfrac{25}{4}\times 10 \\
    &=\dfrac{125}{6}\end{align*}$
    $\quad$
  5. On a $AB=5$ et $\vect{BC}\begin{align*} 0\\-5\\10\end{align*}$
    Donc :
    $\begin{align*} BC&=\sqrt{(-5)^2+10^2} \\
    &=\sqrt{125} \\
    &=5\sqrt{5}\end{align*}$
    Par conséquent, l’aire du triangle $ABC$ rectangle en $B$ est :
    $\begin{align*} \mathcal{B}&=\dfrac{AB\times BC}{2} \\
    &=\dfrac{25\sqrt{5}}{2}\end{align*}$
    Ainsi, en appelant $d$ la distance cherchée :
    $\begin{align*} V=\dfrac{125}{6}&\ssi \dfrac{1}{3}\times \mathcal{B}\times d =\dfrac{125}{6} \\
    &\ssi d=\dfrac{125}{6}\times \dfrac{3}{25\sqrt{5}} \\
    &\ssi d=\sqrt{5}\end{align*}$

Ex 4

Exercice 4

Partie A : étude de la fonction $\boldsymbol{f}

  1. a. $\lim\limits_{x\to 0} x-2=-2$ et $\lim\limits_{x\to 0^+}\ln(x)=-\infty$
    Donc $\lim\limits_{x\to 0^+} f(x)=-\infty$
    $\lim\limits_{x\to +\infty} x-2=+\infty$ et $\lim\limits_{x\to +\infty}\ln(x)=+\infty$
    Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
    b. La fonction $f$ est dérivable par hypothèse sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=1+\dfrac{1}{2x} \\
    &=\dfrac{2x+1}{2x}\end{align*}$
    $\quad$
    c. Pour tout réel $x>0$ on a $2x+1>0$ et $2x>0$ donc $f'(x)>0$.
    La fonction $f$ est strictement croissante sur $]0;+\infty[$.
    $\quad$
    d. $f’$ est dérivable sur $]0;+\infty[$ par hypothèse.
    Pour tout réel $x>0$ on a :
    $\begin{align*}f\dsec(x)&=-\dfrac{1}{2x^2} \\
    &<0\end{align*}$
    La fonction $f$ est donc concave sur $]0;+\infty[$.
    $\quad$
  2. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;+\infty[$.
    De plus $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$. Or $0\in ]-\infty;+\infty[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $]0;+\infty[$.
    $\quad$
    $f(1)=1-2=-1<0$ et $f(2)=\dfrac{1}{2}\ln(2)>0$.
    Ainsi $f(1) \pp f(\alpha) \pp f(2)$. La fonction $f$ est strictement croissante sur $]0;+\infty[$ donc $1\pp \alpha \pp 2$.
    Ainsi $\alpha \in [1;2]$.
    $\quad$
    b. La fonction $f$ est strictement croissante sur $]0;+\infty[$ et $f(\alpha)=0$.
    Ainsi :
    $\bullet$ sur $]0;+\alpha[$ on a $f(x)<0$ ;
    $\bullet$ $f(\alpha)=0$ ;
    $\bullet$ sur $]\alpha;+\infty[$ on a $f(x)>0$.
    $\quad$
    c.
    $\begin{align*} f(\alpha)=0&\ssi \alpha-2+\dfrac{1}{2}\ln(\alpha)=0 \\
    &\ssi \dfrac{1}{2}\ln(\alpha)=2-\alpha \\
    &\ssi \ln(\alpha)=2(2-\alpha)\end{align*}$
    $\quad$

Partie B : étude de la fonction $\boldsymbol{g}$

  1. La fonction $g$ est dérivable sur $]0;1]$ par hypothèse.
    Pour tout réel $x\in ]0;1]$ on a :
    $\begin{align*} g'(x)&=-\dfrac{7}{4}x+1-\dfrac{1}{4}\left(2x\ln(x)+x^2\times \dfrac{1}{x}\right) \\
    &=-\dfrac{7}{4}x+1-\dfrac{1}{4}\left(2x\ln(x)+x\right) \\
    &=-\dfrac{7}{4}x+1+\dfrac{1}{2}x\ln(x)-\dfrac{1}{4}x \\
    &=-2x+1-\dfrac{1}{2}x\ln(x) \\
    &=x\left(\dfrac{1}{x}+2-\dfrac{1}{2}\ln(x) \right) \\
    &=x\left(\dfrac{1}{x}+2+\dfrac{1}{2}\ln\left(\dfrac{1}{x}\right) \right) \\
    &=xf\left(\dfrac{1}{x}\right)\end{align*}$
    $\quad$
  2. a. Si $0<x<\dfrac{1}{\alpha}$ alors $\dfrac{1}{x}>\alpha$ et donc, d’après la question A.2.b., $f\left(\dfrac{1}{x}\right)>0$.
    $\quad$
    Autre méthode : pour tout $x\in  \left]0;\dfrac{1}{\alpha}\right[$ on a $0<\alpha<\dfrac{1}{x}$.
    Or, d’après la question A.2.a, la fonction $f$ est strictement croissante sur $]0;+\infty[$.
    Par conséquent $f( \alpha)<f\left(\dfrac{1}{x}\right)$, c’est-à-dire $f\left(\dfrac{1}{x}\right)>0$.
    $\quad$
  3. b. Pour tout réel $x\in ]0;+\infty[$ on a $x>0$ donc $g'(x)$ est du signe de $f\left(\dfrac{1}{x}\right)$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$

    $\quad$

Partie C : un calcul d’aire

  1. a. Pour tout réel $x\in ]0;1]$ on a :
    $\begin{align*} g(x)-\left(-\dfrac{7}{8}x^2+x\right)&=-\dfrac{1}{4}x^2 \ln(x)  \\
    &\pg 0 \quad \text{car } x\in ]0;1]\end{align*}$
    La courbe $C_g$ est donc au-dessus de la parabole $\mathcal{P}$ sur $]0;1]$.
    $\quad$
    b. On réalise une intégration par parties à l’aide des fonctions $u$ et $v$ de classe $C^1$ sur $\left]\dfrac{1}{\alpha};1\right]$ définie par : $$\begin{array}{lll} u(x)=\ln(x)&\phantom{123}&u'(x)=\dfrac{1}{x} \\[3mm]
    v(x)=\dfrac{1}{3}x^3&&v'(x)=x^2\end{array}$$
    $\begin{align*} \int_{1/\alpha}^1 x^2\ln(x)\dx&=\left[\dfrac{1}{3}x^3\ln(x)\right]_{1/\alpha}^1-\dfrac{1}{3} \int_{1/\alpha}^1 x^3\times \dfrac{1}{x} \dx \\
    &=-\dfrac{1}{3\alpha^3}\ln\left(\dfrac{1}{\alpha}\right)-\dfrac{1}{3}\int_{1/\alpha}^1 x^2\dx \\
    &=\dfrac{1}{3\alpha^3}\ln(\alpha)-\dfrac{1}{3}\left[\dfrac{1}{3}x^3\right]_{1/\alpha}^1 \\
    &=\dfrac{1}{3\alpha^3}\times 2(2-\alpha)-\dfrac{1}{9}\left(1-\dfrac{1}{\alpha^3}\right) \\
    &=\dfrac{4}{3\alpha^3}-\dfrac{2}{3\alpha^2}-\dfrac{1}{9}+\dfrac{1}{9\alpha^3} \\
    &=\dfrac{13-6\alpha-\alpha^3}{9\alpha^3}\end{align*}$
    $\quad$
  2. On a donc
    $\begin{align*} \mathcal{A}&=-\dfrac{1}{4}\int_{1/\alpha}^1 x^2\ln(x) \dx \\
    &=-\dfrac{1}{4}\times \dfrac{13-6\alpha-\alpha^3}{9\alpha^3}\end{align*}$

 

Énoncé

 

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées

Exercice 1     (4 points)

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par : $f(x)=5x\e^{-x}$.
    On note $C_f$ la courbe représentative de $f$ dans un repère orthonormé.
    Affirmation 1 :
    L’axe des abscisses est une asymptote horizontale à la courbe $C_f$.
    $\quad$
    Affirmation 2 : La fonction $f$ est solution sur $\R$ de l’équation différentielle $(E)~:~y’+y=5\e^{-x}$.
    $\quad$
  2. On considère les suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$, telles que, pour tout entier naturel $n$ : $u_n\pp v_n\pp w_n$.
    De plus, la suite $\left(u_n\right)$ converge vers $-1$ et la suite $\left(w_n\right)$ converge vers $1$.
    Affirmation 3 : La suite $\left(v_n\right)$ converge vers un nombre réel $\ell$ appartenant à l’intervalle $[-1; 1]$.
    $\quad$
    On suppose de plus que la suite $\left(u_n\right)$ est croissante et que la suite $\left(w_n\right)$ est décroissante.
    Affirmation 4 : Pour tout entier naturel $n$, on a alors : $u_0\pp v_n\pp w_0$.
    $\quad$

$\quad$

Exercice 2     (5 points)

Une agence de marketing a étudié la satisfaction des clients concernant le service clientèle à l’occasion de l’achat d’un téléviseur. Ces achats ont été réalisés soit sur internet, soit dans une chaîne de magasins d’électroménager, soit dans une enseigne de grandes surfaces.

Les achats sur internet représentent $60 \%$ des ventes, les achats en magasin
d’électroménager $30 \%$ des ventes et ceux en grandes surfaces $10 \%$ des ventes.

Une enquête montre que la proportion des clients satisfaits du service clientèle
est de :

  • $75 \%$ pour les clients sur internet ;
  • $90 \%$ pour les clients en magasin d’électroménager ;
  • $80 \%$ pour les clients en grande surface.

On choisit au hasard un client ayant acheté le modèle de téléviseur concerné.

On définit les événements suivants :

  • $I$ : « le client a effectué son achat sur internet » ;
  • $M$ : « le client a effectué son achat en magasin d’électroménager » ;
  • $G$ : « le client a effectué son achat en grande surface » ;
  • $S$ : « le client est satisfait du service clientèle ».

Si $A$ est un événement quelconque, on notera $\conj{A}$ son événement contraire et $P(A)$ sa probabilité.

  1. Reproduire et compléter l’arbre ci-dessous.
    $\quad$

    $\quad$
  2. Calculer la probabilité que le client ait réalisé son achat sur internet et soit satisfait du service clientèle.
    $\quad$
  3. Démontrer que $P(S) = 0,8$.
    $\quad$
  4. Un client est satisfait du service clientèle. Quelle est la probabilité qu’il ait effectué son achat sur internet ?
    On donnera un résultat arrondi à $10^{-3}$ près.
    $\quad$
  5. Pour réaliser l’étude, l’agence doit contacter chaque jour $30$ clients parmi les acheteurs du téléviseur. On suppose que le nombre de clients est suffisamment important pour assimiler le choix des $30$ clients à un tirage avec remise. On note $X$ la variable aléatoire qui, à chaque échantillon de $30$ clients, associe le nombre de clients satisfaits du service clientèle.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Déterminer la probabilité, arrondie à $10^{-3}$ près, qu’au moins $25$ clients soient satisfaits dans un échantillon de $30$ clients contactés sur une même journée.
    $\quad$
  6. En résolvant une inéquation, déterminer la taille minimale de l’échantillon de clients à contacter pour que la probabilité qu’au moins l’un d’entre eux ne soit pas satisfait soit supérieure à $0,99$.
    $\quad$
  7. Dans les deux questions a. et b. qui suivent, on ne s’intéresse qu’aux seuls
    achats sur internet.
    Lorsqu’une commande de téléviseur est passée par un client, on considère que le temps de livraison du téléviseur est modélisé par une variable aléatoire $T$ égale à la somme de deux variables aléatoires $T_1$ et $T_2$.
    La variable aléatoire $T_1$ modélise le nombre entier de jours pour l’acheminement du téléviseur depuis un entrepôt de stockage vers une plateforme de distribution.
    La variable aléatoire $T_2$ modélise le nombre entier de jours pour l’acheminement du téléviseur depuis cette plateforme jusqu’au domicile du client.
    On admet que les variables aléatoires $T_1$ et $T_2$ sont indépendantes, et on donne :
    $\bullet$ L’espérance $E\left(T_1\right)= 4$ et la variance $V\left(T_1\right) = 2$ ;
    $\bullet$ L’espérance $E\left(T_2\right)= 3$ et la variance $V\left(T_2\right) = 1$ ;
    a. Déterminer l’espérance $E(T)$ et la variance $V(T)$ de la variable aléatoire $T$.
    $\quad$
    b. Un client passe une commande de téléviseur sur internet. Justifier que la probabilité qu’il reçoive son téléviseur entre $5$ et $9$ jours après sa commande est supérieure ou égale à $\dfrac{2}{3}$.
    $\quad$

$\quad$

Exercice 3     (5 points)

L’espace est muni d’un repère orthonormé $\Oijk$.

On considère les points $A(5;5;0)$, $B(0;5;0)$, $C(0;0;10)$ et $D\left(0;0;-\dfrac{5}{2}\right)$.

  1. a. Montrer que $\vect{n_1}\begin{pmatrix}1\\-1\\0\end{pmatrix}$ est un vecteur normal au plan $(CAD)$.
    $\quad$
    b. En déduire que le plan $(CAD)$ a pour équation cartésienne : $x-y=0$.
    $\quad$
  2. On considère la droite $\mathcal{D}$ de représentation paramétrique $\begin{cases} x=\dfrac{5}{2}t\\[3mm] y=5-\dfrac{5}{2}t\\[3mm] z=0\end{cases} \quad$ où $t\in \R$.
    a. On admet que la droite $\mathcal{D}$ et le plan $(CAD)$ sont sécants en un point $H$. Justifier que les coordonnées de $H$ sont $\left(\dfrac{5}{2};\dfrac{5}{2};0\right)$.
    $\quad$
    b. Démontrer que le point $H$ est le projeté orthogonal de $B$ sur le plan $(CAD)$.
    $\quad$
  3. a. Démontrer que le triangle $ABH$ est rectangle en $H$.
    $\quad$
    b. En déduire que l’aire du triangle $ABH$ est égale à $\dfrac{25}{4}$.
    $\quad$
  4. a. Démontrer que $(CO)$ est la hauteur du tétraèdre $ABCH$ issue de $C$.
    $\quad$
    b. En déduire le volume du tétraèdre $ABCH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\mathcal{B}h$ où $\mathcal{B}$ est l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$
  5. On admet que le triangle $ABC$ est rectangle en $B$. Déduire des questions précédentes la distance du point $H$ au plan $(ABC)$.
    $\quad$

$\quad$

Exercice 4     (6 points)

Partie A : étude de la fonction $\boldsymbol{f}$

La fonction $f$ est définie sur l’intervalle $]0; +\infty[$ par : $f(x)=x-2+\dfrac{1}{2}\ln(x)$ , où $\ln$ désigne la fonction logarithme népérien. On admet que la fonction $f$ est deux fois dérivable sur $]0 ; +\infty[$, on note $f’$ sa dérivée et $f\dsec$ sa dérivée seconde.

  1. a. Déterminer, en justifiant, les limites de $f$ en $0$ et en $+\infty$.
    $\quad$
    b. Montrer que pour tout $x$ appartenant à $]0 ; +\infty[$, on a : $f'(x)=\dfrac{2x+1}{2x}$.
    $\quad$
    c. Étudier le sens de variation de $f$ sur $]0 ; +\infty[$.
    $\quad$
    d. Étudier la convexité de $f$ sur $]0 ; +\infty[$.
    $\quad$
  2. a. Montrer que l’équation $f(x) = 0$ admet dans $]0; +\infty[$ une solution unique qu’on notera $\alpha$ et justifier que $\alpha$ appartient à l’intervalle $[1 ; 2]$.
    $\quad$
    b. Déterminer le signe de $f(x)$ pour $x\in ]0 ; +\infty[$.
    $\quad$
    c. Montrer que $\ln(\alpha)=2(2-\alpha)$.
    $\quad$

Partie B : étude de la fonction $\boldsymbol{g}$

La fonction $g$ est définie sur $]0;1]$ par $g(x)=-\dfrac{7}{8}x^2+x-\dfrac{1}{4}x^2\ln(x)$.

On admet que la fonction $g$ est dérivable sur $]0;1]$ et on note $g’$ sa fonction dérivée.

  1. Calculer $g'(x)$ pour $x\in ]0;1]$ puis vérifier que $g'(x)=xf\left(\dfrac{1}{x}\right)$.
    $\quad$
  2. a. Justifier que pour $x$ appartenant à l’intervalle $\left]0;\dfrac{1}{\alpha}\right[$, on a $f\left(\dfrac{1}{x}\right)>0$.
    $\quad$
    b. On admet le tableau de signes suivant :
    $\quad$

    $\quad$
    En déduire le tableau de variations de $g$ sur l’intervalle $]0 ; 1]$.
    Les images et les limites ne sont pas demandées.
    $\quad$

Partie C : un calcul d’aire

On a représenté sur le graphique ci-dessous :

  • La courbe $C_g$ de la fonction $g$ ;
  • La parabole $\mathcal{P}$ d’équation $y=-\dfrac{7}{8}x^2+x$ sur l’intervalle $]0 ; 1]$.

On souhaite calculer l’aire $\mathcal{A}$ du domaine hachuré compris entre les courbes $C_g$ et $\mathcal{P}$, et les droites d’équations $x=\dfrac{1}{\alpha}$ et $x=1$.
On rappelle que $\ln(\alpha)=2(2-\alpha)$.

  1. a. Justifier la position relative des courbes $C_g$ et $\mathcal{P}$ sur l’intervalle $]0;1]$.
    $\quad$
    b. Démontrer l’égalité : $$\int_{1/\alpha}^1 x^2\ln(x)\dx=\dfrac{-\alpha^3-6\alpha+13}{9\alpha^3}$$
    $\quad$
  2. En déduire l’expression en fonction de $\alpha$ de l’aire $\mathcal{A}$.
    $\quad$

$\quad$