Bac – Centres étrangers 1 – 5 juin 2024

Centres étrangers – 5 juin 2024

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. La fonction $f$ est dérivable sur $[0;1]$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $[0;1]$.
    Pour tout réel $x\in [0;1]$ on a :
    $\begin{align*} f'(x)&=\dfrac{0,96(0,93x+0,03)-0,93\times 0,96x}{(0,93x+0,03)^2} \\
    &=\dfrac{0,028~8}{(0,93x+0,03)^2}\end{align*}$
    $\quad$
    Remarque : On pouvait simplifier l’expression initiale de $f(x)$ en $f(x)=\dfrac{0,32x}{0,31x+0,01}$.
    $\quad$
  2. Pour tout réel $x\in [0;1]$ on a $(0,93x+0,03)^2>0$ et $0,028~8>0$.
    Par conséquent, pour tout réel $x\in [0;1]$ on a $f'(x)>0$.
    La fonction $f$ est donc strictement croissante sur $[0;1]$.
    $\quad$

Partie B

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. On veut déterminer :
    $\begin{align*} p(D\cap T)&=p(D)\times p_D(T) \\
    &=0,96x\end{align*}$
    $\quad$
  3. $\left(D,\conj{D}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} p(T)&=p(D\cap T)+p\left(\conj{D}\cap T\right) \\
    &=0,96x+p\left(\conj{D}\right)\times p_{\conj{D}}(T) \\
    &=0,96x+0,03(1-x) \\
    &=0,93x+0,03\end{align*}$
    La probabilité de l’événement $T$ est bien égale à $0,93x+0,03$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} p_T(D)&=\dfrac{p(D\cap T)}{p(T)} \\
    &=\dfrac{0,96x}{0,93x+0,03}\\
    &=f(x)\end{align*}$
    Or $x=\dfrac{50}{1~000}=0,05$
    Ainsi la probabilité qu’un sportif soit dopé sachant que son test est positif est bien égal à $f(0,05) \approx 0,63$.
    $\quad$
  5. a. On a vu à la question précédente que cette valeur prédictive était égale à $f(x)$.
    On veut donc résoudre l’inéquation :
    $\begin{align*} f(x)\pg 0,9&\ssi \dfrac{0,96x}{0,93x+0,03}\pg 0,9 \\
    &\ssi 0,96x\pg 0,9(0,93x+0,03) \qquad \text{car } 0,96x+0,03>0 \text{ sur } [0;1] \\
    &\ssi 0,96x\pg 0,837x+0,027\\
    &\ssi 0,123x \pg 0,027 \\
    &\ssi x\pg \dfrac{9}{41}\end{align*}$
    Or $\dfrac{9}{41}\approx 0,22$.
    C’est donc à partir d’environ $0,22$ que la valeur prédictive positive du test étudié sera supérieure ou égale à $0,9$.
    $\quad$
    b. On appelle $y$ la proportion des sportifs dopés parmi les plus performants. On a donc $0 \pp x\pp y\pp 1$.
    La fonction $f$ est strictement croissante. Par conséquent $f(y)\pg f(x)$.
    La valeur prédictive positive sera donc meilleure.
    $\quad$

 

 

Ex 2

Exercice 2

  1. a.
    $\begin{align*} f(x)=x &\ssi 2x\e^{-x}=x \\
    &\ssi 2x\e^{-x}-x=0 \\
    &\ssi x\left(2\e^{-x}-1\right)=0 \\
    &\ssi x=0 \text{ ou } 2\e^{-x}-1=0 \\
    &\ssi x=0 \text{ ou }2\e^{-x}=1 \\
    &\ssi x=0 \text{ ou }\e^{-x}=\dfrac{1}{2} \\
    &\ssi x=0 \text{ ou }-x=\ln\left(\dfrac{1}{2}\right) \\
    &\ssi x=0 \text{ ou }x=-\ln\left(\dfrac{1}{2}\right) \\
    &\ssi x=0 \text{ ou }x=\ln(2) \end{align*}$
    Or $0\in [0;1]$ et $\ln(2) \in [0;1]$
    L’ensemble des solutions de l’équation $f(x)=x$ sur $[0;1]$ est donc $\acco{0;\ln(2)}$.
    $\quad$
    b. $f$ est dérivable sur $[0;1]$ par hypothèse.
    Pour tout réel $x\in [0;1]$ on a :
    $\begin{align*} f'(x)&=2\e^{-x}+2x\times \left(-\e^{-x}\right) \\
    &=2(1-x)\e^{-x}\end{align*}$
    $\quad$
    c. $1-x>0 \ssi x<1$ et $1-x=0 \ssi x=1$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  2. a. Pour tout entier naturel $n$ on note $P(n):~0\pp u_n<u_{n+1}\pp 1$.
    Initialisation : $u_0=0,1$ et $u_1=f(0,1) \approx 0,18$.
    Donc $0\pp u_0<u_1\pp 1$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose que $P(n)$ est vraie.
    $0\pp u_n<u_{n+1}\pp 1$
    La fonction $f$ est strictement croissante sur $[0;1]$.
    Par conséquent $f(0) \pp f\left(u_n\right)<f\left(u_{n+1}\right) \pp f(1)$.
    Ainsi $0\pp u_{n+1}<u_{n+2}\pp 2\e^{-1}<1$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$ on a $0\pp u_n<u_{n+1}\pp 1$.
    $\quad$
    b. La suite $\left(u_n\right)$ est donc croissante et majorée par $1$.
    D’après le théorème de la limite monotone, $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  3. Pour tout entier naturel $n$ on a $u_{n+1}=f\left(u_n\right)$, $\left(u_n\right)$ converge et $f$ est continue sur $[0;1]$ car dérivable sur cet intervalle.
    Ainsi $\ell$ est solution de l’équation $f(x)=x$.
    D’après la question 1.a., cette équation possède deux solutions sur $[0;1]$ qui sont $0$ et $\ln(2)$.
    La suite $\left(u_n\right)$ est strictement croissante et $u_0=0,1>0$.
    Ainsi $\left(u_n\right)$ converge vers $\ln(2)$.
    $\quad$
  4. a. La suite $\left(u_n\right)$ est strictement croissante et converge vers $\ln(2)$. Par conséquent, pour tout entier naturel $n$ on a $u_n\pp \ln(2)$ c’est-à-dire $\ln(2)-u_n \pg 0$.
    $\quad$
    b. On peut écrire :

    Remarque : Il y avait une erreur dans le code Python. La fonction $\ln$ doit s’écrire $\text{log}$ et suppose que la bibliothèque $\text{math}$ a été importée.
    $\quad$

    c. Quand on exécute ce code Python sur la calculatrice , on obtient $n=11$.
    $\quad$

 

Ex 3

Exercice 3

  1. Si $y$ est une fonction constante solution de $\left[E_0\right)$ alors $y’=0$.
    Ainsi $0=y$.
    L’unique fonction constante solution de l’équation différentielle $\left(E_0\right)$ est donc la fonctio nulle.
    $\quad$
  2. L’ensemble solution de l’équation différentielle $y’=y$ est $\acco{t\in \R\mapsto K\e^t,~\forall K\in \R}$.
    $\quad$
  3. la fonction $h$ est dérivable sur $\R$ par hypothèse.
    Pour tout réel $x$ on a
    $h'(x)=-2\sin(x)+\cos(x)$.
    Or :
    $\begin{align*}h(x)-\cos(x)-3\sin(x) &=2\cos(x)+\sin(x)-\cos(x)-3\sin(x)\\
    &=\cos(x)-2\sin(x) \\
    &=h'(x)\end{align*}$
    $h$ est solution de l’équation différentielle $(E)$.
    $\quad$
  4. Soit $f$ une solution de $(E)$.
    Ainsi, pour tout réel $x$ on a :
    $\begin{align*} (f-h)'(x)&=f'(x)-h'(x) \\
    &=f(x)-\cos(x)-3\sin(x)-\left(h(x)-\cos(x)-3\sin(x)\right) \\
    &=f(x)-h(x) \\
    &=(f-h)(x)\end{align*}$
    Par conséquent $f-h$ est solution de $\left(E_0\right)$.
    $\quad$
    Supposons maintenant que $f-h$ soit solution de $\left(E_0\right)$.
    Ainsi, pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=f'(x)-h'(x)+h'(x) \\
    &=f(x)-h(x)+h'(x) \text{ car } f-h \text{ est solution de } \left(E_0\right) \\
    &=f(x)-\cos(x)-3\sin(x)\text{ car } h \text{ est solution de } \left(E\right)\end{align*}$
    Donc $f$ est solution de $(E)$.
    $\quad$
    Il y a bien équivalence entre “$f$ est  solution de $(E)$” et “$f-h$ est solution de $\left(E_0\right)$”.
    $\quad$
  5. D’après la question 2. il existe un réel $K$ tel que pour tout réel $x$ on ait $f(x)-h(x)=K\e^x$.
    Ainsi $f(x)=2\cos(x)+\sin(x)+K\e^x$.
    $\quad$
    Réciproquement, soit $f$ la fonction définie sur $\R$ par $f(x)=2\cos(x)+\sin(x)+K\e^x$, où $K$ est un réel quelconque.
    Ainsi :
    $\begin{align*} f'(x)&=-2\sin(x)+\cos(x)+K\e^x \\
    &=2\cos(x)-\cos(x)+\sin(x)-3\sin(x)+K\e^x \\
    &=f(x)-\cos(x)-3\sin(x)\end{align*}$
    $f$ est bien solution de $E$.
    $\quad$
    L’ensemble solution de $(E)$ est $\acco{x\in \R\mapsto 2\cos(x)+\sin(x)+K\e^x,~\forall K\in \R}$.
    $\quad$
  6. On veut donc déterminer la valeur de $K$ telle que $2\cos(0)+\sin(0)+K\e^0=0$
    C’est-à-dire que $2+K=0$. Ainsi $K=-2$.
    $g$ est donc la fonction définie sur $\R$ par $g(x)=2\cos(x)+\sin(x)-2\e^x$.
    $\quad$
  7. On a :
    $\begin{align*} \int_0^{\frac{\pi}{2}}\left(-2\e^x+\sin(x)+2\cos(x)\right)\dx &=\Big[-2\e^x-\cos(x)+2\sin(x)\Big]_0^{\frac{\pi}{2}} \\
    &=-2\e^{\pi/2}-0+2-(-2-1+0) \\
    &=-2\e^{\pi/2}+5\end{align*}$

 

Ex 4

Exercice 4

  1. D’une part $\vect{AB}\begin{pmatrix}1\\3\\-2\end{pmatrix}$ et d’autre part $\vect{AC}\begin{pmatrix} 3\\-1\\0\end{pmatrix}$.
    Ces deux vecteurs ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    Par conséquent $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
  2. a. $\vect{AB}.\vec{n}=1+9-10=0$
    $\vect{AC}.\vec{n}=3-3+0=0$
    $\vec{n}$ est orthogonal a deux vecteurs non colinéaires du plan $(ABC)$.
    $\vec{n}$ est donc orthogonal au plan $(ABC)$.
    $\quad$
    b. $\vec{n}$ est orthogonal au plan $(ABC)$ ; c’est donc un vecteur normal de celui-ci.
    Une équation cartésienne du plan $(ABC)$ est donc de la forme $x+3y+5z+d=0$.
    Or $A(-2;0;2)$ appartient à ce plan.
    Donc $-2+0+10+d=0$ soit $d=-8$.
    Une équation cartésienne du plan $(ABC)$ est par conséquent $x+3y+5z-8=0$.
    $\quad$
    c. $0+0+15-8=7\neq 0$ : $D$ n’appartient pas au plan $(ABC)$.
    Les points $A$, $B$, $C$ et $D$ ne sont pas coplanaires.
    $\quad$
  3. a. Un vecteur directeur de $\mathcal{D}_1$ est $\vec{n}$.
    De plus en prenant $t=0$ dans la représentation paramétrique de $\mathcal{D}_1$ on obtient les coordonnées du point $D$.
    Ainsi $\mathcal{D}_1$ est la hauteur du tétraèdre $ABCD$ issue de $D$.
    $\quad$
    b. Résolvons le système :
    $\begin{align*} \begin{cases}x=t\\y=3t\\z=3+5t\\x=1+3s\\y=-1-5s\\z=2-6s\end{cases} &\ssi \begin{cases}x=t\\y=3t\\z=3+5t\\t=1+3s\\3t=-1-5s\\3+5t=2-6s\end{cases} \\
    &\ssi \begin{cases}x=t\\y=3t\\z=3+5t\\t=1+3s\\3(1+3s)=-1-5s\\3+5(1+3s)=2-6s\end{cases} \\
    &\ssi \begin{cases}x=t\\y=3t\\z=3+5t\\t=1+3s\\3+9s=-1-5s\\3+5+15s=2-6s\end{cases} \\
    &\ssi \begin{cases}x=t\\y=3t\\z=3+5t\\t=1+3s\\14s=-4\\21s=-6\end{cases} \\
    &\ssi \begin{cases}x=t\\y=3t\\z=3+5t\\t=1+3s\\s=-\dfrac{2}{7}\end{cases} \\
    &\ssi \begin{cases}x=t\\y=3t\\z=3+5t\\t=\dfrac{1}{7}\\[3mm]s=-\dfrac{2}{7}\end{cases} \\
    &\ssi \begin{cases}x=\dfrac{1}{7}\\[3mm]y=\dfrac{3}{7}\\[3mm]z=\dfrac{26}{7}\\[3mm]t=\dfrac{1}{7}\\[3mm]s=-\dfrac{2}{7}\end{cases} \end{align*}$
    Les droites $\mathcal{D}_1$ et $\mathcal{D}_2$ sont sécantes en un point de coordonnées $\left(\dfrac{1}{7};\dfrac{3}{7};\dfrac{26}{7}\right)$.
    $\quad$
  4. a. Les coordonnées du point $H$ sont solutions du système :
    $\begin{align*} \begin{cases} x=t\\y=3t\\z=3+5t\\x+3y+5z-8=0\end{cases} &\ssi \begin{cases} x=t\\y=3t\\z=3+5t\\t+9t+15+25t-8=0\end{cases} \\
    &\ssi \begin{cases} x=t\\y=3t\\z=3+5t\\35t=-7\end{cases} \\
    &\ssi \begin{cases} x=t\\y=3t\\z=3+5t\\t=-\dfrac{1}{5}\end{cases} \\
    &\ssi \begin{cases} x=-\dfrac{1}{5}\\[3mm]y=-\dfrac{3}{5}\\[3mm]z=2\\t=-\dfrac{1}{5}\end{cases}\end{align*}$
    Le point $H$ a pour coordonnées $\left(-\dfrac{1}{5};-\dfrac{3}{5};2\right)$.
    $\quad$
    b. On a $\vect{HD}\begin{pmatrix} \dfrac{1}{5}\\[3mm]\dfrac{3}{5}\\[3mm]-1\end{pmatrix}$
    La distance cherchée est donc :
    $\begin{align*} HD&=\sqrt{\left(\dfrac{1}{5}\right)^2+\left(\dfrac{3}{5}\right)^2+(-1)^2} \\
    &=\sqrt{\dfrac{1}{25}+\dfrac{9}{25}+1} \\
    &=\sqrt{\dfrac{35}{25}} \\
    &=\sqrt{\dfrac{7}{5}} \\
    &\approx 1,18\end{align*}$

Énoncé

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1     (5 points)

Partie A

On définit la fonction $f$ sur l’intervalle $[0;1]$ par $$f(x)=\dfrac{0,96x}{0,93x+0,03}$$

  1. Démontrer que, pour tout réel $x$ appartenant à l’intervalle $[0;1]$, $$f'(x)=\dfrac{0,028~8}{(0,93x+0,03)^2}$$
    $\quad$
  2. Déterminer le sens de variation de la fonction $f$ sur l’intervalle $[0;1]$.
    $\quad$

Partie B

La lutte contre le dopage passe notamment par la réalisation de contrôles antidopage qui visent à déterminer si un sportif a fait usage de substances interdites.
Lors d’une compétition rassemblant $1~000$ sportifs, une équipe médicale teste tous les concurrents. On propose d’étudier la fiabilité de ce test.

On appelle $x$ le réel compris entre $0$ et $1$ qui désigne la proportion de sportifs dopés.

Lors de l’élaboration de ce test, on a pu déterminer que :

  • la probabilité qu’un sportif soit déclaré positif sachant qu’il est dopé est égale à $0,96$;
  • la probabilité qu’un sportif soit déclaré positif sachant qu’il n’est pas dopé est égale à $0,03$.
    $\quad$

On note :

  • $D$ l’évènement : « le sportif est dopé » ;
  • $T$ l’évènement : « le test est positif ».
  1. Recopier et compléter l’arbre de probabilité ci-dessous :
    $\quad$

    $\quad$
  2. Déterminer, en fonction de $x$, la probabilité qu’un sportif soit dopé et ait un test positif.
    $\quad$
  3. Démontrer que la probabilité de l’évènement $T$ est égale à $0,93x+0,03$.
    $\quad$
  4. Pour cette question uniquement, on suppose qu’il y a $50$ sportifs dopés parmi les $1~000$ testés.
    La fonction $f$ désigne la fonction définie à la partie A.
    Démontrer que la probabilité qu’un sportif soit dopé sachant que son test est positif est égale à $f (0,05)$. En donner une valeur arrondie au centième.
    $\quad$
  5. On appelle valeur prédictive positive d’un test la probabilité que le sportif soit réellement dopé lorsque le résultat du test est positif.
    a. Déterminer à partir de quelle valeur de x la valeur prédictive positive du test étudié sera supérieure ou égale à $0,9$. Arrondir le résultat au centième.
    $\quad$
    b. Un responsable de la compétition décide de ne plus tester l’ensemble des sportifs, mais de cibler les sportifs les plus performants supposés être plus fréquemment dopés.
    Quelle est la conséquence de cette décision sur la valeur prédictive positive du test ? Argumenter en utilisant un résultat de la partie A.
    $\quad$

$\quad$

Exercice 2     (5 points)

On considère la fonction $f$ définie sur l’intervalle $[0; 1]$ par
$$f(x)=2x\e^{-x}$$
On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 1]$.

  1. a. Résoudre sur l’intervalle $[0; 1]$ l’équation $f(x) = x$.
    $\quad$
    b. Démontrer que, pour tout $x$ appartenant à l’intervalle $[0; 1]$, $f'(x)=2(1-x)\e^{-x}$.
    $\quad$
    c. Donner le tableau de variations de la fonction $f$ sur l’intervalle $[0; 1]$.

On considère la suite $\left(u_n\right)$ définie par $u_0 = 0,1$ et pour tout entier naturel $n$, $$u_{n+1}=f\left(u_n\right)$$

  1. a. Démontrer par récurrence que, pour tout $n$ entier naturel, $0 \pp u_n < u_{n+1} \pp  1$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  2. Démontrer que la limite de la suite $\left(u_n\right)$ est $\ln(2)$.
    $\quad$
  3. a. Justifier que pour tout entier naturel $n$, $\ln(2)-u_n$ est positif.
    $\quad$
    b. On souhaite écrire un script Python qui renvoie une valeur approchée de $\ln(2)$ par défaut à $10^{-4}$ près, ainsi que le nombre d’étapes pour y parvenir.
    Recopier et compléter le script ci-dessous afin qu’il réponde au problème posé.

    $\quad$
    c. Donner la valeur de la variable $n$ renvoyée par la fonction $\text{seuil()}$.
    $\quad$

$\quad$

Exercice 3     (5 points)

On considère l’équation différentielle $\left(E_0\right) :~ y’ = y$ où $y$ est une fonction dérivable de la variable réelle $x$.

  1. Démontrer que l’unique fonction constante solution de l’équation différentielle $\left(E_0\right)$ est la fonction nulle.
    $\quad$
  2. Déterminer toutes les solutions de l’équation différentielle $\left(E_0\right)$.
    $\quad$

On considère l’équation différentielle $(E) :~ y’ = y-\cos(x)-3\sin(x)$ où $y$ est une fonction dérivable de la variable réelle $x$.

  1. La fonction $h$ est définie sur $\R$ par $h(x) = 2\cos(x)+\sin(x)$.
    On admet qu’elle est dérivable sur $\R$.
    Démontrer que la fonction $h$ est solution de l’équation différentielle $(E)$.
    $\quad$
  2. On considère une fonction $f$ définie et dérivable sur $\R$.
    Démontrer que : « $f$ est solution de $(E)$ » est équivalent à « $f-h$ est solution de $\left(E_0\right)$».
    $\quad$
  3. En déduire toutes les solutions de l’équation différentielle $(E)$.
    $\quad$
  4. Déterminer l’unique solution $g$ de l’équation différentielle $(E)$ telle que $g(0) = 0$.
    $\quad$
  5. Calculer : $$\int_0^{\frac{\pi}{2}} \left(-2\e^x+\sin(x)+2\cos(x)\right)\dx$$
    $\quad$

$\quad$

Exercice 4     (5 points)

L’espace est muni d’un repère orthonormé $\Oijk$.

On considère :

  • les points $A(-2 ; 0 ; 2)$, $B(-1 ; 3 ; 0)$, $C(1 ; -1 ; 2)$ et $D(0; 0; 3)$.
  • la droite $\mathcal{D}_1$ dont une représentation paramétrique est
    $\begin{cases} x=t\\y=3t\\z=3+5t\end{cases}$ avec $t \in \R$.
  • la droite $\mathcal{D}_2$ dont une représentation paramétrique est
    $\begin{cases} x=1+3s\\y=-1-5s\\z=2-6s\end{cases}$ avec $s \in \R$.
  1. Démontrer que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
  2. a. Démontrer que le vecteur $\vec{n}\begin{pmatrix}1\\3\\5\end{pmatrix}$ est orthogonal au plan $(ABC)$.
    $\quad$
    b. Justifier qu’une équation cartésienne du plan $(ABC)$ est : $x+3y+5z-8=0$.
    $\quad$
    c. En déduire que les points $A$, $B$, $C$ et $D$ ne sont pas coplanaires.
    $\quad$
  3. a. Justifier que la droite $\mathcal{D}_1$ est la hauteur du tétraèdre $ABCD$ issue de $D$.
    $\quad$
    On admet que la droite $\mathcal{D}_2$ est la hauteur du tétraèdre $ABCD$ issue de $C$.
    b. Démontrer que les droites $\mathcal{D}_1$ et $\mathcal{D}_2$ sont sécantes et déterminer les coordonnées de leur point d’intersection.
    $\quad$
  4. a. Déterminer les coordonnées du projeté orthogonal $H$ du point $D$ sur le plan $(ABC)$.
    $\quad$
    b. Calculer la distance du point $D$ au plan $(ABC)$. Arrondir le résultat au centième.

 

Bac – Spécialité mathématiques – La Réunion – sujet 2 – 29 mars 2023

La Réunion – 29 mars 2023

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} P(S)=P(S\cap R)+P\left(S\cap \conj{R}\right)&\ssi 0,82=P(R)P_R(S)+P\left(\conj{R}\right)P_{\conj{R}}(S) \\
    &\ssi 0,82=0,2\times 0,9+0,8x \\
    &\ssi 0,64=0,8x \\
    &\ssi x=0,8\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_S(R)&=\dfrac{P(S\cap R)}{P(S)} \\
    &=\dfrac{P(R)P_R(S)}{P(S)} \\
    &=\dfrac{0,2\times 0,9}{0,82} \\
    &=\dfrac{9}{41} \\
    &\approx 0,22\end{align*}$
    La probabilité que le client ait acheté un matelas RESSORTS sachant qu’il a été satisfait de son achat est environ égal à $0,22$.
    $\quad$

Partie B

  1. a. $X$ suit la loi binomiale de paramètres $n=5$ et $p=0,82$.
    $\quad$
    b. La probabilité qu’au plus trois clients soient satisfaits de leur achat est $$P(X\pp 3)\approx 0,222$$
    $\quad$
  2. a. On répète $n$ fois de façon indépendante la même expérience de Bernoulli de paramètre $p=0,82$.
    On appelle $Y$ la variable aléatoire qui donne le nombre de clients satisfaits de leur achat parmi ces $n$ clients.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,82$.
    Ainsi,
    $\begin{align*} p_n&=P(Y=n) \\
    &=0,82^n\end{align*}$
    $\quad$
    b.
    $\begin{align*} p_n<0,01 &\ssi 0,82^n <0,01 \\
    &\ssi n\ln(0,82) < \ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,82)}\qquad \text{(car $\ln(0,82)<0$)}\end{align*} $
    Or $\dfrac{\ln(0,01)}{\ln(0,82)}\approx 23,2$.
    Ainsi $p_n<0,01$ si, et seulement si, $n\pg 24$.
    La probabilité que tous les clients soient satisfaits de leur achat est inférieure à $1\%$ dès qu’il y a au moins $24$ clients.
    $\quad$

Ex 2

Exercice 2

  1. On a
    $\begin{align*} u_1&=\dfrac{6u_0+2}{u_0+5} \\
    &=\dfrac{48+2}{13 }\\
    &=\dfrac{50}{13}\end{align*}$
    $\quad$
  2. a. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=\dfrac{6(x+5)-(6x+2)}{(x+5)^2} \\
    &=\dfrac{28}{(x+5)^2}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur l’intervalle $[0;+\infty[$.
    $\quad$
    $f(2)=\dfrac{14}{7}=2$.
    La fonction $f$ étant strictement croissante sur $[0;+\infty[$, pour tout $x>2$ on a $f(x)>f(2)$ soit $f(x)>2$.
    $\quad$
    b. Pour tout $n\in \N$ on a $P(n):~u_n>2$.
    Initialisation : $u_0=8>2$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    Donc $u_n>2$. D’après la question 2.a, $f\left(u_n\right) > 2$ soit $u_{n+1}>2$.
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, $u_n>2$.
    $\quad$
  3. a. Pour tout $n\in \N$ on a $u_{n+1}-u_n=\dfrac{\left(2-u_n\right)\left(u_n+1\right)}{u_n+5}$.
    D’après la question précédente, pour tout $n\in \N$, $u_n>2$.
    Ainsi $2-u_n<0$, $u_n+1>0$ et $u_n+5>0$.
    Donc $u_{n+1}-u_n<0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante et minorée par $2$; elle converge donc .
  4. a. $v_0=\dfrac{8-2}{8+1}=\dfrac{2}{3}$
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\dfrac{u_{n+1}-2}{u_{n+1}+1} \\
    &=\dfrac{\dfrac{6u_n+2}{u_n+5}-2}{\dfrac{6u_n+2}{u_n+5}+1} \\
    &=\dfrac{~\dfrac{6u_n+2-2u_n-10}{u_n+5}~}{\dfrac{6u_n+2+u_n+5}{u_n+5}} \\
    &=\dfrac{4u_n-8}{7u_n+7} \\
    &=\dfrac{4}{7}\times \dfrac{u_n-2}{u_n+1}\\
    &=\dfrac{4}{7}v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $\dfrac{4}{7}$ et de premier terme $v_0=\dfrac{2}{3}$.
    $\quad$
    c. Pour tout $n\in \N$, on a $v_n=\dfrac{2}{3}\left(\dfrac{4}{7}\right)^n$.
    $-1<\dfrac{4}{7}<1$ donc $\lim\limits_{n\to +\infty} v_n=0$.
    $\quad$
    Pour tout $n\in \N$ on a
    $\begin{align*} v_n=\dfrac{u_n-2}{u_n+1}&\ssi v_n\left(u_n+1\right)=u_n-2 \\
    &\ssi u_nv_n+v_n=u_n-2\\
    &\ssi u_nv_n-u_n=-2-v_n\\
    &\ssi u_n\left(v_n-1\right)=-2-v_n \\
    &\ssi u_n=\dfrac{-2-v_n}{v_n-1}\end{align*}$
    Par conséquent $\lim\limits_{n\to +\infty} u_n=\lim\limits_{n\to +\infty}\dfrac{-2-v_n}{v_n-1}=2$.
    $\quad$
  5. On a $u_{13}\approx 2,0014>2,001$ et $u_{14}\approx 2,000~8<2,001$.
    La commande $\texttt{seuil(2.001)}$ renverra donc la valeur $14$.
    Il s’agit du rang à partir duquel tous les termes de la suite prendront des valeurs inférieures ou égales à $2,001$.

Ex 3

Exercice 3

  1. Une représentation paramétrique de la droite $(d)$ est $$\begin{cases} x=1\\y=1+2t\\z=-t\end{cases} \qquad \forall t\in \R$$
    $\quad$
  2. Un vecteur normal au plan $\mathscr{P}$ est $\vec{w}\begin{pmatrix}1\\4\\2\end{pmatrix}$.
    $\vec{u}$ et $\vec{w}$ ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    Ainsi $(d)$ et $\mathscr{P}$ sont sécants.
    $1-4+2+1=4-4=0$ : le point de coordonnées $(1;-1;1)$ appartient au plan $\mathscr{P}$.
    En prenant $t=-1$ dans la représentation paramétrique de $(d)$ on obtient le point de coordonnées $(1;-1;1)$.
    Ainsi la droite $(d)$ et le plan $\mathscr{P}$ sont sécants en un point $B$ de coordonnées $(1;-1;1)$.
    $\quad$
  3. a. $\vect{AC}\begin{pmatrix} 0\\-2\\-1\end{pmatrix}$ et $\vect{AB}\begin{pmatrix} 0\\-2\\1\end{pmatrix}$.
    $\dfrac{-2}{-2}=1$ et $\dfrac{-1}{1}=-1$ donc $\vect{AB}$ et $\vect{AC}$ ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ définissent bien un plan.
    $\quad$
    b. $\vec{n}.\vect{AC}=0+0+0=0$ et $\vec{n}.\vect{AB}=0+0+0$.
    Le vecteur $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    Donc $\vec{n}$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABC)$ est donc de la forme $x+d=0$.
    $A(1;1;0)$ appartient à ce plan. Par conséquent $1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(ABC)$ est $x-1=0$.
    $\quad$
  4. a.
    $\begin{align*} AB&=\sqrt{0^2+(-2)^2+1^2}\\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} AC&=\sqrt{0^2+(-2)^2+(-1)^2}\\
    &=\sqrt{5}\end{align*}$
    Ainsi $AB=AC$ et le triangle $ABC$ est isocèle en $A$.
    $\quad$
    b. $H$ est le milieu de $[BC]$. Il a donc pour coordonnées $\left(\dfrac{1+1}{2};\dfrac{-1-1}{2};\dfrac{1-1}{2}\right)$ soit $(1;-1;0)$.
    Donc $\vect{AH}\begin{pmatrix} 0\\-2\\0\end{pmatrix}$
    Donc :
    $\begin{align*} AH&=\sqrt{0^2+(-2)^1+0} \\
    &=2\end{align*}$
    $\vect{BC}\begin{pmatrix}0\\0\\-2\end{pmatrix}$
    On a donc également $BC=2$.
    Le triangle $ABC$ est isocèle en $A$ donc $[AH]$ est à la fois une médiane, une médiatrice, une hauteur et une bissectrice du triangle.
    L’aire du triangle $ABC$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times BC}{2} \\
    &=2\text{ u.a.}\end{align*}$
    $\quad$
  5. a. $\vect{BD}\begin{pmatrix} -1\\0\\0\end{pmatrix}$
    Ainsi $\vec{n}=-\vect{BD}$.
    $\vect{BD}$ est donc normal au plan $(ABC)$.
    Par conséquent $(BD)$ est une hauteur de la pyramide $ABCD$.
    $\quad$
    b. $\quad$
    $\begin{align*} BD&=\sqrt{1^2+0^2+0^2}\\
    &=1\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times BD\\
    &=\dfrac{2}{3} \text{ u.v.}\end{align*}$
    $\quad$

 

Ex 4

Exercice 4

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=2\e^x+2x\e^x \\
    &=2(x+1)\e^x\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $x+1$.
    Or $x+1=0\ssi x=-1$ et $x+1>0\ssi x>-1$.
    La fonction $f$ est donc strictement décroissante sur $]-\infty;-1]$ et strictement croissante sur $[-1;+\infty[$.
    De plus $f(-1)=-2\e^{-1} \approx -0,736$.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement décroissante sur $]-\infty;-1]$
    Par croissances comparées $\lim\limits_{x\to -\infty} f(x)=0>-\dfrac{73}{100}$ et $f(-1)<-\dfrac{73}{100}$
    D’après le théorème de la bijection, l’équation $f(x)=-\dfrac{73}{100}$ possède une unique solution sur $]-\infty;-1]$.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement croissante sur $[-1;+\infty[$
    $f(-1)<-\dfrac{73}{100}$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$ (produit de deux fonctions tendant vers $+\infty$).
    D’après le théorème de la bijection, l’équation $f(x)=-\dfrac{73}{100}$ possède une unique solution sur $[-1;+\infty[$.
    $\quad$
    L’équation $f(x)=-\dfrac{73}{100}$ possède donc exactement deux solutions sur $\R$.
    Réponse c
    $\quad$
  2. $\lim\limits_{x\to -\infty} x+1=-\infty$ et $\lim\limits_{x\to -\infty} \e^x=0^+$.
    Par conséquent $\lim\limits_{x\to -\infty} g(x)=-\infty$.
    Réponse a
    $\quad$
  3. La fonction $h$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} h'(x)&=4\e^{2x}+2(4x-16)\e^{2x} \\
    &=(4+8x-32)\e^{2x} \\
    &=(8x-28)\e^{2x} \\
    &=4(2x-7)\e^{2x}\end{align*}$
    La fonction $h’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} h\dsec(x)&=4\left(2\e^{2x}+2(2x-7)\e^{2x}\right) \\
    &=8(1+2x-7)\e^{2x} \\
    &=8(2x-6)\e^{2x}\end{align*}$
    $h\dsec(x)>0 \ssi 2x-6>0 \ssi x>3$ et $\dsec(x)=0 \ssi 2x-6=0\ssi x=3$.
    La fonction $h\dsec$ s’annule en changeant de signe en $3$.
    Le point d’abscisse $3$ est donc un point d’inflexion pour la courbe $\mathscr{C}_h$.
    Réponse b
    $\quad$
  4. La fonction $k$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a $k'(x)=\dfrac{3}{x}-1$
    Une équation de $T$ est $y=k'(\e)(x-\e)+k(\e)$.
    Par conséquent $k'(\e)=\dfrac{3-\e}{\e}$ et $k(\e)=3-\e$.
    Une équation de $T$ est donc $y=\dfrac{3-\e}{\e}(x-\e)+3-\e$
    Soit $y=\dfrac{3-\e}{\e}x$
    Réponse b
    $\quad$
  5. $\left(\ln(x)\right)^2+10\ln(x)+21=0 \ssi \begin{cases} X^2+10X+21=0 \\X=\ln(x)\end{cases}$
    Le discriminant de l’équation $X^2+10X+21=0$ est $\Delta=16$.
    Elle possède donc deux solutions $\dfrac{-10-\sqrt{16}}{2}=-7$ et $\dfrac{-10+\sqrt{16}}{2}=-3$.
    $\ln(x)=-7 \ssi x=\e^{-7}$
    $\ln(x)=-3\ssi x=\e^{-3}$.
    Par conséquent $\e^{-7}$ et $\e^{-3}$ sont les solutions de l’équation $\left(\ln(x)\right)^2+10\ln(x)+21=0$.
    Réponse c
    $\quad$

 

Énoncé

La qualité de rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1     5 points

Un commerçant vend deux types de matelas: matelas RESSORTS et matelas MOUSSE.
On suppose que chaque client achète un seul matelas.

On dispose des informations suivantes :

  • $20\%$ des clients achètent un matelas RESSORTS. Parmi eux, $90\%$ sont satisfaits de leur achat.
  • $82\%$ des clients sont satisfaits de leur achat.

Les deux parties peuvent être traitées de manière indépendante.

Partie A

On choisit au hasard un client et on note les évènements :

  • $R$ : : « le client achète un matelas RESSORTS »,
  • $S$ : « le client est satisfait de son achat ».

On note $x = P_{\conj{R}}(S)$, où $P_{\conj{R}}(S)$ désigne la probabilité de $S$ sachant que $R$ n’est pas réalisé.

  1. Recopier et compléter l’arbre pondéré ci-dessous décrivant la situation.
    $\quad$
    $\quad$
  2. Démontrer que $x = 0,8$.
    $\quad$
  3. On choisit un client satisfait de son achat.
    Quelle est la probabilité qu’il ait acheté un matelas RESSORTS ?
    On arrondira le résultat à $10^{-2}$.

Partie B

  1. On choisit $5$ clients au hasard. On considère la variable aléatoire $X$ qui donne le nombre de clients satisfaits de leur achat parmi ces $5$ clients.
    a. On admet que $X$ suit une loi binomiale. Donner ses paramètres.
    $\quad$
    b. Déterminer la probabilité qu’au plus trois clients soient satisfaits de leur achat.
    On arrondira le résultat à $10^{-3}$.
  2. Soit $n$ un entier naturel non nul.
    On choisit à présent $n$ clients au hasard. Ce choix peut être assimilé à un tirage au sort avec remise.
    a. On note $p_n$ la probabilité que les $n$ clients soient tous satisfaits de leur achat.
    Démontrer que $p_n = 0,82^n$.
    $\quad$
    b. Déterminer les entiers naturels $n$ tels que $p_n < 0,01$.
    Interpréter dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     5 points

On considère la suite $\left(u_n\right)$ définie par $u_0 = 8$ et, pour tout entier naturel $n$, $$u_{n +1} = \dfrac{6u_n+2}{u_n +5}$$

  1. Calculer $u_1$.
    $\quad$
  2. Soit $f$ la fonction définie sur l’intervalle $[0;+\infty[$ par : $$f(x) = \dfrac{6x+2 }{x+5}$$
    Ainsi, pour tout entier naturel $n$, on a : $u_{n+1}=f\left(u_n\right)$.
    a. Démontrer que la fonction $f$ est strictement croissante sur l’intervalle $[0;+\infty[$.
    En déduire que pour tout réel $x > 2$, on a $f(x) > 2$.
    $\quad$
    b. Démontrer par récurrence que, pour tout entier naturel $n$, on a $u_n > 2$.
    $\quad$
  3. On admet que, pour tout entier naturel $n$, on a : $$u_{n+1}-u_n = \dfrac{\left(2-u_n\right)\left(u_n+1\right)}{u_n +5}$$
    a. Démontrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  4. On définit la suite $\left(v_n\right)$ pour tout entier naturel par: $$v_n = \dfrac{u_n-2}{u_n+1}$$
    a. Calculer $v_0$.
    $\quad$
    b. Démontrer que $\left(v_n\right)$ est une suite géométrique de raison $\dfrac{4}{7}$.
    $\quad$
    c. Déterminer, en justifiant, la limite de $\left(v_n\right)$.
    En déduire la limite de $\left(u_n\right)$.
    $\quad$
  5. On considère la fonction Python $\text{seuil}$ ci-dessous, où $\text{A}$ est un nombre réel strictement plus grand que $2$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil (A) :}\\
    \quad \text{n = 0}\\
    \quad \text{u = 8}\\
    \quad \text{while u > A :}\\
    \qquad \text{u = (6*u + 2) / (u + 5)}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner, sans justification, la valeur renvoyée par la commande $\text{seuil (2.001)}$ puis interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     5 points

On se place dans l’espace rapporté à un repère orthonormé $\Oijk$.
On considère le point $A(1;1;0)$ et le vecteur $\vec{u}\begin{pmatrix}0\\2\\- 1\end{pmatrix}$.
On considère le plan $\mathcal{P}$ d’équation : $x+4y+2z+1 = 0$.

  1. On note $(d)$ la droite passant par A et dirigée par le vecteur $\vec{u}$.
    Déterminer une représentation paramétrique de $(d)$.
    $\quad$
  2. Justifier que la droite $(d)$ et le plan $\mathcal{P}$ sont sécants en un point $B$ dont les coordonnées sont $(1;-1;1)$.
    $\quad$
  3. On considère le point $C(1;-1;-1)$.
    a. Vérifier que les points $A$, $B$ et $C$ définissent bien un plan.
    $\quad$
    b. Montrer que le vecteur  $\vec{n}\begin{pmatrix}1\\0\\0\end{pmatrix}$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Déterminer une équation cartésienne du plan $(ABC)$.
    $\quad$
  4. a. Justifier que le triangle $ABC$ est isocèle en $A$.
    $\quad$
    b. Soit $H$ le milieu du segment $[BC]$.
    Calculer la longueur $AH$ puis l’aire du triangle $ABC$.
    $\quad$
  5. Soit $D$ le point de coordonnées $(0;-1;1)$.
    a. Montrer que la droite $(BD)$ est une hauteur de la pyramide $ABCD$.
    $\quad$
    b. Déduire des questions précédentes le volume de la pyramide $ABCD$.
    $\quad$
    On rappelle que le volume $V$ d’une pyramide est donné par: $$V = \dfrac13 \mathcal{B} \times h$$
    où $\mathcal{B}$ est l’aire d’une base et $h$ la hauteur correspondante.
    $\quad$

$\quad$

Exercice 4     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée. Une réponse fausse, une absence de réponse, ou une réponse multiple, ne rapporte ni n’enlève de point.

  1. On considère la fonction $f$ définie sur $\R$ par $f(x) = 2x\e^x$.
    Le nombre de solutions sur $\R$ de l’équation $f(x) = -\dfrac{73}{100}$ est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. une infinité.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par : $$g(x) = \dfrac{x+ 1}{\e^x}$$
    La limite de la fonction $g$ en $- \infty$ est égale à :
    a. $-\infty$
    b. $+\infty$
    c. $0$
    d. elle n’existe pas.
    $\quad$
  3. On considère la fonction $h$ définie sur $\R$ par: $$h(x) = (4x-16)\e^{2x}$$
    On note $\mathcal{C}_h$ la courbe représentative de $h$ dans un repère orthogonal.
    On peut affirmer que:
    a. $h$ est convexe sur $\R$.
    b. $\mathcal{C}_h$ possède un point d’inflexion en $x = 3$.
    c. $h$ est concave sur $\R$.
    d. $\mathcal{C}_h$ possède un point d’inflexion en $x = 3,5$.
    $\quad$
  4. On considère la fonction $k$ définie sur l’intervalle $]0; +\infty[$ par : $$k(x) = 3 \ln (x)-x$$
    On note $\mathcal{C}$ la courbe représentative de la fonction $k$ dans un repère orthonormé.
    On note $T$ la tangente à la courbe $\mathcal{C}$ au point d’abscisse $x = \e$.
    Une équation de $T$ est:
    a. $y = (3-\e)x$
    b. $y = \left(\dfrac{3-\e}{\e}\right)x$
    c. $y = \left(\dfrac{3}{\e}- 1\right)x + 1$
    d. $y = (\e-1)x + 1$
    $\quad$
  5. On considère l’équation $\left(\ln (x)\right)^2+10\ln(x)+21 = 0$, avec $x \in ]0;+\infty[$.
    Le nombre de solutions de cette équation est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. une infinité.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 18 mai 2022

Centres étrangers – Liban – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On a
    $\begin{align*} P(J\cap C)&=P(J)\times P_J(C)\\
    &=0,2\times 0,06 \\
    &=0,012\end{align*}$
    $\quad$
  3. $\left(J,\conj{J}\right)$ forme un système complet d’événements.
    D’après la formule des probabilités totales :
    $\begin{align*} P(C)&=P(J\cap C)+P\left(\conj{J}\cap C\right) \\
    &=0,012+P\left(\conj{J}\right)P_{\conj{J}}(C)\\
    &=0,012+0,8\times 0,125 \\
    &=0,112\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_C\left(\conj{J}\right)&=\dfrac{P\left(C\cap \conj{J}\right)}{P(C)} \\
    &=\dfrac{0,8\times 0,125}{0,112} \\
    &\approx 0,893\end{align*}$
    La probabilité que le skieur ait un forfait SÉNIOR sachant qu’il a choisi l’option coupe-file est environ égale à $0,893$.
    $\quad$
  5. Un skieur ayant choisi l’option coupe-file a moins de vingt-cinq ans ou plus de vingt-cinq ans.
    Ainsi :
    $\begin{align*} P_C(J)&=1-P_C\left(\conj{J}\right) \\
    &\approx 0,107\\
    &<0,15\end{align*}$
    L’affirmation est donc vraie.
    $\quad$

Partie B

  1. $X$ suit la loi binomiale de paramètres $n=30$ et $p=0,112$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,112)^{30} \\
    &=1-0,888^{30} \\
    &\approx 0,972\end{align*}$
    La probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,972$.
    $\quad$
  3. On veut calculer :
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,888^{30}+\dbinom{30}{1}0,112^1\times 0,888^{29} \\
    &\approx 0,136\end{align*}$
    La probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,136$.
    $\quad$
  4. L’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=np\\
    &=30\times 0,112 \\
    &=3,36\end{align*}$
    $\quad$

Ex 2

Exercice 2

  1. On appelle $v_n$ le volume d’eau, en litres, contenu dans la bouteille au bout de $n$ heures.
    On a donc, pour tout entier naturel $n$, $v_{n+1}=(1-0,15)v_n$ soit $v_{n+1}=0,85 v_n$.
    $\left(v_n\right)$ est donc une suite géométrique de raison $0,85$ et de premier terme $1$.
    Par conséquent, pour tout entier naturel $n$, $v_n=0,85^n$.
    $\begin{align*} u_n \pp 0,25&\ssi 0,85^n \pp 0,25 \\
    &\ssi n\ln(0,85)\pp \ln(0,25) \\
    &\ssi n\pg \dfrac{\ln(0,25)}{\ln(0,85)} \qquad \text{car } \ln(0,85)<0 \end{align*}$
    Or $\dfrac{\ln(0,25)}{\ln(0,85)}\approx 8,53$.
    C’est donc au bout de $9$ heures que le volume d’eau devient inférieur à un quart de litre.
    Réponse c
    $\quad$
  2. Pour tout $n\in \N$, on pose $P(n):~u_n=6$.
    Initialisation : $u_0=6$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_{n+1}&=\dfrac{1}{2} u_n+3 \\
    &=\dfrac{1}{2}\times 6+3 \\
    &=6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n,~ u_n=6$.
    Réponse d
    $\quad$
  3. Soit $x\in ]0;+\infty[$
    $\begin{align*} f(2x)&=4\ln(3\times 2x) \\
    &=4\left(\ln(2)+\ln(3x)\right) \\
    &=4\ln(2)+4\ln(3x)\\
    &=\ln\left(2^4\right)+f(x)\\
    &=\ln(16)+f(x)\end{align*}$
    Réponse b
    $\quad$
  4. Pour tout réel $x>1$ on a $g(x)=\dfrac{\ln(x)}{x}\times \dfrac{x}{x-1}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$
    D’après la limite du quotient des termes de plus haut degré $\lim\limits_{x\to +\infty} \dfrac{x}{x-1}=\lim\limits_{x\to +\infty} \dfrac{x}{x}=1$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=0$ : $C_g$ admet une asymptote horizontale d’équation $y=0$.
    $\quad$
    $C_g$ ne peut avoir d’asymptote verticale qu’en $1$.
    Pour tout réel $x\in ]1;+\infty[$ on a $g(x)=\dfrac{\ln(x)-\ln(1)}{x-1}$.
    Ainsi $g(x)$ est le taux d’accroissement de la fonction $\ln$ entre $1$ et $x$.
    Donc $\lim\limits_{x\to 1^+} g(x)=\ln'(1)=\dfrac{1}{1}$.
    $C_g$ n’a pas d’asymptote verticale.
    Réponse c
    $\quad$
  5. $h$ est définie sur $]0;2]$. Par conséquent :
    $\begin{align*} h(x)=0&\ssi 1+2\ln(x)=0 \\
    &\ssi 2\ln(x)=-1 \\
    &\ssi \ln(x)=-0,5 \\
    &\ssi x=\e^{-0,5}\end{align*}$
    Or $\e^{-0,5}\in \left[\dfrac{1}{\e};2\right]$.
    Réponse b
    $\quad$
  6. D’une part
    $\begin{align*} h\left(\sqrt{\e}\right)&=\left(\sqrt{\e}\right)^2\left(1+2\ln\left(\sqrt{\e}\right)\right) \\
    &=\e\left(1+2\times \dfrac{1}{2}\ln(\e)\right) \\
    &=2\e\end{align*}$
    D’autre part
    $\begin{align*} h’\left(\sqrt{\e}\right)&=4\left(\sqrt{\e}\right)\left(1+\ln\left(\sqrt{\e}\right)\right) \\
    &=4\sqrt{e}\left(1+\dfrac{1}{2}\right)\\
    &=6\sqrt{\e}\end{align*}$
    Une équation de la tangente à $C_h$ au point d’abscisse $\sqrt{\e}$ est donc $y=6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e$
    Or
    $\begin{align*} 6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e&=6\sqrt{\e}x-6\e+2\e \\
    &=6\sqrt{\e}x-4\e \\
    &=\left(6\e^{1/2}\right).x-4\e\end{align*}$
    Réponse d
    $\quad$
  7. Pour tout réel $x\in ]0;2]$ on a
    $\begin{align*} h\dsec(x)&=4\left(1+\ln(x)\right)+4x\times \dfrac{1}{x} \\
    &=4+4\ln(x)+4 \\
    &=8+4\ln(x)\end{align*}$
    $\begin{align*} h\dsec(x)>0&\ssi 8+4\ln(x)>0 \\
    &\ssi 4\ln(x)>-8 \\
    &\ssi \ln(x)>-2 \\
    &\ssi x>\e^{-2}\end{align*}$.
    On a, de même, $h\dsec(x)=0 \ssi x=\e^{-2}$.
    $\e^{-2}\in ]0;2]$.
    La courbe $C_h$ possède donc un unique point d’inflexion sur $]0;2]$.
    Réponse b
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. a. $\lim\limits_{x\to -\infty} 0,5x-2=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to -\infty} \e^{0,5x-2}=0$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$.
    $\quad$
    b. Pour tout réel $x$ non nul on a
    $\begin{align*} 1+0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right) &=1+x-\e^{-0,5x}\times \e^{-2} \\
    &=f(x)\end{align*}$
    $\lim\limits_{x\to +\infty} 0,5x=+\infty$ et, par croissances comparées, $\lim\limits_{X\to +\infty} \dfrac{\e^X}{X}=+\infty$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^{0,5x}}{0,5x}=+\infty$.
    Par produit des limites, $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a $f'(x)=1-0,5\e^{0,5x-2}$
    $\quad$
    b.
    $\begin{align*} f'(x)<0&\ssi 1-0,5\e^{0,5x-2}<0 \\
    &\ssi -0,5\e^{0,5x-2}<-1 \\
    &\ssi \e^{0,5x-2}>2 \\
    &\ssi 0,5x-2>\ln(2) \\
    &\ssi 0,5x>2+\ln(2) \\
    &\ssi x>4+2\ln(2)\end{align*}$
    Ainsi l’ensemble des solutions de l’inéquation $f'(x)<0$ est bien $\left]4+2\ln(2);+\infty\right[$.
    $\quad$
  3. En raisonnant de la même façon on obtient $f'(x)=0 \ssi x=4+2\ln(2)$.
    On obtient donc le tableau de variations suivant :

    $\begin{align*} f\left(4+2\ln(2)\right)&=1+4+2\ln(2)-\e^{2+\ln(2)-2} \\
    &=5+2\ln(2)-2\\
    &=3+2\ln(2)\end{align*}$
    $\quad$
  4. $4+2\ln(2)>0$.
    La fonction $f$ est donc continue (car dérivable) et strictement croissante sur $[-1;0]$.
    $f(-1)=-\e^{-2,5}<0$ et $f(0)=1-\e^{-2}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet donc une unique solution sur l’intervalle $[-1;0]$.
    $\quad$

Partie B

  1. a. Pour tout entier naturel $n$ on pose $P(n):~u_n\pp u_{n+1} \pp 4$
    Initialisation : $u_0=0$ et $u_1=1-\e^{-2}\approx 0,86$
    Donc $u_0\pp u_1\pp 4$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    La fonction $f$ est strictement croissante sur $\left]-\infty;4+2\ln(2)\right]$ donc sur $[0;4]$.
    $\begin{align*} u_n\pp u_{n+1} \pp 4&\Rightarrow f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(4) \\
    &\Rightarrow u_{n+1}\pp u_{n+2}\pp 5-1\end{align*}$
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n \pp u_{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $4$; elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. $\ell$ est solution de l’équation $x=f(x)$
    $\begin{align*} x=f(x)&\ssi 1+x-\e^{0,5x-2}=x \\
    &\ssi 1-\e^{0,5x-2}=0 \\
    &\ssi \e^{0,5x-2}=1 \\
    &\ssi 0,5x-2=0 \\
    &\ssi 0,5x=2 \\
    &\ssi x=4\end{align*}$
    Ainsi $\ell =4$.
    $\quad$
    b. La fonction $\texttt{valeur}$ renvoie le plus petit entier naturel $n$ tel que $u_n>a$.
    Cela signifie donc le plus petit entier naturel $n$ tel que $u_n>3,99$ est $12$.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a $R(3;2;-1)$ et $\vect{AB}\begin{pmatrix} -4\\4\\0\end{pmatrix}$
    $\quad$
    b. Une équation du plan $\mathscr{P}_1$ est donc de la forme $-4x+4y+d=0$.
    $R(3;2;-1)$ appartient au plan $\mathscr{P}_1$ donc $-12+8+d=0 \ssi d=4$.
    Une équation de $\mathscr{P}_1$ est donc $-4x+4y+4=0$ soit $x-y-1=0$.
    $\quad$
    c. $10-9-1=0$ donc $E(10;9;8)$ appartient à $\mathscr{P}_1$.
    $\vect{EA}\begin{pmatrix} -5\\-9\\-9\end{pmatrix}$ et $\vect{EB}\begin{pmatrix} -9\\-5\\-9\end{pmatrix}$
    $\begin{align*} EA&=\sqrt{(-5)^2+(-9)^2+(-9)^2}\\
    &=\sqrt{25+81+81} \\
    &=\sqrt{187}\end{align*}$
    $\begin{align*} EB&=\sqrt{(-9)^2+(-5)^2+(-9)^2}\\
    &=\sqrt{187}\end{align*}$
    On a donc $EA=EB$.
    $\quad$
  2. a. Un vecteur normal au plan $\mathscr{P}_2$ est $\vec{n}\begin{pmatrix}1\\0\\-1\end{pmatrix}$
    $\vect{AB}$ et $\vec{n}$ ne sont pas colinéaires.
    Les plans $\mathscr{P}_1$ et $\mathscr{P}_2$ sont par conséquent sécants.
    $\quad$
    b. Soit $t\in \R$.
    $\begin{align*} (2+t)-(1+t)-1&=2+t-1-t-1 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_1$.
    $\begin{align*} (2+t)-t-2&=2+t-t-2 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_2$.
    L’intersection de deux plans est une droite.
    Ainsi une représentation paramétrique de $\Delta$ est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$.
    $\quad$
  3. $\quad$
    $\begin{align*} \begin{cases} x=2+t\\y=1+t\\z=t\\y+z-3=0\end{cases} &\ssi  \begin{cases} x=2+t\\y=1+t\\z=t\\1+t+t-3=0\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=1+t\\z=t\\t=1\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=2\\z=1\end{cases}\end{align*}$
    La droite $\Delta$ est sécante au plan $\mathscr{P}_3$ en $\Omega(3;2;1)$.
    $\quad$
  4. a. $\Omega$ appartient au plan médiateur de $[AB]$ donc $\Omega A=\Omega B$.
    $\Omega$ appartient au plan médiateur de $[AC]$ donc $\Omega A=\Omega C$.
    $\Omega$ appartient au plan médiateur de $[AD]$ donc $\Omega A=\Omega D$.
    Ainsi $\Omega A=\Omega B=\Omega C=\Omega D$.
    $\quad$
    b. Les points $A$, $B$, $C$ et $D$ appartiennent donc à la sphère de centre $\Omega$ et de rayon $\Omega A$.
    Or
    $\begin{align*} \Omega A&=\sqrt{(5-3)^2+(0-2)^2+(-1-1)^2} \\
    &=\sqrt{4+4+4} \\
    &=2\sqrt{3}\end{align*}$
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Dans une station de ski, il existe deux types de forfait selon l’âge du skieur :

  • un forfait JUNIOR pour les personnes de moins de vingt-cinq ans ;
  • un forfait SÉNIOR pour les autres.

Par ailleurs, un usager peut choisir, en plus du forfait correspondant à son âge,
l’option coupe-file qui permet d’écourter le temps d’attente aux remontées
mécaniques.

On admet que :

  • $20\%$ des skieurs ont un forfait JUNIOR ;
  • $80\%$ des skieurs ont un forfait SÉNIOR ;
  • parmi les skieurs ayant un forfait JUNIOR, $6\%$ choisissent l’option coupe-file ;
  • parmi les skieurs ayant un forfait SÉNIOR, $12,5\%$ choisissent l’option coupe-file.

On interroge un skieur au hasard et on considère les événements :

  • $J$ : « le skieur a un forfait JUNIOR » ;
  • $C$ : « le skieur choisit l’option coupe-file ».

Les deux parties peuvent être traitées de manière indépendante.

Partie A

  1. Traduire la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité $P(J\cap C)$.
    $\quad$
  3. Démontrer que la probabilité que le skieur choisisse l’option coupe-file
    est égale à $0,112$.
    $\quad$
  4. Le skieur a choisi l’option coupe-file. Quelle est la probabilité qu’il s’agisse d’un skieur ayant un forfait SÉNIOR ? Arrondir le résultat à $10^{-3}$.
    $\quad$
  5. Est-il vrai que les personnes de moins de vingt-cinq ans représentent moins de $15\%$ des skieurs ayant choisi l’option coupe-file ? Expliquer.
    $\quad$

Partie B
On rappelle que la probabilité qu’un skieur choisisse l’option coupe-file est
égale à $0,112$.

On considère un échantillon de $30$ skieurs choisis au hasard.

Soit $X$ la variable aléatoire qui compte le nombre des skieurs de l’échantillon ayant choisi l’option coupe-file.

  1. On admet que la variable aléatoire $X$ suit une loi binomiale.
    Donner les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  3. Calculer la probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  4. Calculer l’espérance mathématique de la variable aléatoire $X$.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites, fonctions, fonction logarithme

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. Un récipient contenant initialement $1$ litre d’eau est laissé au soleil.
    Toutes les heures, le volume d’eau diminue de $15\%$.
    Au bout de quel nombre entier d’heures le volume d’eau devient-il inférieur à un quart de litre ?
    a. $2$ heures
    b. $8$ heures
    c. $9$ heures
    d. $13$ heures
    $\quad$
  2. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_{n+1}=\dfrac{1}{2}u_n+3$ et $u_0=6$. On peut affirmer que :
    a. la suite $\left(u_n\right)$ est strictement croissante.
    b. la suite $\left(u_n\right)$ est strictement décroissante.
    c. la suite $\left(u_n\right)$ n’est pas monotone.
    d. la suite $\left(u_n\right)$ est constante.
    $\quad$
  3. On considère la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=4\ln(3x)$
    Pour tout réel $x$ de l’intervalle $]0;+\infty[$ , on a :
    a. $f(2x)=f(x)+\ln(24)$
    b. $f(2x)=f(x)+\ln(16)$
    c. $f(2x)=\ln(2)+f(x)$
    d. $f(2x)=2f(x)$
    $\quad$
  4. On considère la fonction $g$ définie sur l’intervalle $]1;+\infty[$ par :
    $$g(x)\dfrac{\ln(x)}{x-1}$$
    On note $\mathcal{C}_g$ la courbe représentative de la fonction $g$ dans un repère orthogonal.
    La courbe $\mathcal{C}_g$ admet :
    a. une asymptote verticale et une asymptote horizontale.
    b. une asymptote verticale et aucune asymptote horizontale.
    c. aucune asymptote verticale et une asymptote horizontale.
    d. aucune asymptote verticale et aucune asymptote horizontale.
    $\quad$

Dans la suite de l’exercice, on considère la fonction $h$ définie sur l’intervalle $]0 ; 2]$ par : $$h(x) = x^2\left(1 + 2 \ln(x)\right)$$
On note $\mathcal{C}_h$ la courbe représentative de $h$ dans un repère du plan.
On admet que $h$ est deux fois dérivable sur l’intervalle $]0 ; 2]$.
On note $h’$ sa dérivée et $h\dsec$ sa dérivée seconde.

On admet que, pour tout réel $x$ de l’intervalle $]0 ; 2]$, on a :$$h'(x)=4x\left(1+\ln(x)\right)$$

  1. Sur l’intervalle $\left[\dfrac{1}{\e};2\right]$, la fonction $h$ s’annule :
    a. exactement $0$ fois.
    b. exactement $1$ fois.
    c. exactement $2$ fois.
    d. exactement $3$ fois.
    $\quad$
  2. Une équation de la tangente à $\mathcal{C}_h$ au point d’abscisse $\sqrt{\e}$ est :
    a. $y=\left(6\e^{\frac{1}{2}}\right).x$
    b. $y=\left(6\sqrt{\e}\right).x+2\e$
    c. $y=6\e^{\frac{x}{2}}$
    d. $y=\left(6\e^{\frac{1}{2}}\right).x-4\e$
    $\quad$
  3. Sur l’intervalle $]0 ; 2]$, le nombre de points d’inflexion de la courbe $\mathcal{C}_h$ est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. $3$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : suites, fonctions, fonction exponentielle

Partie A

On considère la fonction $f$ définie pour tout réel $x$ par : $$f(x)=1+x-\e^{0,5x-2}$$
On admet que la fonction $f$ est dérivable sur $\R$. On note $f’$ sa dérivée.

  1. a. Déterminer la limite de la fonction $f$ en $-\infty$.
    $\quad$
    b. Démontrer que, pour tout réel $x$ non nul, $f(x) = 1 + 0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right)$.
    En déduire la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. a. Déterminer $f'(x)$ pour tout réel $x$.
    $\quad$
    b. Démontrer que l’ensemble des solutions de l’inéquation $f'(x)<0$ est
    l’intervalle $]4 + 2\ln(2) ; +\infty[$.
    $\quad$
  3. Déduire des questions précédentes le tableau de variation de la fonction $f$ sur $\R$.
    On fera figurer la valeur exacte de l’image de $4 + 2\ln(2)$ par $f$.
    $\quad$
  4. Montrer que l’équation $f(x) = 0$ admet une unique solution sur l’intervalle $[-1; 0]$.
    $\quad$

Partie B

On considère la suite $\left(u_n\right)$ définie par $u_0=0$ et, pour tout entier naturel $n$ ,
$$u_{n+1}=f\left(u_n\right) \text{ où } f \text{ est la fonction définie à la }\textbf{ partie A.}$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$ , on a : $$u_n\pp u_{n+1}\pp 4$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ converge. On notera $\ell$ la limite.
    $\quad$
  2. a. On rappelle que $\ell$ vérifie la relation $\ell=f(\ell)$.
    Démontrer que $\ell = 4$.
    $\quad$
    b. On considère la fonction $\texttt{valeur}$ écrite ci-dessous dans le langage Python :
    $\begin{array}{|l|}
    \hline
    \text{def valeur(a):}\\
    \quad\text{u=0}\\
    \quad\text{n=0}\\
    \quad\text{while u<=a:}\\
    \qquad\text{u=1+u-exp(0.5*u-2)}\\
    \qquad\text{n=n+1}\\
    \quad\text{return n}\\
    \hline
    \end{array}$
    L’instruction $\texttt{valeur(3.99)}$ renvoie la valeur $12$.
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $\Oijk$.
On considère les points $A(5 ; 0 ; -1)$, $B(1 ; 4 ; -1)$, $C(1 ; 0 ; 3)$, $D(5 ; 4 ; 3)$ et $E(10 ; 9 ; 8)$

  1. a. Soit $R$ le milieu du segment $[AB]$.
    Calculer les coordonnées du point $R$ ainsi que les coordonnées du vecteur $\vect{AB}$.
    $\quad$
    b. Soit $\mathcal{P}_1$ le plan passant par le point $R$ et dont $\vect{AB}$ est un vecteur normal.
    Démontrer qu’une équation cartésienne du plan $\mathcal{P}_1$ est :
    $$x-y-1=0$$
    $\quad$
    c. Démontrer que le point $E$ appartient au plan $\mathcal{P}_1$ et que $EA = EB$.
    $\quad$
  2. On considère le plan $\mathcal{P}_2$ d’équation cartésienne $x-z-2=0$.
    a. Justifier que les plans $\mathcal{P}_1$ et $\mathcal{P}_2$ sont sécants.
    $\quad$
    b. On note $\Delta$ la droite d’intersection de $\mathcal{P}_1$ et $\mathcal{P}_2$ .
    Démontrer qu’une représentation paramétrique de la droite $\Delta$ est :$$\begin{cases} x=2+t\\y=1+t\\z=t\end{cases} \quad (t\in \R)$$
    $\quad$
  3. On considère le plan $\mathcal{P}_3$ d’équation cartésienne $y+z-3=0$.
    Justifier que la droite $\Delta$ est sécante au plan $\mathcal{P}_3$ en un point $\Omega$ dont on déterminera les coordonnées.

Si $S$ et $T$ sont deux points distincts de l’espace, on rappelle que l’ensemble des points $M$ de l’espace tels que $MS = MT$ est un plan, appelé plan médiateur du segment $[ST]$.
On admet que les plans $\mathcal{P}_1$, $\mathcal{P}_2$ et $\mathcal{P}_3$ sont les plans médiateurs respectifs des segments $[AB]$, $[AC]$ et $[AD]$.

  1. a. Justifier que $\Omega A = \Omega B = \Omega C = \Omega D$.
    $\quad$
    b. En déduire que les points $A$, $B$, $C$ et $D$ appartiennent à une même sphère dont on précisera le centre et le rayon.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 12 mai 2022

Centres étrangers – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\dfrac{1\times\e^x-x\e^x}{\left(\e^x\right)^2} \\
    &=\dfrac{(1-x)\e^x}{\e^{2x}} \\
    &=\dfrac{1-x}{\e^x} \\
    &=(1-x)\e^{-x}\end{align*}$
    Réponse C
    $\quad$
  2. La fonction $f\dsec$ semble donc strictement positive sur $]-3;-1[$ et strictement négative sur $]-1;1[$.
    La fonction $f’$ semble donc croissante sur $[-3;-1]$ et strictement décroissante sur $[-1;1]$.
    Ainsi $f’$ admet un maximum en $x=-1$.
    Réponse D
    $\quad$
  3. On considère la fonction $F$ définie sur $\R$ par $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$.
    Elle est dérivable sur $\R$ en tant que produit et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$
    $\begin{align*} F'(x)&=-\dfrac{1}{2}\left(2x\e^{-x^2}+\left(x^2+1\right)\times (-2x)\e^{-x^2}\right)\\
    &=-\dfrac{1}{2}\left(2x\e^{-x^2}-2x^3\e^{-x^2}-2x\e^{-x^2}\right) \\
    &=-\dfrac{1}{2}\times \left(-2x^3\right) \e^{-x^2}\\
    &=f(x)\end{align*}$
    Réponse C
    $\quad$
  4. Pour tout réel $x$ on a
    $\begin{align*} \dfrac{\e^x+1}{\e^x-1}&=\dfrac{\e^x\left(1+\e^{-x}\right)}{\e^x\left(1-\e^{-x}\right)} \\
    &=\dfrac{1+\e^{-x}}{1-\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}=1$.
    Réponse B
    $\quad$
  5. Une primitive de la fonction $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{2x+1}+K$
    $\begin{align*} F(0)=1&\ssi \dfrac{1}{2}\e+K=1 \\
    &\ssi K=1-\dfrac{1}{2}\e\end{align*}$
    Donc, pour tout réel $x$, $F(x)=\dfrac{1}{2}\e^{2x+1}+1-\dfrac{1}{2}\e$.
    Réponse C
    $\quad$
  6. La fonction $f$ semble concave sur $[-2;1]$ et convexe sur $[1;4]$.
    Par conséquent $f\dsec(x)$ est négatif sur $[-2;1]$ et positif sur $[1;4]$ en ne s’annulant qu’en $1$.
    Réponse A
    $\quad$

 

Ex 2

Exercice 2

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=1$.
    $\quad$
    $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} x\ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. a. Pour tout réel $x$ strictement positif,
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x} \\
    &=\ln(x)+1\end{align*}$
    $\quad$
    b. $\ln(x)+1=0 \ssi \ln(x)=-1 \ssi x=\e^{-1}$
    $\ln(x)+1>0\ssi \ln(x)>-1 \ssi x>\e^{-1}$
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. La fonction $f$ est strictement décroissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left]0;\e^{-1}\right]$ on a $0<1-\e^{-1}\pp f(x) <1$.
    $f(1)=1$.
    La fonction $f$ est strictement croissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left[\e^{-1};1\right[$ on a $0<1-\e^{-1}\pp f(x) < 1$.
    Ainsi, pour tout $x\in [0;1]$ on a $0<f(x)<1$.
    $\quad$
  3. a. $f'(1)=1$ et $f(1)=1$
    Une équation de $(T)$ est donc $y=1\times (x-1)+1$ soit $y=x$.
    $\quad$
    b. La fonction $f’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    c. La courbe $C_f$ est donc au-dessus de toutes ses tangentes en particulier au-dessus de $T$.
    Donc, pour tout réel $x$ strictement positif, $f(x)\pg x$.
    $\quad$
  4. a. Pour tout entier naturel $n$ on pose $P(n):~0<u_n<1$.
    Initialisation : $u_0\in ]0;1[$ par définition. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    On a $0<u_n<1$ donc, d’après la question 2.c., $0<f\left(u_n\right)<1$ soit $0<u_{n+1}<1$.
    $P(n+1)$ est donc vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $0<u_n<1$.
    $\quad$
    b. Soit $n\in \N$
    D’après la question 3.c. on a $f\left(u_n\right)\pg u_n$ soit $u_{n+1}\pg u_n$.
    La suite $\left(u_n\right)$ est donc croissante.
    $\quad$
    c. La suite $\left(un\right)$ est croissante et majorée par $1$. Elle est donc convergente.
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $\vect{AB}\begin{pmatrix}3\\3\\3\end{pmatrix}$, $\vect{AC}\begin{pmatrix}3\\0\\-3\end{pmatrix}$ et $\vect{AD}\begin{pmatrix}-3\\6\\-3\end{pmatrix}$
    $A$, $B$, $C$ et $D$ sont coplanaires si, et seulement si, il existe deux réels $x$ et $y$ tels que :
    $\begin{align*} \vect{AD}=x\vect{AB}+y\vect{AC}&\ssi \begin{cases} 3x+3y&=-3\\3x&=6\\3x-3y&=-3\end{cases} \\
    &\ssi \begin{cases} x+y&=-3\\x&=2\\x-y&=-1\end{cases} \\
    &\ssi \begin{cases} x=2\\y=-5\\y=3\end{cases}\end{align*}$
    Les deux dernières lignes du système sont incompatibles.
    Les points $A$, $B$, $C$ et $D$ ne sont donc pas coplanaires.
    $\quad$
  2. a.
    $\begin{align*} \vect{AB}.\vect{AC}&=3\times 3+3\times 0+3\times (-3) \\
    &=9+0-9\\
    &=0\end{align*}$
    Ces deux vecteurs sont orthogonaux.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b.
    $\begin{align*} \vect{AD}.\vect{AB}&=-3\times 3+6\times 3+(-3)\times 3 \\
    &=-9+18-9 \\
    &=0\end{align*}$
    $\begin{align*} \vect{AD}.\vect{AC}&=-3\times 3+6\times 0+(-3)\times (-3) \\
    &=-9+0+9 \\
    &=0\end{align*}$
    Le vecteur $\vect{AD}$ est donc orthogonal à deux vecteurs non colinéaires (ils sont orthogonaux d’après la question précédente) du plan $(ABC)$.
    La droite $(AD)$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c.
    $\begin{align*} AD&=\sqrt{(-3)^2+6^2+(-3)^2} \\
    &=\sqrt{9+36+9} \\
    &=\sqrt{54}\end{align*}$
    $\begin{align*} AB&=\sqrt{3^2+3^2+3^2} \\
    &=\sqrt{9+9+9} \\
    &=\sqrt{27}\end{align*}$
    $\begin{align*} AC&=\sqrt{3^2+0^2+(-3)^2} \\
    &=\sqrt{9+0+9} \\
    &=\sqrt{18}\end{align*}$
    L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2} \\
    &=\dfrac{\sqrt{27}\times \sqrt{18}}{2}\\
    &=\dfrac{9\sqrt{6}}{2}\end{align*}$
    Par conséquent le volume du tétraèdre $ABCD$ est
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times AD\times \mathscr{A} \\
    &=\dfrac{1}{3}\times \sqrt{54}\times \dfrac{9\sqrt{6}}{2}\\
    &=27\end{align*}$
    $\quad$
  3. a. $\vect{BH}\begin{pmatrix}-1\\-1\\-4\end{pmatrix}$, $\vect{BC}\begin{pmatrix}0\\-3\\-6\end{pmatrix}$ et $\vect{BD}\begin{pmatrix}-6\\3\\-6\end{pmatrix}$
    $\begin{align*} \vect{BH}=\alpha\vect{BC}+\beta\vect{BD}&\ssi \begin{cases} -6\beta&=-1 \\
    -3\alpha+3\beta&=-1\\
    -6\alpha-6\beta&=-4\end{cases} \\
    &\ssi \begin{cases} \beta=\dfrac{1}{6}\\\alpha=\dfrac{1}{2}\end{cases}\end{align*}$
    Par conséquent $\vect{BH}=\dfrac{1}{2}\vect{BC}+\dfrac{1}{6}\vect{BD}$.
    $\quad$
    b. $\vect{AH}\begin{pmatrix}2\\2\\-1\end{pmatrix}$
    $\begin{align*} \vect{AH}.\vect{BC}&=2\times 0+2\times (-3)+(-1)\times (-6) \\
    &=0\end{align*}$
    $\begin{align*} \vect{AH}.\vect{BD}&=2\times (-6)+2\times 3+(-1)\times (-6) \\
    &=0\end{align*}$
    Le vecteur $\vect{AH}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(BCD)$.
    C’est donc un vecteur normal à ce plan.
    D’après la question précédente, $H$ appartient au plan $(BCD)$.
    Donc $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c.
    $\begin{align*} AH&=\sqrt{2^2+2^2+(-1)^2} \\
    &=\sqrt{9} \\
    &=3\end{align*}$
    La distance du point $A$ au plan $(BCD)$ est égale à $3$ unités de longueur.
    $\quad$
  4. On note $\mathscr{A}$ l’aire du triangle $BCD$.
    $\begin{align*} V=\dfrac{1}{3}\mathscr{A}\times h&\ssi 27=\dfrac{1}{3}\mathscr{A}\times 3\\
    &\ssi \mathscr{A}=27\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. a. On appelle :
    $\bullet ~~N_i$ l’événement « le jeton tiré lors du $i$-ème tirage est noir » ;
    $\bullet ~~B_i$ l’événement « le jeton tiré lors du $i$-ème tirage est blanc ».
    On obtient donc l’arbre pondéré suivant :
    $ \quad$
    $\quad$
    b. La probabilité de perdre $9$ € sur une partie est égale à :
    $\begin{align*} P\left(B_1\cap B_2\right)&=P\left(B_1\right)\times P_{B_1}\left(B_2\right) \\
    &=\dfrac{3}{5}\times \dfrac{3}{5} \\
    &=\dfrac{9}{25}\end{align*}$
    $\quad$
  2. a. À chaque tirage, la probabilité de tirer un jeton noir vaut $\dfrac{N}{N+3}$ et la probabilité de tirer un jeton blanc vaut $\dfrac{3}{N+3}$.
    La probabilité de tirer deux jetons blancs est égale à $\left(\dfrac{3}{N+3}\right)^2$.
    La probabilité de tirer deux jetons noirs est égale à $\left(\dfrac{N}{N+3}\right)^2$.
    Par conséquent la probabilité de tirer deux jetons de couleurs différentes est égale à :
    $\begin{align*} p&=1-\left(\dfrac{3}{N+3}\right)^2-\left(\dfrac{N}{N+3}\right)^2 \\
    &=1-\dfrac{9}{(N+3)^2}-\dfrac{N^2}{(N+3)^2} \\
    &=\dfrac{(N+3)^2-9-N^2}{(N+3)^2} \\
    &=\dfrac{N^2+6N+9-9-N^2}{(N+3)^2} \\
    &=\dfrac{6N}{(N+3)^2}\end{align*}$
    On obtient ainsi la loi de probabilité suivante :
    $\begin{array}{|c|c|c|c|}
    \hline
    x&-9&-1&5\\
    \hline
    P(X=x)&\dfrac{9}{(N+3)^2}&\dfrac{N^2}{(N+3)^2}&\dfrac{6N}{(N+3)^2}\\
    \hline
    \end{array}$
    $\quad$
    b. Le discriminant de $-x^2+30x-81$ est $\Delta=576>0$.
    Les racines de $-x^2+3x-81$ sont donc $x_1=\dfrac{-30-\sqrt{576}}{-2}=27$ et $x_1=\dfrac{-30+\sqrt{576}}{-2}=3$.
    Le coefficient principal du polynôme du second degré est $a=-1<0$.
    Par conséquent l’ensemble solution de $-x^2+3x-81>0$ est $]3;27[$.
    $\quad$
    c. Le jeu est favorable au joueur si, et seulement si, l’espérance de $X$ est strictement positive.
    $\begin{align*} E(X)>0&\ssi -9\times \dfrac{9}{(N+3)^2}-1\times \dfrac{N^2}{(N+3)^2}+5\times \dfrac{6N}{(N+3)^2}>0 \\
    &\ssi -81-N^2+30N>0\end{align*}$
    D’après la question précédente, le jeu est favorable au joueur si, et seulement si, $N$ est un entier naturel compris entre $4$ et $26$, tous les deux inclus.
    $\quad$
    d. On considère la fonction $g$ définie sur $[0;+\infty[$ par $g(x)=\dfrac{-x^2+30x-81}{(x+3)^2}$.
    Elle est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in[0;+\infty[$ on a
    $\begin{align*} g'(x)&=\dfrac{(-2x+30)(x+3)^2-2(x+3)\left(-x^2+30x-81\right)}{(x+3)^4} \\
    &=\dfrac{(-2x+30)(x+3)-2\left(-x^2+30x-81\right)}{(x+3)^3} \\
    &=\dfrac{-2x^2-6x+30x+90+2x^2-60x+162}{(x+3)^3}\\
    &=\dfrac{-36x+252}{(x+3)^3}\end{align*}$
    $g'(x)$ est donc du signe de $-36x+252$ sur $[0;+\infty[$.
    Or $-36x+252>0\ssi -36x>-252 \ssi x<7$.
    Par conséquent $g$ est strictement croissante sur $[0;7]$ et strictement décroissante sur $[7;+\infty[$.
    Elle atteint donc son maximum pour $x=7$.
    Or $E(X)=g(N)$ et $7\in [4;26]$.
    Le gain moyen est donc maximal s’il y a $7$ jetons noirs.
    $\quad$
  3. $N=7$ donc $P(X=5)=0,42$.
    On répète $10$ fois de façons indépendantes la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire comptant le nombre de joueur ayant gagné $5$ euros.
    $Y$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,42$.
    $\begin{align*} P(Y\pg 1)&=1-P(Y=0) \\
    &=1-(1-0,42)^{10} \\
    &=1-0,58^{10}\\
    &\approx 0,996\end{align*}$
    La probabilité d’avoir au moins un joueur gagnant $5$ euros est environ égale à $0,996$.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction exponentielle

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question en rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. Soit $f$ la fonction définie sur $\R$ par $$f(x)=\dfrac{x}{\e^x}$$
    On suppose que $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. $f'(x)=\e^{-x}$
    b. $f'(x)=x\e^{-x}$
    c. $f'(x)=(1-x)\e^{-x}$
    d. $f'(x)=(1+x)\e^{-x}$
    $\quad$
  2. Soit $f $ une fonction deux fois dérivable sur l’intervalle $[-3;1]$. On donne ci-dessous la représentation graphique de sa fonction dérivée seconde $f\dsec$.
    On peut alors affirmer que :
    a. La fonction $f$ est convexe sur l’intervalle $[-1;1]$
    b. La fonction $f$ est concave sur l’intervalle $[-2;0]$
    c. La fonction $f’$ est décroissante sur l’intervalle $[-2;0]$
    d. La fonction $f’$ admet un maximum en $x=-1$
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par : $$f(x)=x^3\e^{-x^2}$$
    Une primitive $F$ de la fonction $f$ est définie sur $\R$ par :
    a. $F(x)=-\dfrac{1}{6}\left(x^3+1\right)\e^{-x^2}$
    b. $F(x)=-\dfrac{1}{4}x^4\e^{-x^2}$
    c. $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$
    d. $F(x)=x^2\left(3-2x^2\right)\e^{-x^2}$
    $\quad$
  4. Que vaut  $$\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}$$
    a $-1$
    b. $1$
    c. $+\infty$
    d. N’existe pas
    $\quad$
  5. On considère la fonction $f$ définie sur $\R$ par $f(x)=\e^{2x+1}$.
    La seule primitive de $F$ sur $\R$ de la fonction $f$ telle que $F(0)=1$ est la fonction :
    a. $x\mapsto 2\e^{2x+1}-2\e+1$
    b. $x\mapsto \e^{2x+1}-\e$
    c. $x\mapsto \dfrac{1}{2}\e^{2x+1}-\dfrac{1}{2}\e+1$
    d. $x\mapsto \e^{x^2+x}$
    $\quad$
  6. Dans un repère, on a tracé ci-dessous la courbe représentative d’une fonction $f$ définie et deux fois dérivable sur $[-2;4]$.
    Parmi les courbes suivantes, laquelle représente la fonction $f\dsec$, dérivée seconde de $f$?
    a.
    b.
    c. d. $\quad$

$\quad$

Exercice 2     7 points

Thème : Fonction logarithme et suite

Soit $f$ la fonction définie sur l’intervalle $]0;+\infty[$ par $$f(x)=x\ln(x)+1$$

On note $C_f$ sa courbe représentative dans un repère du plan.

  1. Déterminer la limite de la fonction $f$ en $0$ ainsi que sa limite en $+\infty$.
    $\quad$
  2. a. On admet que $f$ est dérivable sur $]0;+\infty[$ et on notera $f’$ sa fonction dérivée.
    Montrer que pour tout réel $x$ strictement positif : $$f'(x)=1+\ln(x)$$
    $\quad$
    b. En déduire le tableau de variation de la fonction $f$ sur $]0;+\infty[$.
    On y fera figurer la valeur exacte de l’extremum de $f$ sur $]0;+\infty[$ et les limites.
    $\quad$
    c. Justifier que pour tout $x\in ]0;1[$, $f(x)\in ]0;1[$.
    $\quad$
  3. a. Déterminer une équation de la tangente $(T)$ à la courbe $C_f$ au point d’abscisse $1$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $]0;+\infty[$.
    $\quad$
    c. En déduire que pour tout réel $x$ strictement positif $$f(x)\pg x$$
    $\quad$
  4. On définit la suite $\left(u_n\right)$ par son premier terme $u_0$ élément de l’intervalle $]0;1[$ et pour tout entier naturel $n$ : $$u_{n+1}=f\left(u_n\right)$$
    a. Démontrer par récurrence que pour tout entier naturel $n$, on a $0<u_n<1$.
    $\quad$
    b. Déduire de la question 3c la croissance de la suite $\left(u_n\right)$.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $Oijk$.

On considère les points $A(3;-2;2)$, $B(6;1;5)$, $C(6;-2;-1)$ et $D(0;4;-1)$.

On rappelle que le volume d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{A}\times h$$
où $\mathscr{A}$ est l’aire de la base et $h$ la hauteur correspondante.

  1. Démontrer que les points $A$, $B$, $C$ et $D$ ne sont pas coplanaires.
    $\quad$
  2. a. Montrer que le triangle $ABC$ est rectangle.
    $\quad$
    b. Montrer que la droite $(AD)$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. En déduire le volume du tétraèdre $ABCD$.
    $\quad$
  3. On considère le point $H(5;0;1)$.
    a. Montrer qu’il existe des réels $\alpha$ et $\beta$ tels que $\vect{BH}=\alpha \vect{BC}+\beta\vect{BD}$.
    $\quad$
    b. Démontrer que $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c. En déduire la distance du point $A$ au plan $(BCD)$.
    $\quad$
  4. Déduire des questions précédentes l’aire du triangle $BCD$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Une urne contient des jetons blancs et noirs tous indiscernables au toucher.

Une partie consiste à prélever au hasard successivement et avec remise deux jetons de cette urne.

On établit la règle de jeu suivante :

  • un joueur perd $9$ euros si les deux jetons tirés sont de couleur blanche;
  • un joueur perd $1$ euro si les deux jetons tirés sont de couleur noire;
  • un joueur gagne $5$ euros si les deux jetons tirés sont de couleurs différentes.
  1. On considère que l’urne contient $2$ jetons noirs et $3$ jetons blancs.
    a. Modéliser la situation à l’aide d’un arbre pondéré.
    $\quad$
    b. Calculer la probabilité de perdre $9$ € sur une partie.
    $\quad$
  2. On considère maintenant que l’urne contient $3$ jetons blancs et au moins deux jetons noirs mais on ne connait pas le nombre exact de jetons noirs. On appellera $N$ le nombre de jetons noirs.
    a. Soit $X$ la variable aléatoire donnant le gain du jeu pour une partie.
    Déterminer la loi de probabilité de cette variable aléatoire.
    $\quad$
    b. Résoudre l’inéquation pour $x$ réel : $$-x^2+30x-81>0$$
    $\quad$
    c. En utilisant le résultat de la question précédente, déterminer le nombre de jetons noirs que l’une doit contenir afin que ce jeu soit favorable au joueur.
    $\quad$
    d. Combien de jetons noirs le joueur doit-il demander afin d’obtenir un gain moyen maximal?
    $\quad$
  3. On observe $10$ joueurs qui tentent leur chance en effectuant une partie de ce jeu, indépendamment les uns des autres. On suppose que $7$ jetons noirs ont été placés dans l’urne (avec $3$ jetons blancs). Quelle est la probabilité d’avoir au moins $1$ joueur gagnant $5$ euros?
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 11 mai 2022

Centres étrangers – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $\quad$
    $\begin{align*} f(x)=2~022 &\ssi \ln\left(1+x^2\right)=2~022\\
    &\ssi 1+x^2=\e^{2~022} \\
    &\ssi x^2=\e^{2~022}-1 \end{align*}$
    Or $\e^{2~022}-1>0$
    Les solutions de l’équation $x^2=\e^{2~022}-1$ sont donc $\sqrt{\e^{2~022}-1}$ et $-\sqrt{\e^{2~022}-1}$.
    Réponse C
    $\quad$
  2. La fonction $g$ dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g'(x)&=\ln(x)+x\times \dfrac{1}{x}-2x \\
    &=\ln(x)+1-2x\end{align*}$
    La fonction $g’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g\dsec(x)&=\dfrac{1}{x}-2 \\
    &=\dfrac{1-2x}{x}\end{align*}$
    Sur $]0;+\infty[$, $g\dsec(x)$ ne dépend que du signe de $1-2x$.
    Or $1-2x>0\ssi -2x>-1 \ssi x<\dfrac{1}{2}$ et $1-2x=0 \ssi x=\dfrac{1}{2}$.
    Ainsi $g\dsec(x)$ s’annule en changeant de signes qu’une seule fois pour $x=\dfrac{1}{2}$.
    La courbe $C_g$ admet donc exactement un point d’inflexion sur $]0;+\infty[$.
    Réponse C
    $\quad$
  3. Pour tout réel $x\in ]-1;1[$ on a $f(x)=-\dfrac{1}{2}\times \dfrac{-2x}{1-x^2}$
    On reconnaît une dérivée de la forme $\dfrac{u’}{u}$ dont une primitive est $\ln(u)$ avec $u(x)=1-x^2$.
    Une primitive de $f$ est donc la fonction $g$ définie sur $]-1;1[$ par $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$.
    Réponse A
    $\quad$
  4. La fonction $\ln$ est définie sur $]0;+\infty[$.
    $-x^2-x+6$ a pour discriminant $\Delta = 25>0$.
    Les solutions de l’équation $-x^2-x+6=0$ sont $x_1=2$ et $x_2=-3$.
    Le coefficient principal est $a=-1<0$.
    Ainsi $-x^2-x+6>0$ sur $]-3;2[$.
    Réponse A
    $\quad$
  5. La fonction $f$ est dérivable sur $]0,5;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout réel $x\in ]0,5;+\infty[$ on a $f'(x)=-2x-4+\dfrac{6}{2x-1}$
    Par conséquent $f'(1)=4$ et $f(1)=-3$.
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est $y=4(x-1)-3$ soit $y=4x-7$.
    Réponse A
    $\quad$
    Remarque : On pouvait se contenter de calculer $f'(1)$ car tous les coefficients directeurs fournis sont différents les uns des autres. Le reste du calcul permet de vérifier que l’ordonnée à l’origine est bien égale à ce qui est proposé.
     $\quad$
  6. $x+3>0\ssi x>-3$ et $x+1>0\ssi x>-1$.
    L’inégalité n’est donc définie que sur $]-1;+\infty[$.
    $\begin{align*} \ln(x+3)<2\ln(x+1)&\Rightarrow \ln(x+3) <\ln\left((x+1)^2\right) \\
    &\Rightarrow x+3<(x+1)^2 \\
    &\Rightarrow x+3<x^2+2x+1\\
    &\Rightarrow x^2+x-2>0\end{align*}$
    Le discriminant est $\Delta=9>0$.
    Les solutions de $x^2+x-2=0$ sont donc $-2$ et $1$.
    Le coefficient principal est $a=1>0$ donc $x^2+x-2>0$ sur $]-\infty;-2[\cup]1;+\infty[$.
    Ainsi
    $\begin{align*} \mathscr{S}&=]-1;+\infty[ \cap \left(]-\infty;-2[\cup]1;+\infty[\right) \\
    &=]1;+\infty[\end{align*}$
    Réponse B
    $\quad$

Ex 2

Exercice 2

  1. Calcul d’un angle
    a.
    On a $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    $\dfrac{-3}{-2}=1,5$ et $\dfrac{-1}{2}=-0,5$. Or $1,5\neq -0,5$.
    Les deux vecteurs ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b.
    $\begin{align*} AB&=\sqrt{(-2)^2+2^2+(-2)^2} \\
    &=\sqrt{12} \\
    &=2\sqrt{3}\end{align*}$
    $\begin{align*} AC&=\sqrt{(-3)^2+(-1)^2+(-1)^2} \\
    &=\sqrt{11}\end{align*}$
    $\quad$
    c.
    $\begin{align*} \vect{AB}.\vect{AC}&=-2\times (-3)+2\times (-1)+(-2)\times (-1) \\
    &=6\end{align*}$
    $\quad$
    $\begin{align*} \vect{AB}.\vect{AC}=AB\times AC\times \cos\left(\widehat{BAC}\right) &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{\vect{AB}.\vect{AC}}{AB\times AC} \\
    &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{6}{2\sqrt{3}\times \sqrt{11}} \\
    &=\dfrac{3}{\sqrt{33}}\end{align*}$
    Par conséquent $\widehat{BAC}\approx 58,5$°
    $\quad$
  2. Calcul d’une aire
    a.
    $\vect{AB}$ est donc un vecteur normal au plan $P$
    Une équation de $P$ est donc de la forme $-2x+2y-2z+d=0$.
    $C(-1;-1;2)$ appartient à $P$. Donc $2-2-4+d=0 \ssi d=4$.
    Une équation cartésienne de $P$ est $-2x+2y-2z+4=0$ ou encore $-x+y-z+2=0$.
    $\quad$
    b. Une représentation paramétrique de la droite $(AB)$ est $\begin{cases} x=2-2t\\y=2t\\z=3-2t\end{cases}$.
    $\quad$
    c.
    $\begin{align*}\begin{cases} x=2-2t\\y=2t\\z=3-2t\\-x+y-z+2=0\end{cases} &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-(2-2t)+2t-(3-2t)+2=0\end{cases} \\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-2+2t+2t-3+2t+2=0\end{cases}\\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\6t =3\end{cases}\\
    &\ssi \begin{cases} x=\dfrac{1}{2}\\x=1\\y=1\\z=2\end{cases}\end{align*}$
    Le point $E$ a donc pour coordonnées $(1;1;2)$.
    $\quad$
    d. L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{1}{2}\times AB\times AC\times \sin\left(\widehat{ABC}\right) \\
    &=\dfrac{1}{2}\times 2\sqrt{3}\times \sqrt{11}\times \sin\left(\widehat{ABC}\right) \\
    &=\sqrt{33}\times \sin\left(\widehat{ABC}\right)\\
    &=2\sqrt{6}\\
    &\approx 4,899\end{align*}$
    $\quad$
    Remarque : Pour calculer la valeur exacte de $\sin\left(\widehat{ABC}\right)$ on peut utiliser la propriété suivante : pour tout réel $x$, $\sin^2x+\cos^2 x=1$, connaissant la valeur de $\cos\left(\widehat{ABC}\right)=\dfrac{3}{\sqrt{33}}$
    On a donc $\sin^2\left(\widehat{ABC}\right)+\dfrac{9}{33}=1$ soit $\sin^2\left(\widehat{ABC}\right)=\dfrac{8}{11}$.
    Or $\sin\left(\widehat{ABC}\right)>0$ (sinon l’aire est négative!) donc $\sin\left(\widehat{ABC}\right)=\dfrac{2\sqrt{2}}{\sqrt{11}}$
    $\quad$
  3. Calcul d’un volume
    a.
    $\vect{AF}(-1;-1;0)$ or $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    Par conséquent (après résolution d’un système éventuellement) $\vect{AF}=-\dfrac{1}{4}\vect{AB}+\dfrac{1}{2}\vect{AC}$.
    Ainsi, les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. $\vect{FD}(2;-2;-4)$.
    $\begin{align*} \vect{FD}.\vect{AB}&=2\times (-2)-2\times 2-4\times (-2) \\
    &=0\end{align*}$
    $\begin{align*} \vect{FD}.\vect{AC}&=2\times (-3)-2\times (-1)-4\times (-1) \\
    &=0\end{align*}$
    Le vecteur $\vect{FD}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    $(FD)$ est orthogonale au plan $(ABC)$.
    c.
    $\begin{align*} FD&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    Le volume de $ABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times FD\times \mathscr{A} \\
    &=8\end{align*}$
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. $\lim\limits_{x\to -\infty} \e^x=0$ et $\lim\limits_{x\to -\infty} -x=+\infty$ donc $\lim\limits_{x\to -\infty} h(x)=+\infty$
    Pour tout réel $x$, $h(x)=\e^x\left(1-\dfrac{x}{\e^x}\right)$. $\lim\limits_{x\to +\infty} \e^x=+\infty$ et par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$.
    Donc $\lim\limits_{x\to +\infty} h(x)=+\infty$
    $\quad$
  2. La fonction $h$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $h'(x)=\e^x-1$.
    Or $\e^x-1=0 \ssi x=0$ et $\e^x-1>0 \ssi x>0$.
    La fonction $h$ est donc strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;+\infty[$.
    On obtient alors le tableau de variations suivant :$\quad$
  3. La fonction $h$ est strictement croissante sur $[0;+\infty[$.
    Donc, pour tous réels $a$ et $b$ tels que $0\pp a\pp b$ on a $h(a)\pp h(b)$ c’est-à-dire $h(a)-h(b) \pp 0$.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $\R$ en tant que fonction exponentielle.
    Pour tout réel $x$ on a $f'(x)=\e^x$.
    $f(0)=1$ et $f'(0)=1$.
    Une équation de $T$ est donc $y=x+1$.
    $\quad$
  2. $\lim\limits_{n\to +\infty } \dfrac{1}{n}=0$ et $\lim\limits_{x\to 0} \e^x=1$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  3. a. Soit $n$ un entier naturel non nul.
    $\begin{align*} u_{n+1}-u_n&=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-1-\left(\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1\right) \\
    &=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-\exp\left(\dfrac{1}{n}\right)+\dfrac{1}{n} \\
    &=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ non nul on a $\dfrac{1}{n+1}<\dfrac{1}{n}$.
    Donc d’après la question A.3. $h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\pp 0$.
    Donc $u_{n+1}-u_n\pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  4. D’après le tableau de valeurs $u_n<10^{-2}$ à partir de $n=8$.
    C’est donc à partir de $n=8$ que l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

Ex 4

Exercice 4

  1. On obtient le tableau suivant :
    $\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&0,05&0,15&0,2\\
    \hline
    \conj{B}&0,05&0,75&0,8 \\
    \hline
    \text{Total}&0,1&0,9&1\\
    \hline
    \end{array}$
    $\quad$
  2. a. On veut calculer
    $\begin{align*} P(A\cup B)&=1-P\left(\conj{A}\cap \conj{B}\right) \\
    &=1-0,75 \\
    &=0,25\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour au moins un des deux traitements est donc égale à $0,25$.
    $\quad$
    b. On veut calculer $P(A\cap B)=0,05$.
    La probabilité qu’une paire de verres présente un défaut pour les deux traitements est donc égale à $0,05$.
    $\quad$
    c. $P(A)\times P(B)=0,02$ et $P(A\cap B)=0,05$.
    Donc $P(A)P(B)\neq P(A\cap B)$
    Les événements $A$ et $B$ ne sont pas indépendants.
    $\quad$
  3. On veut calculer
    $\begin{align*} P\left(A\cap \conj{B}\right)+P\left(B\cap \conj{A}\right) &=0,15+0,05 \\
    &=0,2\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour un seul des deux traitements est donc égale à $0,2$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_A(B)&=\dfrac{P(A\cap B)}{P(A)} \\
    &=\dfrac{0,05}{0,1} \\
    &=0,5\end{align*}$
    La probabilité qu’une paire de verres présente un défaut de traitement T2 sachant qu’elle présente un défaut de traitement T1 est égale à $0,5$.
    $\quad$

Partie B

  1. On répète indépendamment $50$ fois la même expérience de Bernoulli. $X$ compte le nombre de paires de verres qui présentent le défaut pour le traitement T1.
    Donc $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,1$.
    $\quad$
  2. On veut calculer
    $\begin{align*} P(X=10)&=\dbinom{50}{10}\times 0,1^{10} \times (1-0,1)^{50-10} \\
    &\approx 0,015\end{align*}$
    La probabilité qu’exactement $10$ paires de verres présentent ce défaut dans l’échantillon est environ égale à $0,015$.
    $\quad$
  3. L’espérance de $X$ est $E(X)=50\times 0,1=5$.
    Ainsi, en moyenne, on peut trouver $5$ paires de verres ayant ce défaut dans un échantillon de $50$ paires.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction logarithme

Cet exercice est un questionnaire d choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Les six questions sont indépendantes.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $f$ définie pour tout réel $x$ par $f(x)=\ln\left(1+x^2\right)$.
    Sur $\R$, l’équation $f(x)=2~022$
    a. n’admet aucune solution.
    b. admet exactement une solution.
    c. admet exactement deux solutions.
    d. admet une infinité de solutions.
    $\quad$
  2. Soit la fonction $g$ définie pour tout réel $x$ strictement positif par : $$g(x) = x \ln(x)− x^2$$
    On note $\mathscr{C}_g$ sa courbe représentative dans un repère du plan.
    a. La fonction $g$ est convexe sur $]0 ; +\infty[$.
    b. La fonction $g$ est concave sur $]0 ; +\infty[$.
    c. La courbe $\mathscr{C}_g$ admet exactement un point
    d’inflexion sur $]0 ; +\infty[$.
    d. La courbe $\mathscr{C}_g$ admet exactement deux
    points d’inflexion sur $]0 ; +\infty[$.
    $\quad$
  3. On considère la fonction $f$ définie sur $]-1;1[$ par $$f(x)=\dfrac{x}{1-x^2}$$
    Une primitive de la fonction $f$ est la fonction $g$ définie sur l’intervalle $]-1;1[$ par :
    a. $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$
    b. $g(x)=\dfrac{1+x^2}{\left(1-x^2\right)^2}$
    c. $g(x)=\dfrac{x^2}{2\left(x-\dfrac{x^3}{3}\right)}$
    d. $g(x)=\dfrac{x^2}{2}\ln\left(1-x^2\right)$
    $\quad$
  4. La fonction $x\mapsto \ln\left(-x^2-x+6\right)$ est définie sur
    a. $]-3;2[$
    b. $]-\infty;6[$
    c. $]0;+\infty[$
    d. $]2;+\infty[$
    $\quad$
  5. On considère la fonction $f$ définie sur $]0,5;+\infty[$ par $$f(x)=x^2-4x+3\ln(2x-1)$$
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est :
    a. $y=4x-7$
    b. $y=2x-4$
    c. $y=-3(x-1)+4$
    d. $y=2x-1$
    $\quad$
  6. L’ensemble $\mathscr{S}$ des solutions dans $\R$ de l’inéquation $\ln(x+3)<2\ln(x+1)$ est :
    a. $\mathscr{S}=]-\infty;-2[\cup]1;+\infty[$
    b. $\mathscr{S}=]1;+\infty[$
    c. $\mathscr{S}=\emptyset$
    d. $\mathscr{S}=]-1;1[$
    $\quad$

$\quad$

Exercice 2     7 points

Thème : Géométrie dans l’espace

Dans l’espace, rapporté à un repère orthonormé $\Oijk$, on considère les points : $$A(2;0;3),~B(0;2;1),~C(-1;-1;2) \text{ et } D(3;-3;-1)$$

  1. Calcul d’un angle.
    a.
     Calculer les coordonnées des vecteurs $\vect{AB}$ et
    $\vect{AC}$ et en déduire que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b. Calculer les longueurs $AB$ et $AC$.
    $\quad$
    c. À l’aide du produit scalaire $\vect{AB}.\vect{AC}$, déterminer la valeur du cosinus de l’angle $\widehat{BAC}$ puis donner une valeur approchée de la mesure de l’angle $\widehat{BAC}$ au dixième de degré.
    $\quad$
  2. Calcul d’une aire.
    a.
    Déterminer une équation du plan $P$ passant par le point $C$ et perpendiculaire à la droite $(AB)$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(AB)$.
    $\quad$
    c. En déduire les coordonnées du projeté orthogonal $E$ du point $C$ sur la droite $(AB)$, c’est-à-dire du point d’intersection de la droite $(AB)$ et du plan $P$.
    $\quad$
    d. Calculer l’aire du triangle $ABC$.
    $\quad$
  3. Calcul d’un volume.
    a.
    Soit le point $F(1 ; −1 ; 3)$. Montrer que les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. Vérifier que la droite $(FD)$ est orthogonale au plan $(ABC)$.
    $\quad$
    c. Sachant que le volume d’un tétraèdre est égal au tiers de l’aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre $ABCD$.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonction exponentielle et suite

Partie A :

Soit $h$ la fonction définie sur $\R$ par $$h(x)=\e^x-x$$

  1. Déterminer les limites de $h$ en $-\infty$ et $+\infty$.
    $\quad$
  2. Étudier les variations de $h$ et dresser son tableau de variation.
    $\quad$
  3. En déduire que :
    si $a$ et $b$ sont deux réels tels que $0\pp a\pp b$ alors $h(a)-h(b)\pp 0$.
    $\quad$

Partie B :

Soit $f$ la fonction définie sur $\R$ par $$f(x)=\e^x$$

On note $C_f$ sa courbe représentative dans un repère $\Oij$.

  1. Déterminer une équation de la tangente $T$ à $C_f$ au point d’abscisse $0$.

Dans la suite de l’exercice on s’intéresse à l’écart entre $T$ et $C_f$ au voisinage de $0$. Cet écart est défini comme la différence des ordonnées des points de $T$ et $C_f$ de même abscisse.

On s’intéresse aux points d’abscisse $\dfrac{1}{n}$, avec $n$ entier naturel non nul.

On considère alors la suite $\left(u_n\right)$ définie pour tout entier naturel non nul $n$ par : $$u_n=\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1$$

  1. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$
  2. a. Démontrer que, pour tout entier naturel non nul $n$, $$u_{n+1}-u_n=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)$$
    où $h$ est la fonction définie à la partie A.
    $\quad$
    b. En déduire le sens de variation de la suite $\left(u_n\right)$.
    $\quad$
  3. Le tableau ci-dessous donne des valeurs approchées à $10^{-9}$ des premiers termes de la suite $\left(u_n\right)$.
    $$\begin{array}{|c|c|}
    \hline
    n &u_n \\ \hline
    1 &0,718281828\\ \hline
    2& 0,148721271\\ \hline
    3& 0,062279092 \\ \hline
    4& 0,034025417\\ \hline
    5& 0,021402758\\ \hline
    6& 0,014693746\\ \hline
    7& 0,010707852\\ \hline
    8& 0,008148453\\ \hline
    9& 0,006407958\\ \hline
    10& 0,005170918\\ \hline
    \end{array}$$
    Donner la plus petite valeur de l’entier naturel $n$ pour laquelle l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Les parties A et B peuvent être traitées de façon indépendante.

Au cours de la fabrication d’une paire de lunettes, la paire de verres doit subir deux traitements notés T1 et T2.

Partie A

On prélève au hasard une paire de verres dans la production.

On désigne par $A$ l’évènement : « la paire de verres présente un défaut pour le traitement T1 ».

On désigne par $B$ l’évènement : « la paire de verres présente un défaut pour le traitement T2 ».

On note respectivement $\conj{A}$ et $\conj{B}$ les évènements contraires de $A$ et $B$.

Une étude a montré que :

  •  la probabilité qu’une paire de verres présente un défaut pour le traitement T1 notée $P(A)$ est égale à $0,1$.
  • la probabilité qu’une paire de verres présente un défaut pour le traitement T2 notée $P(B)$ est égale à $0,2$.
  • la probabilité qu’une paire de verres ne présente aucun des deux défauts est $0,75$.
  1. Recopier et compléter le tableau suivant avec les probabilités correspondantes $$\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \conj{B}&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \text{Total}&\phantom{123}&\phantom{123}&1\\
    \hline
    \end{array}$$
    $\quad$
  2. a. Déterminer, en justifiant la réponse, la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour au moins un des deux traitements T1 ou T2.
    $\quad$
    b. Donner la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente deux défauts, un pour chaque traitement T1 et T2.
    $\quad$
    c. Les évènements A et B sont-ils indépendants ? Justifier la réponse.
    $\quad$
  3. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour un seul des deux traitements.
    $\quad$
  4. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour le traitement T2, sachant que cette paire de verres présente un défaut pour le traitement T1.
    $\quad$

Partie B

On prélève, au hasard, un échantillon de $50$ paires de verres dans la production. On suppose que la production est suffisamment importante pour assimiler ce prélèvement à un tirage avec remise. On note $X$ la variable aléatoire qui, à chaque échantillon de ce type, associe le nombre de paires de verres qui présentent le défaut pour le traitement T1.

  1. Justifier que la variable aléatoire $X$ suit une loi binomiale et préciser les paramètres de cette loi.
    $\quad$
  2. Donner l’expression permettant de calculer la probabilité d’avoir, dans un tel échantillon, exactement $10$ paires de verres qui présentent ce défaut.
    Effectuer ce calcul et arrondir le résultat à $10^{-3}$.
    $\quad$
  3. En moyenne, combien de paires de verres ayant ce défaut peut-on trouver dans un échantillon de $50$ paires ?
    $\quad$