Bac – Spécialité mathématiques – Centres étrangers – sujet de secours – 7 juin 2024

Centres étrangers – 7 juin 2024

Spécialité maths – Sujet de secours – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $f'(x)=2\e^{2x}-6$.
    Par conséquent :
    $\begin{align*} f'(x)-2f(x)&=2\e^{2x}-6-2\left(\e^{2x}-6x+1\right) \\
    &=-6+12x-2 \\
    &=12x-8\\
    &\neq -6x+1\end{align*}$
    Affirmation 1 fausse
    $\quad$
  2. Pour tout $n\in \N$ on a :
    $\begin{align*}u_n&=1+\dfrac{3}{4}+\left(\dfrac{3}{4}\right)^2+\ldots+\left(\dfrac{3}{4}\right)^n \\
    &=\sum_{k=0}^n \left(\dfrac{3}{4}\right)^k \\
    &=\dfrac{1-\left(\dfrac{3}{4}\right)^{n+1}}{1-\dfrac{3}{4}} \\
    &=\dfrac{1-\left(\dfrac{3}{4}\right)^{n+1}}{\dfrac{1}{4}} \\
    &=4\left(1-\left(\dfrac{3}{4}\right)^{n+1}\right)\end{align*}$
    Or $-1<\dfrac{3}{4}<1$. Donc $\lim\limits_{n\to +\infty} \left(\dfrac{3}{4}\right)^{n+1}=0$.
    Ainsi $\lim\limits_{n\to +\infty} u_n=4$.
    Affirmation 2 fausse
    $\quad$
  3. L’instruction $\text{suite(50)}$ renvoie la valeur de $u_{49}$ puisque la boucle $\text{for}$ de la ligne 3 permet à $\text{i}$ de prendre les valeurs de $0$ à $k-1$.
    Affirmation 3 fausse
    $\quad$
  4. $f$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a $f'(x)=\dfrac{a}{x}-2$.
    La tangente à $C$ au point d’abscisse $1$ est parallèle à l’axe des abscisse si, et seulement si, $f'(1)=0$.
    $\begin{align*} f'(1)=0&\ssi a-2=0 \\
    &\ssi a=2\end{align*}$
    Affirmation 4 vraie
    $\quad$

Ex 2

Exercice 2

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. $\left(R_1,\conj{R_1}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*}P\left(R_2\right)&=P\left(R_1\cap R_2\right)+P\left(\conj{R_1}\cap R_2\right) \\
    &=P\left(R_1\right)P_{R_1}\left(R_2\right)+P_{\conj{R_1}}\left(R_2\right) \\
    &=0,85\times 0,6+0,15\times 0,4 \\
    &=0,57\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*}P_{R_2}\left(\conj{R_1}\right)&=\dfrac{P\left(\conj{R_1}\cap R_2\right)}{P\left(R_2\right)} \\
    &=\dfrac{0,15\times 0,4}{0,57} \\
    &=\dfrac{2}{19}\end{align*}$
    La probabilité que le joueur ait raté le premier service sachant qu’il a réussi le deuxième est égale à $\dfrac{2}{19}$.
    $\quad$
  4. a. $Z(\Omega)=\acco{0;1;2}$.
    $\begin{align*} P(Z=0)&=P\left(\conj{R_1}\cap \conj{R_2}\right) \\
    &=P\left(\conj{R_1}\right)P_{\conj{R_1}}\left(\conj{R_2}\right) \\
    &=0,15\times 0,6 \\
    &=0,09\end{align*} $
    $\begin{align*} P(Z=2)&=P\left(R_1\cap R_2\right) \\
    &=P\left(R_1\right)P_{R_1}\left(R_2\right) \\
    &=0,85\times 0,6 \\
    &=0,51\end{align*} $
    $\left((Z=0),(Z=1),(Z=2)\right)$ forme un système complet d’événements fini. Par conséquent :
    $\begin{align*}P(Z=1)&=1-P(Z=0)-P(Z=2) \\
    &=1-0,09-0,51 \\
    &=0,4\end{align*}$
    $\quad$
    b. On a donc :
    $\begin{align*}E(Z)&=0\times P(Z=0)+1\times P(Z=1)+2\times P(Z=2) \\
    &=0,4+2\times 0,51 \\
    &=1,42\end{align*}$
    En moyenne, lorsque le joueur réalise $100$ doubles services, il réussit $142$ services.
    $\quad$

Partie B

  1. a. D’après l’énoncé $P_{R_n}\left(R_{n+1}\right)=0,6$ et $P_{\conj{R_n}}\left(\conj{R_{n+1}}\right)=0,6$.
    $\quad$
    b. Pour tout $n\in \N$, $\left(R_n,\conj{R_n}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} x_{n+1}&=P\left(R_{n+1}\right) \\
    &=P\left(R_n\cap R_{n+1}\right)+P\left(\conj{R_n}\cap R_{n+1}\right) \\
    &=P\left(R_n\right)P_{R_n}\left(R_{n+1}\right)+P\left(\conj{R_n}\right)P_{\conj{R_n}}\left(R_{n+1}\right) \\
    &=0,6x_n+0,4\left(1-x_n\right) \\
    &=0,6x_n+0,4-0,4x_n \\
    &=0,2x_n+0,4\end{align*}$
    $\quad$
  2. a. Soit $n\in \N$. On a
    $\begin{align*} u_{n+1}&=x_{n+1}-0,5 \\
    &=0,2x_n+0,4-0,5 \\
    &=0,2x_n-0,1 \\
    &=0,2\left(x_n-0,5\right) \\
    &=0,2u_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $0,2$ et de premier terme $u_0=0,85-0,5=0,35$.
    $\quad$
    b. D’après la question précédente, pour tout $n\in \N$, on a $u_n=0,35\times 0,2^n$.
    Or $x_n=u_n+0,5$ donc $x_n=0,5+0,35\times 0,2^n$.
    $\quad$
    $-1<0,2<1$ donc $\lim\limits_{n\to +\infty} 0,2^n=0$ et $\lim\limits_{n\to +\infty} x_n=0,5$.
    $\quad$
    c. Sur le long terme le joueur réussit un service sur deux.
    $\quad$

 

Ex 3

Exercice 3

Partie A : appareil de la marque A

  1. Il semblerait que la température maximale soit atteinte au bout de $200$ minutes.
    $\quad$
  2. Il semblerait que la température à l’intérieur du foyer dépasse $300$°C pendant environ $240$ minutes.
    $\quad$
  3. $f$ semble être une fonction continue et positive sur $[0;600]$. Par conséquent $\ds \dfrac{1}{600}\int_0^{600} f(t)\dt$ est la valeur moyenne de la fonction $f$ sur l’intervalle $[0;600]$.
    Il y a environ $121$ carrés (en assemblant les carrés incomplets entre eux) compris entre la courbe, l’axe des abscisses et les droites d’équation $x=0$ et $x=600$.
    Chaque carré à une aire égale à $25\times 50=1~250$ °C.min.
    Par conséquent
    $\begin{align*}\ds \dfrac{1}{600}\int_0^{600} f(t)\dt&\approx \dfrac{121\times 1250}{600}\\
    &\approx 252\end{align*}$
    Durant les $600$ premières minutes, la température moyenne du foyer était environ égale à $252$ °C.
    $\quad$

Partie 2 : étude d’une fonction

  1. Par croissances comparées $\lim\limits_{t\to +\infty} t\e^{-0,01t}=0$ donc $\lim\limits_{t\to +\infty} g(t)=20$.
    $\quad$
  2. a. La fonction $g$ est dérivable sur $[0;+\infty[$ en tant que produit et somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x\pg 0$ on a :
    $\begin{align*} g'(t)&=10\e^{-0,01t}-0,01\times 10t\e^{-0,01t} \\
    &=(10-0,1t)\e^{-0,01t}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive. Par conséquent, pour tout réel $t\pg 0$, $g'(t)$ est du signe de $-0,1t+10$.
    $\begin{align*} -0,1t+10>0&\ssi -0,1t>-10 \\
    &\ssi t<100\end{align*}$
    La fonction $g$ est donc strictement croissante sur $[0;100]$ et strictement décroissante sur $[100;+\infty[$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    où $g(100)=1~000\e^{-1}+20$
    $\quad$
  3. La fonction $g$ est continue (car dérivable) et strictement croissante sur $[0;100]$.
    De plus $g(0)=20$ et $g(100)\approx 388$.
    Ainsi $300\in [g(0);g(100)]$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=300$ admet une unique solution sur $[0;100]$.
    $\quad$
    La fonction $g$ est continue (car dérivable) et strictement décroissante sur $[100;+\infty[$.
    De plus $g(100)\approx 388$ et $\lim\limits_{x\to +\infty} g(x)=20$.
    Ainsi $300\in ]20;g(100)]$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=300$ admet une unique solution sur $[100;+\infty[$.
    $\quad$
    Par conséquent l’équation $g(x)=300$ admet exactement deux solutions distinctes sur $[0;+\infty[$.
    D’après la calculatrice ces solutions sont environ égales à $43$ et $193$.
    $\quad$
  4. On réalise une intégration par parties à l’aide des fonctions $u$ et $v$ définies sur $[0;600]$ par :
    $$\begin{array}{lll} u(t)=t&\phantom{123}&u'(t)=1\\v(t)=-100\e^{-0,01t}&&v'(t)=\e^{-0,01t}\end{array}$$
    $\begin{align*}\int_0^{600} g(t)\dt&=10\int_0^{600}t\e^{-0,01t}\dt+\int_0^{600} 20\dt \\
    &=10\left(\left[-100t\e^{-0,01t}\right]_0^{600}-\int_0^{600} \left(-100\e^{-0,01t}\right)\dt\right)+20\times 600 \\
    &=10\left(-60~000\e^{-6}+100\int_0^{600}\e^{-0,01t}\dt\right)+12~000 \\
    &=10\left(-60~000\e^{-6}+100\left[-100\e^{-0,01t}\right]_0^{600}\right)+12~000 \\
    &=10\left(-60~000\e^{-6}-10~000\e^{-6}+10~000\right)+12~000 \\
    &=112~000-700~000\e^{-6}\end{align*}$
    $\quad$

Partie 3 : évaluation

  • Appareil A

    La température maximale semble environ égale à $350$ °C.
    La température maximale est atteinte en $200$ minutes, donc en plus de $2$ heures.
    La température moyenne durant les $10$ premières heures est environ égale à $252$°C.
    La température du foyer dépasse $300$°C pendant environ $240$ minutes, c’est-à-dire $4$ heures.
    $\quad$
    L’appareil A obtient donc trois étoiles.

  • Appareil B

    La température maximale semble environ égale à $388$ °C.
    La température maximale est atteinte en $100$ minutes, donc en moins de $2$ heures.
    La température moyenne durant les $10$ premières heures est environ égale à :
    $\begin{align*} \dfrac{1}{600}\int_0^{600} g(t)\dt&=\dfrac{112~000-700~000\e^{-6}}{600} \\
    &\approx 183 \text{°C}\end{align*}$
    La température du foyer dépasse $300$°C pendant environ $193-43=150$ minutes, c’est-à-dire $2$ heures et demi.
    $\quad$
    L’appareil B obtient donc trois étoiles.

 

Ex 4

Exercice 4

  1. On a $OA=200$
    L’avion n°1 parcourt $200$ m pour relier le point $0$ au point $A$.
    $\quad$
    On a :
    $\begin{align*} BC&=\sqrt{(87+33)^2+(75-75)^2+(-116-44)^2}\\
    &=\sqrt{40~000} \\
    &=200\end{align*}$
    L’avion n°2 parcourt également $200$ m pour relier le point $B$ au point $C$.
    $\quad$
    Ils volent tous les deux à la même vitesse et parcourent la même distance.
    L’avion n°2 mettra autant de temps à parcourir le segment $[BC]$ que l’avion n°1 à parcourir le segment $[OA]$.
    $quad$
  2. On a $\vect{OA}\begin{pmatrix}0\\200\\0\end{pmatrix}$ et $\vect{BC}\begin{pmatrix}120\\0\\-160\end{pmatrix}$.
    Ainsi une représentation paramétrique de $(OA)$ est $\begin{cases}x=0\\y=200t\\z=0\end{cases} \quad  t\in \R$ et une représentation paramétrique de $(BC)$ est $\begin{cases} x=-33+120k\\y=75\\z=44-160k\end{cases} \quad k\in \R$.
    Résolvons le système :
    $\begin{align*} \begin{cases}x=0\\y=200t\\z=0\\x=-33+120k\\y=75\\z=44-160k\end{cases}&\ssi \begin{cases}x=0\\y=200t\\z=0\\-33+120k=0\\75=200t\\44-160k=0\end{cases} \\
    &\ssi \begin{cases}x=0\\y=200t\\z=0\\120k=33\\t=\dfrac{75}{200}\\[2mm]160k=44\end{cases}\\
    &\ssi \begin{cases}x=0\\y=75\\z=0\\k=0,275\\t=0,375\end{cases}\end{align*}$
    Les droites $(OA)$ et $(BC)$ sont sécantes au point de coordonnées $(0;75;0)$.
    Les trajectoires des deux avions se coupent.
    $\quad$
  3. Les deux avions atteignent le point d’intersection des deux trajectoires à des temps différents $0,375$ seconde pour l’avion n°1 et $0,275$ seconde pour l’avion B.
    Mathématiquement les deux avions ne se percutent pas lors de ce passage.
    Cependant, l’écart de $0,1$ seconde entre les deux temps est relativement court et ne laisse pas une marge importante de sécurité (chaque avion parcourt $20$ m durant en $0,1$ seconde).
    $\quad$

Énoncé

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même
incomplète ou non fructueuse, qu’il aura développée.
La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses seront valorisées.

 

Exercice 1     (4 points)

Pour chacune des affirmations suivantes, indiquer si elle est juste ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

Affirmation 1 : Soit $(E)$ l’équation différentielle : $y’-2y=-6x+1$
La fonction $f$ définie sur $\R$ par $f(x)=\e^{2x}-6x+1$ est une solution de l’équation différentielle $(E)$.

$\quad$

Affirmation 2 : On considère la suite $\left(u_n\right)$ définie sur $\N$ par

$$u_n=1+\dfrac{3}{4}+\left(\dfrac{3}{4}\right)^2+\cdots+\left(\dfrac{3}{4}\right)^n$$

La suite $\left(u_n\right)$ a pour limite $+\infty$.

$\quad$

Affirmation 3 : On considère la suite $\left(u_n\right)$ définie dans l’affirmation 2.
L’instruction $\text{suite(50)}$ ci-dessous, écrite en langage Python, renvoie $u_{50}$.

 

$\quad$

Affirmation 4 : Soit $a$ un réel et $f$ la fonction définie sur $] 0 ;+\infty[$ par $$ f(x)=a \ln (x)-2 x$$

Soit $C$ la courbe représentative de la fonction $f$ dans un repère $\Oij$.
Il existe une valeur de $a$ pour laquelle la tangente à $C$ au point d’abscisse $1$ est parallèle à l’axe des abscisses.

$\quad$

$\quad$

Exercice 2     (5 points)

Au cours d’une séance, un joueur de volley-ball s’entraîne à faire des services. La probabilité qu’il réussisse le premier service est égale à $0,85$.

On suppose de plus que les deux conditions suivantes sont réalisées :

  • si le joueur réussit un service, alors la probabilité qu’il réussisse le suivant est égale à $0,6$ ;
  • si le joueur ne réussit pas un service, alors la probabilité qu’il ne réussisse pas le suivant est égale à $0,6$ .

Pour tout entier naturel $n$ non nul, on note $R_n$ l’évènement « le joueur réussit le $n$-ième service » et $\conj{R_n}$ l’évènement contraire.

Partie A :

On s’intéresse aux deux premiers services de l’entraînement.

  1. Représenter la situation par un arbre pondéré.
    $\quad$
  2. Démontrer que la probabilité de l’événement $R_2$ est égale à $0,57$.
    $\quad$
  3. Sachant que le joueur a réussi le deuxième service, calculer la probabilité qu’il ait raté le premier.
    $\quad$
  4. Soit $Z$ la variable aléatoire égale au nombre de services réussis au cours des deux premiers services.
    a. Déterminer la loi de probabilité de $Z$ (on pourra utiliser l’arbre pondéré de la question 1).
    $\quad$
    b. Calculer l’espérance mathématique $E(Z)$ de la variable aléatoire $Z$. Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

Partie B :
On s’intéresse maintenant au cas général.
Pour tout entier naturel $n$ non nul, on note $x_n$ la probabilité de l’évènement $R_n$.

  1. a. Donner les probabilités conditionnelles $P_{R_n}\left(R_{n+1}\right)$ et $P_{\conj{R_n}}\left(\conj{R_{n+1}}\right)$.
    $\quad$
    b. Montrer que, pour tout entier naturel non nul $n$, on a : $x_{n+1}=0,2 x_n+0,4$.
    $\quad$
  2. Soit la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ non nul par $u_n=x_n-0,5$
    a. Montrer que la suite $\left(u_n\right)$ est une suite géométrique.
    $\quad$
    b. Déterminer l’expression de $x_n$ en fonction de $n$. En déduire la limite de la suite $\left(x_n\right)$.
    $\quad$
    c. Interpréter cette limite dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     (7 points)

Un organisme certificateur est missionné pour évaluer deux appareils de chauffage, l’un d’une marque A et l’autre d’une marque B.

Les parties 1 et 2 sont indépendantes.

Partie 1 : appareil de la marque A

À l’aide d’une sonde, on a mesuré la température à l’intérieur du foyer d’un appareil de la marque A.
On a représenté, ci-dessous, la courbe de la température en degrés Celsius à l’intérieur du foyer en fonction du temps écoulé, exprimé en minutes, depuis l’allumage du foyer.

Par lecture graphique :

  1. Donner le temps au bout duquel la température maximale est atteinte à l’intérieur du foyer.
    $\quad$
  2. Donner une valeur approchée, en minutes, de la durée pendant laquelle la température à l’intérieur du foyer dépasse $300$ °C.
    $\quad$
  3. On note $f$ la fonction représentée sur le graphique.
    Estimer la valeur de $\dfrac{1}{600}\int_0^{600} f(t)\dt$. Interpréter le résultat.
    $\quad$

Partie 2: étude d’une fonction

Soit la fonction $g$ définie sur l’intervalle $\left[0 ;+\infty\right[$ par $g(t)=10 t \e^{-0,01 t}+20$

  1. Déterminer la limite de $g$ en $+\infty$.
    $\quad$
  2. a. Montrer que pour tout $t \in\left[0 ;+\infty\right[$ , $g'(t)=(-0,1 t+10) \e^{-0,01 t}$.
    $\quad$
    b. Étudier les variations de la fonction $g$ sur $[0 ;+\infty[$ et construire son tableau de variations.
    $\quad$
  3. Démontrer que l’équation $g(t)=300$ admet exactement deux solutions distinctes sur $[0 ;+\infty[$. En donner des valeurs approchées à l’unité.
    $\quad$
  4. À l’aide d’une intégration par parties, calculer $\ds \int_0^{600} g(t) \dt$.
    $\quad$

Partie 3 : évaluation

Pour un appareil de la marque B, la température en degrés Celsius à l’intérieur du foyer $t$ minutes après l’allumage est modélisée sur $[0 ; 600]$ par la fonction $g$.

L’organisme certificateur attribue une étoile par critère validé parmi les quatre suivants :

  • Critère 1 : la température maximale est supérieure à $320$ °C.
  • Critère 2 : la température maximale est atteinte en moins de $2$ heures.
  • Critère 3 : la température moyenne durant les $10$ premières heures après l’allumage dépasse $250$ °C.
  • Critère 4 : la température à l’intérieur du foyer ne doit pas dépasser $300$ °C pendant plus de $5$ heures.

Chaque appareil obtient-il exactement trois étoiles ? Justifier votre réponse.

$\quad$

$\quad$

Exercice 4     (7 points)

On modélise un passage de spectacle de voltige aérienne en duo de la manière suivante :

  • on se place dans un repère orthonormé $\Oijk$, une unité représentant un mètre ;
  • l’avion n°1 doit relier le point $O$ au point $A(0 ; 200 ; 0)$ selon une trajectoire rectiligne, à la vitesse constante de $200$ m/s;
  • l’avion n°2 doit, quant à lui, relier le point $B(-33 ; 75 ; 44)$ au point $C(87 ; 75 ;-116)$ également selon une trajectoire rectiligne, et à la vitesse constante de $200$ m/s;
  • au même instant, l’avion n°1 est au point $O$ et l’avion n°2 est au point $B$.

  1. Justifier que l’avion n°2 mettra autant de temps à parcourir le segment $[BC]$ que l’avion n°1 à parcourir le segment $[OA]$.
    $\quad$
  2. Montrer que les trajectoires des deux avions se coupent.
    $\quad$
  3. Les deux avions risquent-ils de se percuter lors de ce passage ?
    $\quad$

$\quad$

Bac – Métropole – jour 2 (non utilisé) – juin 2024

Métropole – 20 juin 2024

Spécialité maths – Sujet 2 (non utilisé) – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(R\cap F)&=P(R)\times P_R(F)\\
    &=0,6_times 0,47 \\
    &=0,282\end{align*}$
    La probabilité que le client interrogé soit un client régulier et qu’il ait acheté la carte de fidélité est égale à $0,282$.
    $\quad$
    c. $\left(R,\conj{R}\right)$ est un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*}P(F)=P(R\cap F)+P\left(\conj{R}\cap F\right) &\ssi 0,38=0,282+P\left(\conj{R}\right)\times P_{\conj{R}}(F) \\
    &\ssi 0,098=0,4\times P_{\conj{R}}(F) \\
    &\ssi  P_{\conj{R}}(F)=0,245\end{align*}$
    La probabilité que le client ait acheté la carte de fidélité sachant que ce n’est pas un client régulier est égale à $0,245$.
    $\quad$
    d. On a  :
    $\begin{align*} P_F(R)&=\dfrac{P(R\cap F)}{P(F)} \\
    &=\dfrac{0,282}{0,38} \\
    &\approx 0,742 \\
    &<0,8\end{align*}$
    L’affirmation est donc fausse.
    $\quad$
  2. a. On répète $20$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,38$.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=0,38$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X\pg 5)&=1-P(X<5) \\
    &=1-P(X\pp 4) \\
    &\approx 0,927\end{align*}$
    La probabilité qu’au moins $5$ clients aient acheté la carte de fidémité dans un échantillon de $20$ est environ égale à $0,927$.
    $\quad$

Partie B

  1. $X_2$ suit la loi binomiale de paramètres $1~000$ et $0,47$. Donc :
    $\begin{align*} E\left(X_2\right)&=1~000\times 0,47 \\
    &=470\end{align*}$
    En moyenne $470$ clients sur les $1~000$ interrogés ont acheté la carte de fidélité.
    $\quad$
  2. $Z$ modélise la somme moyenne, en euros, offerte aux $1~000$ clients interrogés.
    On a, par linéarité de l’espérance :
    $\begin{align*}E(Z)=\dfrac{1}{1~000} E(Y) \\
    &=\dfrac{1}{1~000}\left(E\left(Y_1\right)+E\left(Y_2\right)\right)\\
    &=\dfrac{1}{1~000}\left(30~000+50E\left(X_2\right)\right) \\
    &=\dfrac{1}{1~000}(30~000+23~500) \\
    &=\dfrac{53~500}{1~000} \\
    &=53,5\end{align*}$
    $\quad$
    On a :
    $\begin{align*} V\left(X_2\right)&=1~000\times 0,47\times 0,53 \\
    &=249,1\end{align*}$
    Par conséquent :
    $\begin{align*} V\left(Y_2\right)&=50^2V\left(X_2\right) \\
    &=2~500\times 249,1 \\
    &=622~750\end{align*}$
    $Y_1$ et $Y_2$ sont indépendantes donc :
    $\begin{align*} V(Z)&=\dfrac{1}{1~000^2}V(Y)\\
    &=\dfrac{1}{1~000~000}\left(V\left(Y_1\right)+V\left(Y_2\right)\right) \\
    &=\dfrac{722~750}{1~000~000}\\
    &=0,72~275\end{align*}$
    $\quad$
  3. On a :
    $\begin{align*} P(51,7<Z<55,3)&=P\left(-1,8<Z-E(Z)<1,8\right) \\
    &=P\left(\abs{Z-E(Z)}<1,8\right) \\
    &=1-P\left(\abs{E-E(Z)}\pg 1,8\right) \\
    &\pg 1-\dfrac{V(Z)}{1,8^2} \qquad \text{(inégalité de Bienaymé-Tchebychev)} \end{align*}$
    Or $1-\dfrac{V(Z)}{1,8^2}\approx 0,777>0,75$.
    La probabilité que $Z$ soit strictement compris entre $51,7$ et $55,3$ euros est supérieure à $0,75$.
    $\quad$

Ex 2

Exercice 2

  1. On a $\vect{AB}\begin{pmatrix}6\\-3\\6\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}6\\-6\\0\end{pmatrix}$.
    Ces deux vecteurs ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    D’une part $\vec{n}.\vect{AB}=12-6-6=0$.
    D’autre part $\vec{n}.\vect{AC}=12-12+0=0$.
    Ainsi $\vec{n}$  est orthogonal à deux vecteurs non colinéaires du plan $(ABC)$. C’est donc un vecteur normal au plan $(ABC)$.
    Affirmation 1 vraie.
    $\quad$
  2. Si on prend $t=-1$ dans la représentation paramétrique fournie on obtient le point de coordonnées $(0;4;1)$ c’est-à-dire le point $A$.
    Si on prend $t=2$ dans la représentation paramétrique fournie on obtient le point de coordonnées $(6;1;5)$ c’est-à-dire le point $B$.
    Il s’agit donc bien d’une représentation paramétrique de la droite $(AB)$.
    Affirmation 2 vraie.
    $\quad$
  3. On a $\vect{AB}\begin{pmatrix}6\\-3\\6\end{pmatrix}$ est normal au plan $\mathcal{P}$.
    Un vecteur normal au plan d’équation $2x+2y-z-9=0$ est $\vec{u}\begin{pmatrix}2\\2\\-1\end{pmatrix}$.
    Or $\dfrac{6}{2}=3\neq \dfrac{-3}{2}$.
    Ainsi $\vect{AB}$ et $\vec{u}$ ne sont pas colinéaires.
    Affirmation 3 fausse.
    $\quad$
  4. Un vecteur directeur de $\mathcal{D}$ est $\vec{a}\begin{pmatrix}1\\1\\1\end{pmatrix}$ et un vecteur directeur de $\mathcal{D}’$ est $\vec{b}\begin{pmatrix}2\\-1\\2\end{pmatrix}$
    Or $\dfrac{2}{1}\neq \dfrac{-1}{1}$.
    Ces deux vecteurs ne sont pas colinéaires par conséquent les deux droites de ne sont pas parallèles.
    Résolvons le système :
    $\begin{align*} \begin{cases} x=3+t\\y=1+t\\z=2+t\\x=2t’\\y=4-t’\\z=-1+2t’\end{cases}&\ssi \begin{cases} x=3+t\\y=1+t\\z=2+t\\3+t=2t’\\1+t=4-t’\\2+t=-1+2t’\end{cases} \\
    &\ssi \begin{cases} x=3+t\\y=1+t\\z=2+t\\t=2t’-3\\1+2t’-3=4-t’\\2+2t’-3=-1+2t’\end{cases} \\
    &\ssi \begin{cases} x=3+t\\y=1+t\\z=2+t\\t=2t’-3\\3t’=6\\-1=-1\end{cases} \\
    &\ssi \begin{cases} x=4\\y=2\\z=3\\t=1\\t’=2\end{cases} \end{align*}$
    $\mathcal{D}$ et $\mathcal{D}’$ sont sécantes au point de coordonnées $(4;2;3)$.
    Affirmation 4 fausse
    $\quad$

$\quad$

 

Ex 3

Exercice 3

Partie A : étude de la suite $\boldsymbol{\left(u_n\right)}$ dans le cas $\boldsymbol{1<a<2}$.

  1. a.  Soit $n$ un entier naturel.
    $\begin{align*} u_{n+1}-2&={u_n}^2-2u_n+2-2 \\
    &=u_n\left(u_n-2\right)\end{align*}$
    $\quad$
    b. Soit $n$ un entier naturel.
    D’une part :
    $\begin{align*} u_{n+1}-u_n&={u_n}^2-2u_n+2-u_n \\
    &={u_n}^2-3u_n+2\end{align*}$
    D’autre part :
    $\begin{align*} \left(u_n-1\right)\left(u_n-2\right) &={u_n}^2-2u_n-u_n+2 \\
    &={u_n}^2-3u_n+2\end{align*}$
    Donc $u_{n+1}-u_n=\left(u_n-1\right)\left(u_n-2\right)$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $P(n):~u_n<2$.
    Initialisation : $u_0=a<2$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    Or $u_n<2 \ssi u_n-2<0$.
    Par hypothèse, $u_n>1>0$ donc $u_n\left(u_n-2\right)<0$ c’est-à-dire $u_{n+1}-2<0$.
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$, on a $u_n<2$.
    $\quad$
    b. On a $u_n>1\ssi u_n-1>0$ et $u_n<2\ssi u_n-2<0$ donc $\left(u_n-1\right)\left(u_n-2\right)<0\ssi u_{n+1}-u_n<0$.
    La suite $\left(u_n\right)$ est donc décroissante et minorée par $1$. D’après le théorème de la limite monotone elle converge vers un réel $\ell$ appartenant à $[0;1]$.
    Pour tout entier naturel $n$ on a $u_{n+1}=f\left(u_n\right)$ où $f$ est la fonction définie sur $\R$ par $f(x)=x^2-2x+2$. Cette fonction est continue sur $\R$ en tant que fonction polynôme.
    Ainsi $\ell$ est solution de l’équation :
    $\begin{align*} f(x)=x&\ssi x^2-2x+2=x \\
    &\ssi x^2-3x+2=0 \\
    &\ssi (x-1)(x-2)=0\end{align*}$
    Ainsi $\ell$ vaut $1$ ou $2$.
    Or $\left(u_n\right)$ est décroissante et $u_0=a<2$.
    Ainsi $\ell=1$.
    $\quad$

Partie B : étude dans le cas particulier $\boldsymbol{a=2}$.

  1.  $\text{u(2,1)}$ renvoie la valeur de $u_1$ et $\text{u(2,2)}$ renvoie la valeur de $u_2$.
    Or $2^2-2\times 2+2=2$.
    Ainsi les deux appels vont renvoyer la même valeur $2$.
    $\quad$
  2. On peut donc conjecturer que si $a=2$ alors la suite $\left(u_n\right)$ est constante égale à $2$.
    $\quad$

Partie C : étude dans le cas général.

  1.  a. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\ln\left(u_{n+1}-1\right) \\
    &=\ln\left({u_n}^2-2u_n+1\right) \\
    &=\ln\left(\left(u_n-1\right)^2\right) \\
    &=2\ln\left(u_n-1\right) \\
    &=2v_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $2$ et de premier terme $v_0=\ln(a-1)$.
    $\quad$
    b. Par conséquent, pour tout entier naturel $n$ on a $v_n=\ln(a-1)\times 2^n$.
    La fonction exponentielle est strictement croissante sur $\R$ et $v_n=\ln\left(u_n-1\right)$.
    Par conséquent $u_n-1=\e^{v_n} \ssi u_n=1+\e^{v_n}$.
    Ainsi $u_n=1+\e^{2^n\times \ln(a-1)}$.
    $\quad$
  2. $2>1$ donc $\lim\limits_{n\to +\infty} 2^n=+\infty$.
    $\bullet$ Si $a\in ]1;2[$ alors, d’après la partie A, $\lim\limits_{n\to +\infty} u_n=1$.
    $\bullet$ Si $a=2[$ alors, d’après la partie B, $\lim\limits_{n\to +\infty} u_n=2$.
    $\bullet$ Si $a>2$ alors $a-1>1$ et $\ln(a-1)>0$. Ainsi $\lim\limits_{n\to +\infty} 2^n \times \ln(a-1)=+\infty$. Or $\lim\limits_{x\to +\infty} \e^x=+\infty$. Donc $\lim\limits_{n\to +\infty} u_n=+\infty$.
    $\quad$

Ex 4

Exercice 4

Partie A : étude graphique

  1. a. Graphiquement $f(0)=2$
    $\quad$
    b. $f'(0)$ est égal au coefficient directeur de la droite $T$, droite passant par $M(0;2)$ et $P(2;0)$.
    Ainsi $f'(0)=\dfrac{2-0}{0-2}=-1$.
    $\quad$
  2. Graphiquement, l’équation $f(x)=0$ semble n’avoir qu’une seule solution $-2$.
    $\quad$
  3. La courbe $C_f$ semble posséder un point d’inflexion d’abscisse environ égale à $0$.
    La fonction $f$ n’est donc pas convexe sur $\R$.
    $\quad$
  4. La fonction $f$ semble être négative sur $]-\infty;-2]$ et positive sur $[-2;+\infty[$.
    Ses primitives sont donc décroissantes sur $]-\infty;-2]$ et croissantes sur $[-2;+\infty[$.
    Seule la courbe $2$ semble vérifier ces variations.
    La courbe $2$ peut donc représenter une primitive de la fonction $f$ sur $\R$.
    $\quad$

Partie B : recherche d’une expression algébrique

  1. $f(0)=2\ssi b\e^0=2 \ssi b=2$.
    $\quad$
  2.   $f(-2)=0\ssi (-2a+b)\e^{-2\lambda}=0 \ssi -2a+b=0$ car $\e^t>0$ pour tout $t\in \R$.
    Or $b=2$ ainsi $-2a+2=0\ssi 2(1-a)=0 \ssi a=1$.
    $\quad$
  3. Pour tout réel $x$ on a donc $f(x)=(x+2)\e^{\lambda x}$.
    La fonction $f$ est dérivable sur $\R$ par hypothèse.
    Ainsi, pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\e^{\lambda x}+\lambda(x+2)\e^{\lambda x} \\
    &=(1+\lambda x+2\lambda)\e^{\lambda x} \end{align*}$
    Or $f'(0)=-1$ d’après la partie A.
    Donc $(1+2\lambda)\e^0=-1 \ssi 2\lambda+1=-1 \ssi 2\lambda =-2 \ssi \lambda =-1$.
    Par conséquent, pour tout réel $x$ on a $f(x)=(x+2)\e^{-x}$.
    $\quad$

Partie C : étude algébrique

  1. $\lim\limits_{x\to -\infty} x+2=-\infty$
    $\lim\limits_{x\to -\infty} -x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to -\infty} \e^{-x}=+\infty$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$.
    $\quad$
  2. Pour tout réel $x$ on a $\e^{-x}>0$. Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0\ssi x<-1$.
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
    Pour tout réel $x$ on a $f(x)=x\e^{-x}+2\e^{-x}$.
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$ et, par croissances comparées, $\lim\limits_{x\to +\infty} x\e^{-x}=0$. Ainsi $\lim\limits_{x\to +\infty} f(x)=0$.
    $\quad$
  3. a. La fonction $f’$ est dérivable sur $\R$ par hypothèse.
    Pour tout réel $x$ on a :
    $\begin{align*} f\dsec(x)&=-\e^{-x}-(-x-1)\e^{-x} \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    La fonction exponentielle étant strictement positiver sur $\R$ le signe de $f\dsec(x)$ ne dépend que de celui de $x$.
    Ainsi :
    $\bullet$ pour tout $x<0$ on a $f\dsec(x)<0$ ;
    $\bullet$ pour tout $x>0$ on a $f\dsec(x)>0$ ;
    $\bullet$ $f\dsec(0)=0$.
    La fonction $f$ est donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$.
    $\quad$
    b. D’après la réponse précédente, la courbe $C_g$ possède un unique point d’inflexion de coordonnées $(0;2)$.
    $\quad$
  4. a. On réalise une intégration par parties à l’aides des fonctions $u$ et $v$ de classe $C^1$ sur $[-2;t]$ définies par :
    $$\begin{array}{lll} u(x)=x+2&\phantom{123}&u'(x)=1 \\
    v(x)=-\e^{-x}&&v'(x)=\e^{-x}\end{array}$$
    Par conséquent :
    $\begin {align*}I(t)&=\int_{-2}^t f(x)\dx \\
    &=\Big[-(x+2)\e^{-x}\Big]_{-2}^t-\int_{-2}^t -\e^{-x}\dx \\
    &=-(t+2)\e^{-t}-\Big[\e^{-x}\Big]_{-2}^t \\
    &=(-t-2)\e^{-t}-\left(\e^{-t}-\e^2\right) \\
    &=(-t-2-1)\e^{-t}+\e^2 \\
    &=(-t-3)\e^{-t}+\e^2\end{align*}$
    $\quad$
    b. On a donc, pour tout $t\pg 0$, $I(t)=-t\e^{-t}-3\e^{-t}+\e^2$.
    Or $\lim\limits_{t\to +\infty} 3\e^{-t}=0$ et, par croissances comparées, $\lim\limits_{t\to +\infty} t\e^{-t}=0$. Donc $\lim\limits_{t\to +\infty} I(t)=\e^2$.
    La fonction $f$ est continue sur $\R$ (car dérivable) et positive sur $[-2;+\infty[$.
    Ainsi $I(t)$ est l’aire de la surface comprise entre l’axe des abscisses, la courbe $C_f$ et les droites d’équation $x=-2$ et $x=t$.
    Par conséquent la surface comprise entre l’axe des abscisses, la courbe $C_f$ et à droite de la droite d’équation $x=-2$ est non limitée et son aire est finie (elle vaut $\e^2$.
    $\quad$

Énoncé

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées

Exercice 1     (5 points)

Les parties A et B sont indépendantes.

Partie A

Une société de vente en ligne procède à une étude du niveau de fidélité de ses clients. Elle définit pour cela comme «régulier » un client qui a fait des achats chaque année depuis trois ans. Elle constate que $60\%$ de ses clients sont des clients réguliers, et que parmi eux, $47\%$ ont acheté la carte de fidélité.
Par ailleurs, parmi l’ensemble de tous les clients de la société, $38\%$ ont acheté la carte de fidélité.

On interroge au hasard un client et on considère les événements suivants :

  • $R$ : « le client est un client régulier » ;
  • $F$ « le client a acheté la carte de fidélité ».

Pour un événement $E$ quelconque, on note $\conj{E}$ son événement contraire et $P(E)$ sa probabilité.

  1. a. Reproduire l’arbre ci-dessous et compléter les pointillés.
    $\quad$

    $\quad$
    b. Calculer la probabilité que le client interrogé soit un client régulier et qu’il ait acheté la carte de fidélité.
    $\quad$
    c. Déterminer la probabilité que le client ait acheté la carte de fidélité sachant que ce n’est pas un client régulier.
    $\quad$
    d. Le directeur du service des ventes affirme, que parmi les clients qui ont acheté la carte de fidélité, plus de $80\%$ sont des clients réguliers. Cette affirmation est-elle exacte ?
    $\quad$
  2. On choisit un échantillon de $20$ clients de la société sélectionnés de manières indépendante.
    On suppose que ce choix s’assimile à un tirage avec remise.
    On note $X$ la variable aléatoire qui à chaque échantillon de $20$ clients associe le nombre de clients ayant acheté la carte de fidélité parmi eux. On rappelle que $P(F)=0,38$.
    les valeurs des probabilités demandées seront arrondies à $10^{-3}$ près.
    a. Quelle loi de probabilité suit la variable aléatoire $X$ ? Justifier.
    $\quad$
    b. Déterminer la probabilité qu’au moins $5$ clients aient acheté la carte de fidélité dans un échantillon de $20$.
    $\quad$

Partie B

La société demande à un institut de sondage de faire une enquête sur le profil de ses clients réguliers. L’institut a élaboré un questionnaire en ligne constitué d’un nombre valable de questions.
On choisit au hasard un échantillon de $1~000$ clients réguliers, à qui le questionnaire est proposé. On considère que ces $1~000$ clients répondent.

  • Pour les remercier, la société offre un bon d’achat à chacun des clients de l’échantillon. Le montant de ce bon d’achat, dépend du nombre de questions posées au client.
  • La société souhaite récompenser particulièrement les clients de l’échantillon qui ont acheté une carte de fidélité et, en plus du bon d’achat, offre à chacun d’eux une prime d’un montant de $50$ euros versée sur la carte de fidélité.

On note $Y_1$ la variable aléatoire qui, à chaque échantillon de $1~000$ clients réguliers, associe le total, en euros, des montants du bon d’achat des $1~000$ clients. On admet que son espérance $E\left(Y_1\right)$ est égale à $30~000$ et que sa variance $V\left(Y_1\right)$ est égale à $100~000$.

On note $X_2$ la variable aléatoire qui, à chaque échantillon de $1~000$ clients réguliers, associe le nombre de clients ayant acheté la carte de fidélité parmi eux, et on note $Y_2$ la variable aléatoire qui, à chaque échantillon de $1~000$ clients, associe le total en euros des montants de la prime de fidélité versée.
On admet que $X_2$ suit la loi binomiale de paramètres $1~000$ et $0,47$ et que $Y_2=50X_2$.

  1. Calculer l’espérance $E\left(X_2\right)$ de la variable $X_2$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

On note $Y=Y_1+Y_2$ la variable aléatoire égale au total général, en euros, des montants offerts (bon d’achat et prime de fidélité) aux $1~000$ clients. On admet que les variables aléatoires $Y_1$ et $Y_2$ sont indépendantes.

On note $Z$ la variable aléatoire définie par $Z=\dfrac{Y}{1~000}$.

  1. Préciser ce que modélise la variable $Z$ dans le contexte de l’exercice. Vérifier que son espérance $E(Z)$ est égale à $53,5$ et que sa variance $V(Z)$ est égale à $0,722~75$.
    $\quad$
  2. À l’aide de l’inégalité de Bienaymé-Tchebychev, vérifier que la probabilité que $Z$ soit strictement compris entre $51,7$ euros et $55,3$ euros est supérieure à $0,75$.
    $\quad$

$\quad$

Exercice 2     (4 points)

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse ne rapporte aucun point.
Les quatre questions de cet exercice sont indépendantes.

Dans l’espace rapporté à un repère orthonomé $\Oijk$, on considère les points $A(0;4;-1)$, $B(6;1;5)$ et $C(6;2;-1)$. On admet que les points $A$, $B$ et $C$ ne sont pas alignés.

Affirmation 1 : Le vecteur $\vec{n}\begin{pmatrix} 2\\2\\-1\end{pmatrix}$ est un vecteur  normal au plan $(ABC)$.
$\quad$

Affirmation 2 : Une représentation paramétrique de la droite $(AB)$ est $\begin{cases} x=2+2t\\y=3-t\\z=1+2t\end{cases} ~~$ où $t\in \R$.
$\quad$

Affirmation 3 : Une équation cartésienne du plan $\mathcal{P}$ passant par le point $C$ et orthogonal à la droite $(AB)$ est $2x+2y+z+9=0$.
$\quad$

On considère les droite $\mathcal{D}$ et $\mathcal{D}’$ dont on donne ci-dessous une représentation paramétrique $$\mathcal{D}:~\begin{cases} x=3+t\\y=1+t\\z=2+t\end{cases}~~\text{où } t\in \R\qquad \mathcal{D}’:~\begin{cases} x=2t’\\y=4-t’\\z=-1+2t’\end{cases}~~ \text{où } t’\in \R$$
Affirmation 4 : $\mathcal{D}$ et $\mathcal{D}’$ ne sont pas coplanaires.
$\quad$

$\quad$

Exercice 3     (5 points)

Soit $a$ un nombre réel strictement supérieur à $1$.

On considère la suite $\left(u_n\right)$ définie par $u_0=a$ et, pour tout entier naturel $n$ : $$u_{n+1}={u_n}^2-2u_n+2$$
On admet que pour tout entier naturel $n$, $u_n>1$.

L’objectif de cet exercice est d’étudier la suite $\left(u_n\right)$ pour différentes valeurs du nombre réel $a$.

Partie A : étude de la suite $\boldsymbol{\left(u_n\right)}$ dans le cas $\boldsymbol{1<a<2}$.

  1. a. Montrer que, pour tout entier naturel $n$, on a : $u_{n+1}-2=u_n\left(u_n-2\right)$.
    $\quad$
    b. Montrer que, pour tout entier naturel $n$, on a : $u_{n+1}-u_n=\left(u_n-1\right)\left(u_n-2\right)$.
    $\quad$
  2. Dans cette question, on pourra utiliser les égalités établies dans la question précédente.
    a. En utilisant un raisonnement par récurrence démontrer que, pour tout entier naturel $n$ : $$u_n<2$$
    $\quad$
    b. Montrer que la suite $\left(u_n\right)$ est convergente et déterminer sa limite.
    $\quad$

Partie B : étude dans le cas $\boldsymbol{a=2}$.

  1. On donne ci-dessous la fonction $\text{u}$ écrite en langage Python.

    Déterminer les valeurs renvoyées par le programme lorsque l’on saisit $\text{u(2,1)}$ et $\text{u(2,2)}$ dans la console Python.
    $\quad$
  2. Quelle conjecture peut-on formuler concernant la suite $\left(u_n\right)$ dans le cas où $a=2$ ? On admettra ce résultat sans démonstration.
    $\quad$

Partie C : étude dans le cas général.

  1. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par $v_n=\ln\left(u_n-1\right)$.
    a. Montrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $2$ dont on précisera le premier terme en fonction de $a$.
    $\quad$
    b. En déduire que, pour tout entier naturel $n$, $u_n=1+\e^{2^n\times \ln(a-1)}$.
    $\quad$
  2. Déterminer, suivant les valeurs du réel $a$ strictement supérieur à $1$, la limite de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 4     (5 points)

Soit $f$ une fonction définie et deux fois dérivable sur $\R$. On note $f’$ sa fonction dérivée et $f\dsec$ sa dérivée seconde.
Dans le repère orthonormé ci-dessous ont été représentés :

  • la courbe représentative $C_f$ de la fonction $f$ ;
  • la tangente $T$ à $C_f$ en son point $N(0;2)$ ;
  • le point $M(-2;0)$ appartenant à $C_f$ et $P(2;0)$ appartenant à la tangente $T$.

On précise que la fonction $f$ est strictement positive sur l’intervalle $[0;+\infty[$ et qu’elle est strictement croissante sur l’intervalle $]-\infty;-1]$.

Partie A : étude graphique.

On répondra aux questions suivantes en utilisant le graphique.

  1. a. Donner $f(0)$.
    $\quad$
    b. Déterminer $f'(0)$.
    $\quad$
  2. Résoudre l’équation $f(x)=0$.
    $\quad$
  3. La fonction $f$ est-elle convexe sur $\R$ ? Justifier.
    $\quad$
  4. Parmi les courbes suivantes, indiquer laquelle peut représenter une primitive de $f$ sur $\R$. Justifier.
    $\quad$

    $\quad$

Partie B : recherche d’une expression algébrique.

On admet que la fonction $f$ est de la forme $f(x)=(ax+b)\e^{\lambda x}$ où $a$, $b$ et $\lambda$ sont des constantes réelles. pour répondre aux questions suivantes, on utilisera les résultats de la partie A.

  1. Justifier que $b=2$.
    $\quad$
  2. Justifier que $-2a+b=0$ puis en déduire la valeur de $a$.
    $\quad$
  3. Déterminer une expression algébrique de $f$. Justifier.
    $\quad$

Partie C : étude algébrique.

On admet que la fonction $f$ est définie sur $\R$ par $f(x)=(x+2)\e^{-x}$.

  1. Déterminer la limite de $f$ en $-\infty$.
    $\quad$
  2. On admet que $f'(x)=(-x-1)\e^{-x}$. Dresser le tableau de variations complet de $f$. Justifier.
    $\quad$
  3. a. Étudier la convexité de $f$.
    $\quad$
    b. Préciser les coordonnées des éventuels points d’inflexion de la courbe $C_f$.
    $\quad$
  4. pour tout nombre réel $t\pg 0$, on pose : $$I(t)=\int_{-2}^t f(x)\dx$$
    a. En utilisant une intégration par parties, monter que $I(t)=(-t-3)\e^{-t}+\e^2$.
    $\quad$
    b. En déduire un exemple de surface non limitée dont l’aire est finie.
    $\quad$

$\quad$

 

Bac – Métropole – jour 1 – juin 2024

Métropole – 19 juin 2024

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $\bullet$ D’après les limites composées $\lim\limits_{x\to +\infty}x\e^{-x}=0$. Donc $\lim\limits_{x\to +\infty}f(x)=0$.
    Par conséquent, l’axe des abscisses est une asymptote horizontale à la courbre $C_f$.
    Affirmation 1 vraie.
    $\quad$
    $\bullet$ La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*}f'(x)&=5\e^{-x}-5x\e^{-x} \\
    &=5(1-x)\e^{-x}\end{align*}$
    Par conséquent :
    $\begin{align*} f'(x)+f(x)&=5\e^{-x}-5x\e^{-x}+5x\e^{-x} \\
    &=5\e^{-x}\end{align*}$
    La fonction $f$ est bien solution de l’équation différentielle $(E)$.
    Affirmation 2 vraie
    $\quad$
  2. $\bullet$ Si on considère les suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$ définies pour tout $n\in\N$ par $u_n=-1$, $w_n=1$ et $v_n=(-1)^n$.
    On a bien $u_n\pp v_n \pp w_n$ ainsi que $\left(u_n\right)$ converge vers $-1$ et $\left(w_n\right)$ converge vers $1$.
    Or $\left(v_n\right)$ n’admet pas de limite.
    Affirmation 3 fausse
    $\quad$
    Remarque : Les deux suites $\left(u_n\right)$ et $\left(w_n\right)$ sont constantes. Il n’était pas précisé dans l’énoncé que les suites devaient être strictement monotones.
    On peut cependant le faire en considérant, pour tout entier naturel $n$, $u_n=-1-\dfrac{1}{n}$ et $w_n=1+\dfrac{1}{n}$.
    $\quad$
    $\bullet$ La suite $\left(u_n\right)$ est croissante donc, pour entier naturel $n$, on a $u_0 \pp u_n$.
    La suite $\left(w_n\right)$ est décroissante donc, pour tout entier naturel $n$, on a $w_n\pp w_0$.
    Or $u_n \pp v_n\pp w_n$ donc $u_0\pp u_n \pp v_n \pp w_n \pp w_0$.
    Affirmation 4 vraie
    $\quad$

Ex 2

Exercice 2

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. On veut calculer
    $\begin{align*} P(S\cap I)&=P(I)P_I(S) \\
    &=0,6\times 0,75 \\
    &=0,45\end{align*}$
    La probabilité que le client ait réalisé son achat sur internet et soit satisfait du service clientèle est égale à $0,45$.
    $\quad$
  3. $(I,M,G)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} P(S)&=P(S\cap I)+P(S\cap M)+P(S\cap G) \\
    &=P(I)P_I(S)+P(M)P_M(S)+P(G)P_G(S) \\
    &=0,6\times 0,75+0,3\times 0,9+0,1\times 0,8 \\
    &=0,8\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_S(I)&=\dfrac{P(S\cap I)}{P(S)} \\
    &=\dfrac{0,6\times 0,75}{0,8} \\
    &\approx 0,563\end{align*}$
    La probabilité que le client ait effectué son achat sur internet sachant qu’il est satisfait du service clientèle est environ égale à $0,563$.
    $\quad$
  5. a. On réalise de façon indépendante $30$ fois la même expérience de Bernoulli de paramètre $0,8$.
    $X$ suit donc la loi binomiale de paramètres $n=30$ et $p=0,8$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X\pg 25)&=1-P(X\pp 24) \\
    &\approx 0,428\end{align*}$
    La probabilité qu’au moins $25$ clients soient satisfaits est environ égale à $0,428$.
    $\quad$
  6. On appelle $Y$ la variable aléatoire comptant le nombre de clients satisfaits.
    Pour les mêmes raisons qu’à la question précédente, $Y$ suit la loi binomiale de paramètres $n$ et $p=0,8$.
    On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} P(Y\pp n-1) \pg 0,99 &\ssi 1-P(Y=n)\pg 0,99 \\
    &\ssi P(Y=n)\pp 0,01 \\
    &\ssi 0,8^n \pp 0,01 \\
    &\ssi n\ln(0,8) \pp \ln(0,01) \qquad \text{croissance de la fonction }\ln \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,8)} \qquad \text {car }\ln(0,8)<0 \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,8)}\approx 20,64$.
    Il faut donc avoir un échantillon d’au moins $21$ personnes.
    $\quad$
  7. a. On a :
    $\begin{align*} E(T)&=E\left(T_1+T_2\right) \\
    &=E\left(T_1\right)+E\left(T_2\right) \qquad \text{(linéarité de l’espérance)} \\
    &=7\end{align*}$
    $\begin{align*} V(T)&=V\left(T_1+T_2\right) \\
    &=V\left(T_1\right)+V\left(T_2\right) \qquad \text{(indépendance)} \\
    &=3\end{align*}$
    $\quad$
    b. $T$ possède une variance. On peut donc utiliser l’inégalité de Bienaymé-Tchebychev sur cette variable.
    On veut calculer :
    $\begin{align*} P(5\pp T\pp 9)&= P(4< T<10) \qquad (T \text{ est à valeur entière})\\
    &=P\left(-3 <T-E(T)< 3\right) \\
    &=P\left(\abs{T-E(T)} < 3\right) \\
    &\pg 1-P\left(\abs{T-E(T)} \pg 3\right) \\
    &\pg 1-\dfrac{V(T)}{3^2}  \qquad \text{(inégalité de Bienaymé-Tchebychev)}\\
    &\pg 1-\dfrac{3}{9} \\
    &\pg \dfrac{2}{3}\end{align*}$
    $\quad$

Ex 3

Exercice 3

  1. a. On a $\vect{AC}\begin{pmatrix} -5\\-5\\10\end{pmatrix}$ et $\vect{CD}\begin{pmatrix} 0\\0\\-25/2\end{pmatrix}$
    Ces deux vecteurs ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    D’une part $\vect{n_1}.\vect{AC}=-5+5+0=0$
    D’autre part $\vect{n_1}.\vect{CD}=0+0+0=0$
    Ainsi $\vect{n_1}$ est orthogonal à deux vecteurs non colinéaires du plan $(CAD)$.
    Il est donc normal au plan $(CAD)$.
    $\quad$
    b. Une équation cartésienne du plan $(CAD)$ est donc de la forme $x-y+d=0$
    Or $C(0;0;10)$ appartient à ce plan. Donc $0-0+d=0 \ssi d=0$.
    Une équation cartésienne du plan $(CAD)$ est donc $x-y=0$.
    $\quad$
  2. a. Si on prend $t=1$ dans la représentation paramétrique de la droite $\mathcal{D}$ on obtient le point de coordonnées $\left(\dfrac{5}{2};\dfrac{5}{2};0\right)$.
    De plus $\dfrac{5}{2}-\dfrac{5}{2}=0$ : Le point précédent appartient également au plan $(CAD)$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{5}{2};\dfrac{5}{2};0\right)$.
    $\quad$
    b. On a $\vect{BH}\begin{pmatrix}5/2\\-5/2\\0\end{pmatrix}=\dfrac{5}{2}\vect{n_1}$.
    Donc $\vect{BH}$ est normal au plan $(CAD)$.
    Par conséquent $H$ est le projeté orthogonal de $B$ sur le plan $(CAD)$.
    $\quad$
  3. a. $(BH)$ est orthogonal au plan $(CAD)$. Elle est donc en particulier orthogonale à la droite $(AH)$. $H$ appartient à ces deux droites. Elles sont donc perpendiculaires.
    Ainsi $ABH$ est rectangle en $H$.
    $\quad$
    b. On a :
    $\begin{align*} BH&=\sqrt{\left(\dfrac{5}{2}\right)^2+\left(-\dfrac{5}{2}\right)^2} \\
    &=\sqrt{\dfrac{25}{4}+\dfrac{25}{4}} \\
    &=\sqrt{\dfrac{50}{4}} \\
    &=\sqrt{\dfrac{25}{2}}\end{align*}$
    De plus $\vect{AH}\begin{pmatrix}-5/2\\-5/2\\0\end{pmatrix}$
    On a donc également $AH=\sqrt{\dfrac{25}{2}}$.
    Ainsi, l’aire du triangle $ABH$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{BH\times AH}{2} \\
    &=\dfrac{~\dfrac{25}{2}~}{2} \\[3mm]
    &=\dfrac{25}{4}\end{align*}$
    $\quad$
  4. a. On a $\vect{OC}\begin{pmatrix} 0\\0\\10\end{pmatrix}$
    D’une part $\vect{OC}.\vect{BH}=0+0+0=0$
    D’autre part $\vect{OC}.\vect{AH}=0+0+0=0$
    Les vecteurs $\vect{AH}$ et $\vect{BH}$ ne sont pas colinéaires car $\dfrac{~-\dfrac{5}{2}~}{\dfrac{5}{2}} \neq \dfrac{~-\dfrac{5}{2}~}{-\dfrac{5}{2}}$
    Ainsi $\vect{OC}$ est orthogonal à deux vecteurs non colinéaires du plan $(BAH)$.
    On a $\vect{OH}=\dfrac{1}{2}\vect{OA}$ donc $O$ appartient au plan $(BAH)$.
    Par conséquent $(CO)$ est la hauteur du tétraèdre $ABCH$ issue de $C$.
    $\quad$
    b. Le volume de ce tétraèdre est :
    $\begin{align*} V&=\dfrac{1}{3}\mathscr{A}\times OC \\
    &=\dfrac{1}{3}\times \dfrac{25}{4}\times 10 \\
    &=\dfrac{125}{6}\end{align*}$
    $\quad$
  5. On a $AB=5$ et $\vect{BC}\begin{align*} 0\\-5\\10\end{align*}$
    Donc :
    $\begin{align*} BC&=\sqrt{(-5)^2+10^2} \\
    &=\sqrt{125} \\
    &=5\sqrt{5}\end{align*}$
    Par conséquent, l’aire du triangle $ABC$ rectangle en $B$ est :
    $\begin{align*} \mathcal{B}&=\dfrac{AB\times BC}{2} \\
    &=\dfrac{25\sqrt{5}}{2}\end{align*}$
    Ainsi, en appelant $d$ la distance cherchée :
    $\begin{align*} V=\dfrac{125}{6}&\ssi \dfrac{1}{3}\times \mathcal{B}\times d =\dfrac{125}{6} \\
    &\ssi d=\dfrac{125}{6}\times \dfrac{3}{25\sqrt{5}} \\
    &\ssi d=\sqrt{5}\end{align*}$

Ex 4

Exercice 4

Partie A : étude de la fonction $\boldsymbol{f}

  1. a. $\lim\limits_{x\to 0} x-2=-2$ et $\lim\limits_{x\to 0^+}\ln(x)=-\infty$
    Donc $\lim\limits_{x\to 0^+} f(x)=-\infty$
    $\lim\limits_{x\to +\infty} x-2=+\infty$ et $\lim\limits_{x\to +\infty}\ln(x)=+\infty$
    Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
    b. La fonction $f$ est dérivable par hypothèse sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=1+\dfrac{1}{2x} \\
    &=\dfrac{2x+1}{2x}\end{align*}$
    $\quad$
    c. Pour tout réel $x>0$ on a $2x+1>0$ et $2x>0$ donc $f'(x)>0$.
    La fonction $f$ est strictement croissante sur $]0;+\infty[$.
    $\quad$
    d. $f’$ est dérivable sur $]0;+\infty[$ par hypothèse.
    Pour tout réel $x>0$ on a :
    $\begin{align*}f\dsec(x)&=-\dfrac{1}{2x^2} \\
    &<0\end{align*}$
    La fonction $f$ est donc concave sur $]0;+\infty[$.
    $\quad$
  2. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;+\infty[$.
    De plus $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$. Or $0\in ]-\infty;+\infty[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $]0;+\infty[$.
    $\quad$
    $f(1)=1-2=-1<0$ et $f(2)=\dfrac{1}{2}\ln(2)>0$.
    Ainsi $f(1) \pp f(\alpha) \pp f(2)$. La fonction $f$ est strictement croissante sur $]0;+\infty[$ donc $1\pp \alpha \pp 2$.
    Ainsi $\alpha \in [1;2]$.
    $\quad$
    b. La fonction $f$ est strictement croissante sur $]0;+\infty[$ et $f(\alpha)=0$.
    Ainsi :
    $\bullet$ sur $]0;+\alpha[$ on a $f(x)<0$ ;
    $\bullet$ $f(\alpha)=0$ ;
    $\bullet$ sur $]\alpha;+\infty[$ on a $f(x)>0$.
    $\quad$
    c.
    $\begin{align*} f(\alpha)=0&\ssi \alpha-2+\dfrac{1}{2}\ln(\alpha)=0 \\
    &\ssi \dfrac{1}{2}\ln(\alpha)=2-\alpha \\
    &\ssi \ln(\alpha)=2(2-\alpha)\end{align*}$
    $\quad$

Partie B : étude de la fonction $\boldsymbol{g}$

  1. La fonction $g$ est dérivable sur $]0;1]$ par hypothèse.
    Pour tout réel $x\in ]0;1]$ on a :
    $\begin{align*} g'(x)&=-\dfrac{7}{4}x+1-\dfrac{1}{4}\left(2x\ln(x)+x^2\times \dfrac{1}{x}\right) \\
    &=-\dfrac{7}{4}x+1-\dfrac{1}{4}\left(2x\ln(x)+x\right) \\
    &=-\dfrac{7}{4}x+1+\dfrac{1}{2}x\ln(x)-\dfrac{1}{4}x \\
    &=-2x+1-\dfrac{1}{2}x\ln(x) \\
    &=x\left(\dfrac{1}{x}+2-\dfrac{1}{2}\ln(x) \right) \\
    &=x\left(\dfrac{1}{x}+2+\dfrac{1}{2}\ln\left(\dfrac{1}{x}\right) \right) \\
    &=xf\left(\dfrac{1}{x}\right)\end{align*}$
    $\quad$
  2. a. Si $0<x<\dfrac{1}{\alpha}$ alors $\dfrac{1}{x}>\alpha$ et donc, d’après la question A.2.b., $f\left(\dfrac{1}{x}\right)>0$.
    $\quad$
    Autre méthode : pour tout $x\in  \left]0;\dfrac{1}{\alpha}\right[$ on a $0<\alpha<\dfrac{1}{x}$.
    Or, d’après la question A.2.a, la fonction $f$ est strictement croissante sur $]0;+\infty[$.
    Par conséquent $f( \alpha)<f\left(\dfrac{1}{x}\right)$, c’est-à-dire $f\left(\dfrac{1}{x}\right)>0$.
    $\quad$
  3. b. Pour tout réel $x\in ]0;+\infty[$ on a $x>0$ donc $g'(x)$ est du signe de $f\left(\dfrac{1}{x}\right)$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$

    $\quad$

Partie C : un calcul d’aire

  1. a. Pour tout réel $x\in ]0;1]$ on a :
    $\begin{align*} g(x)-\left(-\dfrac{7}{8}x^2+x\right)&=-\dfrac{1}{4}x^2 \ln(x)  \\
    &\pg 0 \quad \text{car } x\in ]0;1]\end{align*}$
    La courbe $C_g$ est donc au-dessus de la parabole $\mathcal{P}$ sur $]0;1]$.
    $\quad$
    b. On réalise une intégration par parties à l’aide des fonctions $u$ et $v$ de classe $C^1$ sur $\left]\dfrac{1}{\alpha};1\right]$ définie par : $$\begin{array}{lll} u(x)=\ln(x)&\phantom{123}&u'(x)=\dfrac{1}{x} \\[3mm]
    v(x)=\dfrac{1}{3}x^3&&v'(x)=x^2\end{array}$$
    $\begin{align*} \int_{1/\alpha}^1 x^2\ln(x)\dx&=\left[\dfrac{1}{3}x^3\ln(x)\right]_{1/\alpha}^1-\dfrac{1}{3} \int_{1/\alpha}^1 x^3\times \dfrac{1}{x} \dx \\
    &=-\dfrac{1}{3\alpha^3}\ln\left(\dfrac{1}{\alpha}\right)-\dfrac{1}{3}\int_{1/\alpha}^1 x^2\dx \\
    &=\dfrac{1}{3\alpha^3}\ln(\alpha)-\dfrac{1}{3}\left[\dfrac{1}{3}x^3\right]_{1/\alpha}^1 \\
    &=\dfrac{1}{3\alpha^3}\times 2(2-\alpha)-\dfrac{1}{9}\left(1-\dfrac{1}{\alpha^3}\right) \\
    &=\dfrac{4}{3\alpha^3}-\dfrac{2}{3\alpha^2}-\dfrac{1}{9}+\dfrac{1}{9\alpha^3} \\
    &=\dfrac{13-6\alpha-\alpha^3}{9\alpha^3}\end{align*}$
    $\quad$
  2. On a donc
    $\begin{align*} \mathcal{A}&=-\dfrac{1}{4}\int_{1/\alpha}^1 x^2\ln(x) \dx \\
    &=-\dfrac{1}{4}\times \dfrac{13-6\alpha-\alpha^3}{9\alpha^3}\end{align*}$

 

Énoncé

 

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées

Exercice 1     (4 points)

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par : $f(x)=5x\e^{-x}$.
    On note $C_f$ la courbe représentative de $f$ dans un repère orthonormé.
    Affirmation 1 :
    L’axe des abscisses est une asymptote horizontale à la courbe $C_f$.
    $\quad$
    Affirmation 2 : La fonction $f$ est solution sur $\R$ de l’équation différentielle $(E)~:~y’+y=5\e^{-x}$.
    $\quad$
  2. On considère les suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$, telles que, pour tout entier naturel $n$ : $u_n\pp v_n\pp w_n$.
    De plus, la suite $\left(u_n\right)$ converge vers $-1$ et la suite $\left(w_n\right)$ converge vers $1$.
    Affirmation 3 : La suite $\left(v_n\right)$ converge vers un nombre réel $\ell$ appartenant à l’intervalle $[-1; 1]$.
    $\quad$
    On suppose de plus que la suite $\left(u_n\right)$ est croissante et que la suite $\left(w_n\right)$ est décroissante.
    Affirmation 4 : Pour tout entier naturel $n$, on a alors : $u_0\pp v_n\pp w_0$.
    $\quad$

$\quad$

Exercice 2     (5 points)

Une agence de marketing a étudié la satisfaction des clients concernant le service clientèle à l’occasion de l’achat d’un téléviseur. Ces achats ont été réalisés soit sur internet, soit dans une chaîne de magasins d’électroménager, soit dans une enseigne de grandes surfaces.

Les achats sur internet représentent $60 \%$ des ventes, les achats en magasin
d’électroménager $30 \%$ des ventes et ceux en grandes surfaces $10 \%$ des ventes.

Une enquête montre que la proportion des clients satisfaits du service clientèle
est de :

  • $75 \%$ pour les clients sur internet ;
  • $90 \%$ pour les clients en magasin d’électroménager ;
  • $80 \%$ pour les clients en grande surface.

On choisit au hasard un client ayant acheté le modèle de téléviseur concerné.

On définit les événements suivants :

  • $I$ : « le client a effectué son achat sur internet » ;
  • $M$ : « le client a effectué son achat en magasin d’électroménager » ;
  • $G$ : « le client a effectué son achat en grande surface » ;
  • $S$ : « le client est satisfait du service clientèle ».

Si $A$ est un événement quelconque, on notera $\conj{A}$ son événement contraire et $P(A)$ sa probabilité.

  1. Reproduire et compléter l’arbre ci-dessous.
    $\quad$

    $\quad$
  2. Calculer la probabilité que le client ait réalisé son achat sur internet et soit satisfait du service clientèle.
    $\quad$
  3. Démontrer que $P(S) = 0,8$.
    $\quad$
  4. Un client est satisfait du service clientèle. Quelle est la probabilité qu’il ait effectué son achat sur internet ?
    On donnera un résultat arrondi à $10^{-3}$ près.
    $\quad$
  5. Pour réaliser l’étude, l’agence doit contacter chaque jour $30$ clients parmi les acheteurs du téléviseur. On suppose que le nombre de clients est suffisamment important pour assimiler le choix des $30$ clients à un tirage avec remise. On note $X$ la variable aléatoire qui, à chaque échantillon de $30$ clients, associe le nombre de clients satisfaits du service clientèle.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Déterminer la probabilité, arrondie à $10^{-3}$ près, qu’au moins $25$ clients soient satisfaits dans un échantillon de $30$ clients contactés sur une même journée.
    $\quad$
  6. En résolvant une inéquation, déterminer la taille minimale de l’échantillon de clients à contacter pour que la probabilité qu’au moins l’un d’entre eux ne soit pas satisfait soit supérieure à $0,99$.
    $\quad$
  7. Dans les deux questions a. et b. qui suivent, on ne s’intéresse qu’aux seuls
    achats sur internet.
    Lorsqu’une commande de téléviseur est passée par un client, on considère que le temps de livraison du téléviseur est modélisé par une variable aléatoire $T$ égale à la somme de deux variables aléatoires $T_1$ et $T_2$.
    La variable aléatoire $T_1$ modélise le nombre entier de jours pour l’acheminement du téléviseur depuis un entrepôt de stockage vers une plateforme de distribution.
    La variable aléatoire $T_2$ modélise le nombre entier de jours pour l’acheminement du téléviseur depuis cette plateforme jusqu’au domicile du client.
    On admet que les variables aléatoires $T_1$ et $T_2$ sont indépendantes, et on donne :
    $\bullet$ L’espérance $E\left(T_1\right)= 4$ et la variance $V\left(T_1\right) = 2$ ;
    $\bullet$ L’espérance $E\left(T_2\right)= 3$ et la variance $V\left(T_2\right) = 1$ ;
    a. Déterminer l’espérance $E(T)$ et la variance $V(T)$ de la variable aléatoire $T$.
    $\quad$
    b. Un client passe une commande de téléviseur sur internet. Justifier que la probabilité qu’il reçoive son téléviseur entre $5$ et $9$ jours après sa commande est supérieure ou égale à $\dfrac{2}{3}$.
    $\quad$

$\quad$

Exercice 3     (5 points)

L’espace est muni d’un repère orthonormé $\Oijk$.

On considère les points $A(5;5;0)$, $B(0;5;0)$, $C(0;0;10)$ et $D\left(0;0;-\dfrac{5}{2}\right)$.

  1. a. Montrer que $\vect{n_1}\begin{pmatrix}1\\-1\\0\end{pmatrix}$ est un vecteur normal au plan $(CAD)$.
    $\quad$
    b. En déduire que le plan $(CAD)$ a pour équation cartésienne : $x-y=0$.
    $\quad$
  2. On considère la droite $\mathcal{D}$ de représentation paramétrique $\begin{cases} x=\dfrac{5}{2}t\\[3mm] y=5-\dfrac{5}{2}t\\[3mm] z=0\end{cases} \quad$ où $t\in \R$.
    a. On admet que la droite $\mathcal{D}$ et le plan $(CAD)$ sont sécants en un point $H$. Justifier que les coordonnées de $H$ sont $\left(\dfrac{5}{2};\dfrac{5}{2};0\right)$.
    $\quad$
    b. Démontrer que le point $H$ est le projeté orthogonal de $B$ sur le plan $(CAD)$.
    $\quad$
  3. a. Démontrer que le triangle $ABH$ est rectangle en $H$.
    $\quad$
    b. En déduire que l’aire du triangle $ABH$ est égale à $\dfrac{25}{4}$.
    $\quad$
  4. a. Démontrer que $(CO)$ est la hauteur du tétraèdre $ABCH$ issue de $C$.
    $\quad$
    b. En déduire le volume du tétraèdre $ABCH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\mathcal{B}h$ où $\mathcal{B}$ est l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$
  5. On admet que le triangle $ABC$ est rectangle en $B$. Déduire des questions précédentes la distance du point $H$ au plan $(ABC)$.
    $\quad$

$\quad$

Exercice 4     (6 points)

Partie A : étude de la fonction $\boldsymbol{f}$

La fonction $f$ est définie sur l’intervalle $]0; +\infty[$ par : $f(x)=x-2+\dfrac{1}{2}\ln(x)$ , où $\ln$ désigne la fonction logarithme népérien. On admet que la fonction $f$ est deux fois dérivable sur $]0 ; +\infty[$, on note $f’$ sa dérivée et $f\dsec$ sa dérivée seconde.

  1. a. Déterminer, en justifiant, les limites de $f$ en $0$ et en $+\infty$.
    $\quad$
    b. Montrer que pour tout $x$ appartenant à $]0 ; +\infty[$, on a : $f'(x)=\dfrac{2x+1}{2x}$.
    $\quad$
    c. Étudier le sens de variation de $f$ sur $]0 ; +\infty[$.
    $\quad$
    d. Étudier la convexité de $f$ sur $]0 ; +\infty[$.
    $\quad$
  2. a. Montrer que l’équation $f(x) = 0$ admet dans $]0; +\infty[$ une solution unique qu’on notera $\alpha$ et justifier que $\alpha$ appartient à l’intervalle $[1 ; 2]$.
    $\quad$
    b. Déterminer le signe de $f(x)$ pour $x\in ]0 ; +\infty[$.
    $\quad$
    c. Montrer que $\ln(\alpha)=2(2-\alpha)$.
    $\quad$

Partie B : étude de la fonction $\boldsymbol{g}$

La fonction $g$ est définie sur $]0;1]$ par $g(x)=-\dfrac{7}{8}x^2+x-\dfrac{1}{4}x^2\ln(x)$.

On admet que la fonction $g$ est dérivable sur $]0;1]$ et on note $g’$ sa fonction dérivée.

  1. Calculer $g'(x)$ pour $x\in ]0;1]$ puis vérifier que $g'(x)=xf\left(\dfrac{1}{x}\right)$.
    $\quad$
  2. a. Justifier que pour $x$ appartenant à l’intervalle $\left]0;\dfrac{1}{\alpha}\right[$, on a $f\left(\dfrac{1}{x}\right)>0$.
    $\quad$
    b. On admet le tableau de signes suivant :
    $\quad$

    $\quad$
    En déduire le tableau de variations de $g$ sur l’intervalle $]0 ; 1]$.
    Les images et les limites ne sont pas demandées.
    $\quad$

Partie C : un calcul d’aire

On a représenté sur le graphique ci-dessous :

  • La courbe $C_g$ de la fonction $g$ ;
  • La parabole $\mathcal{P}$ d’équation $y=-\dfrac{7}{8}x^2+x$ sur l’intervalle $]0 ; 1]$.

On souhaite calculer l’aire $\mathcal{A}$ du domaine hachuré compris entre les courbes $C_g$ et $\mathcal{P}$, et les droites d’équations $x=\dfrac{1}{\alpha}$ et $x=1$.
On rappelle que $\ln(\alpha)=2(2-\alpha)$.

  1. a. Justifier la position relative des courbes $C_g$ et $\mathcal{P}$ sur l’intervalle $]0;1]$.
    $\quad$
    b. Démontrer l’égalité : $$\int_{1/\alpha}^1 x^2\ln(x)\dx=\dfrac{-\alpha^3-6\alpha+13}{9\alpha^3}$$
    $\quad$
  2. En déduire l’expression en fonction de $\alpha$ de l’aire $\mathcal{A}$.
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Amérique du Nord – sujet 1 – 21 mai 2024

Amérique du Nord – 21 mai 2024

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
    $\begin{align*} P(R\cap E)&=P(R)P_R(E) \\
    &=0,07\times 0,8 \\
    &=0,056\end{align*}$
    $\quad$
  2. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} P(E)&=P(R\cap E)+P\left(\conj{R}\cap E\right) \\
    &=P(R)P_R(E)+P\left(\conj{R}\right)P_{\conj{R}}(E) \\
    &=0,056+0,93\times 0,4 \\
    &=0,428\end{align*}$
    La probabilité de tirer une épée est égale à $0,428$.
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_E(R)&=\dfrac{P(R\cap E)}{P(E)} \\
    &=\dfrac{0,056}{0,428} \\
    &\approx 0,131\end{align*}$
    La probabilité que l’objet soir rare sachant qu’il a tiré une épée est environ égale à $0,131$.
    $\quad$

Partie B

  1. On répète $30$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,07$.
    $X$ suit donc la lo binomiale de paramètres $n=30$ et $p=0,07$.
    Son espérance est $E(X)=np=2,1$.
    $\quad$
  2. On a d’après la calculatrice :
    $\begin{align*} P(X<6)&=P(X\pp 5) \\
    &\approx 0,984\end{align*}$
    $\quad$
  3. $\left(P(X\pg k)\right)$ est une suite décroissante.
    Or $P(X\pg 2) \approx 0,631\pg 0,5$ et $P(X\pg 3)\approx 0,351<0,5$.
    Par conséquent le plus grand entier $k$ tel que $P(X\pg k) \pg 0,5$ est $2$.
    La probabilité d’obtenir au moins $2$ objets rares est supérieure à ou égale $0,5$.
    $\quad$
  4. On appelle $Y$ la variable aléatoire comptant le nombre d’objets rares obtenus lorsqu’un joueur tire $N$ objets.
    Pour la même raison qu’à la question B.1. $Y$ suit la loi binomiale de paramètres $N$ et $p=0,07$.
    $\begin{align*} P(X\pg 1)\pg 0,95 &\ssi 1-P(X=0)\pg 0,95 \\
    &\ssi P(X=0) \pp 0,05 \\
    &\ssi 0,93^N \pp 0,05 \\
    &\ssi N\ln(0,93) \pp \ln(0,05) \qquad \text{croissance de la fonction } \ln \\
    &\ssi N\pg \dfrac{\ln(0,05)}{\ln(0,93)} \qquad \text{car } \ln(0,93)<0 \end{align*}$
    Or $\dfrac{\ln(0,05)}{\ln(0,93)}\approx 41,28$.
    Il faut donc tirer au moins $42$ objets afin que la probabilité de tirer au moins un objet rare soit supérieure ou égale à $0,95$.
    $\quad$

Ex 2

Exercice 2

  1. On a $\vect{AB}\begin{pmatrix}3\\1\\-3\end{pmatrix}$.
    Ainsi, en utilisant le point $A(1;0;3)$, une représentation paramétrique de la droite $(AB)$ est $\begin{cases} x=1+3t\\y=t\\z=3-3t\end{cases} \quad t\in \R$.
    Réponse c
    $\quad$
  2. On constate qu’il faut choisir $t=1$ pour avoir $y=6$ dans la représentation paramétrique de $(d)$.
    Or avec cette valeur de $t$ on obtient aucune des trois premières propositions. La bonne réponse doit donc être la dernière.
    Vérifions cela.
    $6t=-9 \ssi t=-\dfrac{3}{2}$.
    Avec cette valeur on obtient alors $x=-3$, $y=-9$ et $z=7$.
    Réponse d
    $\quad$
  3. Un vecteur directeur de $(d)$ est $\vec{u}\begin{pmatrix}4\\6\\-2\end{pmatrix}$ et un vecteur directeur de $(d’)$ est $\vec{v}\begin{pmatrix}3\\-2\\1\end{pmatrix}$.
    Or $\dfrac{-2}{1}\neq \dfrac{6}{-2}$.
    Les droites $(d)$ et $(d’)$ ne sont ni parallèles, ni confondues.
    Résolvons le système :
    $\begin{align*} \begin{cases} x=3+4t\\y=6t\\z=4-2t\\x=-2+3k\\y=-1-2k\\z=1+k\end{cases} &\ssi \begin{cases} x=3+4t\\y=6t\\z=4-2t\\3+4t=-2+3k\\6t=-1-2k\\4-2t=1+k\end{cases} \\
    &\ssi \begin{cases} x=3+4t\\y=6t\\z=4-2t\\4t-3k=-5\\6t+2k=-1\\3-2t=k\end{cases} \\
    &\ssi \begin{cases} x=3+4t\\y=6t\\z=4-2t\\4t+9t-6=-5\\6t-6t+4=-1\\k=3-2t\end{cases} \\
    &\ssi \begin{cases} x=3+4t\\y=6t\\z=4-2t\\13t=1\\4=-1 \qquad \text{impossible}\\k=3-2t\end{cases}\end{align*}$
    Le système n’admet donc pas de solution. Les droites ne sont pas sécantes non plus. Elles sont donc non coplanaires.
    Réponse b
    $\quad$
  4. Un vecteur normal au plant $(P)$ est donc $\vec{u}\begin{pmatrix}4\\6\\-2\end{pmatrix}$.
    Une équation cartésienne du plan $(P)$ est alors de la forme $4x+6y-2z+d=0$.
    Le point $I(2;1;0)$ appartient à ce plan.
    Ainsi $8+6+d=0 \ssi d=-14$.
    Une équation cartésienne de $(P)$ est alors $4x+6y-2z-14=0$ soit, en divisant les deux membres par $2$, $2x+3y-z-7=0$.
    Réponse a
    $\quad$

Ex 3

Exercice 3

Partie A : lectures graphiques

  1. Graphiquement $f'(1)$ est le coefficient directeur de la droite $(T)$. Ainsi il semble que $f'(1)= 3$.
    Une équation réduite de $(T)$ semble être $y=3x-4$.
    $\quad$
  2. La courbe $\left(C_f\right)$ semble être en-dessous de ses tangentes sur $]0;1]$ et au-dessus sur $[1;+\infty[$.
    Donc $f$ semble être concave sur $]0;1]$ et convexe sur $[1;+\infty[$.
    $A$ serait donc un point d’inflexion pour $\left(C_f\right)$.
    $\quad$

Partie B : étude analytique

  1. $\lim\limits_{x\to +\infty} x^2=+\infty$ et $\lim\limits_{t\to +\infty} \ln(t)=+\infty$ par conséquent $\lim\limits_{x\to +\infty} \ln\left(x^2\right)=+\infty$.
    Donc $\lim\limits_{x\to +\infty} x\ln\left(x^2\right)=+\infty$.
    Or $\lim\limits_{x\to +\infty}\dfrac{1}{x}=0$.
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
    Pour tout réel $x>0$ on a :
    $\begin{align*} f(x)&=x\ln\left(x^2\right)-\dfrac{1}{x} \\
    &=x\times 2\ln(x)-\dfrac{1}{x} \\
    &=2x\ln(x)-\dfrac{1}{x}\end{align*}$
    Par croissances comparées $\lim\limits_{x\to 0^+} x\ln(x)=0$.
    Or $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$.
    Ainsi $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
  2. a. Pour tout réel $x>0$ on a, en utilisant la dernière expression de $f(x)$
    $\begin{align*} f'(x)&=2\ln(x)+2x\times \dfrac{1}{x}+\dfrac{1}{x^2} \\
    &=2\ln(x)+2+\dfrac{1}{x^2}\end{align*}$
    $\quad$
    b. Pour tout réel $x>0$
    $\begin{align*} f\dsec(x)&=\dfrac{2}{x}-\dfrac{2}{x^3} \\
    &=\dfrac{2x^2-2}{x^3} \\
    &=\dfrac{2\left(x^2-1\right)}{x^3} \\
    &=\dfrac{2(x-1)(x+1)}{x^3}\end{align*}$
    $\quad$
  3. a. Pour tout réel $x>0$ on a $\dfrac{2(x+1)}{x^3}>0$.
    Ainsi, le signe de $f\dsec(x)$ ne dépend que de celui de $x-1$.
    Or $x-1=0 \ssi x=1$ et $x-1>0\ssi x>1$.
    $f$ est donc concave sur $]0;1]$ et convexe sur $[1;+\infty[$.
    $\quad$
    b. La fonction $f’$ est donc strictement décroissante sur $]0;1]$ et strictement croissante sur $[1;+\infty[$.
    $f’$ atteint donc son minimum en $1$. Or $f'(1)=3>0$.
    Donc, pour tout réel $x>0$ on a $f'(x)>0$.
    $f$ est ainsi strictement croissante sur $]0;+\infty[$.
    $\quad$
  4. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;+\infty[$.
    $\lim\limits_{x\to 0^-} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$. Or $0\in ]-\infty;+\infty[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=0$ admet une unique solution sur $]0;+\infty[$.
    $\quad$
    b. D’après la calculatrice $\alpha\approx 1,33$.
    On a :
    $\begin{align*} f(\alpha)=0&\ssi \alpha\ln\left(\alpha^2\right)-\dfrac{1}{\alpha}=0 \\
    &\ssi \alpha\ln\left(\alpha^2\right) =\dfrac{1}{\alpha} \\
    &\ssi \ln\left(\alpha^2\right)=\dfrac{1}{\alpha^2} \qquad \text{car } \alpha \neq 0 \\
    &\ssi \alpha^2=\exp\left(\dfrac{1}{\alpha^2}\right) \qquad \text{croissance de la fonction } \exp\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. On a :
    $\begin{align*} I_0&=\int_0^{\pi} \sin(x)\dx \\
    &=\big[-\cos(x)\big]_0^{\pi} \\
    &=-(-1)-1 \\
    &=2\end{align*}$
    $\quad$
  2. a. Pour tout réel $x$ et pour tout entier naturel $n$ on a $\e^{-nx}>0$.
    Pour tout réel $x\in [0;\pi]$ on a $\sin(x)\pg 0$.
    Ainsi, pour tout réel $x\in [0;\pi]$ et tout entier naturel $n$, on a $\e^{-nx}\sin(x)\pg 0$.
    Par positivité de l’intégrale, $I_n\pg 0$.
    $\quad$
    b. Soit $n$ un entier naturel.
    $\begin{align*} I_{n+1}-I_n&=\int_0^{\pi} \e^{-(n+1)x}\sin(x)\dx -\int_0^{\pi} \e^{-n)x}\sin(x)\dx  \\
    &=\int_0^{\pi} \left(\e^{-(n+1)x}-\e^{-nx}\right) \sin(x)\dx \\
    &=\int_0^{\pi} \e^{-nx}\left(\e^{-x}-1\right)\sin(x)\dx\end{align*}$
    Pour tout réel $x\in [0;\pi]$ on a $\e^{-nx}>0$, $\e^{-x}\pp 1$ et $\sin(x)\pg 0$.
    Ainsi $\e^{-nx}\left(\e^{-x}-1\right)\sin(x)\pp 0$.
    Par croissance de l’intégrale (on intègre sur un intervalle croissant) $I_{n+1}-I_n\pp 0$.
    $\quad$
    c. La suite $\left(I_n\right)$ est décroissante et minorée par $0$. D’après le théorème de la limite monotone, elle converge donc.
    $\quad$
  3. a. Pour tout réel $x\in [0;\pi]$ on a $\sin(x) \pp 1$.
    Pour tout entier naturel $n$ on a ainsi $\e^{-nx}\sin(x) \pp \e^{-nx}$.
    Par croissance de l’intégrale (on intègre sur un intervalle croissant) $I_n\pp \ds \int_0^{\pi} \e^{-nx}\dx$.
    $\quad$
    b. Soit $n$ un entier naturel non nul
    $\begin{align*} \int_0^{\pi} \e^{-nx}\dx&=\left[-\dfrac{\e^{-nx}}{n}\right]_0^{\pi} \\
    &=-\dfrac{\e^{-n\pi}-1}{n} \\
    &=\dfrac{1-\e^{-n\pi}}{n}\end{align*}$
    $\quad$
    c. D’après les questions précédentes on a $0\pp I_n \pp \dfrac{1-\e^{-n\pi}}{n}$.
    Or $\lim\limits_{n\to +\infty} \e^{-n\pi}=0$.
    Ainsi $\lim\limits_{n\to +\infty} \dfrac{1-\e^{-n\pi}}{n}=0$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} I_n=0$.
    $\quad$
  4. a. On réalise une intégration par parties à l’aide des fonctions $u$ et $v$ de classe $C^1$ sur $[0;\pi]$ définies par : $$\begin{array}{lll}u(x)=\e^{-nx}&\phantom{1234}&u'(x)=-n\e^{-nx} \\
    v(x)=-\cos(x)&&v'(x)=\sin(x)\end{array}$$
    Ainsi :
    $\begin{align*} I_n&=\int_0^{\pi} \e^{-nx}\sin(x)\dx \\
    &=\Big[-\e^{-nx}\cos(x)\Big]_0^{pi}-n\int_0^{\pi} \e^{-nx}\cos(x)\dx \\
    &=1+\e^{-n\pi}-nJ_n\end{align*}$
    $\quad$
    On réalise une autre intégration par parties à l’aide des fonctions $u$ et $v$ de classe $C^1$ sur $[0;\pi]$ définies par : $$\begin{array}{lll}u(x)=sin(x)&\phantom{1234}&u'(x)=\cos(x) \\
    v(x)=-\dfrac{1}{n}\e^{-nx}&&v'(x)=\e^{-nx}\end{array}$$
    Ainsi :
    $\begin{align*} I_n&=\int_0^{\pi} \e^{-nx}\sin(x)\dx \\
    &= \left[-\dfrac{1}{n}\e^{-nx}\sin(x)\right]_0^{\pi}+\dfrac{1}{n}\int_0^{\pi} \e^{-nx}\cos(x)\dx\\
    &=\dfrac{1}{n}J_n\end{align*}$
    $\quad$
    b. Ainsi, pour tout entier naturel $n$ non nul on a :
    $\begin{align*} 1+\e^{-n\pi}-nJ_n=\dfrac{1}{n}J_n&\ssi \left(\dfrac{1}{n}+n\right)J_n=1+\e^{-n\pi} \\
    &\ssi \dfrac{1+n^2}{n}J_n=1+\e^{-n\pi} \\
    &\ssi J_n=\dfrac{n}{n^2+1}\left(1+\e^{-n\pi}\right)\end{align*}$
    Or
    $\begin{align*} I_n&=\dfrac{1}{n}J_n \\
    &=\dfrac{1}{n}\times \dfrac{n}{n^2+1}\left(1+\e^{-n\pi} \right)\\
    &=\dfrac{1+\e^{-n\pi}}{n^2+1}\end{align*}$
    $\quad$
  5. On peut écrire :

    $\quad$

Énoncé

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1     (5 points)

Un jeu vidéo récompense par un objet tiré au sort les joueurs ayant remporté un défi. L’objet tiré peut être « commun » ou « rare ». Deux types d’objets communs ou rares sont disponibles, des épées et des boucliers.

Les concepteurs du jeu vidéo ont prévu que :

  • la probabilité de tirer un objet rare est de $7 \%$ ;
  • si on tire un objet rare, la probabilité que ce soit une épée est de $80 \%$ ;
  • si on tire un objet commun, la probabilité que ce soit une épée est de $40 \%$.

Les parties A et B sont indépendantes.

Partie A

Un joueur vient de remporter un défi et tire au sort un objet.
On note :

  • $R$ l’événement « le joueur tire un objet rare » ;
  • $E$ l’événement « le joueur tire une épée » ;
  •  $\conj{R}$ et $\conj{E}$ les événements contraires des événements $R$ et $E$.
  1. Dresser un arbre pondéré modélisant la situation, puis calculer $P(R\cap E)$.
    $\quad$
  2. Calculer la probabilité de tirer une épée.
    $\quad$
  3. Le joueur a tiré une épée. Déterminer la probabilité que ce soit un objet rare. Arrondir le résultat au millième.
    $\quad$

Partie B

Un joueur remporte $30$ défis.
On note $X$ la variable aléatoire correspondant au nombre d’objets rares que le joueur obtient après avoir remporté $30$ défis. Les tirages successifs sont considérés comme indépendants.

  1. Déterminer, en justifiant, la loi de probabilité suivie par la variable aléatoire $X$.
    Préciser ses paramètres, ainsi que son espérance.
    $\quad$
  2. Déterminer $P(X < 6)$. Arrondir le résultat au millième.
    $\quad$
  3. Déterminer la plus grande valeur de $k$ telle que $P(X\pg k)  \pg 0,5$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  4. Les développeurs du jeu vidéo veulent proposer aux joueurs d’acheter un « ticket d’or » qui permet de tirer $N$ objets. La probabilité de tirer un objet rare reste de $7 \%$.
    Les développeurs aimeraient qu’en achetant un ticket d’or, la probabilité qu’un joueur obtienne au moins un objet rare lors de ces $N$ tirages soit supérieure ou égale à $0,95$.
    Déterminer le nombre minimum d’objets à tirer pour atteindre cet objectif. On veillera à détailler la démarche mise en œuvre.
    $\quad$

Exercice 2     (4 points)

Cet exercice est un questionnaire à choix multiple.
Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la réponse choisie. Aucune justification n’est demandée. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.

Les cinq questions sont indépendantes.

L’espace est rapporté à un repère orthonormé $\Oijk$.

  1. On considère les points $A(1; 0; 3)$ et $B(4; 1; 0)$.
    Une représentation paramétrique de la droite $(AB)$ est :
    a. $\begin{cases} x=3+t\\y=1\\z=-3+3t\end{cases}~~$ avec $t\in \R$
    b. $\begin{cases} x=1+4t\\y=t\\z=3\end{cases}~~$ avec $t\in \R$
    c. $\begin{cases} x=1+3t\\y=t\\z=3-3t\end{cases}~~$ avec $t\in \R$
    d. $\begin{cases} x=4+t\\y=1\\z=3-3t\end{cases}~~$ avec $t\in \R$
    $\quad$

On considère la droite $(d)$ de représentation paramétrique $\begin{cases} x=3+4t\\y=6t\\z=4-2t\end{cases}~~$ avec $t\in \R$.

  1. Parmi les points suivants, lequel appartient à la droite $(d)$ ?
    a. $M(7; 6; 6)$
    b. $N(3; 6; 4)$
    c. $P(4; 6; -2)$
    d. $R(-3; -9; 7)$
    $\quad$
  2. On considère la droite $(d’)$ de représentation paramétrique $\begin{cases} x=-2+3k\\y=-1-2k\\z=1+k\end{cases}~~$ avec $k\in \R$.
    Les droites $(d)$ et $(d’)$ sont :
    a. sécantes
    b. non coplanaires
    c. parallèles
    d. confondues
    $\quad$
  3. On considère le plan $(P)$ passant par le point $I(2; 1; 0)$ et perpendiculaire à la droite $(d)$. Une équation du plan $(P)$ est :
    a. $2x+3y-z-7=0$
    b. $-x+y-4z+1=0$
    c. $4x+6y-2z+9=0$
    d. $2x+y+1=0$
    $\quad$

$\quad$

Exercice 3     (5 points)

Le but de cet exercice est d’étudier la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par : $$f(x)=x \ln\left(x^2\right)-\dfrac{1}{x}$$

Partie A : lectures graphiques

On a tracé ci-dessous la courbe représentative $\left(C_f\right)$ de la fonction $f$, ainsi que la droite $(T)$, tangente à la courbe $\left(C_f\right)$ au point $A$ de coordonnées $(1; -1)$. Cette tangente passe également par le point $B(0; -4)$.

  1. Lire graphiquement $f'(1)$ et donner l’équation réduite de la tangente $(T)$.
    $\quad$
  2. Donner les intervalles sur lesquels la fonction $f$ semble convexe ou concave.
    Que semble représenter le point $A$ pour la courbe $\left(C_f\right)$ ?
    $\quad$

Partie B : étude analytique

  1. Déterminer, en justifiant, la limite de $f$ en $+\infty$, puis sa limite en $0$.
    $\quad$
  2. On admet que la fonction $f$ est deux fois dérivable sur l’intervalle $]0 ; +\infty[$.
    a. Déterminer $f'(x)$ pour $x$ appartenant à l’intervalle $]0 ; +\infty[$.
    $\quad$
    b. Montrer que pour tout $x$ appartenant à l’intervalle $]0 ; +\infty[$, $f \dsec(x)=\dfrac{2(x+1)(x-1)}{x^3}$
    $\quad$
  3. a. Étudier la convexité de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
    b. Étudier les variations de la fonction $f’$, puis le signe de $f'(x)$ pour $x$ appartenant à l’intervalle $]0 ; +\infty[$.
    En déduire le sens de variation de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  4. a. Montrer que l’équation $f(x) = 0$ admet une unique solution $\alpha$ sur l’intervalle $]0; +\infty[$.
    $\quad$
    b. Donner la valeur arrondie au centième de $\alpha$ et montrer que $\alpha$ vérifie : $$\alpha^2=\exp\left(\dfrac{1}{\alpha^2}\right)$$

$\quad$

$\quad$

Exercice 4     (6 points)

Pour tout entier naturel $n$, on considère les intégrales suivantes :

$$\begin{array}{l} I_n= \ds  \int_0^{\pi} \e^{-nx}\sin(x)\dx\\J_n=\ds \int_0^{\pi} \e^{-nx}\cos(x)\dx \end{array}$$

  1. Calculer $I_0$.
    $\quad$
  2. a. Justifier que, pour tout entier naturel $n$, on a $I_n \pg 0$.
    $\quad$
    b. Montrer que, pour tout entier naturel $n$, on a $I_ {n+1}-I_n \pp 0$.
    $\quad$
    c. Déduire des deux questions précédentes que la suite $\left(I_n\right)$ converge.
    $\quad$
  3. a. Montrer que, pour tout entier naturel $n$, on a $$I_n \pp  \int_0^{\pi} \e^{-nx}\dx$$
    $\quad$
    b. Montrer que, pour tout entier naturel $n\pg 1$, on a : $$\int_0^{\pi} \e^{-nx}\dx =\dfrac{1-\e^{-n\pi}}{n}$$
    $\quad$
    c. Déduire des deux questions précédentes la limite de la suite $\left(I_n\right)$.
    $\quad$
  4. a. En intégrant par parties l’intégrale $I_n$ de deux façons différentes, établir les deux relations suivantes, pour tout entier naturel $n\pg 1$ :
    $$I_n=1+\e^{-n\pi}-nJ_n \qquad \text{et} \qquad I_n=\dfrac{1}{n}J_n$$
    $\quad$
    b. En déduire que, pour tout entier naturel $n\pg 1$, on a $I_n=\dfrac{1+\e^{-n\pi}}{n^2+1}$.
    $\quad$
  5. On souhaite obtenir le rang $n$ à partir duquel la suite $\left(I_n\right)$ dévient inférieur à $0,1$.
    Recopier et compléter la cinquième ligne du script Python ci-dessous avec la commande appropriée.