Bac – Spécialité mathématiques – Polynésie – sujet 1 – 13 mars 2023

Polynésie – 13 mars 2023

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On veut calculer:
    $\begin{align*} p(J\cap T)&=p(J)p_J(T) \\
    &=0,21\times (1-0,68)\\
    &=0,067~2\end{align*}$
    La probabilité que la personne interrogée ait moins de 35 ans et utilise son vélo dans ses déplacements professionnels est égale à $0,067~2$.
    $\quad$
  2. $\left(J,\conj{J}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} p(T)&=p(J\cap T)+p\left(\conj{J}\cap T\right) \\
    &=0,067~2+p\left(\conj{J}\right)p_{\conj{J}}(T) \\
    &=0,067~2+(1-0,21)\times 0,2 \\
    &=0,225~2\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} p_T(J)&=\dfrac{p(T\cap J)}{p(T)} \\
    &=\dfrac{0,067~2}{0,225~2} \\
    &\approx 0,298\end{align*}$
    La probabilité que l’habitant qui utilise son vélo dans ses déplacements professionnels ait moins de $35$ ans est environ égale à $0,30$.
    $\quad$

Partie B

  1. On répète de façon indépendante $120$ fois la même expérience de Bernoulli de paramètre $0,3$.
    $X$ suit donc la loi binomiale de paramètres $n=120$ et $p=0,3$.
    $\quad$
  2. On veut calculer $p(X\pg 50) 1- p(X\pp 49) \approx 0,004$.
    La probabilité qu’au moins $50$ utilisateurs de vélo parmi les $120$ aient moins de 35 ans est environ égale à $0,004$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. $\vec{v}$ a pour coordonnées $\begin{pmatrix}2\\1\\0\end{pmatrix}$.
    $\quad$
    b. $\vec{u}$ et $\vec{v}$ ne sont pas colinéaires car aucune des composantes de $\vec{u}$ n’est nulle alors que la troisième de $\vec{v}$ l’est.
    Par conséquent $d_1$ et $d_2$ ne sont pas parallèles.
    $\quad$
    c. Une représentation paramétrique de la droite $d_1$ est $\begin{cases} x=2+t\\y=3-t\\z=t\end{cases} \quad \forall t\in \R$.
    Résolvons le système :
    $\begin{align*} &\ssi \begin{cases} x=2+t\\y=3-t\\z=t\\x=2k-3\\y=k\\z=5\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=3-t\\z=t\\2+t=2k-3\\3-t=k\\t=5\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=3-t\\z=t\\t=5\\7=2k-3\\k=-2\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=3-t\\z=t\\t=5\\k=5\\k=-2\end{cases} \end{align*}$
    Les deux dernières lignes du système ne sont pas compatibles.
    Les droites $d_1$ et $d_2$ ne sont donc pas sécantes.
    $\quad$
    d. Les droites $d_1$ et $d_2$ ne sont ni sécantes, ni parallèles. Elles sont par conséquent non coplanaires.
    $\quad$
  2. a. D’une part $\vec{w}.\vec{u}=-1-2+3=0$
    D’autre part $\vec{w}.\vec{v}=-2+2+0=0$
    Le vecteur $\vec{w}$ est donc orthogonal aux vecteurs $\vec{u}$ et $\vec{v}$.
    $\quad$
    b. Soit $M'(3;3;5)$.
    $5\times 3+4\times 3-5-22=15+12-5-22=0$. $M’$ appartient au plan $P$.
    Prenons $k=3$ dans la représentation paramétrique de $d_2$.
    On obtient $x=6-3=3$, $y=3$ et $z=5$. $M’$ appartient à $d_2$.
    Les droite $d_1$ et $d_2$ ne sont pas coplanaires. Par conséquent la droite $d_2$ n’est pas incluse dans le plan $P$.
    Ainsi l’intersection de la droite $d_2$ et du plan $P$ est le point $M(3;3;5)$.
    $\quad$
  3. a. Un vecteur directeur de $\Delta$ est $\vec{w}\begin{pmatrix}-1\\2\\3\end{pmatrix}$.
    D’après la question 2.a., les droites $\Delta$ et $d_1$ sont orthogonales.
    Montrons qu’elles sont sécantes.
    $\begin{align*} \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\x=2+t\\y=3-t\\z=t\end{cases}&\ssi \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\-r+3=2+t\\2r+3=3-t\\3r+5=t\end{cases} \\
    &\ssi \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\t=3r+5\\-r+3=2+3r+5\\2r+3=3-3r-5\end{cases} \\
    &\ssi \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\t=3r+5\\-4r=4\\5r=-5\end{cases} \\
    &\ssi \begin{cases} x=-r+3\\y=2r+3\\z=3r+5\\r=-1\\t=2\end{cases} \\
    &\ssi \begin{cases} r=-1\\t=2\\x=4\\y=1\\z=2\end{cases}\end{align*}$.
    Les droites $\Delta$ et $d_1$ sont perpendiculaires en $L(4;1;2)$.
    $\quad$
    b. La droite $\Delta$ est orthogonale à la droite $d_2$ d’après la question 2.a.
    Prenons $k=3$ dans la représentation paramétrique de $d_2$.
    On obtient $x=3$, $y=3$ et $z=5$. Le point de coordonnées $(3;3;5)$ appartient donc à la fois à la droite $d_2$ et, par construction, à la droite $\Delta$.
    Ainsi $\Delta$ et $d_2$ sont perpendiculaires au point de coordonnées $(3;3;5)$.
    $\quad$
    La droite $\Delta$ est donc perpendiculaires au deux droites $d_1$ et $d_2$.
    $\quad$

Ex 3

Exercice 3

  1. La fonction $f$ est dérivable deux fois sur $\R$ en tant que somme de fonctions deux fois dérivables sur $\R$.
    Pour tout réel $x$ on a
    $f'(x)=\e^x-1$ et $f\dsec(x)=\e^x>0$.
    La fonction $f$ est convexe sur $\R$.
    Affirmation 1 vraie
    $\quad$
  2. Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    $\left(2\e^x-6\right)\left(\e^x+2\right)=0 \ssi 2\e^x-6=0$ ou $\e^x+2=0$.
    $2\e^x-6=0 \ssi 2\e^x=6\ssi \e^x=3\ssi x=\ln(3)$.
    La fonction exponentielle est strictement positive sur $\R$ donc $\e^x+2>2>0$.
    Ainsi l’équation $\left(2\e^x-6\right)\left(\e^x+2\right)=0$ possède une unique solution dans $\R$ qui est $\ln(3)$.
    Affirmation 3 vraie
    $\quad$
  3. Pour tout $x>0$ on a
    $\begin{align*} \dfrac{\e^{2x}-1}{\e^x-x}&=\dfrac{\e^{2x}\left(1-\e^{-2x}\right)}{\e^x\left(1-x\e^{-x}\right)} \\
    &=\e^x\times \dfrac{1-\e^{-2x}}{1-x\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-2x}=0$, $\lim\limits_{x\to +\infty} \e^x=+\infty$ et par croissances comparées $\lim\limits_{x\to +\infty} x\e^{-x}=0$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^{2x}-1}{\e^x-x}=+\infty$.
    Affirmation 3 fausse
    $\quad$
  4. La fonction $F$ est dérivable sur $\R$ en tant que somme et produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} F'(x)&=2\e^{3x}+3(2x+1)\e^{3x} \\
    &=(2+6x+3)\e^{3x} \\
    &=(6x+5)\e^{3x} \\
    &=f(x)\end{align*}$
    $F$ est une primitive de $f$ sur $\R$.
    $F(0)=1+4=5.
    Affirmation 4 vraie
    $\quad$
  5. La fonction $\texttt{mystere}$ renvoie la moyenne des valeurs contenues dans la liste.
    La moyenne ici est égale à :
    $\dfrac{1+9+9+5+0+3+6+12+0+5}{10}=5$.
    Affirmation 5 fausse
    $\quad$

 

Ex 4

Exercice 4

  1. a. Pour tout $n\in \N$ on note $P(n):~u_n=2\times 0,9^n-3$.
    Initialisation : $u_0=-1$ et $2\times 0,9^0-3=-1$.
    Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_{n+1}&=0,9u_n-0,3\\
    &=0,9\left(2\times 0,9^n-3\right)-0,3 \\
    &=2\times 0,9^{n+1}-2,7-0,3\\
    &=2\times 0,9^{n+1}-0,3\end{align*}$
    $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout $n\in \N$, on a $u_n=2\times 0,9^n-3$.
    $\quad$
    b. Pour tout $n\in \N$ on a $u_n=-3+2\times 0,9^n>-3$ (on ajoute un nombre positif à $-3$).
    $\begin{align*}u_n+1&=2\times 0,9^n-2 \\
    &=2\left(0,9^n-1\right) \\
    &<0\end{align*}
    Donc $-3<u_n\pp -1$.$\quad$
    c. Soit $n\in \N$.
    $\begin{align*} u_{n+1}-u_n&=2\times 0,9^{n+1}-3-2\times 0,9^n+3\\
    &=2\times 0,9^n(0,9-1) \\
    &<0\end{align*}$
    La suite $\left(u_n\right)$ est strictement décroissante.
    $\quad$
    d. $0<0,9<1$ donc $\lim\limits_{n\to +\infty} 0,9^n=0$.
    Par conséquent $\lim\limits_{n\to +\infty} u_n=-3$.
    La suite $\left(u_n\right)$ converge vers $-3$.
    $\quad$
  2. a. La fonction $g$ est dérivable sur $]-3;-1]$ en tant que somme et composée de fonctions dérivables.
    Pour tout $x\in ]-3;-1]$
    $\begin{align*} g'(x)&=\dfrac{0,5}{0,5x+1,5}-1 \\
    &=\dfrac{0,5-0,5x-1,5}{0,5x+1,5} \\
    &=\dfrac{-0,5x-1}{0,5x+1,5} \\
    &=-\dfrac{0,5x+1}{0,5x+1,5}\end{align*}$
    Sur $]-3;-1]$ on a $0,5x+1,5>0$.
    $0,5x+1=0 \ssi 0,5x=-1 \ssi x=-2$
    $-(0,5x+1)>0 \ssi 0,5x+1<0 \ssi x<-2$
    La fonction $g$ est donc strictement croissante sur $]-3;-2]$ et strictement décroissante sur $[-2;-1]$.
    $g(-1)=0-(-1)=1$.
    $\lim\limits_{x\to -3^+} 0,5x+1,5=0^+$ et $\lim\limits_{X\to 0^+} \ln(X)=-\infty$.
    Donc $\lim\limits_{x\to -3^+} \ln(0,5x+1,5)=-\infty$ et $\lim\limits_{x\to -3^+} g(x)=-\infty$.
    $\quad$
    b. $g(-2)=\ln(0,5)+2 \approx 1,3$.
    La fonction $g$ est continue (car dérivable) et strictement croissante sur $]-3;-2]$.
    $g(-2)>0$ et $\lim\limits_{x\to -3^+} g(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution $\alpha$ sur $]-3;-2]$.
    Pour tout $x\in ]-2;-1]$ on a $g(x)\pg -1$ car la fonction $g$ est décroissante sur cette intervalle et $g(-1)=1$.
    L’équation $g(x)=0$ n’admet donc pas de solution sur cet intervalle.
    Finalement l’équation $g(x)=0$ admet une unique solution $\alpha$ sur $]-3;-1]$.
    D’après la calculatrice $\alpha\approx -2,8887$. Par conséquent $-2,889<\alpha <-2,888$.
    $\quad$
  3. a. Soit $n\in \N$
    $\begin{align*} v_{n+1}-v_n&=\ln\left(0,5u_{n+1}+1,5\right) -\ln\left(0,5u_{n}+1,5\right)\\
    &=\ln\left(0,9^{n+1}-1,5+1,5\right)-\ln\left(0,9^{n}-1,5+1,5\right) \\
    &=\ln\left(0,9^{n+1}\right)-\ln\left(0,9^{n}\right)\\
    &=(n+1)\ln(0,9)-n\ln(0,9)\\
    &=\ln(0,9)\end{align*}$
    La suite $\left(v_n\right)$ est donc arithmétique de raison $\ln(0,9)$.
    $\quad$
    b.
    $\begin{align*} u_n=v_n&\ssi u_n=\ln\left(0,5u_n+1,5\right) \\
    &\ssi \ln\left(0,5u_n+1,5\right) -u_n=0 \\
    &\ssi g\left(u_n\right)=0\end{align*}$
    $\quad$
    c. $v$ est une suite arithmétique de premier terme $0$ et de raison $\ln(0,9)$.
    Donc pour tout $n\in \N$, $v_n=n\ln(0,9)$.
    $u_n=v_n\ssi g\left(u_n\right)=0\ssi g\left(v_n\right)=0 \ssi v_n=\alpha$.
    Par conséquent $n\ln(0,9)=\alpha \ssi n=\dfrac{\alpha}{\ln(0,9)}$
    Or $-2,889<\alpha <-2,888$ donc $\dfrac{-2,889}{\ln(0,9)}<n<\dfrac{-2,888}{\ln(0,9)}$
    Mais $\dfrac{-2,889}{\ln(0,9)} \approx 27,42$ et $\dfrac{-2,888}{\ln(0,9)} \approx 27,41$.
    Il n’existe aucun entier naturel entre ces deux nombres.
    Il n’existe donc aucun rang $k\in \N$ pour lequel $u_k=\alpha$.
    $\quad$
    d. Or $u_n=\alpha\ssi g\left(u_n\right)=0\ssi u_n=v_n$.
    Il n’existe donc aucun rang $k\in \N$ pour lequel $v_k=u_k$.
    $\quad$

Énoncé

Exercice 1      4 points

Thème : probabilités

Les parties A et B peuvent être traitées indépendamment.

Les utilisateurs de vélo d’une ville sont classés en deux catégories disjointes :

  • ceux qui utilisent le vélo dans leurs déplacements professionnels ;
  • ceux qui utilisent le vélo uniquement pour leurs loisirs.

Un sondage donne les résultats suivants :

  • $21 \%$ des utilisateurs ont moins de 35 ans. Parmi eux, $68 \%$ utilisent leur vélo uniquement pour leurs loisirs alors que les autres l’utilisent dans leurs déplacements professionnels ;
  • parmi les 35 ans ou plus, seuls $20 \%$ utilisent leur vélo dans leurs déplacements professionnels, les autres l’utilisent uniquement pour leurs loisirs.

On interroge au hasard un utilisateur de vélo de cette ville.
Dans tout l’exercice on considère les événements suivants :

  • $J$ : « la personne interrogée a moins de 35 ans » ;
  • $T$ : « la personne interrogée utilise le vélo dans ses déplacements professionnels » ;
  • $\conj{J}$ et $\conj{T}$ sont les événements contraires de $J$ et $T$.

Partie A

  1. Calculer la probabilité que la personne interrogée ait moins de 35 ans et utilise son vélo dans ses déplacements professionnels. On pourra s’appuyer sur un arbre pondéré.
    $\quad$
  2.  Calculer la valeur exacte de la probabilité de $T$.
    $\quad$
  3. On considère à présent un habitant qui utilise son vélo dans ses déplacements professionnels. Démontrer que la probabilité qu’il ait moins de 35 ans est $0,30$ à $10^{-2}$ près.
    $\quad$

Partie B

Dans cette partie, on s’intéresse uniquement aux personnes utilisant leur vélo dans leurs déplacements professionnels. On admet que $30 \%$ d’entre elles ont moins de 35 ans.

On sélectionne au hasard parmi elles un échantillon de 120 personnes auxquelles on va soumettre un questionnaire supplémentaire. On assimile la sélection de cet échantillon à un tirage aléatoire avec remise.

On demande à chaque individu de cet échantillon son âge.

$X$ représente le nombre de personnes de l’échantillon ayant moins de 35 ans.

Dans cette partie, les résultats seront arrondis à $10^{-3}$ près.

  1. Déterminer la nature et les paramètres de la loi de probabilité suivie par $X$.
    $\quad$
  2. Calculer la probabilité qu’au moins $50$ utilisateurs de vélo parmi les $120$ aient moins de 35 ans.
    $\quad$

$\quad$

Exercice 2      5 points

Thème : géométrie dans l’espace

L’espace est muni d’un repère orthonormé $\Oijk$.

On considère :

  • $d_1$ la droite passant par le point $H(2; 3; 0)$ et de vecteur directeur $\vec{u}\begin{pmatrix} 1\\-1\\1\end{pmatrix}$;
  • $d_2$ la droite de représentation paramétrique :$$\begin{cases} x=2k-3\\y=k\\z=5\end{cases} \qquad \text{où $k$ décrit $\R$}$$

Le but de cet exercice est de déterminer une représentation paramétrique d’une droite $\Delta$ qui soit perpendiculaire aux droites $d_1$ et $d_2$.

  1. a. Déterminer un vecteur directeur $\vec{v}$ de la droite $d_2$.
    $\quad$
    b. Démontrer que les droites $d_1$ et $d_2$ ne sont pas parallèles.
    $\quad$
    c. Démontrer que les droites $d_1$ et $d_2$ ne sont pas sécantes.
    $\quad$
    d. Quelle est la position relative des droites $d_1$ et $d_2$ ?
    $\quad$
  2. a. Vérifier que le vecteur $\vec{w}\begin{pmatrix}-1\\2\\3\end{pmatrix}$ est orthogonal à $\vec{u}$ et à $\vec{v}$.
    $\quad$
    b. On considère le plan $P$ passant par le point $H$ et dirigé par les vecteurs $\vec{u}$ et $\vec{w}$.
    On admet qu’une équation cartésienne de ce plan est :
    $$5x+4y-z-22 = 0.$$
    Démontrer que l’intersection du plan $P$ et de la droite $d_2$ est le point $M(3; 3; 5)$.
    $\quad$
  3. Soit $\Delta$ la droite de vecteur directeur $\vec{w}$ passant par le point $M$. Une représentation paramétrique de $\Delta$ est donc donnée par :
    $$\begin{cases} x=-r+3\\y=2r+3\\z=3r+5\end{cases} \qquad \text{où $r$ décrit $\R$}$$
    a. Justifier que les droites $\Delta$ et $d_1$ sont perpendiculaires en un point $L$ dont on déterminera les coordonnées.
    $\quad$
    b. Expliquer pourquoi la droite $\Delta$ est solution du problème posé.
    $\quad$

$\quad$

Exercice 3      5 points

Thème : fonction exponentielle, algorithmique

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

  1. Affirmation : La fonction $f$ définie sur $\R$ par $f(x)=\e^x-x$ est convexe.
    $\quad$
  2. Affirmation : L’équation $\left(2e^x-6\right)\left(\e^x + 2\right) = 0$ admet $\ln(3)$ comme unique solution dans $\R$.
    $\quad$
  3. Affirmation : $$\lim\limits_{x\to +\infty} \dfrac{\e^{2x}-1}{\e^x-x}=0$$
    $\quad$
  4. Soit $f$ la fonction définie sur $\R$ par $f(x)=(6x+5)\e^{3x}$ et $F$ la fonction définie sur $\R$ par : $F(x) = (2x + 1)\e^{3x}+4$.
    Affirmation : $F$ est la primitive de $f$ sur $\R$ qui prend la valeur $5$ quand $x = 0$.
    $\quad$
  5. On considère la fonction $\texttt{mystere}$ définie ci-dessous qui prend une liste $\texttt{L}$ de nombres en paramètre.
    On rappelle que $\texttt{len(L)}$ représente la longueur de la liste $\texttt{L}$.
    $$\begin{array}{|lll|}
    \hline
    \\
    \phantom{1234}&\texttt{def mystere(L) :}&\phantom{1234} \\
    &\hspace{0.8cm} \texttt{S = 0}& \\
    &\hspace{0.8cm} \texttt{for i in range(len(L)) :}&\\
    &\hspace{1.6cm} \texttt{S = S + L[i]}&\\
    &\hspace{0.8cm} \texttt{return S / len(L)}&\\
    \\
    \hline
    \end{array}$$
    Affirmation : L’exécution de $\texttt{mystere([1,9,9,5,0,3,6,12,0,5]) }$ renvoie $\texttt{50}$.
    $\quad$

$\quad$

Exercice 4      6 points

Thème : suites, fonctions

Soit $\left(u_n\right)$ la suite définie par $u_0=-1$ et, pour tout entier naturel $n$ : $$u_{n+1}=0,9u_n-0,3$$

  1. a. Démontrer par récurrence que, pour tout $n\in \N, u_n = 2 \times 0,9 n-3$.
    $\quad$
    b. En déduire que pour tout $n\in \N, $-3 < u_n \pp -1$.
    $\quad$
    c. Démontrer que la suite $\left(u_n\right)$ est strictement décroissante.
    $\quad$
    d. Démontrer que la suite $\left(u_n\right)$ converge et préciser sa limite.
    $\quad$
  2. On se propose d’étudier la fonction $g$ définie sur $]-3 ; -1]$ par :
    $$g(x) = \ln(0,5x + 1,5)-x$$.
    a. Justifier toutes les informations données par le tableau de variations de la fonction $g$ (limites, variations, image de $-1$).
    $\quad$

    $\quad$
    b. En déduire que l’équation $g(x) = 0$ a exactement une solution que l’on
    notera $\alpha$ et dont on donnera un encadrement d’amplitude $10^-3$.
    $\quad$
  3. Dans la suite de l’exercice, on considère la suite $\left(v_n\right)$ définie pour tout $n\in\N$, par : $$v_n = \ln\left(0,5u_n + 1,5\right).$$
    a. En utilisant la formule donnée à la question 1. a., démontrer que $\left(v_n\right)$ est arithmétique de raison $\ln(0,9)$.
    $\quad$
    b. Soit $n$ un entier naturel.
    Démontrer que $u_n=v_n$ si, et seulement si $g\left(u_n\right)=0$.
    $\quad$
    c. Démontrer qu’il n’existe aucun rang $k\in \N$ pour lequel $u_k = \alpha$.
    $\quad$
    d. En déduire qu’il n’existe aucun rang $k\in \N$ pour lequel $v_k = u_k$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Amérique du Sud – sujet 1 – 26 septembre 2022

Amérique du Sud – 26 septembre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. a. On veut calculer :
    $\begin{align*} P(D\cap A)&=P(D)\times P_D(A) \\
    &=0,01\times 0,97 \\
    &=0,009~7\end{align*}$
    La probabilité qu’un danger se présente et que l’alarme s’active est égale à $0,009~7$.
    $\quad$
    b. La probabilité qu’un danger se présente sachant que l’alarme d’active est :
    $\begin{align*} P_A(D)&=\dfrac{P(A\cap D)}{P(A)} \\
    &=\dfrac{0,009~7}{0,014~65} \\
    &\approx 0,662\end{align*}$
    $\quad$
  3. $\left(D,\conj{D}\right)$ est un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} P(A)=P(A\cap D)+P\left(A\cap \conj{D}\right) &\ssi 0,014~65=0,009~7+P\left(\conj{D}\right)\times P_{\conj{D}}(A) \\
    &\ssi 0,99\times P_{\conj{D}}(A)=0,004~95 \\
    &\ssi P_{\conj{D}}(A)=\dfrac{0,004~95}{0,99} \\
    &\ssi P_{\conj{D}}(A)=0,005\end{align*}$
    $\quad$
  4. La probabilité que l’alarme ne fonctionne pas normalement est :
    $\begin{align*} p&=P\left(\left(\conj{A}\cap D\right)\cup\left(A\cap \conj{D}\right)\right) \\
    &=P(\left(\conj{A}\cap D\right)+P\left(A\cap \conj{D}\right) \qquad \text{(incompatibilité)} \\
    &=P(D)\times P_D\left(\conj{A}\right)+P\left(\conj{D}\right))\times P_{\conj{D}}(A) \\
    &=0,01\times 0,03+0,99\times 0,005 \\
    &=0,005~25 \\
    &<0,01\end{align*}$

Partie B

  1. On répète $5$ fois la même expérience de Bernoulli de paramètre $0,005~25$.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,005~25$.
    $\quad$
  2. La probabilité qu’un seul système d’alarme ne fonctionne pas normalement est :
    $\begin{align*} P(X=1)&=\dbinom{5}{1}\times 0,005~25\times (1-0,005~25)^4 \\
    &\approx 0,025~7\end{align*}$
    $\quad$
  3. La probabilité que, dans le lot prélevé, au moins un système d’alarme ne fonctionne pas normalement est :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,005~2)^5 \\
    &\approx 0,026~0\end{align*}$
    $\quad$

Partie C

On répète $n$ fois la même expérience de Bernoulli de paramètre $0,005~25$. On appelle $Y$ la variable aléatoire qui donne le nombre de systèmes d’alarme ne fonctionnant pas normalement parmi les $n$ systèmes d’alarme prélevés.
$Y$ suit donc la loi binomiale de paramètre $n$ et $p=0,005~25$.

$\begin{align*} P(Y\pg 1)\pg 0,07&\ssi 1-P(Y=0)\pg 0,07 \\
&\ssi P(Y=0)\pp 0,93 \\
&\ssi (1-0,005~25)^n \pp 0,93 \\
&\ssi n\ln(0,994~75) \pp \ln(0,93) \\
&\ssi n\pg \dfrac{\ln(0,93)}{\ln(0,994~75)} \end{align*}$
Or $\dfrac{\ln(0,93)}{\ln(0,994~75)}\approx 13,79$

Il faut donc prélever au moins $14$ systèmes d’alarme pour que la probabilité d’avoir au moins un système d’alarme qui ne fonctionne pas normalement soit supérieur à $0,07$.

$\quad$

 

Ex 2

Exercice 2

  1. a. 
    $\begin{align*} u_1&=\dfrac{1}{5}\times 4^2 \\
    &=\dfrac{16}{5} \end{align*}$
    $\quad$
    $\begin{align*} u_2&=\dfrac{1}{5}\times \left(\dfrac{16}{5}\right)^2 \\
    &=\dfrac{256}{125} \end{align*}$
    $\quad$
    b. On peut écrire :
    $\begin{array}{l}
    \text{def suite_u(p) :}\\
    \quad \text{u = 4} \\
    \quad \text{for i in range(1,p+1) :} \\
    \qquad \text{u = u**2 / 5} \\
    \quad \text{return u}\end{array}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $P(n):~~ 0<u_n\pp 4$.
    Initialisation : $u_0=4$ donc $P(0)$ est vraie
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $\begin{align*} 0<u_n\pp 4 &\Rightarrow 0<u_n^2\pp 16 \\
    &\Rightarrow 0<\dfrac{1}{5} u_n^2 \pp \dfrac{16}{5} \\
    &\Rightarrow0<u_{n+1}\pp 4\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$, on a $0<u_n\pp 4$.
    $\quad$
    b. Soit $n \in \N$
    $\begin{align*} u_{n+1}-u_n&=\dfrac{1}{5}u_n^2-u_n \\
    &=\dfrac{u_n}{5}\left(u_n-5\right)\end{align*}$
    Or $u_n>0$ et $u_n-5<0$ car $u_n\pp 4$
    Par conséquent $u_{n+1}-u_n <0$.
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
    c. La suite $\left(u_n\right)$ est décroissante et minorée par $0$.
    Par conséquent la suite $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  3. a. On appelle $f$ la fonction définie sur $\R$ par $f(x)=\dfrac{1}{5}x^2$. Elle est continue sur $\R$ en tant que fonction polynôme.
    La suite $\left(u_n\right)$ est convergente et, pour tout entier naturel $n$, on a $u_{n+1}=f\left(u_n\right)$.
    Par conséquent $\ell$ est solution de l’équation $f(x)=x$.
    Ainsi $\ell =\dfrac{1}{5}\ell^2$.
    $\quad$
    b.
    $\begin{align*} \ell =\dfrac{1}{5}\ell^2 &\ssi 5\ell-\ell^2=0 \\
    &\ssi \ell(5-\ell)=0 \\
    &\ssi \ell=0 \text{ ou } \ell =5 \end{align*}$
    Pour tout $n\in \N$ on a $0<u_n\pp 4$.
    Par conséquent $\ell$ ne peut pas être égale à $5$.
    Ainsi $\ell=0$.
    $\quad$
  4. a. Soit $n\in \N$
    $\begin{align*} v_{n+1}&=\ln\left(u_{n+1}\right) \\
    &=\ln\left(\dfrac{1}{5}u_n^2\right) \\
    &=\ln\left(u_n^2\right)-\ln(5) \\
    &=2\ln\left(u_n\right)-\ln(5) \\
    &=2v_n-\ln(5)\end{align*}$
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} w_{n+1}&=v_{n+1}-\ln(5) \\
    &=2v_n-\ln(5)-\ln(5) \\
    &=2\left(v_n-\ln(5)\right) \\
    &=2w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $2$ et de premier terme
    $\begin{align*} w_0&=v_0-\ln(5)\\
    &=ln(4)-\ln(5) \\
    &=\ln\left(\dfrac{4}{5}\right)\end{align*}$
    $\quad$
    c. Ainsi, pour tout $n\in \N$, $w_n= \ln\left(\dfrac{4}{5}\right)\times 2^n$.
    Donc
    $\begin{align*} v_n&=w_n+\ln(5) \\
    &=\ln(5)+\ln\left(\dfrac{4}{5}\right)\times 2^n \end{align*}$
    $\quad$
  5. $\ln\left(\dfrac{4}{5}\right)<0$ et $1<2$ donc $\lim\limits_{n\to +\infty} \ln\left(\dfrac{4}{5}\right)\times 2^n=-\infty$.
    Par conséquent $\lim\limits_{n\to +\infty} v_n=-\infty$
    Or $v_n=\ln\left(u_n\right)$.
    Donc $\lim\limits_{n\to +\infty} u_n=0^+$
    $\quad$

Ex 3

Exercice 3

Partie A

  1. On a
    $\begin{align*} g(\e)&=1+\e^2\left(1-2\ln(\e)\right) \\
    &=1+\e^2(1-2) \\
    &=1-\e^2 \\
    &\approx -6,39\end{align*}$
    Donc $g(\e)<0$.
    $\quad$
  2. $\lim\limits_{x\to +\infty} 1-2\ln(x)=-\infty$ et $\lim\limits_{x\to +\infty} x^2=+\infty$
    Donc $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
  3. a. Par hypothèse la fonction $g$ est dérivable sur $]0;+\infty[$.
    Ainsi, pour tout $x>0$
    $\begin{align*} g'(x)&=2x\left(1-2\ln(x)\right)+x^2\times \dfrac{-2}{x} \\
    &=2x-4x\ln(x)-2x \\
    &=-4x\ln(x)\end{align*}$
    $\quad$
    b. Pour tout $x>0$ on a $-4x<0$.
    $\ln(x)=0 \ssi x=1$ et $\ln(x)>0 \ssi x>1$.
    Ainsi $f'(x)=0 \ssi x=1$ et $f'(x)<0 \ssi 0<x<1$
    La fonction $f$ est strictement croissante sur $]0;1]$ et strictement décroissante sur $[1;+\infty[$.
    $\quad$
    c. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $[1;+\infty[$.
    $g(1)=2>0$ et $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution $\alpha$ sur l’intervalle $[1;+\infty[$.
    $\quad$
    d. D’après la calculatrice $g(1,89) \approx 0,02>0$ et $g(1,90) \approx -0,02<0$.
    Donc $1,89 <\alpha<1,90$.
    $\quad$
  4. La fonction $g$ est strictement décroissante sur $[1;+\infty[$ et $g(\alpha)=0$.
    Ainsi:
    – pour tout $x\in [1;\alpha[$ on a $g(x)>0$;
    – $g(\alpha)=0$;
    – pour tout $x\in ]\alpha;+\infty[$ on a $g(x)>0$.
    $\quad$

Partie B

  1. Pour tout $x\in [1;\alpha]$ on a $\ln(x)\pg 0$ donc $g\dsec(x)\pp 0$.
    La fonction $g$ est concave sur l’intervalle $[1;\alpha]$.
    $\quad$
  2. a. $g(1)=2$ et $g(\alpha)=0$.
    L’équation réduite de la droite $(AB)$ est donc de la forme $y=ax+b$.
    Or le coefficient directeur de cette droite est
    $\begin{align*} a&=\dfrac{0-2}{\alpha-1} \\
    &=\dfrac{-2}{\alpha-1}\end{align*}$
    $\begin{align*} g(\alpha)=0&\ssi 0=\dfrac{-2}{\alpha-1}\times \alpha+b \\
    &\ssi b=\dfrac{2\alpha}{\alpha-1}\end{align*}$
    Ainsi l’équation réduite de la droite $(AB)$ est $y=\dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$
    b. La fonction $g$ est concave sur $[1;\alpha]$. Ainsi la courbe $\mathscr{C}$ est au-dessus de toutes ses cordes sur cet intervalle, en particulier de la droite $(AB)$.
    Ainsi, pour tout $x\in [1;\alpha]$ on a $g(x)\pg \dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a donc $H(0;3;2)$ et $G(5;3;2)$.
    $\quad$
    b. Ainsi $\vect{HG}\begin{pmatrix}5\\0\\0\end{pmatrix}$
    Par conséquent, une représentation paramétrique de la droite $(GH)$ est $\begin{cases} x=5t\\y=3\\z=2\end{cases}$.
    $\quad$
  2. a. $M$ a donc pour coordonnées $(x;3;2)$ avec $x\in [0;5]$.
    Par conséquent $\vect{HM}\begin{pmatrix}x\\0\\0\end{pmatrix}$
    $\vect{HM}=k\vect{HG}\ssi  x=5k$.
    Donc $M$ a pour coordonnées $(5k;3;2)$.
    $\quad$
    b. $\vect{AM}\begin{pmatrix} 5k\\3\\2\end{pmatrix}$ et $\vect{CM}\begin{pmatrix} 5k-5\\0\\2\end{pmatrix}$
    Donc
    $\begin{align*} \vect{AM}.\vect{CM}&=5k(5k-5)+0+4\\
    &=25k^2-25k+4\end{align*}$
    $\quad$
    c. Le triangle $AMC$ est rectangle en $M$
    si, et seulement si, $\vect{AM}.\vect{CM}=0$
    si, et seulement si, $25k^2-25k+4=0$
    Le discriminant de cette équation du second degré est $\delta=(-25)^2-4\times 4\times 25=225>0$
    Les solutions de cette équation sont donc $k_1=\dfrac{25-\sqrt{225}}{50}=\dfrac{1}{5}$ et $k_2=\dfrac{25+\sqrt{225}}{50}=\dfrac{4}{5}$
    Ainsi, le triangle $AMC$ est rectangle en $M$ est rectangle si, et seulement si, $k=\dfrac{1}{5}$ ou $k=\dfrac{4}{5}$.
    $\quad$
  3. a. On a $A(0;0;0)$, $C(5;3;0)$ et $D(0;3;0)$
    Une équation cartésienne du plan $(ACD)$ est donc $z=0$.
    $\quad$
    b. D’après la question précédente, un vecteur normal au plan $(ACD)$ est $\vec{n}\begin{pmatrix}0\\0\\1\end{pmatrix}$.
    On a $\vect{MK}\begin{pmatrix} 0\\0\\-2\end{pmatrix}$
    Ainsi $\vec{n}$ et $\vect{MK}$ sont colinéaires et $\vect{MK}$ un vecteur normal au plan $(ACD)$.
    De plus, la côte du point $K$ est $0$ donc $K$ appartient au plan $(ACD)$.
    Par conséquent, $K$ est le projeté orthogonal du point $M$ sur le plan $(ACD)$.
    $\quad$
    c. $AD=3$, $DC=5$. Donc l’aire du triangle $ACD$ est $\mathscr{A}=\dfrac{15}{2}$.
    De plus $MK=2$.
    Le volume, en unités de volume, du tétraèdre $MACD$ est donc :
    $\begin{align*} V&=\dfrac{1}{3}\times MK\times \mathscr{A} \\
    &=\dfrac{1}{3}\times 2\times \dfrac{15}{2} \\
    &=5\end{align*}$
    $\quad$
  4. Le point $M$ de coordonnées $(1;3;2)$ correspond au point obtenu à l’aide $k=\dfrac{1}{5}$ à la question 2.a.
    Par conséquent, le triangle $AMC$ est rectangle en $M$.
    $\begin{align*} AM^2&=1+9+4 \\
    &=14\end{align*}$
    Donc $AM=\sqrt{14}$
    $\begin{align*} MC^2&=(-4)^2+0+2 \\
    &=20\end{align*}$
    Donc $MC=\sqrt{20}$
    L’aire du triangle $AMC$ rectangle en $M$ est donc
    $\begin{align*} \mathscr{A}’&=\dfrac{AM\times MC}{2} \\
    &=\dfrac{\sqrt{14\times 20}}{2} \\
    &=\sqrt{70}\end{align*}$
    Le volume du tétraèdre $AMCD$ est
    $\begin{align*} V=5&\ssi \dfrac{1}{3}\times \mathscr{A}’\times DP =5\\
    &\ssi \dfrac{1}{3}\times \sqrt{70}\times DP=5 \\
    &\ssi DP=\dfrac{15}{\sqrt{70}} \end{align*}$
    Par conséquent $DP\approx 1,8$.
    $\quad$

 

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : Probabilités

PARTIE A

Le système d’alarme d’une entreprise fonctionne de telle sorte que, si un danger se présente, l’alarme s’active avec une probabilité de $0,97$.
La probabilité qu’un danger se présente est de $0,01$ et la probabilité que l’alarme s’active est de $0,014~65$.
On note $A$ l’évènement « l’alarme s’active » et $D$ l’événement « un danger se présente ».
On note $\conj{M}$ l’évènement contraire d’un évènement $M$ et $P(M)$ la probabilité de l’évènement $M$.

  1. Représenter la situation par un arbre pondéré qui sera complété au fur et à mesure de l’exercice.
    $\quad$
  2. a. Calculer la probabilité qu’un danger se présente et que l’alarme s’active.
    $\quad$
    b. En déduire la probabilité qu’un danger se présente sachant que l’alarme s’active.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  3. Montrer que la probabilité que l’alarme s’active sachant qu’aucun danger ne s’est présenté est $0,005$.
    $\quad$
  4. On considère qu’une alarme ne fonctionne pas normalement lorsqu’un danger se présente et qu’elle ne s’active pas ou bien lorsqu’aucun danger ne se présente et qu’elle s’active.
    Montrer que la probabilité que l’alarme ne fonctionne pas normalement est inférieure à $0,01$.
    $\quad$

PARTIE B

Une usine fabrique en grande quantité des systèmes d’alarme. On prélève successivement et au hasard $5$ systèmes d’alarme dans la production de l’usine. Ce prélèvement est assimilé à un tirage avec remise.
On note $S$ l’évènement « l’alarme ne fonctionne pas normalement » et on admet que $P(S) = 0,005~25$.
On considère $X$ la variable aléatoire qui donne le nombre de systèmes d’alarme ne fonctionnant pas normalement parmi les $5$ systèmes d’alarme prélevés.
Les résultats seront arrondis à $10^{-4}$.

  1. Donner la loi de probabilité suivie par la variable aléatoire $X$ et préciser ses paramètres.
    $\quad$
  2. Calculer la probabilité que, dans le lot prélevé, un seul système d’alarme ne fonctionne pas normalement.
    $\quad$
  3. Calculer la probabilité que, dans le lot prélevé, au moins un système d’alarme ne fonctionne pas normalement.
    $\quad$

PARTIE C

Soit $n$ un entier naturel non nul. On prélève successivement et au hasard $n$ systèmes d’alarme.
Ce prélèvement est assimilé à un tirage avec remise.
Déterminer le plus petit entier $n$ tel que la probabilité d’avoir, dans le lot prélevé, au moins un système d’alarme qui ne fonctionne pas normalement soit supérieure à $0,07$.
$\quad$

$\quad$

Exercice 2     7 points
Thème : Suites

Soit $\left(u_n\right)$ la suite définie par $u_0 = 4$ et, pour tout entier naturel $n$, $u_{n+1} =\dfrac{1}{5}u_n^2$.

  1. a. Calculer $u_1$ et $u_2$.
    $\quad$
    b. Recopier et compléter la fonction ci-dessous écrite en langage Python. Cette fonction est nommée suite_u et prend pour paramètre l’entier naturel $p$.
    Elle renvoie la valeur du terme de rang $p$ de la suite $\left(u_n\right)$.
    $$\begin{array}{l}
    \text{def suite_u(p) :}\\
    \quad \text{u= …}\\
    \quad \text{for i in range(1,…) :}\\
    \qquad \text{u =…}\\
    \quad \text{return u}\end{array}$$
    $\quad$
  2. a. Démontrer par récurrence que pour tout entier naturel $n$, $0 < u_n \pp 4$.
    $\quad$
    b. Démontrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  3. a. Justifier que la limite $\ell$ de la suite $\left(u_n\right)$ vérifie l’égalité $\ell=\dfrac{1}{5}\ell^2$.
    $\quad$
    b. En déduire la valeur de $\ell$.
    $\quad$
  4. Pour tout entier naturel $n$, on pose $v_n = \ln\left(u_n\right)$ et $w_n = v_n-\ln(5)$.
    a. Montrer que, pour tout entier naturel $n$, $v_{n+1} = 2v_n-\ln(5)$.
    $\quad$
    b. Montrer que la suite $\left(w_n\right)$ est géométrique de raison $2$.
    $\quad$
    c. Pour tout entier naturel $n$, donner l’expression de $w_n$ en fonction de $n$ et montrer que $v_n = \ln\left(\dfrac{4}{5}\right)\times 2^n+\ln(5)$
    $\quad$
  5. Calculer $\lim\limits_{n\to +\infty} v_n$ et retrouver $\lim\limits_{n\to +\infty} u_n$.
    $\quad$

$\quad$

 

 

Exercice 3     7 points
Thème : Fonctions, fonction logarithme

Soit $g$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par $$g(x)=1+x^2\left[1-2\ln(x)\right]$$

La fonction $g$ est dérivable sur l’intervalle $]0 ; +\infty[$ et on note $g’$ sa fonction dérivée.
On appelle $\mathscr{C}$ la courbe représentative de la fonction $g$ dans un repère orthonormé du plan.

PARTIE A

  1. Justifier que $g(\e)$ est strictement négatif.
    $\quad$
  2. Justifier que $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
  3. a. Montrer que, pour tout $x$ appartenant à l’intervalle $]0 ; +\infty[$, $g'(x)=-4x\ln(x)$.
    $\quad$
    b. Étudier le sens de variation de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
    c. Montrer que l’équation $g(x) = 0$ admet une unique solution, notée $\alpha$, sur l’intervalle $[1 ; +\infty[$.
    $\quad$
    d. Donner un encadrement de $\alpha$ d’amplitude $10^{-2}$.
    $\quad$
  4. Déduire de ce qui précède le signe de la fonction $g$ sur l’intervalle $[1 ; +\infty[$.
    $\quad$

PARTIE B

  1. On admet que, pour tout $x$ appartenant à l’intervalle $[1 ; \alpha]$, $g\dsec(x)= -4\left[\ln(x)+1\right]$.
    Justifier que la fonction $g$ est concave sur l’intervalle $[1 ; \alpha]$.
    $\quad$
  2. Sur la figure ci-dessous, $A$ et $B$ sont les points de la courbe $\mathscr{C}$ d’abscisses respectives $1$ et $\alpha$.
    $\quad$

    $\quad$
    a. Déterminer l’équation réduite de la droite $(AB)$.
    $\quad$
    b. En déduire que pour tout réel $x$ appartenant à l’intervalle $[1 ; \alpha]$, $g(x)\pg \dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : Géométrie dans l’espace

Dans la figure ci-dessous, $ABCDEFGH$ est un parallélépipède rectangle tel que
$AB = 5$, $AD = 3$ et $AE = 2$.
L’espace est muni d’un repère orthonormé d’origine $A$ dans lequel les points $B$, $D$ et $E$ ont respectivement pour coordonnées $(5; 0; 0)$, $(0; 3; 0)$ et $(0; 0; 2)$.

  1. a. Donner, dans le repère considéré, les coordonnées des points $H$ et $G$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(GH)$.
    $\quad$
  2. Soit $M$ un point du segment $[GH]$ tel que $\vect{HM}=k\vect{HG}$ avec $k$ un nombre réel de l’intervalle $[0; 1]$.
    a. Justifier que les coordonnées de $M$ sont $(5k ; 3 ; 2)$.
    $\quad$
    b. En déduire que $\vect{AM}.\vect{Cm}=25k^2-25k+4$
    $\quad$
    c. Déterminer les valeurs de $k$ pour lesquelles $AMC$ est un triangle rectangle en $M$.
    $\quad$

Dans toute la suite de l’exercice, on considère que le point $M$ a pour coordonnées $(1; 3; 2)$.
On admet que le triangle $AMC$ est rectangle en $M$ .
On rappelle que le volume d’un tétraèdre est donné par la formule  $\dfrac{1}{3}\times$ Aire de la base $\times h$ où $h$ est la hauteur relative à la base.

  1. On considère le point $K$ de coordonnées $(1; 3; 0)$.
    a. Déterminer une équation cartésienne du plan $(ACD)$.
    $\quad$
    b. Justifier que le point $K$ est le projeté orthogonal du point $M$ sur le plan $(ACD)$.
    $\quad$
    c. En déduire le volume du tétraèdre $MACD$.
    $\quad$
  2. On note $P$ le projeté orthogonal du point $D$ sur le plan $(AMC)$.
    Calculer la distance $DP$ en donner une valeur arrondie à $10^{-1}$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Amérique du Sud – sujet 2 – 27 septembre 2022

Amérique du Sud – 27 septembre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On veut calculer
    $\begin{align*}P\left(C_3\cap D\right)&=P\left(C_3\right)\times P_{C_3}(D) \\
    &=0,2\times 0,04 \\
    &=0,008\end{align*}$
    La probabilité que le composant prélevé provienne de la chaîne n° 3 et soit défectueux est égale à $0,008$.
    $\quad$
  3. $\left(C_1,C_2,C_3\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a
    $\begin{align*} P(D)&=P\left(C_1\cap D\right)+P\left(C_2\cap D\right)+P\left(C_3\cap D\right) \\
    &=P\left(C_1\right)\times P_{C_1}(D) +P\left(C_2\right)\times P_{C_2}(D) +0,008 \\
    &=0,5\times 0,01+0,3\times 0,005+0,008 \\
    &=0,014~5\end{align*}$
    $\quad$
  4. On veut calculer
    $\begin{align*} P_D\left(C_3\right)&=\dfrac{P\left(C_3\cap D\right)}{P(D)} \\
    &=\dfrac{0,008}{0,014~5} \\
    &\approx 0,551~7\end{align*}$
    La probabilité qu’un composant défectueux provienne de la chaîne n° 3 est environ égale à $0,551~7$.
    $\quad$

Partie B

  1. a. On veut calculer :
    $\begin{align*} P(X=3)&=\dbinom{20}{3}0,014~5^3\times (1-0,014~5)^{17} \\
    &\approx 0,002~7\end{align*}$
    La probabilité pour qu’un lot possède exactement trois composants défectueux est environ égale à $0,002~7$.
    $\quad$
    b. On a
    $\begin{align*} P(X=0)&=(1-0,014~5)^{20}\\
    &\approx 0,746~7\end{align*}$
    La probabilité pour qu’un lot ne possède aucun composant défectueux est environ égale $0,746~7$.
    $\quad$
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &\approx 0,253~3\end{align*}$
    La probabilité qu’un lot possède au moins un composant défectueux est environ égale $0,253~3$.
    $\quad$
  2. $X$ suit la loi binomiale de paramètres $n$ et $p=0,014~5$.
    $\begin{align*} P(X=0)\pg 0,85&\ssi (1-0,014~5)^n\pg 0,85 \\
    &\ssi 0,985~5^n\pg 0,85 \\
    &\ssi n\ln(0,985~5)\pg \ln(0,85) \\
    &\ssi n\pp \dfrac{\ln(0,85)}{\ln(0,985~5)}\end{align*}$
    Or $\dfrac{\ln(0,85)}{\ln(0,985~5)} \approx 11,13$.
    La proposition de former des lots de $11$ composants au maximum est donc exact.
    $\quad$

Partie C

$0,5\times 15+0,3\times 12+0,2\times 9=12,9$
Le coût moyen de fabrication d’un composant pour cette entreprise est égale à $12,90$ euros.

$\quad$

 

Ex 2

Exercice 2

PARTIE A : Étude d’une fonction auxiliaire $\boldsymbol{g}$

  1. $g(1)=0$ et $g(\e)=2(\e-1)-\e$ soit $g(\e)=\e-2$.
    $\quad$
  2. Par croissances comparées, $\lim\limits_{x\to 0^-} x\ln(x)=0$.
    Par conséquent $\lim\limits_{x\to 0^-} g(x)=-2$.
    $\quad$
  3. La fonction $g$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a
    $\begin{align*} g'(x)&=2-\left(\ln(x)+x\times \dfrac{1}{x}\right) \\
    &=2-\ln(x)-1 \\
    &=1-\ln(x)\end{align*}$
    $g'(x)>0 \ssi 1-\ln(x)>0 \ssi \ln(x)<1 \ssi x<\e$
    $g'(x)=0\ssi 1-\ln(x)=0 \ssi x=\e$
    On obtient donc le tableau de variations suivant :$\quad$
  4. La fonction $g$ est continue (car dérivable) et strictement croissante sur $]0;\e]$.
    $\lim\limits_{x\to 0^-}  g(x)=-2<0$ et $g(\e)=\e-2>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution sur $]0;\e]$.
    Or $g(1)=0$. L’unique solution de l’équation appartenant à $]0;\e]$ est donc $1$.
    $\quad$
    La fonction $g$ est continue (car dérivable) et strictement décroissante sur $[\e;+\infty$.
    $g(\e)=\e-2>0$ et $\lim\limits_{x\to +\infty}g(x)=-\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution $\alpha$ sur $[\e;+\infty[$.
    $\quad$
    Finalement l’équation $g(x)=0$ admet exactement deux solutions $1$ et $\alpha$ où $\alpha\in[\e;+\infty[$.
    D’après la calculatrice, $4,92<\alpha<4,93$.
    $\quad$.
  5. D’après le tableau de variations et la question précédente on obtient le tableau de signes suivant :
    $\quad$$\quad$

PARTIE B : Étude de la fonction $\boldsymbol{f}$

  1. Pour tout $x>0$ on a $f(x)=x\left(3-\ln(x)-2\dfrac{\ln(x)}{x}\right)$.
    Or $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ et, par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    Par conséquent $\lim\limits_{x\to +\infty}3-\ln(x)-2\dfrac{\ln(x)}{x}=-\infty$.
    Donc $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  2. a. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a
    $\begin{align*}f'(x)&=3-\left(\ln(x)+x\times \dfrac{1}{x}\right)-2\times \dfrac{1}{x} \\
    &=3-\ln(x)-1-\dfrac{2}{x} \\
    &=2-\ln(x)-\dfrac{2}{x} \\
    &=2\times \dfrac{x-1}{x}-\ln(x) \\
    &=\dfrac{2(x-1)-x\ln(x)}{x} \\
    &=\dfrac{g(x)}{x}\end{align*}$
    $\quad$
    b. On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  3. $f\dsec(x)>0 \ssi 2-x>0 \ssi x<2$
    $f\dsec(x)=0 \ssi 2-x=0 \ssi x=2$
    La fonction $f$ est donc convexe sur $]0;2]$ et concave sur $[2;+\infty[$.
    $f(2)=6-4\ln(2)$
    $\mathscr{C}_f$ admet donc un unique point d’inflexion de coordonnées $\left(2;6-4\ln(2)\right)$.
    $\quad$

Ex 3

Exercice 3

  1. Chaque année la population diminue de $10\%$. Il reste donc $90\%$ de cette population soit $0,9u_n$.
    On réintroduit $100$ individus dans cette réserve à la fin de chaque année.
    Ainsi, pour tout $n\in \N$, $u_{n+1}=0,9u_n+100$.
    $\quad$
  2. $u_1=1~900$ et $u_2=1~810$.
    $\quad$
  3. Pour tout entier naturel $n\in \N$ on pose $P(n):~1~000<u_{n+1}\pp u_n$.
    Initialisation : $u_0=2~000$ et $u_1=1~900$. Donc $1~000<u_1\pp u_0$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $\begin{align*}1~000 <u_{n+1} \pp u_n &\ssi 900 <0,9u_{n+1} \pp 0,9u_n \\
    &\ssi 1~000 <0,9u_{n+1}+100\pp 0,9u_n+100 \\
    &\ssi 1~000< u_{n+2}\pp u_{n+1}\end{align*}$
    La propriété $P(n+1)$ est donc vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$ on a $1~000<u_{n+1} \pp u_n$.
    $\quad$
  4. La suite $\left(u_n\right)$ est donc décroissante et minorée par $1~000$. Par conséquent $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  5. a. Pour tout $n\in \N$ on a
    $\begin{align*} v_{n+1}&=u_{n+1}-1~000 \\
    &=0,9u_n+100-1~000 \\
    &=0,9u_n-900 \\
    &=0,9\left(u_n-1~000\right) \\
    &=0,9v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,9$.
    $\quad$
    b. $v_0=1~000$. Par conséquent, pour tout $n\in \N$, $v_n=1~000\times 0,9^n$.
    Or $v_n=u_n-1~000 \ssi u_n=v_n+1~000$.
    Donc
    $\begin{align*} u_n&=v_n+1~000 \\
    &=1~000\times 0,9^n+1~000 \\
    &=1~000\left(0,9^n+1\right)\end{align*}$
    $\quad$
    c. $0<0,9<1$ donc $\lim\limits_{n\to +\infty} 0,9^n=0$
    Ainsi, $\lim\limits_{n\to +\infty} u_n=1~000$.
    Sur le long terme, la population de cette espèce sera de $1~000$ individus dans cette réserve.
    $\quad$
  6. a.
    $\begin{align*} u_n\pp 1~020&\ssi 1~000\left(1+0,9^n\right)\pp 1~020 \\
    &\ssi 1+0,9^n \pp 1,02 \\
    &\ssi 0,9^n \pp 0,02 \\
    &\ssi n\ln(0,9)\pp \ln(0,02) \\
    &\ssi n\pg \dfrac{\ln(0,02)}{\ln(0,9)} \end{align*}$
    Or $\dfrac{\ln(0,02)}{\ln(0,9)}\approx 37,13$.
    Le plus petit entier naturel $n$ tel que $u_n\pp 1~020$ est donc $38$.
    $\quad$
    b. On peut écrire
    $\begin{array}{|cl|}
    \hline
    1&\text{def population(S) :}\\
    2& \text{  n=0}\\
    3&\text{  u=2000}\\
    4&\\
    5&\text{  while u > 1020 :}\\
    6&\text{    u = 0.9 * u + 100}\\
    7&\text{    n = n + 1}\\
    8&\text{  return n}\\
    \hline
    \end{array}$
    $\quad$

Ex 4

Exercice 4

  1. a. $\vect{AB}\begin{pmatrix}6\\-4\\-2\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}2\\-4\\-6\end{pmatrix}$
    $\dfrac{6}{2}\neq \dfrac{-2}{-6}$.
    Les vecteurs $\vect{AB}$ et $\vect{AC}$ ne sont pas colinéaires. Les points $A$, $B$ et $C$ ne sont donc pas alignés.
    $\quad$
    b. D’une part $\vect{AB}.\vec{n}=6-8+2=0$
    D’autre part $\vect{AC}.\vec{n}=2-8+6=0$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    Par conséquent $\vec{n}$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABC)$ est donc de la forme $x+2y-z+d=0$.
    $A(0;8;6)$ appartient au plan $(ABC)$. Ainsi $0+16-6+d=0 \ssi d=-10$.
    Une équation cartésienne du plan $(ABC)$ est donc $x+2y-z-10=0$.
    $\quad$
  2. a. On a $\vect{DE}\begin{pmatrix}6\\6\\-6\end{pmatrix}$.
    Une représentation paramétrique de la droite $(DE)$ est donc $\begin{cases} x=6t\\y=6t\\z=6-6t\end{cases} \quad y\in \R$.
    $\quad$
    b. $I$ a pour coordonnées $(4;4;2)$.
    En prenant $t=\dfrac{4}{6}$ dans la représentation paramétrique précédente on obtient le point de coordonnées $(4;4;2)$.
    Le point $I$ appartient bien à la droite $(DE)$.
    $\quad$
  3. a. $\vect{BC}\begin{pmatrix} -4\\0\\-4\end{pmatrix}$
    Par conséquent $\vect{AC}.\vect{BC}\neq 0$, $\vect{AB}.\vect{BC}\neq 0$ et $\vect{AC}.\vect{AB}\neq 0$.
    $\begin{align*} AC^2&=2^2+(-4)^2+(-6)^2 \\
    &=4+16+36 \\
    &=56\end{align*}$
    $\begin{align*} AB^2&=6^2+(-4)^2+(-2)^2 \\
    &=36+16+4 \\
    &=56\end{align*}$
    $\begin{align*} BC^2&=(-4)^2+0^2+(-4)^2 \\
    &=32\end{align*}$.
    Le triangle $ABC$ est donc isocèle en $A$.
    $\quad$
    b. $\vect{AI}\begin{pmatrix} 4\\-4\\-4\end{pmatrix}$.
    Donc
    $\begin{align*} AI^2&=4^2+(-4)^2+(-4)^2 \\
    &=16+16+16 \\
    &=48\end{align*}$
    L’aire du triangle $ABC$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{\sqrt{48}\times \sqrt{32}}{2} \\
    &=8\sqrt{6} \text{u.a.}\end{align*}$
    $\quad$
    c.
    $\begin{align*} \vect{AB}.\vect{AC}&=12+16+12 \\
    &=40\end{align*}$
    $\quad$
    d.
    $\begin{align*}
    \vect{AB}.\vect{AC}=40&\ssi AB\times AC\times \cos \widehat{BAC}=40 \\
    &\ssi 56\cos \widehat{BAC}=40 \\
    &\ssi \cos \widehat{BAC}=\dfrac{5}{7}\end{align*}$
    Par conséquent $\widehat{BAC}\approx 44,4$°.
    $\quad$
  4. $\vect{OH}\begin{pmatrix} \dfrac{5}{3}\\\dfrac{10}{3}\\-\dfrac{5}{3}\end{pmatrix}$.
    Par conséquent $\vect{OH}=\dfrac{5}{3}\vec{n}$.
    $\vect{OH}$ est orthogonal au plan $(ABC)$.
    $\begin{align*} \dfrac{5}{3}+2\times \dfrac{10}{3}+\dfrac{5}{3}-10&=\dfrac{30}{3}-10 \\
    &=0\end{align*}$
    Le point $H$ appartient donc au plan $(ABC)$.
    Ainsi $H$ est le projeté orthogonal du point $O$ sur le plan $(ABC)$.
    La distance du point $O$ au plan $(ABC)$ est
    $\begin{align*} OH&=\sqrt{\left(\dfrac{5}{3}\right)^2+\left(\dfrac{10}{3}\right)^2+\left(\dfrac{5}{3}\right)^2} \\
    &=\sqrt{\dfrac{150}{9}}\\
    &=\dfrac{5\sqrt{6}}{3}\end{align*}$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : Probabilités

Une entreprise fabrique des composants pour l’industrie automobile. Ces composants sont conçus sur trois chaînes de montage numérotées de 1 à 3.

  • • La moitié des composants est conçue sur la chaîne n°1;
  • $30 \%$ des composants sont conçus sur la chaîne n°2;
  • les composants restant sont conçus sur la chaîne n°3.

À l’issue du processus de fabrication, il apparaît que $1 \%$ des pièces issues de la chaîne n°1 présentent un défaut, de même que $0,5 \%$ des pièces issues de la chaîne n°2 et $4 \%$ des pièces issues de la chaîne n°3.

On prélève au hasard un de ces composants. On note :

  • $C_1$ l’évènement « le composant provient de la chaîne n°1 »;
  • $C_2$ l’évènement « le composant provient de la chaîne n°2 »;
  • $C_3$ l’évènement « le composant provient de la chaîne n° 3 »;
  • $D$ l’évènement « le composant est défectueux » et $\conj{D}$ son évènement contraire.

Dans tout l’exercice, les calculs de probabilité seront donnés en valeur décimale exacte ou arrondie à $10^{-4}$ si nécessaire.

PARTIE A

  1. Représenter cette situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que le composant prélevé provienne de la chaîne n°3 et soit défectueux.
    $\quad$
  3. Montrer que la probabilité de l’évènement $D$ est $P(D) = 0,014~5$.
    $\quad$
  4. Calculer la probabilité qu’un composant défectueux provienne de la chaîne n°3.

PARTIE B

L’entreprise décide de conditionner les composants produits en constituant des lots de $n$ unités. On note $X$ la variable aléatoire qui, à chaque lot de $n$ unités, associe le nombre de composants défectueux de ce lot.
Compte tenu des modes de production et de conditionnement de l’entreprise, on peut considérer que $X$ suit la loi binomiale de paramètres $n$ et $p = 0,014~5$.

  1. Dans cette question, les lots possèdent $20$ unités. On pose $n = 20$.
    a. Calculer la probabilité pour qu’un lot possède exactement trois composants défectueux.
    $\quad$
    b. Calculer la probabilité pour qu’un lot ne possède aucun composant défectueux.
    En déduire la probabilité qu’un lot possède au moins un composant défectueux.
    $\quad$
  2. Le directeur de l’entreprise souhaite que la probabilité de n’avoir aucun composant défectueux dans un lot de $n$ composants soit supérieure à $0,85$.
    Il propose de former des lots de $11$ composants au maximum. A-t-il raison ? Justifier la réponse.
    $\quad$

PARTIE C

Les coûts de fabrication des composants de cette entreprise sont de $15$ euros s’ils proviennent de la chaîne de montage n°1, $12$ euros s’ils proviennent de la chaîne de montage n°2 et $9$ euros s’ils proviennent de la chaîne de montage n°3.
Calculer le coût moyen de fabrication d’un composant pour cette entreprise.
$\quad$

$\quad$

Exercice 2     7 points
Thème : Fonctions, fonction logarithme

Le but de cet exercice est d’étudier la fonction $f$, définie sur $]0;+\infty[$, par : $$f(x)=3x-x\ln(x)-2\ln(x)$$

PARTIE A : Étude d’une fonction auxiliaire $\boldsymbol{g}$

Soit $g$ la fonction définie sur $]0 ; +\infty[$ par $$g(x) = 2(x-1)-x \ln(x)$$
On note $g’$ la fonction dérivée de $g$. On admet que $\lim\limits_{x\to +\infty} g(x)=-\infty$

  1. Calculer $g(1)$ et $g(\e)$.
    $\quad$
  2. Déterminer $\lim\limits_{x\to 0} g(x)$ en justifiant votre démarche.
    $\quad$
  3. Montrer que, pour tout $x > 0$, $g'(x) = 1-\ln(x)$.
    En déduire le tableau des variations de $g$ sur $]0 ; +\infty[$.
    $\quad$
  4. Montrer que l’équation $g(x) = 0$ admet exactement deux solutions distinctes sur $]0 ; +\infty[$ : $1$ et $\alpha$ avec $\alpha$ appartenant à l’intervalle $[\e ; +\infty[$.
    On donnera un encadrement de $\alpha$ à $0,01$ près.
    $\quad$
  5. En déduire le tableau de signes de $g$ sur $]0 ; +\infty[$.
    $\quad$

PARTIE B : Étude de la fonction $\boldsymbol{f}$

On considère dans cette partie la fonction $f$ , définie sur $]0 ; +\infty[$,par
$$f(x) = 3x-x \ln(x)-2\ln(x)$$
On note $f’$ la fonction dérivée de $f$.
La représentation graphique $\mathscr{C}_f$ de cette fonction $f$ est donnée dans le repère $\Oij$ ci-dessous. On admet que : $\lim\limits_{x\to 0} f(x)=+\infty$.

  1. Déterminer la limite de $f$ en $+\infty$ en justifiant votre démarche.
    $\quad$
  2. a. Justifier que pour tout $x > 0$, $f'(x)=\dfrac{g(x)}{x}$.
    $\quad$
    b. En déduire le tableau des variations de $f$ sur $]0 ; +\infty[$.
    $\quad$
  3. On admet que, pour tout $x > 0$, la dérivée seconde de $f$ , notée $f\dsec$, est définie par $f\dsec(x)=\dfrac{2-x}{x^2}$.
    Étudier la convexité de $f$ et préciser les coordonnées du point d’inflexion de $\mathscr{C}_f$.
    $\quad$

$\quad$

Exercice 3     7 points
Thème : Suites

La population d’une espèce en voie de disparition est surveillée de près dans une réserve naturelle.
Les conditions climatiques ainsi que le braconnage font que cette population diminue de $10 \%$ chaque année.
Afin de compenser ces pertes, on réintroduit dans la réserve 100 individus à la fin de chaque année.
On souhaite étudier l’évolution de l’effectif de cette population au cours du temps. Pour cela, on modélise l’effectif de la population de l’espèce par la suite $\left(u_n\right)$ où $u_n$ représente l’effectif de la population au début de l’année 2020$+n$.
On admet que pour tout entier naturel $n$, $u_n > 0$.
Au début de l’année 2020, la population étudiée compte $2~000$ individus, ainsi $u_0 = 2~000$.

  1. Justifier que la suite $\left(u_n\right)$ vérifie la relation de récurrence :
    $u_{n+1} = 0,9u_n +100$.
    $\quad$
  2. Calculer $u_1$ puis $u_2$.
    $\quad$
  3. Démontrer par récurrence que pour tout entier naturel $n$ : $1~000 < u_{n+1}\pp u_n$.
    $\quad$
  4. La suite $\left(u_n\right)$ est-elle convergente ? Justifier la réponse.
    $\quad$
  5. On considère la suite $\left(v_n\right)$ définie pour tout entier naturel $n$ par $v_n = u_n −1~000$.
    a. Montrer que la suite $\left(v_n\right)$ est géométrique de raison $0,9$.
    $\quad$
    b. En déduire que, pour tout entier naturel $n$, $u_n = 1~000(1+0,9n
    )$.
    $\quad$
    c. Déterminer la limite de la suite $\left(u_n\right)$.
    En donner une interprétation dans le contexte de cet exercice.
    $\quad$
  6. On souhaite déterminer le nombre d’années nécessaires pour que l’effectif de la population passe en dessous d’un certain seuil $S$ (avec $S > 1~000$).
    a. Déterminer le plus petit entier $n$ tel que $u_n \pp 1~020$.
    Justifier la réponse par un calcul.
    $\quad$
    b. Dans le programme Python ci-dessous, la variable $n$ désigne le nombre d’années écoulées depuis 2020, la variable $u$ désigne l’effectif de la population.
    $$\begin{array}{|ll|}
    \hline
    1&\text{def population(S) :}\\
    2&\quad \text{n=0}\\
    3&\quad \text{u=2000}\\
    4&\\5&\quad \text{while …… :}\\
    6& \qquad \text{u= …}\\
    7& \qquad \text{n = …}\\
    8& \quad \text{return …}\\
    \hline
    \end{array}$$
    Recopier et compléter ce programme afin qu’il retourne le nombre d’années nécessaires pour que l’effectif de la population passe en dessous du seuil $S$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : Géométrie dans l’espace

Dans l’espace muni d’un repère orthonormé $\Oijk$, on considère les points $$
A(0 ; 8 ; 6), B(6 ; 4 ; 4) \text{ et } C(2 ; 4 ; 0)$$

  1. a. Justifier que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b. Montrer que le vecteur $\vec{n}(1 ; 2 ; -1)$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Déterminer une équation cartésienne du plan $(ABC)$.
    $\quad$
  2. Soient $D$ et $E$ les points de coordonnées respectives $(0; 0; 6)$ et $(6; 6; 0)$.
    a. Déterminer une représentation paramétrique de la droite $(DE)$.
    $\quad$
    b. Montrer que le milieu $I$ du segment $[BC]$ appartient à la droite $(DE)$.
    $\quad$
  3. On considère le triangle $ABC$.
    a. Déterminer la nature du triangle $ABC$.
    $\quad$
    b. Calculer l’aire du triangle $ABC$ en unité d’aire.
    $\quad$
    c. Calculer $\vect{AB}.\vect{AC}$.
    $\quad$
    d. En déduire une mesure de l’angle $\widehat{BAC}$ arrondie à $0,1$ degré.
    $\quad$
  4. On considère le point $H$ de coordonnées $\left(\dfrac{5}{3};\dfrac{10}{3};-\dfrac{5}{3}\right)$.
    Montrer que $H$ est le projeté orthogonal du point $O$ sur le plan $(ABC)$.
    En déduire la distance du point $O$ au plan $(ABC)$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole, Antilles, Guyane – sujet 1 – 8 septembre 2022

Métropole Antilles/Guyane – 8 septembre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. Pour tout réel $x$
    $\begin{align*} g(x)&=\dfrac{2\e^x}{\e^x+1} \\
    &=\dfrac{2\e^x}{\e^x\left(1+\e^{-x}\right) }\\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$ et $\lim\limits_{x\to +\infty} g(x)=2$.
    La droite d’équation $y=2$ est donc asymptote à la courbe représentative de la fonction $g$ en $+\infty$.
    Réponse b
    $\quad$
  2. La fonction $f\dsec$ semble positive sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Par conséquent $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Réponse c
    $\quad$
  3. Pour tout $n\in \N$ on a :
    $\begin{align*} v_{n+1}&=u_{n+1}-2 \\
    &=\dfrac{1}{2}u_{n+1}+1-2 \\
    &=\dfrac{1}{2}u_{n+1}-1 \\
    &=\dfrac{1}{2}\left(u_n-2\right)\\
    &=\dfrac{1}{2}v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $\dfrac{1}{2}$.
    Réponse d
    $\quad$
  4. $0<\dfrac{1}{4}<1$ donc $\lim\limits_{n\to +\infty} \left(\dfrac{1}{4}\right)^n=0$. Par conséquent $\lim\limits_{n\to +\infty} 1+\left(\dfrac{1}{4}\right)^n=1$.
    $\begin{align*}\dfrac{n}{n+1}&=\dfrac{n}{n\left(1+\dfrac{1}{n}\right)}\\
    &=\dfrac{1}{1+\dfrac{1}{n}}\end{align*}$
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{n}=0$.
    Par conséquent $\lim\limits_{n\to +\infty} \dfrac{n}{n+1}=1$ et $\lim\limits_{n\to +\infty} 2-\dfrac{n}{n+1}=1$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} u_n=1$.
    Réponse b
    $\quad$
  5. On considère la fonction $F$ définie sur $]0;+\infty[$ par $F(x)=\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$.
    La fonction $F$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a :
    $\begin{align*} F'(x)&=\dfrac{1}{3}\times 3x^2\left(\ln(x)-\dfrac{1}{3}\right)+\dfrac{1}{3}x^3\times \dfrac{1}{x}\\
    &=x^2\ln(x)-\dfrac{1}{3}x^2+\dfrac{1}{3}x^2 \\
    &=x^2\ln(x)\end{align*}$
    Ainsi $F$ est une primitive de la fonction $f$.
    Réponse a
    $\quad$
  6. Soit $x\in \R$
    $\begin{align*} 2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}&=\dfrac{2\e^{-x}+2+3\e^{-x}-5}{\e^{-x}+1} \\
    &=\dfrac{5\e^{-x}-3}{\e^{-x}+1} \\
    &=\dfrac{\e^{-x}\left(5-3\e^x\right)}{\e^{-x}\left(1+\e^x\right)} \\
    &=\dfrac{5-3\e^x}{1+\e^x}\end{align*}$
    Réponse a
    $\quad$

Ex 2

Exercice 2

  1. a. On a $p\left(\conj{M}\cap \conj{G}\right)=0,06$ et $p\left(\conj{M}\right)=1-0,7$ c’est-à-dire $p\left(\conj{M}\right)=0,3$.
    Or
    $\begin{align*} P_{\conj{M}}\left(\conj{G}\right)&=\dfrac{p\left(\conj{M}\cap \conj{G}\right)}{p\left(\conj{M}\right)} \\
    &=\dfrac{0,06}{0,3} \\
    &=0,2\end{align*}$
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    $\quad$
    c. On veut calculer
    $\begin{align*} p\left(G\cap \conj{M}\right)&=p\left(\conj{M}\right)\times p_{\conj{M}}(G) \\
    &=0,3\times 0,8\\
    &=0,24\end{align*}$
    La probabilité de l’événement « le client visite la grotte et ne visite pas le musée » est égale à $0,24$.
    $\quad$
    d. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} p(G)&=p(G\cap M)+p\left(\conj{M}\cap G\right) \\
    &=p(M)\times p_M(G)+p\left(\conj{M}\cap G\right) \\
    &=0,7\times 0,6+0,24 \\
    &=0,66\end{align*}$
    $\quad$
  2. On veut calculer
    $\begin{align*} p_G(M)&=\dfrac{p(G\cap M)}{p(G)} \\
    &=\dfrac{0,7\times 0,6}{0,66} \\
    &=\dfrac{7}{11} \\
    &>\dfrac{1}{2}
    \end{align*}$
    L’affirmation est donc exacte.
    $\quad$
  3. a. On a $T(\Omega)=\acco{0,~5,~12,~17}$
    $\begin{align*} p(T=0)&=p\left(\conj{G}\cap \conj{M}\right) \\
    &=0,06\end{align*}$
    $\begin{align*} p(T=5)&=p\left(G\cap \conj{M}\right) \\
    &=0,24\end{align*}$
    $\begin{align*} p(T=12)&=p\left(\conj{G}\cap M\right) \\
    &=0,28\end{align*}$
    $\begin{align*} p(T=17)&=p\left(G\cap M\right) \\
    &=0,42\end{align*}$
    Ainsi
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&5&12&17\\
    \hline
    p(T=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    $\quad$
    b. L’espérance mathématique de $T$ est donc
    $\begin{align*} E(T)&=0\times 0,06+5\times 0,24+12\times 0,28+17\times 0,42 \\
    &=11,7\end{align*}$
    $\quad$
    c. Un client dépense donc en moyenne $11,70$ €.
    On appelle $N$ le nombre moyen de clients par journée.
    $11,7N\pg 700 \ssi x\pg \dfrac{700}{11,7}$
    Or $\dfrac{700}{11,7}\approx 59,83$.
    Il faut donc, en moyenne, au moins $60$ clients par journée pour atteindre cet objectif.
    $\quad$
  4. On appelle $p$ le prix de la visite de la grotte. On appelle $T’$ la variable aléatoire qui modélise la somme dépensée par un client de l’hôtel pour ces visites. On obtient alors la loi de probabilité suivante
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&x&12&12+x\\
    \hline
    p(T’=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    Son espérance est donc
    $\begin{align*} E(T’)&=0,24x+12\times 0,28+0,42(12+x) \\
    &=0,24x+3,36+5,04+0,42x \\
    &=8,4+0,66x\end{align*}$
    $\begin{align*} E(T’)=15&\ssi 8,4+0,66x=15 \\
    &\ssi 0,66x=6,6 \\
    &\ssi x=10\end{align*}$
    Le prix de la visite de la grotte devrait donc être de $10$ euros pour atteindre l’objectif.
    $\quad$
  5. On appelle $X$ la variable aléatoire comptant le nombre de clients ayant visité la grotte. On répète $100$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,66$.
    $X$ suit donc la loi binomiale de paramètres $n=100$ et $p=0,66$.
    D’après la calculatrice :
    $\begin{align*} P(X\pg 75)&=1-P(X\pp 74) \\
    &\approx 0,034\end{align*}$
    La probabilité qu’au moins les trois quarts des clients de l’hôtel aient visité la grotte est environ égale à $0,034$.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. Par croissances comparées,$\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    $\quad$
  2. a. Pour tout réel $x\pg 1$ on a :
    $\begin{align*} f'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
    b. Pour tout réel $x\pg 1$ on a $x^2\pg 1$
    $1-\ln(x)=0\ssi \ln(x)=1\ssi=\e$ donc $f'(x)=0 \ssi x=\e$
    $1-\ln(x)>0 \ssi \ln(x)<1 \ssi x<\e$ donc $f'(x)>0 \ssi x\in [1;\e]$
    $1-\ln(x)<0 \ssi \ln(x)>1 \ssi x>\e$ donc $f'(x)>0 \ssi x\in [\e;+\infty[$
    $\quad$
    c. On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  3. a. Soit $k$ un réel, $0\pp k \pp \e^{-1}$. La fonction $f$ est continue et strictement croissante sur $[1;\e]$.
    $f(0)=0\pp k$ et $f(\e)=\e^{-1}\pg k$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=k$ admet une unique solution $\alpha$ sur l’intervalle $[1;\e]$.
    $\quad$
    b. Soit $k$ strictement supérieur à $\dfrac{1}{\e}$.
    Pour tout réel $x\pg 1$ on a $fx)\pp \e^{-1}$.
    Par conséquent l’équation $f(x)=k$ n’admet aucune solution sur $[1;+\infty[$.
    $\quad$

Partie B

  1. La fonction $g$ est dérivable sur $\R$ comme composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $g'(x)=\dfrac{1}{4}\e^{\frac{x}{4}}>0$ car la fonction exponentielle est strictement positive.
    La fonction $g$ est donc strictement croissante sur $\R$.
    $\quad$
  2. Pour tout $n\in \N$ on pose $P(n):~u_n \pp u_{n+1} \pp \e$.
    Initialisation : $u_0=1$ et $u_1=\e^{\frac{1}{4}}\approx 1,28$
    Par conséquent $u_0\pp u_1 \pp \e$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $u_n \pp u_{n+1} \pp \e$. La fonction $g$ est strictement croissante sur $[1;\e]$. Par conséquent :
    $g\left(u_{n+1}\right) \pp g\left(u_{n+1}\right) \pp g(\e)$ soit $u_{n+1} \pp u_{n+2} \pp \e^{-1}\pp \e$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$, on a $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. La suite $\left(u_n\right)$ est croissante et majorée par $\e$.
    Par conséquent $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  4. $\e^{\frac{x}{4}}=x \ssi \dfrac{x}{4}=\ln(x) \ssi \dfrac{1}{4}=\dfrac{\ln(x)}{x} \ssi f(x)=\dfrac{1}{4}$
    $\quad$
  5. D’après la calculatrice une solution de l’équation $f(x)=\dfrac{1}{4}$ est environ égale à $1,43$ qui appartient bien à $[1;\e]$.
    Ainsi $\ell \approx 1,43$.

Ex 4

Exercice 4

  1. a. $\vect{DE}\begin{pmatrix} 12\\-15\\-6\end{pmatrix}$
    Par conséquent $\dfrac{1}{3}\vect{DE}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$ est un vecteur directeur de $\Delta$.
    Ainsi, une représentation paramétrique de $\Delta$ est $\begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\end{cases} \qquad t\in \R$.
    $\quad$
    b. $\Delta$ et $\Delta’$ sont parallèles. Un vecteur directeur de de $\Delta$ est donc également un vecteur directeur de $\Delta’$.
    Une représentation paramétrique de $\Delta’$ est donc $\begin{cases} x=4t\\y=-5t\\z=-2t\end{cases} \qquad t\in \R$.
    $\quad$
    c. $4t=1,36 \ssi t=0,34$
    De plus $-5\times 0,34=-1,7$ et $-2\times 0,34=-0,68 \neq -0,7$.
    Donc $F$ n’appartient pas à la droite $\Delta’$.
    $\quad$
  2. a. $\vect{AB}\begin{pmatrix}2\\2\\-1\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}2\\0\\4\end{pmatrix}$.
    Ces deux vecteurs ne sont clairement pas colinéaires (aucune coordonnée nulle pour le vecteur $\vect{AB}$). Les points $A$, $B$ et $C$ définissent donc bien un plan.
    $\quad$
    b. On note $\vec{n}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$.
    $\vec{n}.\vect{AB}=8-10+2=0$ et $\vec{n}.\vect{AC}=8+0-8=0$.
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    La droite $\Delta$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Une équation du plan $(ABC)$ est donc de la forme $4x-5y-2z+d=0$.
    Le point $A(-1;-1;3)$ appartient au plan $(ABC)$.
    Par conséquent $-4+5-6+d=0 \ssi d=5$.
    Une équation cartésienne du plan $(ABC)$ est donc $4x-5y-2z+5=0$.
    $\quad$
  3. a. Prenons $t=2$ dans la représentation paramétrique de $\Delta$.
    Le point de coordonnées $(7;-4;5)$ appartient donc à la droite $\Delta$.
    Donc $G(7;-4;4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Les coordonnées du point $H$ sont solution du système
    $\begin{align*} \begin{cases} 4x-5y-2z+5=0\\x=-1+4t\\y=6-5t\\z=8-2t\end{cases}&\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\-4+16t-30+25t-16+4t+5=0\end{cases} \\
    &\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\45t=45\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=1\\z=6\end{cases} \end{align*}$.
    Le point $H$ a donc pour coordonnées $(3;1;6)$.
    $\quad$
    c. La distance du point $G$ au plan $(ABC)$ est par conséquent $HG$.
    Or $\vect{HG}$ a pour coordonnées $\begin{pmatrix} -4\\5\\2\end{pmatrix}$
    Ainsi
    $\begin{align*} HG&=\sqrt{(-4)^2+5^2+2^2} \\
    &=\sqrt{16+25+4} \\
    &=\sqrt{45} \\
    &=\sqrt{9\times 5}\\
    &=3\sqrt{5}\end{align*}$
    $\quad$
  4. a. $\vect{AB}.\vect{AC}=4+0-4=0$.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b. $AB=\sqrt{9}=3$ et $AC=\sqrt{20}=2\sqrt{5}$
    Le volume du tétraèdre $ABCG$ est donc
    $\begin{align*} V&=\dfrac{\dfrac{AB\times AC}{2}\times HG}{3} \\
    &=\dfrac{3\times \sqrt{5}\times 3\sqrt{5}}{3} \\
    &=15\end{align*}$
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thèmes : fonctions, suites

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $g$ définie sur $\R$ par : $g(x)=\dfrac{2\e^x}{\e^x+1}$.
    La courbe représentative de la fonction $g$ admet pour asymptote en $+\infty$ la droite d’équation :
    a. $x=2$;
    b. $y=2$;
    c. $y=0$
    d. $x=-1$.
    $\quad$
  2. On considère une fonction $f$ définie et deux fois dérivable sur $\R$.
    On appelle $C$ sa représentation graphique.
    $\quad$
    On désigne par $d\dsec$ la dérivée seconde de $f$.
    $\quad$
    On a représenté sur le graphique ci-dessous la courbe de $f\dsec$, notée $C\dsec$.
    $\quad$

    $\quad$
    a. $C$ admet un unique point d’inflexion;
    b. $f$ est convexe sur l’intervalle $[-1;2]$;
    c. $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$;
    d. $f$ est convexe sur $\R$.
    $\quad$
  3. On donne la suite $\left(u_n\right)$ définie par : $u_0= 0$ et pour tout entier naturel $n$, $u_{n+1}=\dfrac{1}{2}u_n+1$.
    La suite $\left(v_n\right)$, définie pour tout entier naturel $n$ par $v_n=u_n-2$, est :
    a. arithmétique de raison $-2$;
    b. géométrique de raison $-2$;
    c. arithmétique de raison $1$;
    d. géométrique de raison $\dfrac{1}{2}$.
    $\quad$
  4. On considère une suite $\left(u_n\right)$ telle que, pour tout entier naturel $n$, on a : $$1+\left(\dfrac{1}{4}\right)^n \pp u_n \pp 2-\dfrac{n}{n+1}$$
    On peut affirmer que la suite $\left(u_n\right)$ :
    a. converge vers $2$;
    b. converge vers $1$;
    c. diverge vers $+\infty$;
    d. n’a pas de limite.
    $\quad$
  5. Soit $f$ la fonction définie sur $]0; +\infty[$ par $f(x)=x^2\ln(x)$.
    Une primitive $F$ de $f$ sur $]0; +\infty[$ est définie par :
    a. $F(?) =\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$;
    b. $F(x) = \dfrac{1}{3}x^3\left(\ln(x)-1\right)$;
    c. $F(x) = \dfrac{1}{3}x^2$;
    d. $F(x) = \dfrac{1}{3}x^2\left(\ln(x)-1\right)$.
    $\quad$
  6. Pour tout réel $x$ , l’expression $2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}$ est égale à :
    a. $\dfrac{5-3\e^x}{1+\e^x}$;
    b. $\dfrac{5+3\e^x}{1-\e^x}$;
    c. $\dfrac{5+3\e^x}{1+\e^x}$;
    d. $\dfrac{5-3\e^x}{1-\e^x}$.
    $\quad$

$\quad$

Exercice 2     7 points
Thème : probabilités

Un hôtel situé à proximité d’un site touristique dédié à la préhistoire propose deux visites dans les environs, celle d’un musée et celle d’une grotte.

Une étude a montré que $70\%$ des clients de l’hôtel visitent le musée. De plus, parmi les clients visitant le musée, $60\%$ visitent la grotte.
Cette étude montre aussi que $6\%$ des clients de l’hôtel ne font aucune visite.
On interroge au hasard un client de l’hôtel et on note :

  • $M$ l’événement : « le client visite le musée » ;
  • $G$ l’événement : « le client visite la grotte ».

On note $\conj{M}$ l’événement contraire de $M$, ?$\conj{G}$ l’événement contraire de $G$, et pour tout événement $E$, on note $p(E)$ la probabilité de $E$.

Ainsi, d’après l’énoncé, on a : $p\left(\conj{M}\cap \conj{G}\right)= 0,06$

  1. a. Vérifier que $p_{\conj{M}}\left(\conj{G}\right) = 0,2$, où $p_{\conj{M}}\left(\conj{G}\right)$ désigne la probabilité que le client interrogé ne visite pas la grotte sachant qu’il ne visite pas le musée.
    $\quad$
    b. L’arbre pondéré ci-dessous modélise la situation. Recopier et
    compléter cet arbre en indiquant sur chaque branche la probabilité
    associée.
    $\quad$
    $\quad$
    c. Quelle est la probabilité de l’événement « le client visite la grotte et ne visite pas le musée » ?
    $\quad$
    d. Montrer que $p(G) = 0,66$.
    $\quad$
  2. Le responsable de l’hôtel affirme que parmi les clients qui visitent la grotte, plus de la moitié visitent également le musée. Cette affirmation est-elle exacte ?
    $\quad$
  3. Les tarifs pour les visites sont les suivants :
    $\bullet$ visite du musée : $12$ euros ;
    $\bullet$ visite de la grotte : $5$ euros.
    On considère la variable aléatoire $T$ qui modélise la somme dépensée par un client de l’hôtel pour ces visites.
    a. Donner la loi de probabilité de $T$. On présentera les résultats sous la forme d’un tableau.
    $\quad$
    b. Calculer l’espérance mathématique de $T$.
    $\quad$
    c. Pour des questions de rentabilité, le responsable de l’hôtel estime que le montant moyen des recettes des visites doit être supérieur à $700$ euros par jour. Déterminer le nombre moyen de clients par journée permettant d’atteindre cet objectif.
    $\quad$
  4. Pour augmenter les recettes, le responsable souhaite que l’espérance de la variable aléatoire modélisant la somme dépensée par un client de l’hôtel pour ces visites passe à $15$ euros, sans modifier le prix de visite du musée qui demeure à $12$ euros. Quel prix faut-il fixer pour la visite de la grotte afin d’atteindre cet objectif ? (On admettra que l’augmentation du
    prix d’entrée de la grotte ne modifie pas la fréquentation des deux sites).
    $\quad$
  5.  On choisit au hasard $100$ clients de l’hôtel, en assimilant ce choix à un tirage avec remise. Quelle est la probabilité qu’au moins les trois quarts de ces clients aient visité la grotte à l’occasion de leur séjour à l’hôtel ? On donnera une valeur du résultat à $10^{-3}$ près.
    $\quad$

$\quad$

Exercice 3     7 points
Thèmes : fonctions logarithme et exponentielle, suites

Les parties A et B sont, dans une large mesure, indépendantes.

Partie A

On considère la fonction $f$ définie sur l’intervalle $[1 ; +\infty[$ par $f(x)=\dfrac{\ln(x)}{x}$, où $\ln$ désigne la fonction logarithme népérien.

  1. Donner la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[1 ; +\infty[$ et on note $f’$ sa fonction dérivée.
    a. Montrer que, pour tout nombre réel $x\pg 1$, $f'(x)=\dfrac{1-\ln(x)}{x^2}$.
    $\quad$
    b. Justifier le tableau de signes suivant, donnant le signe de $f'(x)$ suivant les valeurs de $x$.
    $\quad$

    $\quad$
    c. Dresser le tableau de variations complet de la fonction $f$.
    $\quad$
  3. Soit $k$ un nombre réel positif ou nul.
    a. Montrer que, si $0\pp k\pp \dfrac{1}{\e}$, l’équation $f(x)=k$ admet une unique solution sur l’intervalle $[1 ;\e]$.
    $\quad$
    b. Si $k>\dfrac{1}{\e}$, l’équation $?(?) = k$ admet-elle des solutions sur l’intervalle $[1 ; +\infty[$ ?
    Justifier.
    $\quad$

Partie B

Soit $g$ la fonction définie sur $\R$ par : $g(x)=\e^{\frac{x}{4}}$.
On considère la suite $\left(u_n\right)$ définie par $u_0 = 1$ et, pour tout entier naturel $n$ : $$u_{n+1}=\e^{\frac{u_n}{4}} \text{  c’est à dire : } u_{n+1}=g\left(u_n\right)$$

  1. Justifier que la fonction $g$ est croissante sur $\R$.
    $\quad$
  2. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

On note $\ell$ la limite de la suite $\left(u_n\right)$, et on admet que $\ell$ est solution de l’équation : $$\e^{\frac{x}{4}}=x$$

  1. En déduire que $\ell$ est solution de l’équation $f(x)=\dfrac{1}{4}$, où $f$ est la fonction étudiée dans la partie A.
    $\quad$
  2. Donner une valeur approchée à $10^{-2}$ près de la limite $\ell$ de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points
$A(-1 ; -1 ; 3)$, $B(1 ; 1 ; 2)$, $C(1 ; -1 ; 7)$.
On considère également la droite ∆ passant par les points $D(-1 ; 6 ; 8)$ et $E(11 ; -9 ; 2)$.

  1. a. Vérifier que la droite $\Delta$ admet pour représentation paramétrique :
    $$\begin{cases}x = -1 + 4t\\y = 6-5t,z = 8-2t\end{cases} \quad \text{avec }t\in \R$$
    $\quad$
    b. Préciser une représentation paramétrique de la droite $\Delta’$ parallèle à $\Delta$ et passant par l’origine $O$ du repère.
    $\quad$
    c. Le point $F(1,36 ; -1,7 ; -0,7)$ appartient-il à la droite $\Delta’$ ?
    $\quad$
  2. a. Montrer que les points $A$, $B$ et $C$ définissent un plan.
    $\quad$
    b. Montrer que la droite $\Delta$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Montrer qu’une équation cartésienne du plan $(ABC)$ est : $4x-5y-2z+5=0$.
    $\quad$
  3. a. Montrer que le point $G(7; -4; 4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $G$ sur le plan $(ABC)$.
    $\quad$
    c. En déduire que la distance du point $G$ au plan $(ABC)$ est égale à $3\sqrt{5}$.
    $\quad$
  4. a. Montrer que le triangle $ABC$ est rectangle en $A$.
    $\quad$
    b. Calculer le volume $V$ du tétraèdre $ABCG$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ est l’aire d’une base et $h$ la hauteur correspondant à cette base.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Polynésie – sujet 1 – 30 août 2022

Polynésie – 30 août 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie 1

  1. On peut utiliser l’arbre suivant :
    $\quad$
    On a alors :
    $\begin{align*} P(A\cap T)&=P(A)\times P_A(T) \\
    &=\dfrac{1}{4}\times 0,9 \\
    &=0,225\end{align*}$
    $\quad$
  2. $\left(A,\conj{A}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a
    $\begin{align*} P(T)&=P(A\cap T)+P\left(\conj{A}\cap T\right) \\
    &=0,225+P\left(\conj{A}\right)\times P_{\conj{A}}(T) \\
    &=0,225+\dfrac{3}{4}\times 0,05 \\
    &=0,262~5\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_T(A)&=\dfrac{P(A\cap T)}{P(T)} \\
    &=\dfrac{0,225}{0,262~5} \\
    &=\dfrac{6}{7}\\
    &\approx 0,857~1\end{align*}$
    La probabilité que le patient soit atteint d’une angine nécessitant la prise d’antibiotiques sachant que sont test est positif est environ égale à $0,857~1$.
    $\quad$
  4. a. Les résultats erronés correspondent à :
    – le patient est atteint d’une angine nécessitant la prise d’antibiotique et le test est négatif;
    – le patient n’est pas atteint d’une angine nécessitant la prise d’antibiotique et le test est positif.
    Il s’agit donc des événements $A\cap \conj{T}$ et $\conj{A}\cap T$.
    $\quad$
    b. Les événements $A\cap \conj{T}$ et $\conj{A}\cap T$ sont disjoints donc
    $\begin{align*} P(E)&=P\left(\left(A\cap \conj{T}\right) \cup \left(\conj{A}\cap T\right)\right) \\
    &=P\left(A\cap \conj{T}\right)+P\left(\conj{A}\cap T\right) \\
    &=P(A)\times P_A\left(\conj{T}\right)+P\left(\conj{A}\right)\times P_{\conj{A}}(T) \\
    &=\dfrac{1}{4}\times 0,1+\dfrac{3}{4}\times 0,05 \\
    &=0,062~5 \end{align*}$
    $\quad$

Partie 2

  1. a. On réalise $50$ fois la même expérience de Bernoulli de paramètre $P(E)=0,062~5$ de façon indépendantes.
    Par conséquent $X$ suit la loi binomiale de paramètre $n=50$ et $p=0,062~5$.
    $\quad$
    b. On a :
    $\begin{align*} P(X=7)&=\dbinom{50}{7} \times 0,0625^7 \times (1-0,062~5)^{43} \\
    &\approx 0,023~2\end{align*}$
    $\quad$
    c. On veut calculer
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,062~5)^{50} \\
    &\approx 0,960~3\end{align*}$
    La probabilité qu’il y ait au moins un patient dans l’échantillon dont le test est erroné est environ égale à $0,960~3$.
    $\quad$
  2. $X$ suit donc la loi binomiale de paramètres $n$ et $p=0,062~5$.
    À l’aide de la calculatrice, on constate que pour tout entier $n$ inférieur ou égal à $247$ on a $P(X\pg 10) < 0,95$, avec en particulier $P(X\pg 10) \approx 0,948~6$ si $n=247$.
    On constate également que si $n=248$ alors $P(X\pg 10) \approx 0,950~2$.
    La valeur minimale de la taille de l’échantillon est donc $248$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. Pour tout réel $x$ appartenant à $[0;1]$ on a $f(x)=-1,9x^2+1,9x$.
    La fonction $f$ est une fonction polynôme du second degré dont le coefficient principal est $a=-1,9<0$ et les racines sont $0$ et $1$. Le sommet a donc pour abscisse $\dfrac{0+1}{2}=\dfrac{1}{2}$.
    Ainsi $f$ est strictement croissante sur $\left[0;\dfrac{1}{2}\right]$ et strictement décroissante sur $\left[\dfrac{1}{2};1\right]$.
    $\quad$
    b. On a $f(0)=0$ et $f\left(\dfrac{1}{2}\right)=0,475$.
    De plus $f$ est croissante sur $\left[0;\dfrac{1}{2}\right]$.
    Par conséquent, pour tout réel $x \in \left[0;\dfrac{1}{2}\right]$ on a $f(x) \in \left[0;\dfrac{1}{2}\right]$.
    $\quad$
  2. Il semblerait que la suite soit strictement croissante et converge vers un réel $\ell \approx 0,47$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on pose $P(n):~0\pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$.
    Initialisation : On a $u_0=0,1$ et $u_1=0,171$. Donc $0\pp u_0\pp u_1 \pp \dfrac{1}{2}$.
    Ainsi $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$
    La fonction $f$ est croissante sur $\left[0;\dfrac{1}{2}\right]$.
    Par conséquent $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f\left(\dfrac{1}{2}\right)$.
    Soit $0\pp f(0) \pp u_{n+1} \pp u_{n+2} \pp f\left(\dfrac{1}{2} \pp \dfrac{1}{2}\right)$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$, on a $0\pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $\dfrac{1}{2}$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. La fonction $f$ est continue sur $[0;1]$ en tant que fonction polynôme, $u_{n+1}=f\left(u_n\right)$ et $0\pp u_n\pp u_{n+1}$ pour tout entier naturel $n$.
    Ainsi $\ell$ est solution de l’équation $f(x)=x$.
    Or :
    $\begin{align*} f(x)=x&\ssi -1,9x^2+1,9x=x\\
    &\ssi -1,9x^2+0,9x=0\\
    &\ssi x(-1,9x+0,9)=0\end{align*}$
    Les solutions de cette équation sont donc $0$ et $\dfrac{0,9}{1,9}=\dfrac{9}{19}$.
    La suite $\left(u_n\right)$ est croissante et $u_0=0,1$. Ainsi, la seule solution possible est $\dfrac{9}{19}$.
    Par conséquent $\lim\limits_{n\to +\infty} u_n=\dfrac{9}{19}$.
    $\quad$

Partie 2

  1. On a $\lim\limits_{n\to +\infty} \left(\dfrac{1}{2}\right)^n=0$ car $-1<\dfrac{1}{2}<1$.
    De plus, pour tout entier naturel $n$, on a $0\pp u_n \pp \left(\dfrac{1}{2}\right)^n$.
    Par conséquent, d’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  2. $\lim\limits_{n\to +\infty} u_n=0$ et, pour tout entier naturel $n$, $u_n\pg 0$. Donc pour tout réel $\alpha>0$ il existe un entier naturel $n_0$ tel que, pour tout entier naturel $n\pg n_0$, on ait $0\pp u_n\pp x$.
    C’est en particulier vrai, pour $x=10^{-p}$ où $p\in \N$.
    Cela explique pourquoi la boucle $\texttt{while}$ ne tourne pas indéfiniment.
    $\quad$

 

Ex 3

Exercice 3

Partie 1

  1. La fonction $g$ est dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables sur $]0;+\infty[$ dont le dénominateur ne s’annule pas.
    Ainsi, pour tout réel $x>0$, on a :
    $\begin{align*} g'(x)&=\dfrac{\dfrac{2}{x}\times x-2\ln(x)\times 1}{x^2} \\
    &=\dfrac{2-2\ln(x)}{x^2}\end{align*}$.
    $\quad$
  2. a. On a
    $\begin{align*} g(\e)&=\dfrac{2\ln(\e)}{\e} \\
    &=\dfrac{2\times 1}{\e} \\
    &=\dfrac{2}{\e}\end{align*}$.
    $\quad$
    b. $g'(x)$ est du signe de $2-2\ln(x)$.
    Or $2-2\ln(x)>0 \ssi -2\ln(x)>-2 \ssi \ln(x)<1 \ssi x<\e$.
    La fonction $g$ est donc strictement croissante sur $]0;\e]$ et strictement décroissante sur $[\e;+\infty[$.
    $\quad$
    c. $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$.
    Par produit, $\lim\limits_{x\to 0^+} g(x)=-\infty$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} g(x)=0$.
    $\quad$
  3. La fonction $g$ est strictement croissante sur $]0;\e[$ et s’annule en $1$. Par conséquent $g(x)<0$ sur $]0;1[$, $g(1)=0$ et $g(x)>0$ sur $]1;\e[$.
    La fonction $g$ est strictement décroissante sur $[\e;+\infty[$ et $\lim\limits_{x\to +\infty} g(x)=0$. Par conséquent, pour tout réel $x\pg \e$ on a $g(x)>0$.
    On obtient ainsi le tableau de signes suivant :
    $\quad$

    $\quad$

Partie 2

  1. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    On a donc, pour tout réel $x>0$ :
    $\begin{align*} f'(x)&=2\times \dfrac{1}{x} \times \left(\ln(x)\right)^{2-1} \\
    &=\dfrac{2\ln(x)}{x} \\
    &=g(x)\end{align*}$
    Ainsi $f$ est une primitive de $g$ sur $]0;+\infty[$.
    $\quad$
  2. a. D’après la partie 1 on sait que, pour tout réel $x>0$ on a $g$ est strictement croissante sur $]0;+\e]$ et strictement décroissante sur $[\e;+\infty[$.
    Or $f'(x)=g(x)$ pour tout réel $x>0$.
    Ainsi, $f$ est convexe sur $]0;\e]$ et concave sur $[\e;+\infty[$.
    $\quad$
    b. D’après la partie 1, $g(x)<0$ sur $]0;1[$, $g(1)=0$ et $g(x)>0$ sur $]1;+\infty[$.
    Or $f'(x)=g(x)$ pour tout réel $x>0$.
    Donc $f$ est strictement décroissante sur $]0;1]$ et strictement croissante sur $[1;+\infty[$.
    $\quad$
  3. a. Une équation de la tangente à la courbe représentative de la fonction $f$ au point d’abscisse $\e$ est $y=f'(\e)(x-\e)+f(\e)$.
    Or $f'(\e)=g(\e)=\dfrac{2}{\e}$ et $f(\e)=1$.
    Ainsi, une équation de cette tangente est $y=\dfrac{2}{\e}(x-\e)+1$ soit $y=\dfrac{2}{\e}x-1$.
    $\quad$
    b. La fonction $f$ est convexe sur $]0;\e]$. Sa courbe représentative est donc située au-dessus de ses tangentes sur cet intervalle.
    Ainsi, pour tout $x\in]0;\e]$ on a $\left(\ln(x)\right)^2\pg \dfrac{2}{\e}x-1$.
    $\quad$

 

 

Ex 4

Exercice 4

  1. a. $C$ a pour coordonnées $(1;1;0)$, $F$ a pour coordonnées $(1;0;1)$ et $G$ a pour coordonnées $(1;1;1)$.
    $\quad$
    b. $\vect{CF}\begin{pmatrix}0\\-1\\1\end{pmatrix}$ et $\vect{CI}\begin{pmatrix}-1\\-\dfrac{1}{2}\\[2mm]1\end{pmatrix}$ sont deux vecteurs non colinéaires (ils n’ont pas la même coordonnée nulle) du plan $(CFI)$.
    De plus :
    $\vect{CF}.\vec{n}=0-2+2=0$ et $\vect{CI}.\vec{n}=-1-1+2=0$.
    Par conséquent $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(CFI)$. Il est donc normal à ce plan.
    $\quad$
    c. Une équation cartésienne du plan $(CFI)$ est donc de la forme $x+2y+2z+d=0$.
    Or $C(1;1;0)$ appartient à ce plan. Donc $1+2+0+d=0 \ssi d=-3$.
    Une équation cartésienne du plan $(CFI)$ est donc $x+2y+2z-3=0$.
    $\quad$
  2. a. Le vecteur $\vec{n}$ est un vecteur directeur de $d$.
    Une représentation paramétrique de la droite $d$ est donc $$\begin{cases} x=1+t\\y=1+2t\\z=1+2t\end{cases} \quad t\in \R$$
    $\quad$
    b. Montrons que le point $K$ appartient à la fois au plan $(CFI)$ et à la droite $d$.
    $\dfrac{7}{9}+2\times \dfrac{5}{9}+2\times \dfrac{5}{9}-3=\dfrac{27}{9}-3=0$ : $K$ appartient au plan $(CFI)$.
    En prenant $t=-\dfrac{2}{9}$ dans la représentation paramétrique de $d$ on obtient $\begin{cases} x=\dfrac{7}{9}\\[2mm] y=\dfrac{5}{9}\\[2mm]z=\dfrac{5}{9}\end{cases}$. Donc $K$ appartient à $d$.
    La droite $d$ passe par le point $G$ et est orthogonale au plan $(CFI)$.
    Par conséquent $K\left(\dfrac{7}{9};\dfrac{5}{9};\dfrac{5}{9}\right)$ est le projeté orthogonal du point $G$ sur le plan $(CFI)$.
    $\quad$
    c. La distance cherchée est égale à $GK$. Or $\vect{GK}$ a pour coordonnées $\begin{pmatrix} -\dfrac{2}{9}\\[2mm]-\dfrac{4}{9}\\[2mm]-\dfrac{4}{9}\end{pmatrix}$.
    Ainsi :
    $\begin{align*} GK&=\sqrt{\left(-\dfrac{2}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2} \\
    &=\sqrt{\dfrac{4}{81}+\dfrac{16}{81}+\dfrac{16}{81}} \\
    &=\dfrac{6}{9} \\
    &=\dfrac{2}{3}\end{align*}$
    $\quad$
  3. a. L’aire du triangle $CFG$ rectangle en $G$ est $\mathscr{A}=\dfrac{1\times 1}{2}$ u.a.
    La hauteur de la pyramide $CFGI$ relative au somme $I$ est $[IJ]$ où $J$ est le milieu de $[FG]$ et mesure donc $1$ u.
    Ainsi le volume de cette pyramide est :
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times IJ \\
    &=\dfrac{1}{3}\times \dfrac{1}{2}\times 1\\
    &=\dfrac{1}{6} \text{ u.v.}\end{align*}$
    $\quad$
    b. On appelle $\mathscr{A}’$ l’aire du triangle $CFI$.
    On a donc
    $\dfrac{1}{6}=\dfrac{1}{3}\mathscr{A}’\times GK \ssi \mathscr{A}’=\dfrac{1}{2GK} \ssi \mathscr{A}’=\dfrac{3}{4}$ u.a.
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : probabilités

Parmi les angines, un quart nécessite la prise d’antibiotiques, les autres non.
Afin d’éviter de prescrire inutilement des antibiotiques, les médecins disposent d’un test de diagnostic ayant les caractéristiques suivantes :

  • lorsque l’angine nécessite la prise d’antibiotiques, le test est positif dans $90 \%$ des cas ;
  • lorsque l’angine ne nécessite pas la prise d’antibiotiques, le test est négatif dans $95 \%$ des cas.

Les probabilités demandées dans la suite de l’exercice seront arrondies à $10{-4}$ près si nécessaire.

Partie 1

Un patient atteint d’angine et ayant subi le test est choisi au hasard.
On considère les événements suivants :

  • $A$ : « le patient est atteint d’une angine nécessitant la prise d’antibiotiques » ;
  • $T$ : « le test est positif » ;
  • $\conj{A}$et $\conj{T}$ sont respectivement les événements contraires de $A$ et $T$.
  1. Calculer $P(A\cap T)$. On pourra s’appuyer sur un arbre pondéré.
    $\quad$
  2. Démontrer que $P(T) = 0,262~5$.
    $\quad$
  3. On choisit un patient ayant un test positif. Calculer la probabilité qu’il soit atteint d’une angine nécessitant la prise d’antibiotiques.
    $\quad$
  4. a. Parmi les événements suivants, déterminer ceux qui correspondent à un résultat erroné du test : $A\cap T$, $\conj{A}\cap T$, $A\cap \conj{T}$, $\conj{A}\cap \conj{T}$.
    $\quad$
    b. On définit l’événement $E$ : « le test fournit un résultat erroné ».
    Démontrer que $P(E) = 0,062~5$.
    $\quad$

Partie 2

On sélectionne au hasard un échantillon de ? patients qui ont été testés.
On admet que l’on peut assimiler ce choix d’échantillon à un tirage avec remise.
On note $X$ la variable aléatoire qui donne le nombre de patients de cet échantillon ayant un test erroné.

  1. On suppose que $n = 50$.
    a. Justifier que la variable aléatoire $X$ suit une loi binomiale $\mathscr{B}(n,p)$ de paramètres $n = 50$ et $p = 0,062~5$.
    $\quad$
    b. Calculer $P(X=7)$.
    $\quad$
    c. Calculer la probabilité qu’il y ait au moins un patient dans l’échantillon dont le test est erroné.
    $\quad$
  2. Quelle valeur minimale de la taille de l’échantillon faut-il choisir pour que $P(X\pg 10)$ soit supérieure à $0,95$ ?
    $\quad$

$\quad$

Exercice 2     7 points
Thème : suites, fonctions

Soit $k$ un nombre réel.
On considère la suite $\left(u_n\right)$ définie par son premier terme $u_0$ et pour tout entier naturel $n$, $$u_{n+1}=ku_n\left(1-u_n\right)$$

Les deux parties de cet exercice sont indépendantes. On y étudie deux cas de figure selon les valeurs de $\boldsymbol{k}$.

Partie 1

Dans cette partie, $k = 1,9$ et $u_0 = 0,1$.
On a donc, pour tout entier naturel $n$, $u_{n+1}=1,9u_n\left(1-u_n\right)$.

  1. On considère la fonction $f$ définie sur $[0 ; 1]$ par $f(x) = 1,9x(1-x)$.
    a. Etudier les variations de $f$ sur l’intervalle $[0 ; 1]$.
    $\quad$
    b. En déduire que si $x\in \left[0 ;\dfrac{1}{2}\right]$ alors $f(x)\in  \left[0 ;\dfrac{1}{2}\right]$.
    $\quad$
  2. Ci-dessous sont représentés les premiers termes de la suite $\left(u_n\right)$ construits à partir de la courbe $C_f$ de la fonction $f$ et de la droite $D$ d’équation $y=x$.
    Conjecturer le sens de variation de la suite $\left(u_n\right)$ et sa limite éventuelle.
    $\quad$

    $\quad$
  3. a. En utilisant les résultats de la question 1, démontrer par récurrence que pour tout entier naturel $n$ : $$0 \pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ converge.
    $\quad$
    c. Déterminer sa limite.
    $\quad$

Partie 2

Dans cette partie, $k=\dfrac{1}{2}$ et $u_0=\dfrac{1}{4}$.
On a donc, pour tout entier naturel $n$, $u_{n+1}=\dfrac{1}{2}u_n\left(1-u_n\right)$ et $u_0=\dfrac{1}{4}$.
On admet que pour tout entier naturel $n$ ∶ $0\pp u_n\pp \left(\dfrac{1}{2}\right)^n$.

  1. Démontrer que la suite $\left(u_n\right)$ converge et déterminer sa limite.
    $\quad$
  2. On considère la fonction Python $\texttt{algo(p)}$ où $\texttt{p}$ désigne un entier naturel non nul :
    $$\begin{array}{|l|}
    \hline
    \text{def algo(p) :}\\
    \quad \text{u = 1/4}\\
    \quad \text{ n = 0}\\
    \quad \text{while u > 10**(-9):}\\
    \qquad \text{u = 1/2*u*(1-u)}\\
    \qquad \text{n = n+1} \\
    \quad \text{return(n)}\\
    \hline
    \end{array}$$
    Expliquer pourquoi, pour tout entier naturel non nul $\texttt{p}$, la boucle $\texttt{while}$ ne tourne pas indéfiniment, ce qui permet à la commande $\texttt{algo(p)}$ de renvoyer une valeur.
    $\quad$

$\quad$

Exercice 3     7 points
Thème : fonctions

Partie 1

Soit $g$ la fonction définie pour tout nombre réel $x$ de l’intervalle $]0;+\infty[$ par : $$g(x) =
\dfrac{2\ln(x)}{x}$$

  1. On note $g’$ la dérivée de $g$. Démontrer que pour tout réel $x$ strictement positif : $$g'(x)=\dfrac{2-2\ln(x)}{x^2}$$
    $\quad$
  2. On dispose de ce tableau de variations de la fonction g sur l’intervalle $]0 ; +\infty[$ :
    $\quad$

    $\quad$
    Justifier les informations suivantes lues dans ce tableau :
    a. la valeur $\dfrac{2}{\e}$;
    $\quad$
    b. les variations de la fonction $g$ sur son ensemble de définition ;
    $\quad$
    c. les limites de la fonction $g$ aux bornes de son ensemble de définition.
    $\quad$
  3. En déduire le tableau de signes de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$

Partie 2

Soit $f$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par $f(x)=\left(\ln(x)\right)^2$.
Dans cette partie, chaque étude est effectuée sur l’intervalle $]0 ; +\infty[$.

  1. Démontrer que sur l’intervalle $]0 ; +\infty[$, la fonction $f$ est une primitive de la fonction $g$.
    $\quad$
  2. À l’aide de la partie 1, étudier :
    a. la convexité de la fonction $f$ ;
    $\quad$
    b. les variations de la fonction $f$.
    $\quad$
  3. a. Donner une équation de la tangente à la courbe représentative de la fonction $f$ au point d’abscisse $\e$.
    $\quad$
    b. En déduire que, pour tout réel $x$ dans $]0 ; \e]$ : $$\left(\ln(x)\right)^2 \pg \dfrac{2}{\e}x-1$$
    $\quad$

$\quad$

Exercice 4     7 points
Thème : géométrie dans le plan et dans l’espace

On considère le cube $ABCDEFGH$. On note $I$ le milieu du segment $[EH]$ et on considère le triangle $CFI$.
L’espace est muni du repère orthonormé $\left(A;\vect{AB},\vect{AC},\vect{AD}\right)$ et on admet que le point $I$ a pour coordonnées $\left(0 ;\dfrac{1}{2};1\right)$ dans ce repère.
$\quad$

$\quad$

  1. a. Donner sans justifier les coordonnées des points $C$, $F$ et $G$.
    $\quad$
    b. Démontrer que le vecteur $\vec{n}\begin{pmatrix}1\\2\\2\end{pmatrix}$ est normal au plan $(CFI)$.
    $\quad$
    c. Vérifier qu’une équation cartésienne du plan $(CFI)$ est : $x+2y+2z-3=0$.
    $\quad$
  2. On note $d$ la droite passant par $G$ et orthogonale au plan $(CFI)$.
    a. Déterminer une représentation paramétrique de la droite $d$.
    $\quad$
    b. Démontrer que le point $K \left(\dfrac{7}{9};\dfrac{5}{9};\dfrac{5}{9}\right)$ est le projeté orthogonal du point $G$ sur le
    plan $(CFI)$.
    $\quad$
    c. Déduire des questions précédentes que la distance du point $G$ au plan $(CFI)$ est égale à $\dfrac{2}{3}$.
    $\quad$
  3. On considère la pyramide $GCFI$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule $V=\dfrac{1}{3}\times b\times h$, $b$ est l’aire d’une base et $h$ la hauteur associée à cette base.
    a. Démontrer que le volume de la pyramide $GCFI$ est égal à $\dfrac{1}{6}$, exprimé en unité de volume.
    $\quad$
    b. En déduire l’aire du triangle $CFI$, en unité d’aire.
    $\quad$

Bac – Spécialité mathématiques – Amérique du Nord – sujet 2 – 19 mai 2022

Amérique du nord – 19 mai 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. $\left(A_1,B_1\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} a_2&=P\left(A_2\right) \\
    &=P\left(A_1\cap A_2\right)+P\left(B_1\cap A_2\right) \\
    &=P\left(A_1\right)\times P_{A_1}\left(A_2\right)+P\left(B_1\right)\times P_{B_1}\left(A_2\right) \\
    &=0,5\times 0,84+0,5\times 0,24 \\
    &=0,54\end{align*}$
    $\quad$
    b. On veut calculer :
    $\begin{align*} P_{A_2}\left(B_1\right)&=\dfrac{P\left(A_2\cap B_1\right)}{P\left(A_2\right)} \\
    &=\dfrac{0,5\times 0,24}{0,54}\\
    &=\dfrac{2}{9}\end{align*}$
    La probabilité que le vélo se trouve au point B le premier matin sachant qu’il se trouve au point A le deuxième matin est égale à $\dfrac{2}{9}$ soit environ égale à $0,222$.
    $\quad$
  3. a. On obtient l’arbre suivant :$\quad$
    b. Soit $n\in \N^*$. $\left(A_n,B_n\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} a_{n+1}&=P\left(A_{n+1}\right) \\
    &=P\left(A_n\cap A_{n+1}\right)+P\left(B_n\cap A_{n+1}\right) \\
    &=P\left(A_n\right)\times P_{A_n}\left(A_{n+1}\right)+P\left(B_n\right)\times P_{B_n}\left(A_{n+1}\right) \\
    &=0,84a_n+0,24\left(1-a_n\right) \\
    &=0,6a_n+0,24\end{align*}$
    $\quad$
  4. Pour tout entier naturel $n$ non nul on pose $R(n):~a_n=0,6-0,1\times 0,6^{n-1}$.
    Initialisation : $a_1=0,5$ et $0,6-0,1^1=0,5$ donc $R(1)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $R(n)$ vraie.
    $\begin{align*} a_{n+1}&=0,6a_n+0,24 \\
    &=0,6\left(0,6-0,1\times 0,6^{n-1}\right)+0,24\\
    &=0,36-0,1\times 0,6^n+0,24 \\
    &=0,6-0,1\times 0,6^n\end{align*}$
    Donc $R(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $1$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $a_n=0,6-0,1\times 0,6^{n-1}$.
    $\quad$
  5. $-1<0,6<1$ donc $\lim\limits_{n\to +\infty} 0,6^n=0$ et $\lim\limits_{n\to +\infty} a_n=0,6$.
    Sur le long terme, la probabilité que le vélo se trouve au point $A$ est égale à $0,6$.
    $\quad$
  6. $\quad$
    $\begin{align*} a_n\pg 0,599&\ssi 0,6-0,1\times 0,6^{n-1}\pg 0,599 \\
    &\ssi -0,1\times 0,6^{n-1} \pg -0,001 \\
    &\ssi 0,6^{n-1} \pp 0,01 \\
    &\ssi (n-1)\ln(0,6)\pp \ln(0,01) \\
    &\ssi n-1\pg \dfrac{\ln(0,01)}{\ln(0,6)} \quad \text{car } \ln(0,6)<0\\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,6)}+1\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,6)}+1\approx 10,02$
    Le plus petit entier naturel $n$ tel que $a_n\pg 0,599$ est donc $11$.
    La probabilité que le vélo se trouve au point $A$ est supérieure à $0,599$ à partir du $11$-ième jour.
    $\quad$

 

Ex 2

Exercice 2

Partie A

  1. La fonction $p$ est dérivable sur $[-3;4]$ en tant que fonction polynôme.
    Pour tout réel $x\in [-3;4]$ on a $p'(x)=3x^2-6x+5$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=-24<0$
    Ainsi $p'(x)$ est du signe du coefficient principal $a=3>0$.
    Par conséquent $p$ est strictement croissante sur $[-3;4]$.
    $\quad$
  2. La fonction $p$ est continue (car dérivable) et strictement croissante sur $[-3;4]$.
    $p(-3)=-68<0$ et $p(4)=37>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $p(x)=0$ admet une unique solution $\alpha$ sur $[-3;4]$.
    $\quad$
  3. D’après la calculatrice $\alpha\approx -0,2$.
    $\quad$
  4. La fonction $p$ est strictement croissante sur $[-3;4]$ et s’annule en $\alpha$. On obtient alors le tableau de signes suivant :
    $\quad$

Partie B

  1. a. La fonction $f$ est dérivable sur $[-3;4]$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in [-3;4]$ on a :
    $\begin{align*} f'(x)&=\dfrac{\e^x\left(1+x^2\right)-2x\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{\left(x^2-2x+1\right)\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{(x-1)^2\e^x}{\left(1+x^2\right)^2} \end{align*}$
    $\quad$
    b. On a fonc $f'(1)=0$.
    La courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. a. Il semblerait que la fonction change de convexité (et donc $\mathscr{C}_f$ possède un point d’inflexion) environ en $0$ et en $1$.
    Le toboggan semble dont assurer de bonnes sensations.
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$ et pour tout réel $x\in [-3;4]$ on a $\left(1+x^2\right)^3>0$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $p(x)(x-1)$.
    $x-1=0 \ssi x=1$ et $x-1>0\ssi x>1$.
    D’après le tableau de signes obtenu à la question A.4. on obtient le tableau de signes de $f\dsec(x)$.
    La fonction $f$ est donc convexe sur $[-3;\alpha]$ et $[1;4]$ et concave sur $[\alpha;1]$. $f\dsec(x)$ s’annule en $\alpha$ et $1$.
    Donc $\mathscr{C}_f$ possède deux points d’inflexion et le toboggan assurera de bonnes sensations.
    $\quad$

 

Ex 3

Exercice 3

  1. a. $\vect{AR}\begin{pmatrix}0\\3\\2\end{pmatrix}$ et $\vect{AT}\begin{pmatrix}-3\\0\\2\end{pmatrix}$
    Par conséquent
    $\begin{align*} AR&=\sqrt{0^2+3^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    $\begin{align*} AT&=\sqrt{(-3)^2+0^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    Ainsi $AR=AT$. Le triangle $ART$ est isocèle en $A$.
    b. $\quad$
    $\begin{align*} \vect{AR}.\vect{AT}&=0\times -(-3)+3\times 0+2\times 2\\
    &=4\end{align*}$
    $\quad$
    c. On a également $\vect{AR}.\vect{AT}=AR\times AT\times \cos \widehat{RAT}$.
    Par conséquent
    $\begin{align*} \cos \widehat{RAT}&=\dfrac{\vect{AR}.\vect{AT}}{AR\times AT} \\
    &=\dfrac{4}{13} \end{align*}$
    Donc $\widehat{RAT}\approx 72,1$°
    $\quad$
  2. a. D’une part
    $\begin{align*} \vec{n}.\vect{AR}&=2\times 0+(-2)\times 3+3\times 2\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{n}.\vect{AT}&=2\times (-3)+(-2)\times 0+3\times 2\\
    &=0\end{align*}$
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires (l’angle $\widehat{RAT}$ n’est ni plat ni nul) du plan $(ART)$.
    $\vec{n}$ est donc un vecteur normal au plan $(ART)$.
    $\quad$
    b. Une équation du plan $(ART)$ est par conséquent de la forme $2x-2y+3z+d=0$.
    Or $A(6;0;2)$ appartient à ce plan.
    Donc $12-0+6+d=0 \ssi d=-18$
    Une équation cartésienne du plan $(ART)$ est $2x-2y+3z-18=0$.
    $\quad$
  3. a. $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$ et le point $S\left(3;\dfrac{5}{2};0\right)$ appartient à cette droite.
    Une représentation paramétrique de la droite $\Delta$ est bien $\begin{cases} x=3+2k\\y=\dfrac{5}{2}-2k\\z=3k\end{cases} \quad k\in \R$.
    $\quad$
    b. Prenons $k=1$ dans la représentation paramétrique précédente. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient à la droite $\Delta$.
    $2\times 5-2\times \dfrac{1}{2}+3\times 3-18=10-1+9-18=0$. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient au plan $(ART)$.
    Ainsi $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. a. On a $D(0,8,0)$ et $K(0;4;4)$ donc $\vect{DK}\begin{pmatrix}0\\-4\\4\end{pmatrix}$ et $\vect{DN}\begin{pmatrix} 0\\-4t\\4t\end{pmatrix}$
    Par conséquent $\vect{DN}=t\vect{DK}$.
    Les points $D$, $N$ et $K$ sont alignés.
    $T\in[0;1]$ donc $N$ appartient au segment $[DK]$.
    $\quad$
    b. On a $\vect{SL}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ et $\vect{SN}\begin{pmatrix} -3\\\dfrac{11}{2}-4t\\4t\end{pmatrix}$.$\begin{align*} &(SL) \text{ et }(SN)\text{ sont perpendiculaires}\\
    &\ssi\vect{SL}.\vect{SN}=0 \\
    &\ssi 2\times (-3)+(-2)\times  \left(\dfrac{11}{2}-4t\right)+3\times 4t=0 \\
    &\ssi -6-11+8t+12t=0 \\
    &\ssi 20t=17 \\
    &\ssi t=0,85\end{align*}$
    Le point $N$ doit donc avoir pour coordonnées $(0;4,6;3,4)$ pour que les deux rayons lasers soient perpendiculaires.
    $\quad$

 

Ex 4

Exercice 4

  1. $\quad$
    $\begin{align*}a&=\ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right) \\
    &=\ln(9)+\ln\left(\sqrt{3}\right)-\ln(3)-\ln(9)\\
    &=\dfrac{1}{2}\ln(3)-\ln(3) \\
    &=-\dfrac{1}{2}\ln(3)\end{align*}$
    Réponse d
    $\quad$
  2. $x-10>0\ssi x>10$ : l’équation est définie sur $]10;+\infty[$
    Sur $]10;+\infty[$
    $\begin{align*} &\ln(x)+\ln(x-10)=\ln(3)+\ln(7) \\
    &\ssi \ln\left(x(x-10)\right)=\ln(21) \\
    &\ssi x(x-10)=21 \\
    &\ssi x^2-10x-21=0\end{align*}$
    Le discriminant de $x^2-10x-21$ est $\Delta=184>0$.
    Les racines de ce polynômes sont $x_1=\dfrac{10-\sqrt{184}}{2}<0$ et $x_2=\dfrac{10+\sqrt{184}}{2}>10$
    Donc l’unique solution de $(E)$ est $\dfrac{10+\sqrt{184}}{2}$.
    Réponse c
    $\quad$
  3. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$,
    $\begin{align*} f'(x)&=2x\left(-1+\ln(x)\right)+x^2\times \dfrac{1}{x} \\
    &=-2x+2x\ln(x)+x \\
    &=x\left(2\ln(x)-1\right)\end{align*}$
    $\ln\left(\sqrt{e}\right)=\dfrac{1}{2}$
    Par conséquent $f’\left(\sqrt{e}\right)=0$.
    Une équation de la tangente au point d’abscisse $\sqrt{e}$ est donc $y=f\left(\sqrt{e}\right)$ soit $y=-\dfrac{1}{2}\e$.
    Réponse d
    $\quad$
  4. On répète $5$ fois de façon indépendante la même expérience de Bernoulli. On appelle $X$ la variable aléatoire qui compte le nombre de jetons jaunes tirés.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=\dfrac{2}{5}$
    Ainsi
    $\begin{align*} P(X=2)&=\dbinom{5}{2}\left(\dfrac{2}{5}\right)^2\left(\dfrac{3}{5}\right)^3\\
    &\approx 0,346\end{align*}$
    Réponse b
    $\quad$
  5. On reprend la variable aléatoire $X$ définie à la question précédente.
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-\left(\dfrac{3}{5}\right)^5\\
    &\approx 0,922\end{align*}$
    Réponse d
    $\quad$
  6. On reprend la variable aléatoire $X$ définie à la question 4..
    Son espérance mathématiques est :
    $\begin{align*} E(X)&=np\\
    &=5\times \dfrac{2}{5} \\
    &=2\end{align*}$
    Réponse c
    $\quad$

Énoncé

Exercice 1     7 points

Thème : probabilités, suites

Dans une région touristique, une société propose un service de location de vélos pour la journée.
La société dispose de deux points de location distinctes, le point A et le point B. Les vélos peuvent être empruntés et restitués indifféremment dans l’un où l’autre des deux points de location.
On admettra que le nombre total de vélos est constant et que tous les matins, à l’ouverture du service, chaque vélo se trouve au point A ou au point B.

D’après une étude statistique :

  • Si un vélo se trouve au point A un matin, la probabilité qu’il se trouve au point A le matin suivant est égale à $0,84$;
  • Si un vélo se trouve au point B un matin la probabilité qu’il se trouve au point B le matin suivant est égale à $0,76$.

À l’ouverture du service le premier matin, la société a disposé la moitié de ses vélos au point A, l’autre moitié au point B.

On considère un vélo de la société pris au hasard.

Pour tout entier naturel non nul n, on définit les évènements suivants :

  • $A_n$ : « le vélo se trouve au point A le $n$-ième matin »
  • $B_n$ : « le vélo se trouve au point B le $n$-ième matin ».

Pour tout entier naturel non nul $n$, on note $a_n$ la probabilité de l’évènement $A_n$ et $b_n$ la probabilité de l’évènement $B_n$. Ainsi $a_1 = 0,5$ et $b_1 = 0,5$.

  1. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les deux premiers matins :$\quad$
  2. a. Calculer $a_2$.
    $\quad$
    b. Le vélo se trouve au point A le deuxième matin. Calculer la probabilité qu’il se soit trouvé au point B le premier matin. La probabilité sera arrondie au millième.
    $\quad$
  3. a. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les $n$-ième et $n +1$-ième matins.
    $\quad$
    b. Justifier que pour tout entier naturel non nul $n$, $a_{n+1} = 0,6a_n +0,24$.
    $\quad$
  4. Montrer par récurrence que, pour tout entier naturel non nul $n$, $a_n = 0,6−0,1×0,6^{n−1}$.
    $\quad$
  5. Déterminer la limite de la suite $\left(a_n\right)$ et interpréter cette limite dans le contexte de l’exercice.
    $\quad$
  6. Déterminer le plus petit entier naturel $n$ tel que $a_n > 0,599$ et interpréter le résultat obtenu dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : fonctions, fonction exponentielle

Partie A

Soit p la fonction définie sur l’intervalle $[-3 ; 4]$ par : $$p(x)=x^3-3x^2+5x+1$$

  1. Déterminer les variations de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
  2. Justifier que l’équation $p(x) = 0$ admet dans l’intervalle $[-3 ; 4]$ une unique solution qui sera notée $\alpha$.
    $\quad$
  3. Déterminer une valeur approchée du réel $\alpha$ au dixième près.
    $\quad$
  4. Donner le tableau de signes de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$

Partie B

Soit $f$ la fonction définie sur l’intervalle $[-3 ; 4]$ par :$$f(x)=\dfrac{\e^x}{1+x^2}$$
On note $\mathscr{C}_f$ sa courbe représentative dans un repère orthogonal.

  1. a. Déterminer la dérivée de la fonction $f$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
    b. Justifier que la courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. Les concepteurs d’un toboggan utilisent la courbe $\mathscr{C}_f$ comme profil d’un toboggan. Ils estiment que le toboggan assure de bonnes sensations si le profil possède au moins deux points d’inflexion.
    $\quad$
    a. D’après le graphique ci-dessus, le toboggan semble-t-il assurer de bonnes sensations ?
    Argumenter.
    b. On admet que la fonction $f\dsec$, dérivée seconde de la fonction $f$ , a pour expression pour tout réel $x$ de l’intervalle $[-3 ; 4]$ :
    $$f\dsec(x)=\dfrac{p(x)(x-1)\e^x}{\left(1+x^2\right)^3}$$
    où $p$ est la fonction définie dans la partie A.
    En utilisant l’expression précédente de $f\dsec$, répondre à la question : « le toboggan assure-t-il de bonnes sensations ? ». Justifier.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Une exposition d’art contemporain a lieu dans une salle en forme de pavé droit de largeur $6$ m, de longueur $8$ m et de hauteur $4$ m.
Elle est représentée par le parallélépipède rectangle $OBCDEFGH$ où $OB = 6$ m, $OD = 8$ m et $OE = 4$ m.
On utilise le repère orthonormé $\Oijk$ tel que $\vec{i}=\dfrac{1}{6}\vect{OB}$, $\vec{j}=\dfrac{1}{8}\vect{OD}$ et $\vec{k}=\dfrac{1}{4}\vect{OE}$.

 

Dans ce repère on a, en particulier $C(6; 8; 0)$, $F(6; 0; 4)$ et $G(6; 8; 4)$.
Une des œuvres exposées est un triangle de verre représenté par le triangle $ART$ qui a pour sommets $A(6; 0; 2)$, $R(6; 3; 4)$ et $T(3; 0; 4)$, Enfin, $S$ est le point de coordonnées $\left(3;\dfrac{5}{2};0\right)$.

  1. a. Vérifier que le triangle $ART$ est isocèle en $A$.
    $\quad$
    b. Calculer le produit scalaire $\vect{AR}.\vect{AT}$.
    $\quad$
    c. En déduire une valeur approchée à $0,1$ degré près de l’angle $\widehat{RAT}$.
    $\quad$
  2. a. Justifier que le vecteur $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur normal au plan $(ART)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(ART)$.
    $\quad$
  3. Un rayon laser dirigé vers le triangle $ART$ est émis du plancher à partir du point $S$. On admet que ce rayon est orthogonal au plan $(ART)$.
    a. Soit $\Delta$ la droite orthogonale au plan $(ART)$ et passant par le point $S$.
    Justifier que le système ci-dessous est une représentation paramétrique de la droite $\Delta$ : $$\begin{cases} x=3+2k\\[3pt]y=\dfrac{5}{2}-2k\\[3pt]z=3k\end{cases} \quad, \text{avec } k\in \R$$
    $\quad$
    b. Soit $L$ le point d’intersection de la droite $\Delta$, avec le plan $(ART)$.
    Démontrer que $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. L’artiste installe un rail représenté par le segment $[DK]$ ou $K$ est le milieu du segment $[EH]$.
    Sur ce rail, il positionne une source lumineuse laser en un point $N$ du segment $[DK]$ et il oriente ce second rayon laser vers le point $S$.
    $\quad$
    $\quad$
    a. Montrer que, pour tout réel $t$ de l’intervalle $[0; 1]$, le point $N$ de coordonnées $(0 ; 8−4t ; 4t)$ est un point du segment $[DK]$.
    $\quad$
    b. Calculer les coordonnées exactes du point $N$ tel que les deux rayons laser représentés par les segments $[SL]$ et $[SN]$ soient perpendiculaires.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : : fonction logarithme népérien, probabilités

Cet exercice est un questionnaire à choix multiples (QCM) qui comprend six questions. Les six questions sont indépendantes. Pour chacune des questions, une seule des quatre réponses est exacte. Le candidat indiquera sur sa copie le numéro de la question suivi de la lettre correspondant à la réponse exacte.
Aucune justification n’est demandée.
Une réponse fausse, une réponse multiple ou une absence de réponse ne rapporte ni n’enlève aucun point.

Question 1

Le réel $a$ est définie par $a = \ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right)$ est égal à :
a. $1-\dfrac{1}{2}\ln(3)$
b. $\dfrac{1}{2}\ln(3)$
c. $3\ln(3)-\dfrac{1}{2}$
d. $-\dfrac{1}{2}\ln(3)$
$\quad$

Question 2

On note $(E)$ l’équation suivante $\ln(x) +\ln(x −10) = ln (3)+ln (7)$ d’inconnue le réel $x$.
a. $3$ est solution de $(E)$.
b. $5-\sqrt{46}$ est solution de $(E)$.
c. L’équation $(E)$ admet une unique solution réelle.
d. L’équation $(E)$ admet deux solutions réelles.
$\quad$

Question 3

La fonction $f$ est définie sur l’intervalle $]0 ; +\infty[$ par l’expression $f(x)=x^2\left(-1+\ln(x)\right)$.
On note $\mathscr{C}_f$ sa courbe représentative dans le plan muni d’un repère.
a. Pour tout réel $x$ de l’intervalle $]0 ; +\infty[$, $f'(x)=2x+\dfrac{1}{x}$.
b. La fonction $f$ est croissante sur l’intervalle $]0 ; +\infty[$.
c. $f’\left(\sqrt{\e}\right)$ est différent de $0$.
d. La droite d’équation $y=-\dfrac{1}{2}\e$ est tangente à la courbe $\mathscr{C}_f$ au point d’abscisse $\sqrt{\e}$.
$\quad$

Question 4

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer exactement $2$ jetons jaunes, arrondie au millième, est :
a. $0,683$
b. $0,346$
c. $0,230$
d. $0,165$
$\quad$

Question 5

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer au moins un jeton jaune, arrondie au millième, est :
a. $0,078$
b. $0,259$
c. $0,337$
d. $0,922$
$\quad$

Question 6

Un sac contient $20$ jetons jaunes et $30$ jetons bleus.
On réalise l’expérience aléatoire suivante : on tire successivement et avec remise cinq jetons du sac.
On note le nombre de jetons jaunes obtenus après ces cinq tirages.
Si on répète cette expérience aléatoire un très grand nombre de fois alors, en moyenne, le nombre de jetons jaunes est égal à:
a. $0,4$
b. $1,2$
c. $2$
d. $2,5$
$\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 19 mai 2022

Centres étrangers – Liban – 19 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient donc l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(F\cap C)&=P(F)\times P_F(C) \\
    &=0,48\times 0,165 \\
    &=0,079~2\end{align*}$
    La probabilité que la personne choisie soit une femme qui exerce une profession de cadre est égale à $0,079~2$.
    $\quad$
  3. a. $\left(F,\conj{F}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(C)&=P(C\cap F)+P\left(C\cap\conj{F}\right) \\
    &=0,079~2+P\left(\conj{F}\right)\times P_{\conj{F}}(C) \\
    &=0,079~2+0,52\times 0,215 \\
    &=0,191\end{align*}$
    La probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. D’une part $P(C)\times P(F)=0,091~68$
    D’autre part $P(C \cap F)=0,079~2$
    Donc $P(C)\times P(F)\neq P(C\cap F)$.
    Les événements $F$ et $C$ ne sont pas indépendants.
    $\quad$
  4. On a
    $\begin{align*} P_C(F)&=\dfrac{P(C\cap F)}{P(C)} \\
    &=\dfrac{0,079~2}{0,191} \\
    &\approx 0,414~7\end{align*}$.
    La probabilité que la personne choisie soit une femme sachant qu’elle exerce une profession de cadre est environ égale à $0,414~7$.
    $\quad$
  5. a. On répète $15$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de cadres au sein de l’échantillon de $15$ salariés.
    Par conséquent $X$ suit la loi binomiale de paramètres $n=15$ et $p=0,191$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=(1-0,191)^{15}+\dbinom{15}{1}0,191\times (1-0,191)^{14} \\
    &\approx 0,189~0\end{align*}$
    La probabilité que l’échantillon contienne au plus $1$ cadre est environ égale à $0,189~0$.
    $\quad$
    c. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=np\\
    &=15\times 0,191 \\
    &=2,865\end{align*}$
    $\quad$
  6. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire qui compte le nombre de cadres au sein de l’échantillon de $n$ salariés.
    Par conséquent $Y$ suit la loi binomiale de paramètres $n$ et $p=0,191$.
    $\begin{align*} P(Y\pg 1)\pg 0,99 &\ssi 1-P(Y=0)\pg 0,99 \\
    &\ssi P(X=0)\pp 0,01 \\
    &\ssi 0,809^n \pp 0,01\\
    &\ssi n\ln(0,809) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,809)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,809)} \approx 21,7$.
    Il faut donc que l’échantillon contienne au moins $22$ salariés pour la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. $[AH]$ et $[ED]$ sont les diagonales du carré $ADHE$.
    Les droites $(AH)$ et $(ED)$ sont par conséquent perpendiculaires.
    $\quad$
    b. $EFGH$ est un carré donc $(EH)$ et $(HG)$ sont perpendiculaires.
    $CDHG$ est un carré donc $(GH)$ et $(DH)$ sont perpendiculaires.
    Ainsi, $(HG)$ est perpendiculaire à deux droites sécantes du plan $(EDH)$.
    Par conséquent, la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. La droite $(ED)$ est incluse dans le plan $(EDH)$. D’après la question précédente, les droites $(GH)$ et $(ED)$ sont orthogonales.
    D’après la question 1.a. les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    La droite $(ED)$ est donc orthogonale à deux droites sécantes (le point $A$ n’appartient pas à la droite $(GH)$) du plan $(AGH)$.
    La droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Dans le repère fourni on a $E(0;0;1)$ et $D(0;1;0)$.
    Par conséquent $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$.
    $\quad$
    $\vect{ED}$ est un vecteur normal au plan $(AGH)$ d’après la question précédente.
    Une équation cartésienne du plan $(AGH)$ est donc de la forme $y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan. Ainsi $d=0$.
    Une équation cartésienne du plan $(AGH)$ est $y-z=0$.
    $\quad$
  3. a. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]1\\-1\end{pmatrix}$.
    Une représentation paramétrique de la droite $(EL)$ est $\begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\end{cases} \qquad t\in \R$.
    $\quad$
    b. On résout le système
    $\begin{align*} \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\y-z=0 \end{cases} &\ssi \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\ 1+t+t=0\end{cases} \\
    &\ssi \begin{cases}t=-\dfrac{1}{2}\\ x=\dfrac{1}{3}t\\[3pt]y=\dfrac{1}{2}\\[3pt]z=\dfrac{1}{2}\end{cases}\end{align*}$
    Le point d’intersection de la droite $(EL)$ et du plan $(AGH)$ a donc pour coordonnées $\left(\dfrac{1}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    c. $\dfrac{1}{2}-\dfrac{1}{2}=0$ : le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ appartient au plan $(AGH)$.
    $\vect{KL}\begin{pmatrix}0\\-\dfrac{1}{2}\\[3pt]\dfrac{1}{2}\end{pmatrix}$.
    Par conséquent $\vect{KL}=-\dfrac{1}{2}\vect{ED}$.
    Ainsi $\vect{KL}$ est un vecteur normal au plan $(AGH)$.
    Donc $K\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ est le projeté orthogonal du point $L$ sur le plan $(AGH)$.
    $\quad$
    d. On a
    $\begin{align*} KL&=\sqrt{0^2+\left(-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^2} \\
    &=\sqrt{\dfrac{1}{2}} \\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$.
    La distance du point $L$ ai plan $(AGH)$ est donc $h=\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. On applique le théorème de Pythagore dans le triangle $AHD$ rectangle en $D$.
    Donc $AH^2=AD^2+HD^2$ ainsi $AH^2=2$ et $AH=\sqrt{2}$
    $(HG)$ est orthogonale au plan $(EDH)$ d’après la question 1.b.
    La droite $(AH)$ est incluse dans le plan $(EDH)$.
    Par conséquent les droites $(AH)$ et $(HG)$ sont perpendiculaires et le triangle $AHG$ est rectangle en $H$.
    L’aire du triangle $AHG$ est donc
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times HG}{2} \\
    &=\dfrac{\sqrt{2}\times 1}{2}\\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$
    Le volume du tétraèdre $LAGH$ est alors
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times h \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{2}}{2}\times \dfrac{\sqrt{2}}{2} \\
    &=\dfrac{1}{6}\end{align*}$.

Ex 3

Exercice 3

  1. La fonction $g$ est deux fois dérivables sur $\R$ en tant que somme de fonctions deux fois dérivables.
    Pour tout réel $x$ on a $g'(x)=1~000x^{999}+1$ et $g\dsec(x)=999~000x^{998}$
    $998$ est pair donc, pour tout réel $x$ $g\dsec(x)\pg 0$.
    La fonction $g$ est convexe sur $\R$
    Réponse b
    $\quad$
  2. D’après le graphique, $f'(0)=1$.
    Une équation de la droite $T$ est donc de la forme $y=x+b$.
    $T$ est par conséquent parallèle à la droite d’équation $y=x$.
    Réponse a
    $\quad$
  3. Pour tout entier naturel $n$ on a $-1\pp (-1)^n \pp 1$.
    Donc $-\dfrac{-1}{1+n}\pp u_n \pp \dfrac{1}{n+1}$
    Or pour tout entier naturel $n$ on a $-1 \pp -\dfrac{1}{1+n}$ et $\dfrac{1}{1+n}\pp 1$.
    Ainsi $-1\pp u_n \pp 1$.
    Réponse c
    $\quad$
  4. Pour tout entier naturel $n$ on a $v_n\times v_{n+1}<0$.
    Cela signifie donc que deux termes consécutifs de la suite $\left(v_n\right)$ sont toujours de signes contraires.
    Ainsi, tous les termes de rang pair sont du même signe.
    Par conséquent $v_{10}$ est du même signe que $v_0$
    Réponse c
    $\quad$
  5. On a $8=2w_1-4 \ssi 12=2w_1 \ssi w_1=6$
    $6=2w_0-4 \ssi 2w_0=10\ssi w_0=5$.
    Réponse b
    $\quad$
  6. Pour tout entier naturel $n$ on pose $P(n):~a_n>0$
    Initialisation : $a_0=1>0$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $a_n>0$ et $\e^n>0$ donc $\dfrac{\e^n}{\e^n+1}a_n>0$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n$, on a $a_n>0$.
    $\quad$
    Soit $n\in \N$
    $\begin{align*} a_{n+1}-a_n&=\dfrac{\e^n}{\e^n+1}a_n-a_n \\
    &=\left(\dfrac{\e^n}{\e^n+1}-1\right)a_n \\
    &=-\dfrac{1}{\e^n+1}a_n\\
    &<0\end{align*}$
    La suite $\left(a_n\right)$ est donc strictement décroissante.
    Réponse b
    $\quad$
    Remarque : Puisqu’il s’agit d’une question d’un QCM, l’utilisation de la calculatrice est à privilégiée ici pour avoir une idée du comportement de la suite.
    $\quad$
  7. On appelle $u_n$ le nombre de cellules à la $n$-ième génération.
    Ainsi, pour tout entier naturel $n$ on a $u_n=2^n$.
    Au bout de $4$ heures il y a environ $4~000$ cellules. Or $u_{11}=2~048$ et $u_{12}=4~096$.
    Il a donc fallu $4$ heures pour obtenir à la $12$-ième génération.
    $\dfrac{4\times 60}{12}=20$.
    Le temps de génération est donc environ égal à $20$ minutes.
    Réponse c
    $\quad$

 

Ex 4

Exercice 4

Partie A

  1. On a $\lim\limits_{x\to 0^+} \e^{-x}=1$ et $\lim\limits_{x\to 0^+} \ln(x)=-\infty$.
    Ainsi $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
  2. Pour tout réel $x\in ]0;1]$ on a
    $\begin{align*} f'(x)&=-\e^{-x}+\dfrac{1}{x} \\
    &=\dfrac{-x\e^{-x}+1}{x} \\
    &=\dfrac{1-x\e^{-x}}{x}\end{align*}$
    $\quad$
  3. La fonction exponentielle est convexe sur $\R$. Sa courbe représentative est donc au-dessus de toutes ses tangentes.
    On a $\e^0=1$. Une équation de la tangente à la courbe au point d’abscisse $0$ est par conséquent $y=x+1$.
    Ainsi, pour tout réel $x\in ]0;1]$, $\e^x\pg x+1>x$ soit $1\pg x\e^{-x}$.
    Donc pour tout réel $x\in ]0;1]$ on a $x\e^x<1$.
    Remarque : On pouvait également déterminer le tableau de variations de la fonction $g$ définie sur $]0;1]$ par $g(x)=x\e^{-x}$.
    $\quad$
    Ainsi sur $]0;1]$, $1-x\e^{-x}>0$
    Par conséquent $f'(x)>0$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;1]$.
    $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $f(1)=\e^{-1}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=0$ admet une unique solution $\ell$ sur $]0;1]$.
    $\quad$

Partie B

  1. a. On a $a_1=\e^{-1}\approx 0,37$ et $b_1=\e^{-1/10}\approx 0,90$.
    $\quad$
    b. On peut écrire
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad \text{a = 1 / 10} \\
    \quad \text{b = 1} \\
    \quad \text{for k in range(0,n):}\\
    \qquad \text{c = exp(-b)}\\
    \qquad \text{b = exp(-a)}\\
    \qquad \text{a = c}\\
    \quad \text{return(a,b)}\\
    \hline
    \end{array}$
    Remarque : On suppose donc que la bibliothèque $\texttt{math}$ a été importée (ou au moins la fonction $\texttt{exp}$) pour que la fonction ne comporte pas d’erreur.
    $\quad$
  2. a. Pour tout $n\in \N$ on pose $P(n):~0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    Initialisation : On a $a_0=0,1$, $a_1 \approx 0,37$, $b_1\approx 0,90$ et $b_0=1$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    La fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    Par conséquent $\e^{0}>\e^{-a_n}\pg \e^{-a_{n+1}}\pg \e^{-b_{n+1}}\pg \e^{-b_n}\pg \e^{-1}$
    Soit $1>b_{n+1}\pg b_{n+2}\pg a_{n+2}\pg a_{n+1}\pg \e^{-1}>0$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout entier naturel $n$ on a $0<a_n\pp a_{n+1}\pp b_{n+1} \pp b_n \pp 1$.
    $\quad$
    b. La suite $\left(a_n\right)$ est croissante et majorée par $1$ : elle converge donc.
    La suite $\left(b_n\right)$ est décroissante et minorée par $0$ : elle converge donc.
    $\quad$
  3. a. On a $A=\e^{-B}$  par conséquent $\ln(A)=-B$ et $B=-\ln(A)$.
    Or $B=\e^{-A}$ donc $-\ln(A)=\e^{-A}$ soit $\e^{-A}+\ln(A)=0$.
    Par conséquent $f(A)=0$.
    $\quad$
    b. D’après la question précédente et la question A.4. $A=\ell$.
    On a $B=\e^{-A}$ donc $A=-\ln(B)$
    Or $A=\e^{-B}$ soit $-\ln(B)=\e^{-B}$ et donc $f(B)=0$.
    On a ainsi également $B=\ell$.
    Donc $A-B=0$.
    Remarque : On dit que les suite $\left(a_n\right)$ et $\left(b_n\right)$ sont adjacentes.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Les résultats seront arrondis si besoin à $10^{-4}$ près.
Une étude statistique réalisée dans une entreprise fournit les informations suivantes :

  • $48 \%$ des salariés sont des femmes. Parmi elles, $16,5 \%$ exercent une profession de cadre ;
  • $52 \%$ des salariés sont des hommes. Parmi eux, $21,5 \%$ exercent une profession de cadre.

On choisit une personne au hasard parmi les salariés.
On considère les événements suivants :

  • $F$ : « la personne choisie est une femme » ;
  • $C$ : « la personne choisie exerce une profession de cadre ».
  1. Représenter la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que la personne choisie soit une femme qui exerce une profession de cadre.
    $\quad$
  3. a. Démontrer que la probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. Les événements $F$ et $C$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Calculer la probabilité de $F$ sachant $C$, notée $P_C(F)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  5. On choisit au hasard un échantillon de 15 salariés. Le grand nombre de salariés dans l’entreprise permet d’assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de cadres au sein de l’échantillon de $15$ salariés.
    On rappelle que la probabilité qu’un salarié choisi au hasard soit un cadre est égale à $0,191$.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Calculer la probabilité que l’échantillon contienne au plus $1$ cadre.
    $\quad$
    c. Déterminer l’espérance de la variable aléatoire $X$.
    $\quad$
  6. Soit $n$ un entier naturel.
    On considère dans cette question un échantillon de $n$ salariés.
    Quelle doit être la valeur minimale de $n$ pour que la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

On considère le cube $ABCDEFGH$ de côté $1$ représenté ci-dessous.

 

On munit l’espace du repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. a. Justifier que les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    $\quad$
    b. Justifier que la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. En déduire que la droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Donner les coordonnées du vecteur $\vect{ED}$.
    Déduire de la question 1.c. qu’une équation cartésienne du plan $(AGH)$ est :
    $$y-z=0$$
    $\quad$
  3. On désigne par $L$ le point de coordonnées $\left(\dfrac{2}{3};1;0\right)$
    a. Déterminer une représentation paramétrique de la droite $(EL)$.
    $\quad$
    b. Déterminer l’intersection de la droite $(EL)$ et du plan $(AGH)$.
    $\quad$
    c. Démontrer que le projeté orthogonal du point $L$ sur le plan $(AGH)$ est le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    d. Montrer que la distance du point $L$ au plan $(AGH)$ est égale à $\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. Déterminer le volume du tétraèdre $LAGH$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule :
    $$V=\dfrac{1}{3}\times (\text{aire de la base})\times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonctions, suites

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. . Soit $g$ la fonction définie sur $\R$ par $g(x)=x^{1~000}+x$.
    On peut affirmer que :
    a. la fonction $g$ est concave sur $\R$.
    b. la fonction $g$ est convexe sur $\R$.
    c. la fonction $g$ possède exactement un point d’inflexion.
    d. la fonction $g$ possède exactement deux points d’inflexion.
    $\quad$
  2. On considère une fonction $f$ définie et dérivable sur $\R$. On note $f’$ sa fonction dérivée.
    On note $C$ la courbe représentative de $f$.
    On note $\Gamma$ la courbe représentative de $f’$.
    On a tracé ci-dessous la courbe $\boldsymbol{\Gamma}$ .On note $T$ la tangente à la courbe $\boldsymbol{C}$ au point d’abscisse $0$.
    On peut affirmer que la tangente $T$ est parallèle à la droite d’équation :
    a. $y=x$
    b. $y=0$
    c. $y=1$
    d. $x=0$
    $\quad$
  3. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n=\dfrac{(-1)^n}{n+1}$.
    On peut affirmer que la suite $\left(u_n\right)$ est :
    a. majorée et non minorée.
    b. minorée et non majorée.
    c. bornée.
    d. non majorée et non minorée.
    $\quad$
  4. Soit $k$ un nombre réel non nul.
    Soit $\left(v_n\right)$ une suite définie pour tout entier naturel $n$.
    On suppose que $v_0=k$ et que pour tout $n$, on a $v_n\times v_{n+1}<0$.
    On peut affirmer que $v_{10}$ est :
    a. positif.
    b. négatif.
    c. du signe de $k$.
    d. du signe de $-k$.
    $\quad$
  5. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par :
    $$w_{n+1}=2w_n-4\text{ et } w_2=8$$
    On peut affirmer que :
    a. $w_0=0$.
    b. $w_0=5$.
    c. $w_0=10$.
    d. Il n’est pas possible de calculer $w_0$.
    $\quad$
  6. On considère la suite $\left(a_n\right)$ définie pour tout entier naturel $n$ par : $$a_{n+1}=\dfrac{\e^n}{\e^n+1}a_n \text{ et } a_0=1$$
    On peut affirmer que :
    a. la suite $\left(a_n\right)$ est strictement croissante.
    b. la suite $\left(a_n\right)$ est strictement décroissante.
    c. la suite $\left(a_n\right)$ n’est pas monotone.
    d. la suite $\left(a_n\right)$ est constante.
    $\quad$
  7. Une cellule se reproduit en se divisant en deux cellules identiques, qui se
    divisent à leur tour, et ainsi de suite. On appelle temps de génération le temps nécessaire pour qu’une cellule donnée se divise en deux cellules. On a mis en culture $1$ cellule. Au bout de $4$ heures, il y a environ $4~000$ cellules.
    On peut affirmer que le temps de génération est environ égal à :
    a. moins d’une minute.
    b. $12$ minutes.
    c. $20$ minutes.
    d. $1$ heure.
    $\quad$

$\quad$

Exercice 4

Thème : Fonctions, fonction exponentielle, fonction logarithme, suites

Partie A

On considère la fonction $f$ définie pour tout réel $x$ de $]0 ; 1]$ par :$$f(x)=\e^{-x}+\ln(x)$$

  1. Calculer la limite de $f$ en $0$.
    $\quad$
  2. On admet que $f$ est dérivable sur $]0 ; 1]$. On note $f’$ sa fonction dérivée.
    Démontrer que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a :
    $$f'(x)=\dfrac{1-x\e^{-x}}{x}$$
    $\quad$
  3. Justifier que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a $x\e^{-x}<1$.
    En déduire le tableau de variation de $f$ sur $]0 ; 1]$.
    $\quad$
  4. Démontrer qu’il existe un unique réel $\ell$ appartenant à $]0 ; 1]$ tel que $f(\ell)=0$.
    $\quad$

Partie B

  1. On définit deux suites $\left(a_n\right)$ et $\left(b_n\right)$ par :
    $$\begin{cases} a_0=\dfrac{1}{10}\\[3pt]b_0=1\end{cases} \text{ et, pour tout entier naturel }n,~\begin{cases} a_{n+1}=\e^{-b_n}\\[3pt]b_{n+1}=\e^{-a_n}\end{cases}$$
    a. Calculer $a_1$ et $b_1$. On donnera des valeurs approchées à $10^{-2}$ près.
    $\quad$
    b. On considère ci-dessous la fonction termes, écrite en langage Python.
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad\text{a = 1/10}\\
    \quad\text{b = 1}\\
    \quad\text{for k in range(0,n):}\\
    \qquad\text{c = …}\\
    \qquad\text{b = …}\\
    \qquad\text{a = c}\\
    \quad\text{return(a,b)}\\
    \hline
    \end{array}$
    Recopier et compléter sans justifier le cadre ci-dessus de telle sorte que la
    fonction termes calcule les termes des suites $\left(a_n\right)$ et $\left(b_n\right)$.
    $\quad$
  2. On rappelle que la fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    a. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $$0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$$
    $\quad$
    b. En déduire que les suites $\left(a_n\right)$ et $\left(b_n\right)$ sont convergentes.
    $\quad$
  3. On note $A$ la limite de $\left(a_n\right)$ et $B$ la limite de $\left(b_n\right)$.
    On admet que $A$ et $B$ appartiennent à l’intervalle $]0 ; 1]$, et que $A = \e^{-B}$ et $B = \e^{-A}$.
    a. Démontrer que $f(A)=0$.
    $\quad$
    b. Déterminer $A-B$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Amérique du Nord – sujet 1 – 18 mai 2022

Amérique du nord – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant:
    $\quad$
    $\quad$
    b. $\left(V,\conj{V}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(R)&=P(R\cap V)+P\left(R\cap \conj{V}\right) \\
    &=P(V)\times P_V(R)+P\left(\conj{V}\right)\times P_{\conj{V}}(R)\\
    &=\dfrac{2}{3}\times \dfrac{1}{50}+\dfrac{1}{3}\times \dfrac{1}{10} \\
    &=\dfrac{7}{150}\end{align*}$
    La probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} P_R(V)&=\dfrac{P(R\cap V)}{P(R)} \\
    &=\dfrac{~\dfrac{2}{150}~}{\dfrac{7}{150}} \\
    &=\dfrac{2}{7}\end{align*}$
    La probabilité que Paul ait pris son vélo pour rejoindre la gare sachant qu’il a raté son train est égale à $\dfrac{2}{7}$.
    $\quad$
  2. a. On répète $20$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{3}$.
    $\quad$
    b.
    $\begin{align*} P(X=10)&=\dbinom{20}{10}\times \left(\dfrac{2}{3}\right)^{10}\times \left(\dfrac{1}{3}\right)^{10} \\
    &\approx 0,054\end{align*}$
    La probabilité que Paul prenne son vélo exactement $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,054$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 10)&=1-P(X\pp 9) \\
    &\approx 0,962\end{align*}$
    La probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,962$.
    d. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=20\times \dfrac{2}{3}\\
    &=\dfrac{40}{3}\end{align*}$
    En moyenne, sur un période choisie au hasard de $20$ jours, Paul prend son vélo environ $13$ jours pour se rendre à la gare.
    $\quad$
  3. L’espérance mathématique de $T$ est :
    $\begin{align*} E(T)&=10\times P(T=10)+11\times P(T=11)+\ldots+18\times P(T=18) \\
    &=13,5\end{align*}$
    En moyenne Paul met $13,5$ minutes pour se rendre à la gare en voiture.
    $\quad$

Ex 2

Exercice 2

  1. a. Pour tout entier naturel $n$ on note $P(n):~T_n\pg 20$.
    Initialisation : $T_0=180\pg 20$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} T_n\pg 20&\ssi 0,955T_n \pg 19,1 \\
    &\ssi 0,955T_n+0,9 \pg 20 \\
    &\ssi T_{n+1} \pg 20\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $T_n\pg 20$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} T_{n+1}-T_n&=0,955T_n+0,9 -T_n \\
    &=-0,045T_n+0,9 \\
    &=-0,045\left(T_n-20\right)\end{align*}$
    $\quad$
    Pour tout $n\in \N$ on a $T_n\pg 20 \ssi T_n-20\pg 0$.
    Ainsi $T_{n+1}-T_n\pp 0$.
    Par conséquent $\left(T_n\right)$ est décroissante.
    $\quad$
    c. La suite $\left(T_n\right)$ est décroissante et minorée par $20$. Elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. Soit $n\in \N$. $u_n=T_n-20\ssi T_n=u_n+20$
    $\begin{align*} u_{n+1}&=T_{n+1}-20 \\
    &=0,955T_n+0,9-20 \\
    &=0,955T_n-19,1\\
    &=0,955\left(u_n+20\right)-19,1 \\
    &=0,955u_n+19,1-19,1\\
    &=0,955u_n\end{align*}$
    Par conséquent, la suite $\left(u_n\right)$ est géométrique de raison $0,955$ et de premier terme $u_0=160$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $u_n=160\times 0,955^n$.
    Donc $T_n=u_n+20=20+160\times 0,955^n$.
    $\quad$
    c. $-1<0,955<1$ donc $\lim\limits_{n\to +\infty} 0,955^n=0$.
    Par conséquent $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    d.
    $\begin{align*} T_n\pp 120&\ssi 20+160\times 0,955^n \pp 120 \\
    &\ssi 160\times 0,955^n \pp 100 \\
    &\ssi 0,955^n \pp 0,625 \\
    &\ssi n\ln(0,955) \pp \ln(0,625) \\
    &\ssi n\pg \dfrac{\ln(0,625)}{\ln(0,955)} \end{align*}$
    Or $\dfrac{\ln(0,625)}{\ln(0,955)} \approx 10,2$.
    L’ensemble solution de $T_n\pp 120$ est l’ensemble des entiers naturels supérieurs ou égaux à $11$.
    $\quad$
  3. a. La température au centre du gâteau va décroitre jusqu’à atteindre la température ambiante.
    Il était donc prévisible que $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    b. La fonction $\texttt{temp}$ renvoie le plus petit entier naturel $n$ tel que $T_n\pp x$.
    D’après la question 2.d. la commande $\texttt{temp(120)}$ renvoie $11$.
    Cela signifie que la température au centre du gâteau devient inférieure à $120$ degré Celsius au bout de $11$ minutes.
    $\quad$

Ex 3

Exercice 3

  1. a. $\vect{JK}\begin{pmatrix} -1\\2\\0\end{pmatrix}$ et $\vect{JL}\begin{pmatrix} -4\\-2\\-3\end{pmatrix}$
    Donc
    $\begin{align*} \vect{JK}.\vect{JL}&=-1\times (-4)+2\times (-2)+0\times (-3) \\
    &=4-4\\
    &=0\end{align*}$
    Les vecteurs $\vect{JK}$ et $\vect{JL}$ sont donc orthogonaux. Le triangle $JKL$ est par conséquent rectangle en $J$.
    $\quad$
    b.
    $\begin{align*} JK&=\sqrt{(-1)^2+2^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} JL&=\sqrt{(-4)^2+(-2)^2+(-3)^2} \\
    &=\sqrt{29}\end{align*}$
    L’aire du triangle $JKL$ est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{JK\times JL}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{29}}{2} \\
    &=\dfrac{\sqrt{145}}{2} \text{ cm}^2\end{align*}$
    c. Dans le triangle $JKL$ rectangle en $J$ on a $\tan \widehat{JKL}=\dfrac{JL}{JK}$
    Soit $\tan \widehat{JKL}=\dfrac{\sqrt{29}}{\sqrt{5}}$
    Par conséquent $\widehat{JKL} \approx 67,5$°
    $\quad$
  2. a. D’une part :
    $\begin{align*}\vect{JK}.\vec{n}&=6\times (-1)+3\times 2+0\times (-10) \\
    &=-6+6\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*}\vect{JL}.\vec{n}&=6\times (-4)+3\times (-2)+(-10)\times (-3)
    &=-24-6+30\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteur non colinéaires (puisqu’orthogonaux) du plan $(JKL)$.
    $\vec{n}$ est par conséquent un vecteur normal au plan $(JKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(JKL)$ est donc de la forme $6x+3y-10z+d=0$.
    Le point $J(2;0;1)$ appartient au plan $(JKL)$.
    Par conséquent $12+0-10+d=0 \ssi d=-2$
    Une équation cartésienne du plan $(JKL)$ est $6x+3y-10z-2=0$.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $\Delta$.
    Une représentation paramétrique de $\Delta$ est donc $\begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\end{cases} \qquad ,t\in \R$.
    $\quad$
    b. On résout le système :
    $\begin{align*} \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6x+3y-10z-2=0\end{cases}&\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6(10+6t)+3(9+3t)-10(-6-10t)-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\60+36t+27+9t+60+100t-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\145t+145=0\end{cases}\\
    &\ssi \begin{cases}t=-1\\ x=4\\y=6\\z=4\end{cases}\end{align*}$
    Ainsi $H$ a pour coordonnées $(4;6;4)$.
    $\quad$
    c. $\vect{HT}\begin{pmatrix} 6\\3\\-10\end{pmatrix}$
    Donc
    $\begin{align*} HT&=\sqrt{6^2+3^2+(-10)^2} \\
    &=\sqrt{145}\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\mathscr{A}\times HT \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{145}}{2}\times \sqrt{145}\\
    &=\dfrac{145}{6} \text{ cm}^3\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. Soit $x\in \R$
    $\begin{align*} 1-\dfrac{1-\e^x}{1+\e^x}&=\dfrac{1+\e^x-1+\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{\e^x\left(\e^{-x}+1\right)} \\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Affirmation 1 vraie
    $\quad$
  2. $\quad$
    $\begin{align*} g(x)=\dfrac{1}{2} &\ssi \dfrac{\e^x}{\e^x+1}=\dfrac{1}{2} \\
    &\ssi 2\e^x=\e^x+1 \\
    &\ssi \e^x=1 \\
    &\ssi x=0\end{align*}$
    L’équation $g(x)=\dfrac{1}{2}$ admet une unique solution : $0$.
    Affirmation 2 vraie
    $\quad$
  3. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=2x\e^{-x}-x^2\e^{-x} \\
    &=\left(2x-x^2\right)\e^{-x} \\
    &=x(2-x)\e^{-x}\end{align*}$
    Si l’axe des abscisses est tangent à la courbe $C$ en $A\left(x_A;y_A\right)$ alors $f’\left(x_A\right)=0$.
    Or $f'(x)=0 \ssi x(2-x)=0$ car la fonction exponentielle est strictement positive.
    $x(2-x)=0 \ssi x=0$ ou $x=2$.
    Cependant $f(0)=0$ et $f(2)=4\e^{-2}\neq 0$. Le point de coordonnées $(0;0)$ appartient à l’axe des abscisses mais le point de coordonnées $\left(2;4\e^{-2}\right)$ n’appartient pas à cet axe.
    L’axe des abscisses est tangent à la courbe $C$ qu’en l’origine du repère.
    Affirmation 3 vraie
    $\quad$
  4. La fonction $h$ est deux fois dérivable sur $\R$ en tant que produit de fonctions deux fois dérivables.
    Soit $x\in \R$
    $\begin{align*} h'(x)&=\e^x\left(1-x^2\right)-2x\e^x \\
    &=\e^x\left(-x^2-2x+1\right)\end{align*}$
    $\begin{align*} h\dsec(x)&=\e^x\left(-x^2-2x+1\right)+\e^{-x}(-2x-2)\\
    &=\e^x\left(-x^2-2x+1-2x-2\right) \\
    &=\e^x\left(-x^2-4x-1\right)\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$. Le signe de $h\dsec(x)$ ne dépend donc que de celui de $-x^2-4x-1$.
    Le discriminant de ce polynôme du second degré est $\Delta=12>0$.
    Ainsi l’équation $-x^2-4x-1=0$ admet $2$ solutions distinctes et $h\dsec(x)$ change deux fois de signe en s’annulant.
    La courbe représentative de la fonction $h$ admet donc deux points d’inflexion.
    Affirmation 4 fausse
    $\quad$
  5. Soit $x>0$. $\dfrac{\e^x}{\e^x+x}=\dfrac{1}{1+\dfrac{x}{\e^x}}$
    Or, par croissances comparées $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    Par conséquent $\lim\limits_{x\to +\infty} \dfrac{1}{1+\dfrac{x}{\e^x}}=1$
    Affirmation 5 fausse
    $\quad$
  6. $\quad$
    $\begin{align*} 1+\e^{2x}\pg 2\e^x &\ssi \left(\e^x\right)^2-2\e^x+1 \pg 0\\
    &\ssi \left(\e^x-1\right)^2 \pg 0\end{align*}$
    Cette dernière inégalité est vraie pour tout réel $x$.
    Affirmation 6 vraie
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Chaque chaque jour où il travaille, Paul doit se rendre à la gare pour rejoindre son lieu de travail en train. Pour cela, il prend son vélo deux fois sur trois et, si il ne prend pas son vélo, il prend sa voiture.

  1. lorsqu’il prend son vélo pour rejoindre la gare, Paul ne rate le train qu’une fois sur $50$ alors que, lorsqu’il prend sa voiture pour rejoindre la gare Paul rate son train une fois sur $10$.
    On considère une journée au hasard lors de laquelle Paul sera à la gare pour prendre le train qui le conduira au travail.
    On note :
    • $V$ l’évènement « Paul prend son vélo pour rejoindre la gare »;
    • $R$ l’évènement « Paul rate son train ».
    a. Faire un arbre pondéré résumant la situation.
    $\quad$
    b. Montrer que la probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. Paul a raté son train. Déterminer la valeur exacte de la probabilité qu’il ait pris son vélo pour rejoindre la gare.
    $\quad$
  2. On choisit au hasard un mois pendant lequel Paul s’est rendu $20$ jours à la gare pour rejoindre son lieu de travail selon les modalités décrites en préambule.
    On suppose que, pour chacun de ces $20$ jours, le choix entre le vélo et la voiture est indépendant des choix des autres jours.
    On note $X$ la variable aléatoire donnant le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    a. Déterminer la loi suivie par la variable aléatoire $X$. Préciser ses paramètres.
    $\quad$
    b. Quelle est la probabilité que Paul prenne son vélo exactement 10 jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    c. Quelle est la probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    d. En moyenne, combien de jours sur une période choisie au hasard de $20$ jours pour se rendre à la gare, Paul prend-il son vélo ? On arrondira la réponse à l’entier.
    $\quad$
  3. Dans le cas où Paul se rend à la gare en voiture, on note $T$ la variable aléatoire donnant le temps de trajet nécessaire pour se rendre à la gare. La durée du trajet est donnée en minutes, arrondie à la minute. La loi de probabilité de $T$ est donnée par le tableau ci-dessous :
    $\begin{array}{|l|c|c|c|c|c|c|c|c|c|}
    \hline
    k\text{ (en minutes)}&10&11&12&13&14&15&16&17&18\\
    \hline
    P(T=k)&0,14&0,13&0,13&0,12&0,12&0,11&0,10&0,08&0,07\\
    \hline
    \end{array}$
    Déterminer l’espérance de la variable aléatoire $T$ et interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites

Dans cet exercice, on considère la suite $\left(T_n\right)$ définie par :
$$T_0 = 180 \text{ et, pour tout entier naturel }n,~ T_{n+1} = 0,955T_n +0,9$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$, $T_n \pg 20$.
    $\quad$
    b. Vérifier que pour tout entier naturel $n$, $T_{n+1}-T_n = −0,045\left(T_n-20\right))$. En déduire le sens de
    variation de la suite $\left(T_n\right)$.
    $\quad$
    c. Conclure de ce qui précède que la suite $\left(T_n\right)$ est convergente. Justifier.
    $\quad$
  2. Pour tout entier naturel $n$, on pose : $u_n = T_n-20$.
    a. Montrer que la suite $\left(u_n\right)$ est une suite géométrique dont on précisera la raison.
    $\quad$
    b. En déduire que pour tout entier naturel $n$, $T_n = 20+160\times 0,955^n$.
    $\quad$
    c. Calculer la limite de la suite $\left(T_n\right)$.
    $\quad$
    d. Résoudre l’inéquation $T_n\pp 120$ d’inconnue $n$ entier naturel.
    $\quad$
  3. Dans cette partie, on s’intéresse à l’évolution de la température au centre d’un gâteau après sa sortie du four.
    On considère qu’à la sortie du four, la température au centre du gâteau est de $180$° C et celle de l’air ambiant de $20$° C.
    La loi de refroidissement de Newton permet de modéliser la température au centre du gâteau par la suite précédente $\left(T_n\right)$. Plus précisément, $T_n$ représente la température au centre du gâteau, exprimée en degré Celsius, n minutes après sa sortie du four.
    a. Expliquer pourquoi la limite de la suite $\left(T_n\right)$ déterminée à la question 2. c. était prévisible dans le contexte de l’exercice.
    $\quad$
    b. On considère la fonction Python ci-dessous :
    $$\begin{array}{|l|}
    \hline
    \text{def temp(x):}\\
    \quad \text{T = 180} \\
    \quad \text{n = 0}\\
    \quad \text{while T > x:} \\
    \qquad \text{T = 0.955 * T + 0.9}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner le résultat obtenu en exécutant la commande $\texttt{temp(120)}$.
    Interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Dans l’espace muni d’un repère orthonormé $\Oijk$ d’unité $1$ cm, on considère les points suivants :
$$J(2 ; 0 ; 1),~~ K(1 ; 2 ; 1) \text{ et } L(−2 ; −2 ; −2)$$

  1. a. Montrer que le triangle $JKL$ est rectangle en $J$.
    $\quad$
    b. Calculer la valeur exacte de l’aire du triangle $JKL$ en cm$^2$.
    $\quad$
    c. Déterminer une valeur approchée au dixième près de l’angle géométrique $\widehat{JKL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vec{n}$ de coordonnées$\begin{pmatrix}6\\3\\-10\end{pmatrix}$ est un vecteur normal au plan $(JKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(JKL)$.

$\quad$
Dans la suite, $T$ désigne le point de coordonnées $(10 ; 9 ; −6)$.

  1. a. Déterminer une représentation paramétrique de la droite $\Delta$ orthogonale au plan $(JKL)$ et passant par $T$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $T$ sur le plan $(JKL)$.
    $\quad$
    c. On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{B}\times h \text{où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur correspondante}$$
    Calculer la valeur exacte du volume du tétraèdre $JKLT$ en cm$^3$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonction exponentielle

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Justifier chaque réponse.

  1. Affirmation 1 : Pour tout réel $x$ : $1-\dfrac{1-\e^x}{1+\e^x}=\dfrac{2}{1+\e^{-x}}$.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par $g(x) =
    \dfrac{\e^x}{\e^x+1}$.
    Affirmation 2 : L’équation $g(x) = \dfrac{1}{2}$ admet une unique solution dans $\R$.
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par $f(x) = x^2\e^{-x}$ et on note $\mathscr{C}$ sa courbe dans un repère orthonormé.
    Affirmation 3 : L’axe des abscisses est tangent à la courbe $\mathscr{C}$ en un seul point.
    $\quad$
  4. On considère la fonction $h$ définie sur $\R$ par $h(x)=\e^x\left(1-x^2\right)$.
    Affirmation 4 : Dans le plan muni d’un repère orthonormé, la courbe représentative de la fonction $h$ n’admet pas de point d’inflexion.
    $\quad$
  5. Affirmation 5 : $\lim\limits_{x\to +\infty} \dfrac{\e^x}{\e^x+x}=0$.
    $\quad$
  6. Affirmation 6 : Pour tout réel $x$, $1+\e^{2x}\pg 2\e^x$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 12 mai 2022

Centres étrangers – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\dfrac{1\times\e^x-x\e^x}{\left(\e^x\right)^2} \\
    &=\dfrac{(1-x)\e^x}{\e^{2x}} \\
    &=\dfrac{1-x}{\e^x} \\
    &=(1-x)\e^{-x}\end{align*}$
    Réponse C
    $\quad$
  2. La fonction $f\dsec$ semble donc strictement positive sur $]-3;-1[$ et strictement négative sur $]-1;1[$.
    La fonction $f’$ semble donc croissante sur $[-3;-1]$ et strictement décroissante sur $[-1;1]$.
    Ainsi $f’$ admet un maximum en $x=-1$.
    Réponse D
    $\quad$
  3. On considère la fonction $F$ définie sur $\R$ par $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$.
    Elle est dérivable sur $\R$ en tant que produit et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$
    $\begin{align*} F'(x)&=-\dfrac{1}{2}\left(2x\e^{-x^2}+\left(x^2+1\right)\times (-2x)\e^{-x^2}\right)\\
    &=-\dfrac{1}{2}\left(2x\e^{-x^2}-2x^3\e^{-x^2}-2x\e^{-x^2}\right) \\
    &=-\dfrac{1}{2}\times \left(-2x^3\right) \e^{-x^2}\\
    &=f(x)\end{align*}$
    Réponse C
    $\quad$
  4. Pour tout réel $x$ on a
    $\begin{align*} \dfrac{\e^x+1}{\e^x-1}&=\dfrac{\e^x\left(1+\e^{-x}\right)}{\e^x\left(1-\e^{-x}\right)} \\
    &=\dfrac{1+\e^{-x}}{1-\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}=1$.
    Réponse B
    $\quad$
  5. Une primitive de la fonction $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{2x+1}+K$
    $\begin{align*} F(0)=1&\ssi \dfrac{1}{2}\e+K=1 \\
    &\ssi K=1-\dfrac{1}{2}\e\end{align*}$
    Donc, pour tout réel $x$, $F(x)=\dfrac{1}{2}\e^{2x+1}+1-\dfrac{1}{2}\e$.
    Réponse C
    $\quad$
  6. La fonction $f$ semble concave sur $[-2;1]$ et convexe sur $[1;4]$.
    Par conséquent $f\dsec(x)$ est négatif sur $[-2;1]$ et positif sur $[1;4]$ en ne s’annulant qu’en $1$.
    Réponse A
    $\quad$

 

Ex 2

Exercice 2

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=1$.
    $\quad$
    $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} x\ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. a. Pour tout réel $x$ strictement positif,
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x} \\
    &=\ln(x)+1\end{align*}$
    $\quad$
    b. $\ln(x)+1=0 \ssi \ln(x)=-1 \ssi x=\e^{-1}$
    $\ln(x)+1>0\ssi \ln(x)>-1 \ssi x>\e^{-1}$
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. La fonction $f$ est strictement décroissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left]0;\e^{-1}\right]$ on a $0<1-\e^{-1}\pp f(x) <1$.
    $f(1)=1$.
    La fonction $f$ est strictement croissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left[\e^{-1};1\right[$ on a $0<1-\e^{-1}\pp f(x) < 1$.
    Ainsi, pour tout $x\in [0;1]$ on a $0<f(x)<1$.
    $\quad$
  3. a. $f'(1)=1$ et $f(1)=1$
    Une équation de $(T)$ est donc $y=1\times (x-1)+1$ soit $y=x$.
    $\quad$
    b. La fonction $f’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    c. La courbe $C_f$ est donc au-dessus de toutes ses tangentes en particulier au-dessus de $T$.
    Donc, pour tout réel $x$ strictement positif, $f(x)\pg x$.
    $\quad$
  4. a. Pour tout entier naturel $n$ on pose $P(n):~0<u_n<1$.
    Initialisation : $u_0\in ]0;1[$ par définition. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    On a $0<u_n<1$ donc, d’après la question 2.c., $0<f\left(u_n\right)<1$ soit $0<u_{n+1}<1$.
    $P(n+1)$ est donc vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $0<u_n<1$.
    $\quad$
    b. Soit $n\in \N$
    D’après la question 3.c. on a $f\left(u_n\right)\pg u_n$ soit $u_{n+1}\pg u_n$.
    La suite $\left(u_n\right)$ est donc croissante.
    $\quad$
    c. La suite $\left(un\right)$ est croissante et majorée par $1$. Elle est donc convergente.
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $\vect{AB}\begin{pmatrix}3\\3\\3\end{pmatrix}$, $\vect{AC}\begin{pmatrix}3\\0\\-3\end{pmatrix}$ et $\vect{AD}\begin{pmatrix}-3\\6\\-3\end{pmatrix}$
    $A$, $B$, $C$ et $D$ sont coplanaires si, et seulement si, il existe deux réels $x$ et $y$ tels que :
    $\begin{align*} \vect{AD}=x\vect{AB}+y\vect{AC}&\ssi \begin{cases} 3x+3y&=-3\\3x&=6\\3x-3y&=-3\end{cases} \\
    &\ssi \begin{cases} x+y&=-3\\x&=2\\x-y&=-1\end{cases} \\
    &\ssi \begin{cases} x=2\\y=-5\\y=3\end{cases}\end{align*}$
    Les deux dernières lignes du système sont incompatibles.
    Les points $A$, $B$, $C$ et $D$ ne sont donc pas coplanaires.
    $\quad$
  2. a.
    $\begin{align*} \vect{AB}.\vect{AC}&=3\times 3+3\times 0+3\times (-3) \\
    &=9+0-9\\
    &=0\end{align*}$
    Ces deux vecteurs sont orthogonaux.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b.
    $\begin{align*} \vect{AD}.\vect{AB}&=-3\times 3+6\times 3+(-3)\times 3 \\
    &=-9+18-9 \\
    &=0\end{align*}$
    $\begin{align*} \vect{AD}.\vect{AC}&=-3\times 3+6\times 0+(-3)\times (-3) \\
    &=-9+0+9 \\
    &=0\end{align*}$
    Le vecteur $\vect{AD}$ est donc orthogonal à deux vecteurs non colinéaires (ils sont orthogonaux d’après la question précédente) du plan $(ABC)$.
    La droite $(AD)$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c.
    $\begin{align*} AD&=\sqrt{(-3)^2+6^2+(-3)^2} \\
    &=\sqrt{9+36+9} \\
    &=\sqrt{54}\end{align*}$
    $\begin{align*} AB&=\sqrt{3^2+3^2+3^2} \\
    &=\sqrt{9+9+9} \\
    &=\sqrt{27}\end{align*}$
    $\begin{align*} AC&=\sqrt{3^2+0^2+(-3)^2} \\
    &=\sqrt{9+0+9} \\
    &=\sqrt{18}\end{align*}$
    L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2} \\
    &=\dfrac{\sqrt{27}\times \sqrt{18}}{2}\\
    &=\dfrac{9\sqrt{6}}{2}\end{align*}$
    Par conséquent le volume du tétraèdre $ABCD$ est
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times AD\times \mathscr{A} \\
    &=\dfrac{1}{3}\times \sqrt{54}\times \dfrac{9\sqrt{6}}{2}\\
    &=27\end{align*}$
    $\quad$
  3. a. $\vect{BH}\begin{pmatrix}-1\\-1\\-4\end{pmatrix}$, $\vect{BC}\begin{pmatrix}0\\-3\\-6\end{pmatrix}$ et $\vect{BD}\begin{pmatrix}-6\\3\\-6\end{pmatrix}$
    $\begin{align*} \vect{BH}=\alpha\vect{BC}+\beta\vect{BD}&\ssi \begin{cases} -6\beta&=-1 \\
    -3\alpha+3\beta&=-1\\
    -6\alpha-6\beta&=-4\end{cases} \\
    &\ssi \begin{cases} \beta=\dfrac{1}{6}\\\alpha=\dfrac{1}{2}\end{cases}\end{align*}$
    Par conséquent $\vect{BH}=\dfrac{1}{2}\vect{BC}+\dfrac{1}{6}\vect{BD}$.
    $\quad$
    b. $\vect{AH}\begin{pmatrix}2\\2\\-1\end{pmatrix}$
    $\begin{align*} \vect{AH}.\vect{BC}&=2\times 0+2\times (-3)+(-1)\times (-6) \\
    &=0\end{align*}$
    $\begin{align*} \vect{AH}.\vect{BD}&=2\times (-6)+2\times 3+(-1)\times (-6) \\
    &=0\end{align*}$
    Le vecteur $\vect{AH}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(BCD)$.
    C’est donc un vecteur normal à ce plan.
    D’après la question précédente, $H$ appartient au plan $(BCD)$.
    Donc $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c.
    $\begin{align*} AH&=\sqrt{2^2+2^2+(-1)^2} \\
    &=\sqrt{9} \\
    &=3\end{align*}$
    La distance du point $A$ au plan $(BCD)$ est égale à $3$ unités de longueur.
    $\quad$
  4. On note $\mathscr{A}$ l’aire du triangle $BCD$.
    $\begin{align*} V=\dfrac{1}{3}\mathscr{A}\times h&\ssi 27=\dfrac{1}{3}\mathscr{A}\times 3\\
    &\ssi \mathscr{A}=27\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. a. On appelle :
    $\bullet ~~N_i$ l’événement « le jeton tiré lors du $i$-ème tirage est noir » ;
    $\bullet ~~B_i$ l’événement « le jeton tiré lors du $i$-ème tirage est blanc ».
    On obtient donc l’arbre pondéré suivant :
    $ \quad$
    $\quad$
    b. La probabilité de perdre $9$ € sur une partie est égale à :
    $\begin{align*} P\left(B_1\cap B_2\right)&=P\left(B_1\right)\times P_{B_1}\left(B_2\right) \\
    &=\dfrac{3}{5}\times \dfrac{3}{5} \\
    &=\dfrac{9}{25}\end{align*}$
    $\quad$
  2. a. À chaque tirage, la probabilité de tirer un jeton noir vaut $\dfrac{N}{N+3}$ et la probabilité de tirer un jeton blanc vaut $\dfrac{3}{N+3}$.
    La probabilité de tirer deux jetons blancs est égale à $\left(\dfrac{3}{N+3}\right)^2$.
    La probabilité de tirer deux jetons noirs est égale à $\left(\dfrac{N}{N+3}\right)^2$.
    Par conséquent la probabilité de tirer deux jetons de couleurs différentes est égale à :
    $\begin{align*} p&=1-\left(\dfrac{3}{N+3}\right)^2-\left(\dfrac{N}{N+3}\right)^2 \\
    &=1-\dfrac{9}{(N+3)^2}-\dfrac{N^2}{(N+3)^2} \\
    &=\dfrac{(N+3)^2-9-N^2}{(N+3)^2} \\
    &=\dfrac{N^2+6N+9-9-N^2}{(N+3)^2} \\
    &=\dfrac{6N}{(N+3)^2}\end{align*}$
    On obtient ainsi la loi de probabilité suivante :
    $\begin{array}{|c|c|c|c|}
    \hline
    x&-9&-1&5\\
    \hline
    P(X=x)&\dfrac{9}{(N+3)^2}&\dfrac{N^2}{(N+3)^2}&\dfrac{6N}{(N+3)^2}\\
    \hline
    \end{array}$
    $\quad$
    b. Le discriminant de $-x^2+30x-81$ est $\Delta=576>0$.
    Les racines de $-x^2+3x-81$ sont donc $x_1=\dfrac{-30-\sqrt{576}}{-2}=27$ et $x_1=\dfrac{-30+\sqrt{576}}{-2}=3$.
    Le coefficient principal du polynôme du second degré est $a=-1<0$.
    Par conséquent l’ensemble solution de $-x^2+3x-81>0$ est $]3;27[$.
    $\quad$
    c. Le jeu est favorable au joueur si, et seulement si, l’espérance de $X$ est strictement positive.
    $\begin{align*} E(X)>0&\ssi -9\times \dfrac{9}{(N+3)^2}-1\times \dfrac{N^2}{(N+3)^2}+5\times \dfrac{6N}{(N+3)^2}>0 \\
    &\ssi -81-N^2+30N>0\end{align*}$
    D’après la question précédente, le jeu est favorable au joueur si, et seulement si, $N$ est un entier naturel compris entre $4$ et $26$, tous les deux inclus.
    $\quad$
    d. On considère la fonction $g$ définie sur $[0;+\infty[$ par $g(x)=\dfrac{-x^2+30x-81}{(x+3)^2}$.
    Elle est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in[0;+\infty[$ on a
    $\begin{align*} g'(x)&=\dfrac{(-2x+30)(x+3)^2-2(x+3)\left(-x^2+30x-81\right)}{(x+3)^4} \\
    &=\dfrac{(-2x+30)(x+3)-2\left(-x^2+30x-81\right)}{(x+3)^3} \\
    &=\dfrac{-2x^2-6x+30x+90+2x^2-60x+162}{(x+3)^3}\\
    &=\dfrac{-36x+252}{(x+3)^3}\end{align*}$
    $g'(x)$ est donc du signe de $-36x+252$ sur $[0;+\infty[$.
    Or $-36x+252>0\ssi -36x>-252 \ssi x<7$.
    Par conséquent $g$ est strictement croissante sur $[0;7]$ et strictement décroissante sur $[7;+\infty[$.
    Elle atteint donc son maximum pour $x=7$.
    Or $E(X)=g(N)$ et $7\in [4;26]$.
    Le gain moyen est donc maximal s’il y a $7$ jetons noirs.
    $\quad$
  3. $N=7$ donc $P(X=5)=0,42$.
    On répète $10$ fois de façons indépendantes la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire comptant le nombre de joueur ayant gagné $5$ euros.
    $Y$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,42$.
    $\begin{align*} P(Y\pg 1)&=1-P(Y=0) \\
    &=1-(1-0,42)^{10} \\
    &=1-0,58^{10}\\
    &\approx 0,996\end{align*}$
    La probabilité d’avoir au moins un joueur gagnant $5$ euros est environ égale à $0,996$.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction exponentielle

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question en rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. Soit $f$ la fonction définie sur $\R$ par $$f(x)=\dfrac{x}{\e^x}$$
    On suppose que $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. $f'(x)=\e^{-x}$
    b. $f'(x)=x\e^{-x}$
    c. $f'(x)=(1-x)\e^{-x}$
    d. $f'(x)=(1+x)\e^{-x}$
    $\quad$
  2. Soit $f $ une fonction deux fois dérivable sur l’intervalle $[-3;1]$. On donne ci-dessous la représentation graphique de sa fonction dérivée seconde $f\dsec$.
    On peut alors affirmer que :
    a. La fonction $f$ est convexe sur l’intervalle $[-1;1]$
    b. La fonction $f$ est concave sur l’intervalle $[-2;0]$
    c. La fonction $f’$ est décroissante sur l’intervalle $[-2;0]$
    d. La fonction $f’$ admet un maximum en $x=-1$
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par : $$f(x)=x^3\e^{-x^2}$$
    Une primitive $F$ de la fonction $f$ est définie sur $\R$ par :
    a. $F(x)=-\dfrac{1}{6}\left(x^3+1\right)\e^{-x^2}$
    b. $F(x)=-\dfrac{1}{4}x^4\e^{-x^2}$
    c. $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$
    d. $F(x)=x^2\left(3-2x^2\right)\e^{-x^2}$
    $\quad$
  4. Que vaut  $$\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}$$
    a $-1$
    b. $1$
    c. $+\infty$
    d. N’existe pas
    $\quad$
  5. On considère la fonction $f$ définie sur $\R$ par $f(x)=\e^{2x+1}$.
    La seule primitive de $F$ sur $\R$ de la fonction $f$ telle que $F(0)=1$ est la fonction :
    a. $x\mapsto 2\e^{2x+1}-2\e+1$
    b. $x\mapsto \e^{2x+1}-\e$
    c. $x\mapsto \dfrac{1}{2}\e^{2x+1}-\dfrac{1}{2}\e+1$
    d. $x\mapsto \e^{x^2+x}$
    $\quad$
  6. Dans un repère, on a tracé ci-dessous la courbe représentative d’une fonction $f$ définie et deux fois dérivable sur $[-2;4]$.
    Parmi les courbes suivantes, laquelle représente la fonction $f\dsec$, dérivée seconde de $f$?
    a.
    b.
    c. d. $\quad$

$\quad$

Exercice 2     7 points

Thème : Fonction logarithme et suite

Soit $f$ la fonction définie sur l’intervalle $]0;+\infty[$ par $$f(x)=x\ln(x)+1$$

On note $C_f$ sa courbe représentative dans un repère du plan.

  1. Déterminer la limite de la fonction $f$ en $0$ ainsi que sa limite en $+\infty$.
    $\quad$
  2. a. On admet que $f$ est dérivable sur $]0;+\infty[$ et on notera $f’$ sa fonction dérivée.
    Montrer que pour tout réel $x$ strictement positif : $$f'(x)=1+\ln(x)$$
    $\quad$
    b. En déduire le tableau de variation de la fonction $f$ sur $]0;+\infty[$.
    On y fera figurer la valeur exacte de l’extremum de $f$ sur $]0;+\infty[$ et les limites.
    $\quad$
    c. Justifier que pour tout $x\in ]0;1[$, $f(x)\in ]0;1[$.
    $\quad$
  3. a. Déterminer une équation de la tangente $(T)$ à la courbe $C_f$ au point d’abscisse $1$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $]0;+\infty[$.
    $\quad$
    c. En déduire que pour tout réel $x$ strictement positif $$f(x)\pg x$$
    $\quad$
  4. On définit la suite $\left(u_n\right)$ par son premier terme $u_0$ élément de l’intervalle $]0;1[$ et pour tout entier naturel $n$ : $$u_{n+1}=f\left(u_n\right)$$
    a. Démontrer par récurrence que pour tout entier naturel $n$, on a $0<u_n<1$.
    $\quad$
    b. Déduire de la question 3c la croissance de la suite $\left(u_n\right)$.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $Oijk$.

On considère les points $A(3;-2;2)$, $B(6;1;5)$, $C(6;-2;-1)$ et $D(0;4;-1)$.

On rappelle que le volume d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{A}\times h$$
où $\mathscr{A}$ est l’aire de la base et $h$ la hauteur correspondante.

  1. Démontrer que les points $A$, $B$, $C$ et $D$ ne sont pas coplanaires.
    $\quad$
  2. a. Montrer que le triangle $ABC$ est rectangle.
    $\quad$
    b. Montrer que la droite $(AD)$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. En déduire le volume du tétraèdre $ABCD$.
    $\quad$
  3. On considère le point $H(5;0;1)$.
    a. Montrer qu’il existe des réels $\alpha$ et $\beta$ tels que $\vect{BH}=\alpha \vect{BC}+\beta\vect{BD}$.
    $\quad$
    b. Démontrer que $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c. En déduire la distance du point $A$ au plan $(BCD)$.
    $\quad$
  4. Déduire des questions précédentes l’aire du triangle $BCD$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Une urne contient des jetons blancs et noirs tous indiscernables au toucher.

Une partie consiste à prélever au hasard successivement et avec remise deux jetons de cette urne.

On établit la règle de jeu suivante :

  • un joueur perd $9$ euros si les deux jetons tirés sont de couleur blanche;
  • un joueur perd $1$ euro si les deux jetons tirés sont de couleur noire;
  • un joueur gagne $5$ euros si les deux jetons tirés sont de couleurs différentes.
  1. On considère que l’urne contient $2$ jetons noirs et $3$ jetons blancs.
    a. Modéliser la situation à l’aide d’un arbre pondéré.
    $\quad$
    b. Calculer la probabilité de perdre $9$ € sur une partie.
    $\quad$
  2. On considère maintenant que l’urne contient $3$ jetons blancs et au moins deux jetons noirs mais on ne connait pas le nombre exact de jetons noirs. On appellera $N$ le nombre de jetons noirs.
    a. Soit $X$ la variable aléatoire donnant le gain du jeu pour une partie.
    Déterminer la loi de probabilité de cette variable aléatoire.
    $\quad$
    b. Résoudre l’inéquation pour $x$ réel : $$-x^2+30x-81>0$$
    $\quad$
    c. En utilisant le résultat de la question précédente, déterminer le nombre de jetons noirs que l’une doit contenir afin que ce jeu soit favorable au joueur.
    $\quad$
    d. Combien de jetons noirs le joueur doit-il demander afin d’obtenir un gain moyen maximal?
    $\quad$
  3. On observe $10$ joueurs qui tentent leur chance en effectuant une partie de ce jeu, indépendamment les uns des autres. On suppose que $7$ jetons noirs ont été placés dans l’urne (avec $3$ jetons blancs). Quelle est la probabilité d’avoir au moins $1$ joueur gagnant $5$ euros?
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Métropole – sujet 2 – 12 mai 2022

Métropole – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(M\cap T)&=P(M)\times P_M(T) \\
    &=0,7\times 0,97 \\
    &=0,679\end{align*}$
    La probabilité que le coyote soit malade et que son test soit positif est égale à $0,679$.
    $\quad$
  3. $\left(M,\conj{M}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales :
    $\begin{align*} P(T)&=P(M\cap T)+P\left(\conj{M}\cap T\right)
    &=0,679+P\left(\conj{M}\right)\times P_{\conj{M}}(T)\\
    &=0,679+0,3\times 0,05 \\
    &=0,694\end{align*}$
    La probabilité de $T$ est égale à $0,694$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_T(M)&=\dfrac{P(T\cap M)}{P(T)} \\
    &=\dfrac{0,679}{0,694} \\
    &\approx 0,978\end{align*}$
    La valeur prédictive positive du test est environ égale à $0,978$.
    $\quad$
  5. a. La valeur prédictive négative du test est la probabilité que le coyote ne soit pas malade sachant que son test est négatif.
    On veut calculer :
    $\begin{align*} P_{\conj{T}}\left(\conj{M}\right))&=\dfrac{P\left(\conj{T}\cap \conj{M}\right)}{P\left(\conj{T}\right)} \\
    &=\dfrac{0,3\times 0,95}{1-0,694} \\
    &\approx 0,931 \end{align*}$
    La valeur prédictive négative du test est environ égale à $0,931$.
    $\quad$
    b. La valeur prédictive positive du test est donc supérieure à la valeur prédictive négative du test.
    Il est donc plus probable que le coyote soit malade quand le test est positif qu’il ne soit pas malade quand le test est négatif.
    $\quad$

Partie B

  1. a. On répète $5$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de coyote ayant un test positif.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,694$.
    $\quad$
    b.
    $\begin{align*} P(X=1)&=\dbinom{5}{1}\times 0,694^1 \times (1-0,694)^{5-1} \\
    &\approx 0,03\end{align*}$.
    La probabilité que dans cet échantillon de cinq coyote capturés au hasard, un seul ait un test positif est environ égale à $0,03$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 4)&=P(X=4)+P(X=5) \\
    &=\dbinom{5}{4}\times 0,694^4 \times (1-0,694)^{1}+\dbinom{5}{5}\times 0,694^5 \\
    &\approx 0,516\\
    &>0,5\end{align*}$
    L’affirmation est donc vraie.
    $\quad$
  2. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. La variable aléatoire $Y$ compte le nombre de coyote ayant un test positif.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,694$.
    $\begin{align*} P(Y\pg 1)>0,99&\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01 \\
    &\ssi (1-0,694)^n<0,01 \\
    &\ssi 0,306^n <0,01 \\
    &\ssi n\ln(0,306)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,306)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,306)} \approx 3,89$
    Il faut donc capturer au moins $4$ coyotes pour que la probabilité qu’au moins l’un d’entre eux présente un test positif soit supérieur à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. La fonction $f’$ semble donc strictement positive sur $\left]-\infty;-\dfrac{1}{2}\right[$ et strictement négative sur $\left]-\dfrac{1}{2};+\infty\right[$.
    $f$ présente donc un maximum en $-\dfrac{1}{2}$.
    Réponse B
    $\quad$
  2. La fonction $f’$ semble strictement croissante sur $\left]-\infty;-\dfrac{3}{2}\right]$ et strictement décroissante sur $\left[-\dfrac{3}{2};+\infty\right[$.
    Par conséquent $f$ est convexe sur $\left]-\infty;-\dfrac{3}{2}\right]$.
    Réponse A
    $\quad$
  3. La fonction $f’$ semble strictement croissante sur $\left]-\infty;-\dfrac{3}{2}\right]$ et strictement décroissante sur $\left[-\dfrac{3}{2};+\infty\right[$.
    Par conséquent $f\dsec(x)>0$ sur $\left]-\infty;-\dfrac{3}{2}\right[$, $f\dsec{x)}<0$ sur $\left[-\dfrac{3}{2};+\infty\right[$ et $f\dsec(x)\left(-\dfrac{3}{2}\right)=0$.
    Réponse C
    $\quad$
  4. Si la suite $\left(v_n\right)$ est croissante alors, pour tout entier naturel $n$, on a :
    $u_0\pp v_0 \pp v_1 \pp \ldots \pp v_n$.
    Ainsi, la suite $\left(v_n\right)$ est minorée par $u_0$.
    Réponse B
    $\quad$
  5. Pour tout entier naturel $n$ non nul on a $u_n\pp u_{n+1}$ : la suite $\left(u_n\right)$ est donc croissante.
    Pour tout entier naturel non nul on a $\dfrac{1}{n}\pp 1$.
    Donc, pour tout entier naturel $n$ non nul on a $u_n\pp u_{n+1} \pp \dfrac{1}{n}\pp 1$.
    La suite $\left(u_n\right)$ est donc croissante et majorée par $1$.
    Par conséquent elle converge.
    Réponse B
    $\quad$
  6. Pour tout entier naturel $n$ on a $n<u_n<n+1$ donc $n+1<u_{n+1}<n+2$
    Par conséquent $n<u_n<n+1<u_{n+1}$.
    La suite $\left(u_n\right)$ est croissante.
    Réponse B
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $E$ a pour coordonnées $(0;0;1)$.
    $F$ a pour coordonnées $(1;0;1)$.
    $G$ a pour coordonnées $(1;1;1)$.
    $K$ a pour coordonnées $\left(1;\dfrac{1}{2};0\right)$.
    $\quad$
  2. $\vect{EG}\begin{pmatrix}1\\1\\0\end{pmatrix}$ donc
    $\begin{align*} \vect{EG}.\vec{n}&=1\times 2+1\times (-2)+0\times 1\\
    &=0\end{align*}$
    $\vect{EK}\begin{pmatrix}1\\\dfrac{1}{2}\\-1\end{pmatrix}$ donc
    $\begin{align*} \vect{EG}.\vec{n}&=1\times 2+\dfrac{1}{2}\times (-2)+(-1)\times 1\\
    &=0\end{align*}$
    Les vecteurs $\vect{EG}$ et $\vect{EK}$ ne sont pas colinéaires car une coordonnées de $\vect{EG}$ est nulle et ce n’est pas le cas pour $\vect{EK}$.
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(EGK)$.
    $\vec{n}\begin{pmatrix} 2\\-2\\1\end{pmatrix}$  est orthogonal au plan $(EGK)$.
    $\quad$
  3. Une équation cartésienne du plan $(EGK)$ est donc de la forme : $2x-2y+z+d=0$
    Or $E(0;0;1)$ appartient à ce plan.
    Donc $0-0+1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(EGK)$ est $2x-2y+z-1=0$.
    $\quad$
  4. $\vec{n}$ est un vecteur directeur de cette droite.
    Ainsi une représentation paramétrique de $(d)$ est $\begin{cases} x=1+2t\\y=-2t\\z=1+t\end{cases} \quad ,t\in \R$
    $\quad$
  5. $2\times \dfrac{5}{9}-2\times \dfrac{4}{9}+\dfrac{7}{9}-1=\dfrac{9}{9}-1=0$ : le point de coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$ appartient au plan $(EGK)$.
    Prenons $t=-\dfrac{2}{9}$ dans la représentation paramétrique de $(d)$.
    On obtient $x=\dfrac{5}{9}$, $y=\dfrac{4}{9}$ et $z=\dfrac{7}{9}$.
    Le point de coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$ appartient à la droite $(d)$.
    Donc $L$ a pour coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$.
    $\quad$
  6. $\vect{LF}\begin{pmatrix} \dfrac{4}{9}\\-\dfrac{4}{9}\\\dfrac{2}{9} \end{pmatrix}$
    $\begin{align*} LF&=\sqrt{\left(\dfrac{4}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2+\left(\dfrac{2}{9}\right)^2} \\
    &=\sqrt{\dfrac{16}{81}+\dfrac{16}{81}+\dfrac{4}{81}}\\
    &=\sqrt{\dfrac{36}{81}}\\
    &=\dfrac{6}{9} \\
    &=\dfrac{2}{3}\end{align*}$
    $\quad$
  7. Le triangle $EFG$ est rectangle en $F$.
    Son aire est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{EF\times FG}{2}\\
    &=\dfrac{1\times 1}{2}\\
    &=\dfrac{1}{2}\end{align*}$
    $\quad$
    Le volume du tétraèdre $EFGK$ est donc :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times BF\times \mathscr{A}  \qquad (*)\\
    &=\dfrac{1}{3} \times 1 \times \dfrac{1}{2} \\
    &=\dfrac{1}{6}\end{align*}$
    $(*)$ : la hauteur du tétraèdre issue de $K$ a une longueur égale à $BF$.
    $\quad$
  8. On appelle $\mathscr{B}$ l’aire du triangle $EGK$.
    On a donc également
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times LF\times \mathscr{B} &\ssi \dfrac{1}{6}=\dfrac{1}{3}\times \dfrac{2}{3}\times \mathscr{B}\\
    &\ssi \dfrac{1}{6}=\dfrac{2}{9}\times \mathscr{B} \\
    &\ssi \mathscr{B}=\dfrac{3}{4}\end{align*}$
    $\quad$
  9. En appliquant le théorème des milieux (ou la réciproque du théorème de Thalès suivi du théorème de Thalès) on montre que les longueurs des côtés du triangle $PMN$ sont égales à la moitié des longueurs des côtés du triangle $EGK$.
    Le triangle $PMN$ est donc une réduction du triangle $EGK$ de rapport $\dfrac{1}{2}$.
    Ainsi l’aire du triangle $PMN$ est
    $\begin{align*} \mathscr{B}’&=\left(\dfrac{1}{2}\right)^2\times \mathscr{B} \\
    &=\dfrac{1}{4}\times \dfrac{3}{4} \\
    &=\dfrac{3}{16}\end{align*}$
    Le volume du tetraèdre $FPMN$ est donc :
    $\begin{align*} \mathscr{V}’&=\dfrac{1}{3}\times LF\times \mathscr{B}’ \\
    &=\dfrac{1}{3}\times \dfrac{2}{3}\times \dfrac{3}{16} \\
    &=\dfrac{1}{24}\end{align*}$
    Remarque 1: Le triangle $PMN$ est inclus dans le plan $(EGK)$. La hauteur du tétraèdre $FPMN$ est donc la même que celle du tétraèdre $EFGK$.
    Remarque 2 : La rédaction du théorème des milieux est un peu rapide ici. Il faudrait, en toute rigueur, proposer une démarche plus détaillée mais je ne suis pas certain que ce soit réellement un attendu du sujet.
    $\quad$

Ex 4

Exercice 4

Partie A : études de deux fonctions

  1. a. D’après la limite des termes de plus haut degré $\lim\limits_{x\to +\infty} -x^2+13,7x=\lim\limits_{x\to +\infty} -x^2=-\infty$ donc $\lim\limits_{x\to +\infty} -f(x)=-\infty$
    $\quad$
    b. $f$ est une fonction polynôme du second degré dont le coefficient principal est $a=-0,06<0$.
    Elle atteint donc son maximum en $-\dfrac{b}{2a}=\dfrac{13,7}{2}=6,85$.
    La fonction $f$ est donc strictement croissante sur $[0;6,85]$ et strictement décroissante sur $[6,85;+\infty[$.
    $\quad$
    c.
    $\begin{align*} f(x)=0&\ssi 0,06\left(-x^2+13,7x\right)=0 \\
    &\ssi -x^2+13,7x=0 \\
    &\ssi x(-x+13,7)=0 \\
    &\ssi x=0 \text{ ou } -x+13,7=0\\
    &\ssi x=0 \text{ ou } x=13,7\end{align*}$
    Les solutions de l’équation $f(x)=0$ sont donc $0$ et $13,7$.
    $\quad$
  2. a. $\lim\limits_{x\to +\infty} 0,2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to +\infty} \e^{0,2x}=+\infty$
    $\lim\limits_{x\to +\infty} -0,15x+2,2=-\infty$
    Donc par produit $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
    b. Pour tout réel $x\in [0;+\infty[$
    $\begin{align*} g'(x)&=-0,15\e^{0,2x}+(-0,15x+2,2)\times 0,2\e^{0,2x} \\
    &=(-0,15-0,03x+0,44)\e^{0,2x} \\
    &=(-0,03x+0,29)\e^{0,2x}\end{align*}$
    $\quad$
    c. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $g'(x)$ ne dépend donc que de celui de $-0,03x+0,29$.
    $-0,03x+0,29=0 \ssi x=\dfrac{29}{3}$
    $-0,03x+0,29>0 \ssi -0,03x>-0,29 \ssi x<\dfrac{29}{3}$
    On obtient donc le tableau de variations suivant :
    $\quad$
    où $\alpha \approx 2,98$.
    $\quad$
    d. La fonction $g$ est strictement croissante sur $\left[0;\dfrac{29}{3}\right]$ et $g(0)=0$.
    L’équation $g(x)=0$ n’admet donc pas de solution non nulle sur cet intervalle.
    $\quad$
    La fonction $f$ est dérivable donc continue et strictement décroissante sur $\left[\dfrac{29}{3};+\infty\right[$.
    De plus $g\left(\dfrac{29}{3}\right)>0$ et $\lim\limits_{x\to +\infty} g(x)=-\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution sur $\left[\dfrac{29}{3};+\infty\right[$.
    $\quad$
    L’équation $g(x)=0$ admet donc une unique solution non nulle sur $[0;+\infty[$ dont une valeur approchée est, d’après la calculatrice, $13,72$.
    $\quad$

Partie B : trajectoires d’une balle de golf

  1. a. On a $f(6,85)\approx 2,815$
    La hauteur maximale atteinte par la balle est donc environ égale à $28,15$ yards.
    $\quad$
    b. Pour tout réel $x$ strictement positif on a $f'(x)=0,06(-2x+13,7)$
    Donc $f'(0)=0,06\times 13,7=0,822$.
    $\quad$
    c. $f'(0)$ est le coefficient directeur de la tangente à la courbe $C_f$ au point d’abscisse $0$.
    Ainsi $\tan(d)=0,822$. Donc $d\approx 39,4$°.
    L’angle de décollage de la balle est donc environ égal à $39,4$°.
    $\quad$
    d. La courbe $C_f$ est symétrique par rapport à la droite d’équation $y=6,85$. Donc les angles de décollage et d’atterrissage de la balle sont égaux.
    $\quad$
  2. a. $g$ atteint son maximum pour $x=\dfrac{29}{3}$ et $\alpha \approx 2,98$.
    La hauteur maximale de balle est donc environ égale à $29,8$ yards.
    $\quad$
    b. On a $g'(0)=0,29$ donc $\tan(d)=0,29$ et $d\approx 16,2$°.
    L’angle de décollage de la balle est donc environ égal à $16,2$°.
    $\quad$
    c. On a $g'(13,7)\approx -1,87$ donc $\tan(a)\approx 1,87$ et $a\approx 62$°
    L’angle d’atterrissage de la balle est donc environ égal à $62$°.
    $\quad$

Partie C

Aucun des deux modèles ne semble estimer correctement les angles de décollage.

Le second modèle semble mieux estimer la hauteur maximale.

Le second modèle semble mieux estimer l’angle d’atterrissage.

Les deux modèle estiment correctement la distance au point de chute.

Le second modèle semble par conséquent le plus adapté pour décrire la frappe de la balle par un joueur professionnel.

$\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Le coyote est un animal sauvage proche du loup, qui vit en Amérique du Nord.
Dans l’état d’Oklahoma, aux États-Unis, $70 \%$ des coyotes sont touchés par une maladie appelée ehrlichiose.

Il existe un test aidant à la détection de cette maladie. Lorsque ce test est appliqué à un coyote, son résultat est soit positif, soit négatif, et on sait que:

  • Si le coyote est malade, le test est positif dans $97 \%$ des cas.
  • Si le coyote n’est pas malade, le test est négatif dans $95\%$ des cas.

Partie A

Des vétérinaires capturent un coyote d’Oklahoma au hasard et lui font subir un test pour l’ehrlichiose.
On considère les événements suivants :

  • $M$ : « le coyote est malade » ;
  • $T$ : « le test du coyote est positif ».

On note $\conj{M}$ et $\conj{T}$ respectivement les événements contraires de $M$ et $T$.

  1. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation.
    $\quad$
  2. Déterminer la probabilité que le coyote soit malade et que son test soit positif.
    $\quad$
  3. Démontrer que la probabilité de $T$ est égale à $0,694$.
    $\quad$
  4. On appelle « valeur prédictive positive du test » la probabilité que le coyote soit effectivement malade sachant que son test est positif.
    Calculer la valeur prédictive positive du test. On arrondira le résultat au millième.
    $\quad$
  5. a. Par analogie avec la question précédente, proposer une définition de la « valeur prédictive négative du test », et calculer cette valeur en arrondissant au millième.
    $\quad$
    b. Comparer les valeurs prédictives positive et négative du test, et interpréter.
    $\quad$

Partie B

On rappelle que la probabilité qu’un coyote capturé au hasard présente un test positif est de $0,694$.

  1. Lorsqu’on capture au hasard cinq coyotes, on assimile ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire qui à un échantillon de cinq coyotes capturés au hasard associe le nombre de coyotes dans cet échantillon ayant un test positif.
    a. Quelle est la loi de probabilité suivie par $X$ ? Justifier et préciser ses paramètres.
    $\quad$
    b. Calculer la probabilité que dans un échantillon de cinq coyotes capturés au hasard, un seul ait un test positif. On arrondira le résultat au centième.
    $\quad$
    c. Un vétérinaire affirme qu’il y a plus d’une chance sur deux qu’au moins quatre coyotes sur cinq aient un test positif : cette affirmation est-elle vraie ? Justifier la réponse.
    $\quad$
  2. Pour tester des médicaments, les vétérinaires ont besoin de disposer d’un coyote présentant un test positif. Combien doivent-ils capturer de coyotes pour que la probabilité qu’au moins l’un d’entre eux présente un test positif soit supérieure à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thèmes : fonctions numériques et suites

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

Pour les questions 1 à 3 ci-dessous, on considère une fonction $f$ définie et deux fois dérivable sur $\R$.
La courbe de sa fonction dérivée $f’$ est donnée ci-dessous.
On admet que $f’$ admet un maximum en $-\dfrac{3}{2}$ et que sa courbe coupe l’axe des abscisses au point de coordonnées $\left(-\dfrac{1}{2};0\right)$.

Question 1 :
a.
La fonction $f$ admet un maximum en $-\dfrac{3}{2}$;
b. La fonction $f$ admet un maximum en $-\dfrac{1}{2}$;
c. La fonction $f$ admet un minimum en $-\dfrac{1}{2}$;
d. Au point d’abscisse $-1$, la courbe de la fonction $f$ admet une tangente horizontale.
$\quad$

Question 2 :
a.
La fonction $f$ est convexe sur $\left]-\infty;-\dfrac{3}{2}\right[$;
b. La fonction $f$ est convexe sur $\left]-\infty;-\dfrac{1}{2}\right[$;
c. La courbe $C_f$ représentant la fonction $f$ n’admet pas de point d’inflexion;
d. La fonction $f$ est concave sur $\left]-\infty;-\dfrac{1}{2}\right[$.
$\quad$

Question 3 :
La dérivée seconde $f\dsec$ de la fonction $f$ vérifie :
a. $f\dsec(x)\pg 0$ pour $x\in \left]-\infty;-\dfrac{1}{2}\right[$;
b. $f\dsec(x)\pg 0$ pour $x\in [-2;-1]$;
c. $f\dsec\left(-\dfrac{3}{2}\right)=0$;
d. $f\dsec(-3)=0$.
$\quad$

Question 4 : On considère trois suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$.
On sait que, pour tout entier naturel $n$, on a $u_n \pp v_n \pp w_n$ et de plus : $\lim\limits_{n\to +\infty} u_n=1$ et $\lim\limits_{n\to +\infty} w_n=3$.
On peut alors affirmer que :
a. La suite $\left(v_n\right)$ converge;
b. Si la suite $\left(u_n\right)$ est croissante alors la suite $\left(v_n\right)$ est minorée par $u_0$;
c. $1\pp v_0\pp 3$;
d. La suite $\left(v_n\right)$ diverge.
$\quad$

Question 5 :
On considère une suite $\left(u_n\right)$ telle que, pour tout entier naturel $n$ non nul : $u_n \pp u_{n+1} \pp \dfrac{1}{n}$.
On peut alors affirmer que :
a. La suite $\left(u_n\right)$ diverge;
b. La suite $\left(u_n\right)$ converge;
c. $\lim\limits_{n\to +\infty} u_n=0$;
d. $\lim\limits_{n\to +\infty} u_n=1$;
$\quad$

Question 6 :
On considère $\left(u_n\right)$ une suite réelle telle que pour tout entier naturel $n$, on a $n<u_n<n+1$.
On peut affirmer que :
a. Il existe un entier naturel $N$ tel que $u_N$ est un entier;
b. La suite $\left(u_n\right)$ est croissante;
c. La suite $\left(u_n\right)$ est convergente;
d. La suite $\left(u_n\right)$ n’a pas de limite.
$\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

On considère un cube $ABCDEFGH$ et on appelle $K$ le milieu su segment $[BC]$.
On se place dans le repère $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$ et on considère le tétraèdre $EFGK$.

On rappelle que le volume d’un tétraèdre est donné par : $$V=\dfrac{1}{3}\times \mathscr{B}\times h$$
où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.

  1. Préciser les coordonnées des points $E$, $F$, $G$ et $K$.
    $\quad$
  2. Montrer que le vecteur $\vec{n}\begin{pmatrix}2\\-2\\1\end{pmatrix}$ est orthogonal au plan $(EGK)$.
    $\quad$
  3. Démontrer que le plan $(EGK)$ admet pour équation cartésienne : $2x-2y+z-1=0$.
    $\quad$
  4. Déterminer une représentation paramétrique de la droite $(d)$ orthogonale au plan $(EGK)$ passant par $F$.
    $\quad$
  5. Montrer que le projeté orthogonal $L$ de $F$ sur le plan $(EGK)$ a pour coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$.
    $\quad$
  6. Justifier que la longueur $LF$ est égale à $\dfrac{2}{3}$.
    $\quad$
  7. Calculer l’aire du triangle $EFG$. En déduire que le volume du tétraèdre $EFGK$ est égal à $\dfrac{1}{6}$.
    $\quad$
  8. Déduire des questions précédentes l’aire du triangle $EGK$.
    $\quad$
  9. On considère les points $P$ milieu du segment $[EG]$, $M$ milieu du segment $[EK]$ et $N$ milieu du segment $[GK]$. Déterminer le volume du tétraèdre $FPMN$.
    $\quad$

$\quad$

Exercice 4     7 points

Thèmes : fonctions numériques, fonction exponentielle

Partie A : étude de deux fonctions

On considère les deux fonctions $f$ et $g$ définies sur l’intervalle $[0;+\infty[$ par : $$f(x)=0,06\left(-x^2+13,7x\right) \text{ et } g(x)=(-0,15x+2,2)\e^{0,2x}-2,2.$$
On admet que les fonctions $f$ et $g$ sont dérivables et on note $f’$ et $g’$ leurs fonctions dérivées respectives.

  1. On donne le tableau de variations complet de la fonction $f$ sur l’intervalle $[0;+\infty[$.
    a. Justifier la limite de $f$ en $+\infty$.
    $\quad$
    b. Justifier les variations de la fonction $f$.
    $\quad$
    c. Résoudre l’équation $f(x)=0$.
    $\quad$
  2. a. Déterminer la limite de $g$ en $+\infty$.
    $\quad$
    b. Démontrer que, pour tout réel $x$ appartenant à $[0;+\infty[$ on a : $g'(x)=(-0,03x+0,29)\e^{0,2x}$.
    $\quad$
    c. Étudier les variations de la fonction ? et dresser son tableau de variations sur $[0;+\infty[$.
    Préciser une valeur approchée à $10^{-2}$ près du maximum de $g$.
    $\quad$
    d. Montrer que l’équation $g(x)=0$ admet une unique solution non nulle et déterminer, à $10^{-2}$ près, une valeur approchée de cette solution.
    $\quad$

Partie B : trajectoires d’une balle de golf

Pour frapper la balle, un joueur de golf utilise un instrument appelé « club » de golf.
On souhaite exploiter les fonctions $f$ et $g$ étudiées en Partie A pour modéliser de deux façons différentes la trajectoire d’une balle de golf. On suppose que le terrain est parfaitement plat.

On admettra ici que $13,7$ est la valeur qui annule la fonction $f$ et une approximation de la valeur qui annule la fonction $g$.
On donne ci-dessous les représentations graphiques de  $f$ et $g$ sur l’intervalle $[0; 13,7]$.

Pour $x$ représentant la distance horizontale parcourue par la balle en dizaine de yards après la frappe, (avec $0\pp x\pp 13,7$), $f(x)$ (ou $g(x)$ selon le modèle) représente la hauteur correspondante de la balle par rapport au sol, en dizaine de yards ($1$ yard correspond à environ $0,914$ mètre).

On appelle « angle de décollage » de la balle, l’angle entre l’axe des abscisses et la tangente à la courbe ($C_f$ ou $C_g$ selon le modèle) en son point d’abscisse $0$. Une mesure de l’angle de décollage de la balle est un nombre réel $d$ tel que $\tan(d)$ est égal au coefficient directeur de cette tangente.
De même, on appelle « angle d’atterrissage » de la balle, l’angle entre l’axe des abscisses et la tangente à la courbe ($C_f$ ou $C_g$ selon le modèle) en son point d’abscisse $13,7$. Une mesure de l’angle d’atterrissage de la balle est un nombre réel $a$ tel que $\tan(a)$ est égal à l’opposé du coefficient directeur de cette tangente.
Tous les angles sont mesurés en degré.

  1. Première modélisation : on rappelle qu’ici, l’unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $f(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    a. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    $\quad$
    b. Vérifier que $f'(0) = 0,822$.
    $\quad$
    c. Donner une mesure en degré de l’angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    $\quad$
    d. Quelle propriété graphique de la courbe $C_f$ permet de justifier que les angles de décollage et d’atterrissage de la balle sont égaux ?
    $\quad$
  2. Seconde modélisation : on rappelle qu’ici, l’unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $g(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    a. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    On précise que $g'(0) = 0,29$ et $g'(13,7)\approx −1,87$.
    $\quad$
    b. Donner une mesure en degré de l’angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    $\quad$
    c. Justifier que $62$ est une valeur approchée, arrondie à l’unité près, d’une mesure en degré de l’angle d’atterrissage de la balle.
    $\quad$

Tableau : extrait d’une feuille de calcul donnant une mesure en degré d’un angle quand on connait sa tangente :

$\quad$

Partie C : interrogation des modèles

À partir d’un grand nombre d’observations des performances de joueurs professionnels, on a obtenu les résultats moyens suivants :

$\begin{array}{|c|c|c|c|}
\hline
\text{Angle de décollage en}&\text{Hauteur maximale en}&\text{Angle d’atterrissage en}&\text{Distance horizontale}\\
\text{degré}&\text{yard}&\text{degré}&\text{en yard au point de}\\
&&&\text{chute}\\
\hline
\boldsymbol{24}&\boldsymbol{32}&\boldsymbol{52}&\boldsymbol{137}\\
\hline
\end{array}$

Quel modèle, parmi les deux étudiés précédemment, semble le plus adapté pour décrire la frappe de la balle par un joueur professionnel? La réponse sera justifiée.