Bac – Spécialité mathématiques – Amérique du Nord – sujet 2 – 19 mai 2022

Amérique du nord – 19 mai 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. $\left(A_1,B_1\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} a_2&=P\left(A_2\right) \\
    &=P\left(A_1\cap A_2\right)+P\left(B_1\cap A_2\right) \\
    &=P\left(A_1\right)\times P_{A_1}\left(A_2\right)+P\left(B_1\right)\times P_{B_1}\left(A_2\right) \\
    &=0,5\times 0,84+0,5\times 0,24 \\
    &=0,54\end{align*}$
    $\quad$
    b. On veut calculer :
    $\begin{align*} P_{A_2}\left(B_1\right)&=\dfrac{P\left(A_2\cap B_1\right)}{P\left(A_2\right)} \\
    &=\dfrac{0,5\times 0,24}{0,54}\\
    &=\dfrac{2}{9}\end{align*}$
    La probabilité que le vélo se trouve au point B le premier matin sachant qu’il se trouve au point A le deuxième matin est égale à $\dfrac{2}{9}$ soit environ égale à $0,222$.
    $\quad$
  3. a. On obtient l’arbre suivant :$\quad$
    b. Soit $n\in \N^*$. $\left(A_n,B_n\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} a_{n+1}&=P\left(A_{n+1}\right) \\
    &=P\left(A_n\cap A_{n+1}\right)+P\left(B_n\cap A_{n+1}\right) \\
    &=P\left(A_n\right)\times P_{A_n}\left(A_{n+1}\right)+P\left(B_n\right)\times P_{B_n}\left(A_{n+1}\right) \\
    &=0,84a_n+0,24\left(1-a_n\right) \\
    &=0,6a_n+0,24\end{align*}$
    $\quad$
  4. Pour tout entier naturel $n$ non nul on pose $R(n):~a_n=0,6-0,1\times 0,6^{n-1}$.
    Initialisation : $a_1=0,5$ et $0,6-0,1^1=0,5$ donc $R(1)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $R(n)$ vraie.
    $\begin{align*} a_{n+1}&=0,6a_n+0,24 \\
    &=0,6\left(0,6-0,1\times 0,6^{n-1}\right)+0,24\\
    &=0,36-0,1\times 0,6^n+0,24 \\
    &=0,6-0,1\times 0,6^n\end{align*}$
    Donc $R(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $1$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $a_n=0,6-0,1\times 0,6^{n-1}$.
    $\quad$
  5. $-1<0,6<1$ donc $\lim\limits_{n\to +\infty} 0,6^n=0$ et $\lim\limits_{n\to +\infty} a_n=0,6$.
    Sur le long terme, la probabilité que le vélo se trouve au point $A$ est égale à $0,6$.
    $\quad$
  6. $\quad$
    $\begin{align*} a_n\pg 0,599&\ssi 0,6-0,1\times 0,6^{n-1}\pg 0,599 \\
    &\ssi -0,1\times 0,6^{n-1} \pg -0,001 \\
    &\ssi 0,6^{n-1} \pp 0,01 \\
    &\ssi (n-1)\ln(0,6)\pp \ln(0,01) \\
    &\ssi n-1\pg \dfrac{\ln(0,01)}{\ln(0,6)} \quad \text{car } \ln(0,6)<0\\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,6)}+1\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,6)}+1\approx 10,02$
    Le plus petit entier naturel $n$ tel que $a_n\pg 0,599$ est donc $11$.
    La probabilité que le vélo se trouve au point $A$ est supérieure à $0,599$ à partir du $11$-ième jour.
    $\quad$

 

Ex 2

Exercice 2

Partie A

  1. La fonction $p$ est dérivable sur $[-3;4]$ en tant que fonction polynôme.
    Pour tout réel $x\in [-3;4]$ on a $p'(x)=3x^2-6x+5$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=-24<0$
    Ainsi $p'(x)$ est du signe du coefficient principal $a=3>0$.
    Par conséquent $p$ est strictement croissante sur $[-3;4]$.
    $\quad$
  2. La fonction $p$ est continue (car dérivable) et strictement croissante sur $[-3;4]$.
    $p(-3)=-68<0$ et $p(4)=37>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $p(x)=0$ admet une unique solution $\alpha$ sur $[-3;4]$.
    $\quad$
  3. D’après la calculatrice $\alpha\approx -0,2$.
    $\quad$
  4. La fonction $p$ est strictement croissante sur $[-3;4]$ et s’annule en $\alpha$. On obtient alors le tableau de signes suivant :
    $\quad$

Partie B

  1. a. La fonction $f$ est dérivable sur $[-3;4]$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in [-3;4]$ on a :
    $\begin{align*} f'(x)&=\dfrac{\e^x\left(1+x^2\right)-2x\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{\left(x^2-2x+1\right)\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{(x-1)^2\e^x}{\left(1+x^2\right)^2} \end{align*}$
    $\quad$
    b. On a fonc $f'(1)=0$.
    La courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. a. Il semblerait que la fonction change de convexité (et donc $\mathscr{C}_f$ possède un point d’inflexion) environ en $0$ et en $1$.
    Le toboggan semble dont assurer de bonnes sensations.
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$ et pour tout réel $x\in [-3;4]$ on a $\left(1+x^2\right)^3>0$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $p(x)(x-1)$.
    $x-1=0 \ssi x=1$ et $x-1>0\ssi x>1$.
    D’après le tableau de signes obtenu à la question A.4. on obtient le tableau de signes de $f\dsec(x)$.
    La fonction $f$ est donc convexe sur $[-3;\alpha]$ et $[1;4]$ et concave sur $[\alpha;1]$. $f\dsec(x)$ s’annule en $\alpha$ et $1$.
    Donc $\mathscr{C}_f$ possède deux points d’inflexion et le toboggan assurera de bonnes sensations.
    $\quad$

 

Ex 3

Exercice 3

  1. a. $\vect{AR}\begin{pmatrix}0\\3\\2\end{pmatrix}$ et $\vect{AT}\begin{pmatrix}-3\\0\\2\end{pmatrix}$
    Par conséquent
    $\begin{align*} AR&=\sqrt{0^2+3^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    $\begin{align*} AT&=\sqrt{(-3)^2+0^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    Ainsi $AR=AT$. Le triangle $ART$ est isocèle en $A$.
    b. $\quad$
    $\begin{align*} \vect{AR}.\vect{AT}&=0\times -(-3)+3\times 0+2\times 2\\
    &=4\end{align*}$
    $\quad$
    c. On a également $\vect{AR}.\vect{AT}=AR\times AT\times \cos \widehat{RAT}$.
    Par conséquent
    $\begin{align*} \cos \widehat{RAT}&=\dfrac{\vect{AR}.\vect{AT}}{AR\times AT} \\
    &=\dfrac{4}{13} \end{align*}$
    Donc $\widehat{RAT}\approx 72,1$°
    $\quad$
  2. a. D’une part
    $\begin{align*} \vec{n}.\vect{AR}&=2\times 0+(-2)\times 3+3\times 2\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{n}.\vect{AT}&=2\times (-3)+(-2)\times 0+3\times 2\\
    &=0\end{align*}$
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires (l’angle $\widehat{RAT}$ n’est ni plat ni nul) du plan $(ART)$.
    $\vec{n}$ est donc un vecteur normal au plan $(ART)$.
    $\quad$
    b. Une équation du plan $(ART)$ est par conséquent de la forme $2x-2y+3z+d=0$.
    Or $A(6;0;2)$ appartient à ce plan.
    Donc $12-0+6+d=0 \ssi d=-18$
    Une équation cartésienne du plan $(ART)$ est $2x-2y+3z-18=0$.
    $\quad$
  3. a. $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$ et le point $S\left(3;\dfrac{5}{2};0\right)$ appartient à cette droite.
    Une représentation paramétrique de la droite $\Delta$ est bien $\begin{cases} x=3+2k\\y=\dfrac{5}{2}-2k\\z=3k\end{cases} \quad k\in \R$.
    $\quad$
    b. Prenons $k=1$ dans la représentation paramétrique précédente. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient à la droite $\Delta$.
    $2\times 5-2\times \dfrac{1}{2}+3\times 3-18=10-1+9-18=0$. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient au plan $(ART)$.
    Ainsi $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. a. On a $D(0,8,0)$ et $K(0;4;4)$ donc $\vect{DK}\begin{pmatrix}0\\-4\\4\end{pmatrix}$ et $\vect{DN}\begin{pmatrix} 0\\-4t\\4t\end{pmatrix}$
    Par conséquent $\vect{DN}=t\vect{DK}$.
    Les points $D$, $N$ et $K$ sont alignés.
    $T\in[0;1]$ donc $N$ appartient au segment $[DK]$.
    $\quad$
    b. On a $\vect{SL}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ et $\vect{SN}\begin{pmatrix} -3\\\dfrac{11}{2}-4t\\4t\end{pmatrix}$.$\begin{align*} &(SL) \text{ et }(SN)\text{ sont perpendiculaires}\\
    &\ssi\vect{SL}.\vect{SN}=0 \\
    &\ssi 2\times (-3)+(-2)\times  \left(\dfrac{11}{2}-4t\right)+3\times 4t=0 \\
    &\ssi -6-11+8t+12t=0 \\
    &\ssi 20t=17 \\
    &\ssi t=0,85\end{align*}$
    Le point $N$ doit donc avoir pour coordonnées $(0;4,6;3,4)$ pour que les deux rayons lasers soient perpendiculaires.
    $\quad$

 

Ex 4

Exercice 4

  1. $\quad$
    $\begin{align*}a&=\ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right) \\
    &=\ln(9)+\ln\left(\sqrt{3}\right)-\ln(3)-\ln(9)\\
    &=\dfrac{1}{2}\ln(3)-\ln(3) \\
    &=-\dfrac{1}{2}\ln(3)\end{align*}$
    Réponse d
    $\quad$
  2. $x-10>0\ssi x>10$ : l’équation est définie sur $]10;+\infty[$
    Sur $]10;+\infty[$
    $\begin{align*} &\ln(x)+\ln(x-10)=\ln(3)+\ln(7) \\
    &\ssi \ln\left(x(x-10)\right)=\ln(21) \\
    &\ssi x(x-10)=21 \\
    &\ssi x^2-10x-21=0\end{align*}$
    Le discriminant de $x^2-10x-21$ est $\Delta=184>0$.
    Les racines de ce polynômes sont $x_1=\dfrac{10-\sqrt{184}}{2}<0$ et $x_2=\dfrac{10+\sqrt{184}}{2}>10$
    Donc l’unique solution de $(E)$ est $\dfrac{10+\sqrt{184}}{2}$.
    Réponse c
    $\quad$
  3. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$,
    $\begin{align*} f'(x)&=2x\left(-1+\ln(x)\right)+x^2\times \dfrac{1}{x} \\
    &=-2x+2x\ln(x)+x \\
    &=x\left(2\ln(x)-1\right)\end{align*}$
    $\ln\left(\sqrt{e}\right)=\dfrac{1}{2}$
    Par conséquent $f’\left(\sqrt{e}\right)=0$
    Réponse c
    $\quad$
  4. On répète $5$ fois de façon indépendante la même expérience de Bernoulli. On appelle $X$ la variable aléatoire qui compte le nombre de jetons jaunes tirés.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=\dfrac{2}{5}$
    Ainsi
    $\begin{align*} P(X=2)&=\dbinom{5}{2}\left(\dfrac{2}{5}\right)^2\left(\dfrac{3}{5}\right)^3\\
    &\approx 0,346\end{align*}$
    Réponse b
    $\quad$
  5. On reprend la variable aléatoire $X$ définie à la question précédente.
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-\left(\dfrac{3}{5}\right)^5\\
    &\approx 0,922\end{align*}$
    Réponse d
    $\quad$
  6. On reprend la variable aléatoire $X$ définie à la question 4..
    Son espérance mathématiques est :
    $\begin{align*} E(X)&=np\\
    &=5\times \dfrac{2}{5} \\
    &=2\end{align*}$
    Réponse c
    $\quad$

Énoncé

Exercice 1     7 points

Thème : probabilités, suites

Dans une région touristique, une société propose un service de location de vélos pour la journée.
La société dispose de deux points de location distinctes, le point A et le point B. Les vélos peuvent être empruntés et restitués indifféremment dans l’un où l’autre des deux points de location.
On admettra que le nombre total de vélos est constant et que tous les matins, à l’ouverture du service, chaque vélo se trouve au point A ou au point B.

D’après une étude statistique :

  • Si un vélo se trouve au point A un matin, la probabilité qu’il se trouve au point A le matin suivant est égale à $0,84$;
  • Si un vélo se trouve au point B un matin la probabilité qu’il se trouve au point B le matin suivant est égale à $0,76$.

À l’ouverture du service le premier matin, la société a disposé la moitié de ses vélos au point A, l’autre moitié au point B.

On considère un vélo de la société pris au hasard.

Pour tout entier naturel non nul n, on définit les évènements suivants :

  • $A_n$ : « le vélo se trouve au point A le $n$-ième matin »
  • $B_n$ : « le vélo se trouve au point B le $n$-ième matin ».

Pour tout entier naturel non nul $n$, on note $a_n$ la probabilité de l’évènement $A_n$ et $b_n$ la probabilité de l’évènement $B_n$. Ainsi $a_1 = 0,5$ et $b_1 = 0,5$.

  1. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les deux premiers matins :$\quad$
  2. a. Calculer $a_2$.
    $\quad$
    b. Le vélo se trouve au point A le deuxième matin. Calculer la probabilité qu’il se soit trouvé au point B le premier matin. La probabilité sera arrondie au millième.
    $\quad$
  3. a. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les $n$-ième et $n +1$-ième matins.
    $\quad$
    b. Justifier que pour tout entier naturel non nul $n$, $a_{n+1} = 0,6a_n +0,24$.
    $\quad$
  4. Montrer par récurrence que, pour tout entier naturel non nul $n$, $a_n = 0,6−0,1×0,6^{n−1}$.
    $\quad$
  5. Déterminer la limite de la suite $\left(a_n\right)$ et interpréter cette limite dans le contexte de l’exercice.
    $\quad$
  6. Déterminer le plus petit entier naturel $n$ tel que $a_n > 0,599$ et interpréter le résultat obtenu dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : fonctions, fonction exponentielle

Partie A

Soit p la fonction définie sur l’intervalle $[-3 ; 4]$ par : $$p(x)=x^3-3x^2+5x+1$$

  1. Déterminer les variations de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
  2. Justifier que l’équation $p(x) = 0$ admet dans l’intervalle $[-3 ; 4]$ une unique solution qui sera notée $\alpha$.
    $\quad$
  3. Déterminer une valeur approchée du réel $\alpha$ au dixième près.
    $\quad$
  4. Donner le tableau de signes de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$

Partie B

Soit $f$ la fonction définie sur l’intervalle $[-3 ; 4]$ par :$$f(x)=\dfrac{\e^x}{1+x^2}$$
On note $\mathscr{C}_f$ sa courbe représentative dans un repère orthogonal.

  1. a. Déterminer la dérivée de la fonction $f$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
    b. Justifier que la courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. Les concepteurs d’un toboggan utilisent la courbe $\mathscr{C}_f$ comme profil d’un toboggan. Ils estiment que le toboggan assure de bonnes sensations si le profil possède au moins deux points d’inflexion.
    $\quad$
    a. D’après le graphique ci-dessus, le toboggan semble-t-il assurer de bonnes sensations ?
    Argumenter.
    b. On admet que la fonction $f\dsec$, dérivée seconde de la fonction $f$ , a pour expression pour tout réel $x$ de l’intervalle $[-3 ; 4]$ :
    $$f\dsec(x)=\dfrac{p(x)(1-x)\e^x}{\left(1+x^2\right)^3}$$
    où $p$ est la fonction définie dans la partie A.
    En utilisant l’expression précédente de $f\dsec$, répondre à la question : « le toboggan assure-t-il de bonnes sensations ? ». Justifier.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Une exposition d’art contemporain a lieu dans une salle en forme de pavé droit de largeur $6$ m, de longueur $8$ m et de hauteur $4$ m.
Elle est représentée par le parallélépipède rectangle $OBCDEFGH$ où $OB = 6$ m, $OD = 8$ m et $OE = 4$ m.
On utilise le repère orthonormé $\Oijk$ tel que $\vec{i}=\dfrac{1}{6}\vect{OB}$, $\vec{j}=\dfrac{1}{8}\vect{OD}$ et $\vec{k}=\dfrac{1}{4}\vect{OE}$.

 

Dans ce repère on a, en particulier $C(6; 8; 0)$, $F(6; 0; 4)$ et $G(6; 8; 4)$.
Une des œuvres exposées est un triangle de verre représenté par le triangle $ART$ qui a pour sommets $A(6; 0; 2)$, $R(6; 3; 4)$ et $T(3; 0; 4)$, Enfin, $S$ est le point de coordonnées $\left(3;\dfrac{5}{2};0\right)$.

  1. a. Vérifier que le triangle $ART$ est isocèle en $A$.
    $\quad$
    b. Calculer le produit scalaire $\vect{AR}.\vect{AT}$.
    $\quad$
    c. En déduire une valeur approchée à $0,1$ degré près de l’angle $\widehat{RAT}$.
    $\quad$
  2. a. Justifier que le vecteur $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur normal au plan $(ART)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(ART)$.
    $\quad$
  3. Un rayon laser dirigé vers le triangle $ART$ est émis du plancher à partir du point $S$. On admet que ce rayon est orthogonal au plan $(ART)$.
    a. Soit $\Delta$ la droite orthogonale au plan $(ART)$ et passant par le point $S$.
    Justifier que le système ci-dessous est une représentation paramétrique de la droite $\Delta$ : $$\begin{cases} x=3+2k\\[3pt]y=\dfrac{5}{2}-2k\\[3pt]z=3k\end{cases} \quad, \text{avec } k\in \R$$
    $\quad$
    b. Soit $L$ le point d’intersection de la droite $\Delta$, avec le plan $(ART)$.
    Démontrer que $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. L’artiste installe un rail représenté par le segment $[DK]$ ou $K$ est le milieu du segment $[EH]$.
    Sur ce rail, il positionne une source lumineuse laser en un point $N$ du segment $[DK]$ et il oriente ce second rayon laser vers le point $S$.
    $\quad$

    a. Montrer que, pour tout réel $t$ de l’intervalle $[0; 1]$, le point $N$ de coordonnées $(0 ; 8−4t ; 4t)$ est un point du segment $[DK]$.
    $\quad$
    b. Calculer les coordonnées exactes du point $N$ tel que les deux rayons laser représentés par les segments $[SL]$ et $[SN]$ soient perpendiculaires.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : : fonction logarithme népérien, probabilités

Cet exercice est un questionnaire à choix multiples (QCM) qui comprend six questions. Les six questions sont indépendantes. Pour chacune des questions, une seule des quatre réponses est exacte. Le candidat indiquera sur sa copie le numéro de la question suivi de la lettre correspondant à la réponse exacte.
Aucune justification n’est demandée.
Une réponse fausse, une réponse multiple ou une absence de réponse ne rapporte ni n’enlève aucun point.

Question 1

Le réel $a$ est définie par $a = \ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right)$ est égal à :
a. $1-\dfrac{1}{2}\ln(3)$
b. $\dfrac{1}{2}\ln(3)$
c. $3\ln(3)-\dfrac{1}{2}$
d. $-\dfrac{1}{2}\ln(3)$
$\quad$

Question 2

On note $(E)$ l’équation suivante $\ln(x) +\ln(x −10) = ln (3)+ln (7)$ d’inconnue le réel $x$.
a. $3$ est solution de $(E)$.
b. $5-\sqrt{46}$ est solution de $(E)$.
c. L’équation $(E)$ admet une unique solution réelle.
d. L’équation $(E)$ admet deux solutions réelles.
$\quad$

Question 3

La fonction $f$ est définie sur l’intervalle $]0 ; +\infty[$ par l’expression $f(x)=x^2\left(-1+\ln(x)\right)$.
On note $\mathscr{C}_f$ sa courbe représentative dans le plan muni d’un repère.
a. Pour tout réel $x$ de l’intervalle $]0 ; +\infty[$, $f'(x)=2x+\dfrac{1}{x}$.
b. La fonction $f$ est croissante sur l’intervalle $]0 ; +\infty[$.
c. $f’\left(\sqrt{\e}\right)$ est différent de $0$.
d. La droite d’équation $y=-\dfrac{1}{2}\e$ est tangente à la courbe $\mathscr{C}_f$ au point d’abscisse $\sqrt{\e}$.
$\quad$

Question 4

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer exactement $2$ jetons jaunes, arrondie au millième, est :
a. $0,683$
b. $0,346$
c. $0,230$
d. $0,165$
$\quad$

Question 5

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer au moins un jeton jaune, arrondie au millième, est :
a. $0,078$
b. $0,259$
c. $0,337$
d. $0,922$
$\quad$

Question 6

Un sac contient $20$ jetons jaunes et $30$ jetons bleus.
On réalise l’expérience aléatoire suivante : on tire successivement et avec remise cinq jetons du sac.
On note le nombre de jetons jaunes obtenus après ces cinq tirages.
Si on répète cette expérience aléatoire un très grand nombre de fois alors, en moyenne, le nombre de jetons jaunes est égal à:
a. $0,4$
b. $1,2$
c. $2$
d. $2,5$
$\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 19 mai 2022

Centres étrangers – Liban – 19 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient donc l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(F\cap C)&=P(F)\times P_F(C) \\
    &=0,48\times 0,165 \\
    &=0,079~2\end{align*}$
    La probabilité que la personne choisie soit une femme qui exerce une profession de cadre est égale à $0,079~2$.
    $\quad$
  3. a. $\left(F,\conj{F}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(C)&=P(C\cap F)+P\left(C\cap\conj{F}\right) \\
    &=0,079~2+P\left(\conj{F}\right)\times P_{\conj{F}}(C) \\
    &=0,079~2+0,52\times 0,215 \\
    &=0,191\end{align*}$
    La probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. D’une part $P(C)\times P(F)=0,091~68$
    D’autre part $P(C \cap F)=0,079~2$
    Donc $P(C)\times P(F)\neq P(C\cap F)$.
    Les événements $F$ et $C$ ne sont pas indépendants.
    $\quad$
  4. On a
    $\begin{align*} P_C(F)&=\dfrac{P(C\cap F)}{P(C)} \\
    &=\dfrac{0,079~2}{0,191} \\
    &\approx 0,414~7\end{align*}$.
    La probabilité que la personne choisie soit une femme sachant qu’elle exerce une profession de cadre est environ égale à $0,414~7$.
    $\quad$
  5. a. On répète $15$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de cadres au sein de l’échantillon de $15$ salariés.
    Par conséquent $X$ suit la loi binomiale de paramètres $n=15$ et $p=0,191$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=(1-0,191)^{15}+\dbinom{15}{1}0,191\times (1-0,191)^{14} \\
    &\approx 0,189~0\end{align*}$
    La probabilité que l’échantillon contienne au plus $1$ cadre est environ égale à $0,189~0$.
    $\quad$
    c. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=np\\
    &=15\times 0,191 \\
    &=2,865\end{align*}$
    $\quad$
  6. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire qui compte le nombre de cadres au sein de l’échantillon de $n$ salariés.
    Par conséquent $Y$ suit la loi binomiale de paramètres $n$ et $p=0,191$.
    $\begin{align*} P(Y\pg 1)\pg 0,99 &\ssi 1-P(X=0)\pg 0,199 \\
    &\ssi P(X=0)\pp 0,01 \\
    &\ssi 0,808^n \pp 0,01\\
    &\ssi n\ln(0,808) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,808)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,808)} \approx 21,6$.
    Il faut donc que l’échantillon contienne au moins $22$ salariés pour la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. $[AH]$ et $[ED]$ sont les diagonales du carré $ADHE$.
    Les droites $(AH)$ et $(ED)$ sont par conséquent perpendiculaires.
    $\quad$
    b. $EFGH$ est un carré donc $(EH)$ et $(HG)$ sont perpendiculaires.
    $CDHG$ est un carré donc $(GH)$ et $(DH)$ sont perpendiculaires.
    Ainsi, $(HG)$ est perpendiculaire à deux droites sécantes du plan $(EDH)$.
    Par conséquent, la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. La droite $(ED)$ est incluse dans le plan $(EDH)$. D’après la question précédente, les droites $(GH)$ et $(ED)$ sont orthogonales.
    D’après la question 1.a. les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    La droite $(ED)$ est donc orthogonale à deux droites sécantes (le point $A$ n’appartient pas à la droite $(GH)$) du plan $(AGH)$.
    La droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Dans le repère fourni on a $E(0;0;1)$ et $D(0;1;0)$.
    Par conséquent $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$.
    $\quad$
    $\vect{ED}$ est un vecteur normal au plan $(AGH)$ d’après la question précédente.
    Une équation cartésienne du plan $(AGH)$ est donc de la forme $y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan. Ainsi $d=0$.
    Une équation cartésienne du plan $(AGH)$ est $y-z=0$.
    $\quad$
  3. a. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]1\\-1\end{pmatrix}$.
    Une représentation paramétrique de la droite $(EL)$ est $\begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\end{cases} \qquad t\in \R$.
    $\quad$
    b. On résout le système
    $\begin{align*} \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\y-z=0 \end{cases} &\ssi \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\ 1+t+t=0\end{cases} \\
    &\ssi \begin{cases}t=-\dfrac{1}{2}\\ x=\dfrac{1}{3}t\\[3pt]y=\dfrac{1}{2}\\[3pt]z=\dfrac{1}{2}\end{cases}\end{align*}$
    Le point d’intersection de la droite $(EL)$ et du plan $(AGH)$ a donc pour coordonnées $\left(\dfrac{1}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    c. $\dfrac{1}{2}-\dfrac{1}{2}=0$ : le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ appartient au plan $(AGH)$.
    $\vect{KL}\begin{pmatrix}0\\-\dfrac{1}{2}\\[3pt]\dfrac{1}{2}\end{pmatrix}$.
    Par conséquent $\vect{KL}=-\dfrac{1}{2}\vect{ED}$.
    Ainsi $\vect{KL}$ est un vecteur normal au plan $(AGH)$.
    Donc $K\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ est le projeté orthogonal du point $L$ sur le plan $(AGH)$.
    $\quad$
    d. On a
    $\begin{align*} KL&=\sqrt{0^2+\left(-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^2} \\
    &=\sqrt{\dfrac{1}{2}} \\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$.
    La distance du point $L$ ai plan $(AGH)$ est donc $h=\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. On applique le théorème de Pythagore dans le triangle $AHD$ rectangle en $D$.
    Donc $AH^2=AD^2+HD^2$ ainsi $AH^2=2$ et $AH=\sqrt{2}$
    $(HG)$ est orthogonale au plan $(EDH)$ d’après la question 1.b.
    La droite $(AH)$ est incluse dans le plan $(EDH)$.
    Par conséquent les droites $(AH)$ et $(HG)$ sont perpendiculaires et le triangle $AHG$ est rectangle en $H$.
    L’aire du triangle $AHG$ est donc
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times HG}{2} \\
    &=\dfrac{\sqrt{2}\times 1}{2}\\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$
    Le volume du tétraèdre $LAGH$ est alors
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times h \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{2}}{2}\times \dfrac{\sqrt{2}}{2} \\
    &=\dfrac{1}{6}\end{align*}$.

Ex 3

Exercice 3

  1. La fonction $g$ est deux fois dérivables sur $\R$ en tant que somme de fonctions deux fois dérivables.
    Pour tout réel $x$ on a $g'(x)=1~000x^{999}+1$ et $g\dsec(x)=999~000x^{998}$
    $998$ est pair donc, pour tout réel $x$ $g\dsec(x)\pg 0$.
    La fonction $g$ est convexe sur $\R$
    Réponse b
    $\quad$
  2. D’après le graphique, $f'(0)=1$.
    Une équation de la droite $T$ est donc de la forme $y=x+b$.
    $T$ est par conséquent parallèle à la droite d’équation $y=x$.
    Réponse a
    $\quad$
  3. Pour tout entier naturel $n$ on a $-1\pp (-1)^n \pp 1$.
    Donc $-\dfrac{-1}{1+n}\pp u_n \pp \dfrac{1}{n+1}$
    Or pour tout entier naturel $n$ on a $-1 \pp -\dfrac{1}{1+n}$ et $\dfrac{1}{1+n}\pp 1$.
    Ainsi $-1\pp u_n \pp 1$.
    Réponse c
    $\quad$
  4. Pour tout entier naturel $n$ on a $v_n\times v_{n+1}<0$.
    Cela signifie donc que deux termes consécutifs de la suite $\left(v_n\right)$ sont toujours de signes contraires.
    Ainsi, tous les termes de rang pair sont du même signe.
    Par conséquent $v_{10}$ est du même signe que $v_0$
    Réponse c
    $\quad$
  5. On a $8=2w_1-4 \ssi 12=2w_1 \ssi w_1=6$
    $6=2w_0-4 \ssi 2w_0=10\ssi w_0=5$.
    Réponse 5
    $\quad$
  6. Pour tout entier naturel $n$ on pose $P(n):~a_n>0$
    Initialisation : $a_0=1>0$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $a_n>0$ et $\e^n>0$ donc $\dfrac{\e^n}{\e^n+1}a_n>0$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n$, on a $a_n>0$.
    $\quad$
    Soit $n\in \N$
    $\begin{align*} a_{n+1}-a_n&=\dfrac{\e^n}{\e^n+1}a_n-a_n \\
    &=\left(\dfrac{\e^n}{\e^n+1}-1\right)a_n \\
    &=-\dfrac{1}{\e^n+1}a_n\\
    &<0\end{align*}$
    La suite $\left(a_n\right)$ est donc strictement décroissante.
    Réponse b
    $\quad$
    Remarque : Puisqu’il s’agit d’une question d’un QCM, l’utilisation de la calculatrice est à privilégiée ici pour avoir une idée du comportement de la suite.
    $\quad$
  7. On appelle $u_n$ le nombre de cellules à la $n$-ième génération.
    Ainsi, pour tout entier naturel $n$ on a $u_n=2^n$.
    Au bout de $4$ heures il y a environ $4~000$ cellules. Or $u_{11}=2~048$ et $u_{12}=4~096$.
    Il a donc fallu $4$ heures pour obtenir à la $12$-ième génération.
    $\dfrac{4\times 60}{12}=20$.
    Le temps de génération est donc environ égal à $20$ minutes.
    Réponse c
    $\quad$

 

Ex 4

Exercice 4

Partie A

  1. On a $\lim\limits_{x\to 0^+} \e^x=1$ et $\lim\limits_{x\to 0^+} \ln(x)=-\infty$.
    Ainsi $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
  2. Pour tout réel $x\in ]0;1]$ on a
    $\begin{align*} f'(x)&=-\e^{-x}+\dfrac{1}{x} \\
    &=\dfrac{-x\e^{-x}+1}{x} \\
    &=\dfrac{1-x\e^{-x}}{x}\end{align*}$
    $\quad$
  3. La fonction exponentielle est convexe sur $\R$. Sa courbe représentative est donc au-dessus de toutes ses tangentes.
    On a $\e^0=1$. Une équation de la tangente à la courbe au point d’abscisse $0$ est par conséquent $y=x+1$.
    Ainsi, pour tout réel $x\in $\e^x\pg x+1>x$ soit $1\pg x\e^{-x}$.
    Donc pour tout réel $x\in $]0;1]$ on a $x\e^x<1$.
    Remarque : On pouvait également déterminer le tableau de variations de la fonction $g$ définie sur $]0;1]$ par $g(x)=x\e^{-x}$.
    $\quad$
    Ainsi sur $]0;1]$, $1-x\e^{-x}>0$
    Par conséquent $f'(x)>0$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;1]$.
    $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $f(1)=\e^{-1}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=0$ admet une unique solution $\ell$ sur $]0;1]$.
    $\quad$

Partie B

  1. a. On a $a_1=\e^{-1}\approx 0,37$ et $b_1=\e^{-1/10}\approx 0,90$.
    $\quad$
    b. On peut écrire
    $\begin{array}{|l|}
    \hline
    \text{de termes(n):}\\
    \quad \text{a = 1 / 10} \\
    \quad \text{b = 1} \\
    \quad \text{for k in range(0,n):}\\
    \qquad \text{c = exp(b)}\\
    \qquad \text{b = exp(a)}\\
    \qquad \text{a = c}\\
    \quad \text{return(a,b)}\\
    \hline
    \end{array}$
    Remarque : On suppose donc que la bibliothèque $\texttt{math}$ a été importée (ou au moins la fonction $\texttt{exp}$) pour que la fonction ne comporte pas d’erreur.
    $\quad$
  2. a. Pour tout $n\in \N$ on pose $P(n):~0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    Initialisation : On a $a_0=0,1$, $a_1 \approx 0,37$, $b_1\approx 0,90$ et $b_0=1$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    La fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    Par conséquent $\e^{0}>\e^{-a_n}\pg \e^{-a_{n+1}}\pg \e^{-b_{n+1}}\pg \e^{-b_n}\pg \e^{-1}$
    Soit $1>b_{n+1}\pg b_{n+2}\pg a_{n+2}\pg a_{n+1}\pg \e^{-1}>0$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout entier naturel $n$ on a $0<a_n\pp a_{n+1}\pp b_{n+1} \pp b_n \pp 1$.
    $\quad$
    b. La suite $\left(a_n\right)$ est croissante et majorée par $1$ : elle converge donc.
    La suite $\left(b_n\right)$ est décroissante et minorée par $0$ : elle converge donc.
    $\quad$
  3. a. On a $A=\e^{-B}$  par conséquent $\ln(A)=-B$ et $B=-\ln(A)$.
    Or $B=\e^{-A}$ donc $-\ln(A)=\e^{-A}$ soit $\e^{-A}+\ln(A)=0$.
    Par conséquent $f(A)=0$.
    $\quad$
    b. D’après la question précédente et la question A.4. $A=\ell$.
    On a $B=\e^{-A}$ donc $A=-\ln(B)$
    Or $A=\e^{-B}$ soit $-\ln(B)=\e^{-B}$ et donc $f(B)=0$.
    On a ainsi également $B=\ell$.
    Donc $A-B=0$.
    Remarque : On dit que les suite $\left(a_n\right)$ et $\left(b_n\right)$ sont adjacentes.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Les résultats seront arrondis si besoin à $10^{-4}$ près.
Une étude statistique réalisée dans une entreprise fournit les informations suivantes :

  • $48 \%$ des salariés sont des femmes. Parmi elles, $16,5 \%$ exercent une profession de cadre ;
  • $52 \%$ des salariés sont des hommes. Parmi eux, $21,5 \%$ exercent une profession de cadre.

On choisit une personne au hasard parmi les salariés.
On considère les événements suivants :

  • $F$ : « la personne choisie est une femme » ;
  • $C$ : « la personne choisie exerce une profession de cadre ».
  1. Représenter la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que la personne choisie soit une femme qui exerce une profession de cadre.
    $\quad$
  3. a. Démontrer que la probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. Les événements $F$ et $C$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Calculer la probabilité de $F$ sachant $C$, notée $P_C(F)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  5. On choisit au hasard un échantillon de 15 salariés. Le grand nombre de salariés dans l’entreprise permet d’assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de cadres au sein de l’échantillon de $15$ salariés.
    On rappelle que la probabilité qu’un salarié choisi au hasard soit un cadre est égale à $0,191$.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Calculer la probabilité que l’échantillon contienne au plus $1$ cadre.
    $\quad$
    c. Déterminer l’espérance de la variable aléatoire $X$.
    $\quad$
  6. Soit $n$ un entier naturel.
    On considère dans cette question un échantillon de $n$ salariés.
    Quelle doit être la valeur minimale de 𝑛𝑛 pour que la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

On considère le cube $ABCDEFGH$ de côté $1$ représenté ci-dessous.

 

On munit l’espace du repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. a. Justifier que les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    $\quad$
    b. Justifier que la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. En déduire que la droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Donner les coordonnées du vecteur $\vect{ED}$.
    Déduire de la question 1.c. qu’une équation cartésienne du plan $(AGH)$ est :
    $$y-z=0$$
    $\quad$
  3. On désigne par $L$ le point de coordonnées $\left(\dfrac{2}{3};1;0\right)$
    a. Déterminer une représentation paramétrique de la droite $(EL)$.
    $\quad$
    b. Déterminer l’intersection de la droite $(EL)$ et du plan $(AGH)$.
    $\quad$
    c. Démontrer que le projeté orthogonal du point $L$ sur le plan $(AGH)$ est le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    d. Montrer que la distance du point $L$ au plan $(AGH)$ est égale à $\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. Déterminer le volume du tétraèdre $LAGH$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule :
    $$V=\dfrac{1}{3}\times (\text{aire de la base})\times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonctions, suites

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. . Soit $g$ la fonction définie sur $\R$ par $g(x)=x^{1~000}+x$.
    On peut affirmer que :
    a. la fonction $g$ est concave sur $\R$.
    b. la fonction $g$ est convexe sur $\R$.
    c. la fonction $g$ possède exactement un point d’inflexion.
    d. la fonction $g$ possède exactement deux points d’inflexion.
    $\quad$
  2. On considère une fonction $f$ définie et dérivable sur $\R$. On note $f’$ sa fonction dérivée.
    On note $C$ la courbe représentative de $f$.
    On note $\Gamma$ la courbe représentative de $f’$.
    On a tracé ci-dessous la courbe $\boldsymbol{\Gamma}$ .

    On note $T$ la tangente à la courbe $\boldsymbol{C}$ au point d’abscisse $0$.
    On peut affirmer que la tangente $T$ est parallèle à la droite d’équation :
    a. $y=x$
    b. $y=0$
    c. $y=1$
    d. $x=0$
    $\quad$

  3. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n=\dfrac{(-1)^n}{n+1}$.
    On peut affirmer que la suite $\left(u_n\right)$ est :
    a. majorée et non minorée.
    b. minorée et non majorée.
    c. bornée.
    d. non majorée et non minorée.
    $\quad$
  4. Soit $k$ un nombre réel non nul.
    Soit $\left(v_n\right)$ une suite définie pour tout entier naturel $n$.
    On suppose que $v_0=k$ et que pour tout $n$, on a $v_n\times v_{n+1}<0$.
    On peut affirmer que $v_{10}$ est :
    a. positif.
    b. négatif.
    c. du signe de $k$.
    d. du signe de $-k$.
    $\quad$
  5. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par :
    $$w_{n+1}=2w_n-4\text{ et } w_2=8$$
    On peut affirmer que :
    a. $w_0=0$.
    b. $w_0=5$.
    c. $w_0=10$.
    d. Il n’est pas possible de calculer $w_0$.
    $\quad$
  6. On considère la suite $\left(a_n\right)$ définie pour tout entier naturel $n$ par : $$a_{n+1}=\dfrac{\e^n}{\e^n+1}a_n \text{ et } a_0=1$$
    On peut affirmer que :
    a. la suite $\left(a_n\right)$ est strictement croissante.
    b. la suite $\left(a_n\right)$ est strictement décroissante.
    c. la suite $\left(a_n\right)$ n’est pas monotone.
    d. la suite $\left(a_n\right)$ est constante.
    $\quad$
  7. Une cellule se reproduit en se divisant en deux cellules identiques, qui se
    divisent à leur tour, et ainsi de suite. On appelle temps de génération le temps nécessaire pour qu’une cellule donnée se divise en deux cellules. On a mis en culture $1$ cellule. Au bout de $4$ heures, il y a environ $4~000$ cellules.
    On peut affirmer que le temps de génération est environ égal à :
    a. moins d’une minute.
    b. $12$ minutes.
    c. $20$ minutes.
    d. $1$ heure.
    $\quad$

$\quad$

Exercice 4

Thème : Fonctions, fonction exponentielle, fonction logarithme, suites

Partie A

On considère la fonction $f$ définie pour tout réel $x$ de $]0 ; 1]$ par :$$f(x)=\e^{-x}+\ln(x)$$

  1. Calculer la limite de $f$ en $0$.
    $\quad$
  2. On admet que $f$ est dérivable sur $]0 ; 1]$. On note $f’$ sa fonction dérivée.
    Démontrer que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a :
    $$f'(x)=\dfrac{1-x\e^{-x}}{x}$$
    $\quad$
  3. Justifier que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a $x\e^{-x}<1$.
    En déduire le tableau de variation de $f$ sur $]0 ; 1]$.
    $\quad$
  4. Démontrer qu’il existe un unique réel $\ell$ appartenant à $]0 ; 1]$ tel que $f(\ell)=0$.
    $\quad$

Partie B

  1. On définit deux suites $\left(a_n\right)$ et $\left(b_n\right)$ par :
    $$\begin{cases} a_0=\dfrac{1}{10}\\[3pt]b_0=1\end{cases} \text{ et, pour tout entier naturel }n,~\begin{cases} a_{n+1}=\e^{-b_n}\\[3pt]b_{n+1}=\e^{-a_n}\end{cases}$$
    a. Calculer $a_1$ et $b_1$. On donnera des valeurs approchées à $10^{-2}$ près.
    $\quad$
    b. On considère ci-dessous la fonction termes, écrite en langage Python.
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad\text{a = 1/10}\\
    \quad\text{b = 1}\\
    \quad\text{for k in range(0,n):}\\
    \qquad\text{c = …}\\
    \qquad\text{b = …}\\
    \qquad\text{a = c}\\
    \quad\text{return(a,b)}\\
    \hline
    \end{array}$
    Recopier et compléter sans justifier le cadre ci-dessus de telle sorte que la
    fonction termes calcule les termes des suites $\left(a_n\right)$ et $\left(b_n\right)$.
    $\quad$
  2. On rappelle que la fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    a. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $$0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$$
    $\quad$
    b. En déduire que les suites $\left(a_n\right)$ et $\left(b_n\right)$ sont convergentes.
    $\quad$
  3. On note $A$ la limite de $\left(a_n\right)$ et $B$ la limite de $\left(b_n\right)$.
    On admet que $A$ et $B$ appartiennent à l’intervalle $]0 ; 1]$, et que $A = \e^{-B}$ et $B = \e^{-A}$.
    a. Démontrer que $f(A)=0$.
    $\quad$
    b. Déterminer $A-B$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Amérique du Nord – sujet 1 – 18 mai 2022

Amérique du nord – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant:
    $\quad$
    $\quad$
    b. $\left(V,\conj{V}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(R)&=P(R\cap V)+P\left(R\cap \conj{V}\right) \\
    &=P(V)\times P_V(R)+P\left(\conj{V}\right)\times P_{\conj{V}}(R)\\
    &=\dfrac{2}{3}\times \dfrac{1}{50}+\dfrac{1}{3}\times \dfrac{1}{10} \\
    &=\dfrac{7}{150}\end{align*}$
    La probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} P_R(V)&=\dfrac{P(R\cap V)}{P(R)} \\
    &=\dfrac{~\dfrac{2}{150}~}{\dfrac{7}{150}} \\
    &=\dfrac{2}{7}\end{align*}$
    La probabilité que Paul ait pris son vélo pour rejoindre la gare sachant qu’il a raté son train est égale à $\dfrac{2}{7}$.
    $\quad$
  2. a. On répète $20$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{3}$.
    $\quad$
    b.
    $\begin{align*} P(X=10)&=\dbinom{20}{10}\times \left(\dfrac{2}{3}\right)^{10}\times \left(\dfrac{1}{3}\right)^{10} \\
    &\approx 0,054\end{align*}$
    La probabilité que Paul prenne son vélo exactement $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,054$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 10)&=1-P(X\pp 9) \\
    &\approx 0,962\end{align*}$
    La probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,962$.
    d. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=20\times \dfrac{2}{3}\\
    &=\dfrac{40}{3}\end{align*}$
    En moyenne, sur un période choisie au hasard de $20$ jours, Paul prend son vélo environ $13$ jours pour se rendre à la gare.
    $\quad$
  3. L’espérance mathématique de $T$ est :
    $\begin{align*} E(T)&=10\times P(T=10)+11\times P(T=11)+\ldots+18\times P(T=18) \\
    &=13,5\end{align*}$
    En moyenne Paul met $13,5$ minutes pour se rendre à la gare en voiture.
    $\quad$

Ex 2

Exercice 2

  1. a. Pour tout entier naturel $n$ on note $P(n):~T_n\pg 20$.
    Initialisation : $T_0=180\pg 20$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} T_n\pg 20&\ssi 0,955T_n \pg 19,1 \\
    &\ssi 0,955T_n+0,9 \pg 20 \\
    &\ssi T_{n+1} \pg 20\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $T_n\pg 20$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} T_{n+1}-T_n&=0,955T_n+0,9 -T_n \\
    &=-0,045T_n+0,9 \\
    &=-0,045\left(T_n-0,9\right)\end{align*}$
    $\quad$
    Pour tout $n\in \N$ on a $T_n\pg 20 \ssi T_n-20\pg 0$.
    Ainsi $T_{n+1}-T_n\pp 0$.
    Par conséquent $\left(T_n\right)$ est décroissante.
    $\quad$
    c. La suite $\left(T_n\right)$ est décroissante et minorée par $20$. Elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. Soit $n\in \N$. $u_n=T_n-20\ssi T_n=u_n+20$
    $\begin{align*} u_{n+1}&=T_{n+1}-20 \\
    &=0,955T_n+0,9-20 \\
    &=0,955T_n-19,1\\
    &=0,955\left(u_n+20\right)-19,1 \\
    &=0,955u_n+19,1-19,1\\
    &=0,955u_n\end{align*}$
    Par conséquent, la suite $\left(u_n\right)$ est géométrique de raison $0,955$ et de premier terme $u_0=160$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $u_n=160\times 0,955^n$.
    Donc $T_n=u_n+20=20+160\times 0,955^n$.
    $\quad$
    c. $-1<0,955<1$ donc $\lim\limits_{n\to +\infty} 0,955^n=0$.
    Par conséquent $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    d.
    $\begin{align*} T_n\pp 120&\ssi 20+160\times 0,955^n \pp 120 \\
    &\ssi 160\times 0,955^n \pp 100 \\
    &\ssi 0,955^n \pp 0,625 \\
    &\ssi n\ln(0,955) \pp \ln(0,625) \\
    &\ssi n\pg \dfrac{\ln(0,625)}{\ln(0,955)} \end{align*}$
    Or $\dfrac{\ln(0,625)}{\ln(0,955)} \approx 10,2$.
    L’ensemble solution de $T_n\pp 120$ est l’ensemble des entiers naturels supérieurs ou égaux à $11$.
    $\quad$
  3. a. La température au centre du gâteau va décroitre jusqu’à atteindre la température ambiante.
    Il était donc prévisible que $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    b. La fonction $\texttt{temp}$ renvoie le plus petit entier naturel $n$ tel que $T_n\pp x$.
    D’après la question 2.d. la commande $\texttt{temp(120)}$ renvoie $11$.
    Cela signifie que la température au centre du gâteau devient inférieure à $120$ degré Celsius au bout de $11$ minutes.
    $\quad$

Ex 3

Exercice 3

  1. a. $\vect{JK}\begin{pmatrix} -1\\2\\0\end{pmatrix}$ et $\vect{JL}\begin{pmatrix} -4\\-2\\-3\end{pmatrix}$
    Donc
    $\begin{align*} \vect{JK}.\vect{JL}&=-1\times (-4)+2\times (-2)+0\times (-3) \\
    &=4-4\\
    &=0\end{align*}$
    Les vecteurs $\vect{JK}$ et $\vect{JL}$ sont donc orthogonaux. Le triangle $JKL$ est par conséquent rectangle en $J$.
    $\quad$
    b.
    $\begin{align*} JK&=\sqrt{(-1)^2+2^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} JL&=\sqrt{(-4)^2+(-2)^2+(-3)^2} \\
    &=\sqrt{29}\end{align*}$
    L’aire du triangle $JKL$ est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{JK\times JL}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{29}}{2} \\
    &=\dfrac{\sqrt{145}}{2} \text{ cm}^2\end{align*}$
    c. Dans le triangle $JKL$ rectangle en $J$ on a $\tan \widehat{JKL}=\dfrac{JL}{JK}$
    Soit $\tan \widehat{JKL}=\dfrac{\sqrt{29}}{\sqrt{5}}$
    Par conséquent $\widehat{JKL} \approx 67,5$°
    $\quad$
  2. a. D’une part :
    $\begin{align*}\vect{JK}.\vec{n}&=6\times (-1)+3\times 2+0\times (-10) \\
    &=-6+6\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*}\vect{JL}.\vec{n}&=6\times (-4)+3\times (-2)+(-10)\times (-3)
    &=-24-6+30\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteur non colinéaires (puisqu’orthogonaux) du plan $(JKL)$.
    $\vec{n}$ est par conséquent un vecteur normal au plan $(JKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(JKL)$ est donc de la forme $6x+3y-10z+d=0$.
    Le point $J(2;0;1)$ appartient au plan $(JKL)$.
    Par conséquent $12+0-10+d=0 \ssi d=-2$
    Une équation cartésienne du plan $(JKL)$ est $6x+3y-10z-2=0$.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $\Delta$.
    Une représentation paramétrique de $\Delta$ est donc $\begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\end{cases} \qquad ,t\in \R$.
    $\quad$
    b. On résout le système :
    $\begin{align*} \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6x+3y-10z-2=0\end{cases}&\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6(10+6t)+3(9+3t)-10(-6-10t)-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\60+36t+27+9t+60+100t-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\145t+145=0\end{cases}\\
    &\ssi \begin{cases}t=-1\\ x=4\\y=6\\z=4\end{cases}\end{align*}$
    Ainsi $H$ a pour coordonnées $(4;6;4)$.
    $\quad$
    c. $\vect{HT}\begin{pmatrix} 6\\3\\-10\end{pmatrix}$
    Donc
    $\begin{align*} HT&=\sqrt{6^2+3^2+(-10)^2} \\
    &=\sqrt{145}\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\mathscr{A}\times HT \\
    &=\dfrac{1}{3}\times \dfrac{145}{2}\times \sqrt{145}\\
    &=\dfrac{145}{6} \text{ cm}^3\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. Soit $x\in \R$
    $\begin{align*} 1-\dfrac{1-\e^x}{1+\e^x}&=\dfrac{1+\e^x-1+\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{\e^x\left(\e^{-x}+1\right)} \\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Affirmation 1 vraie
    $\quad$
  2. $\quad$
    $\begin{align*} g(x)=\dfrac{1}{2} &\ssi \dfrac{\e^x}{\e^x+1}=\dfrac{1}{2} \\
    &\ssi 2\e^x=\e^x+1 \\
    &\ssi \e^x=1 \\
    &\ssi x=0\end{align*}$
    L’équation $g(x)=\dfrac{1}{2}$ admet une unique solution : $0$.
    Affirmation 2 vraie
    $\quad$
  3. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=2x\e^{-x}-x^2\e^{-x} \\
    &=\left(2x-x^2\right)\e^{-x} \\
    &=x(2-x)\e^{-x}\end{align*}$
    Si l’axe des abscisses est tangent à la courbe $C$ en $A\left(x_A;y_A\right)$ alors $f’\left(x_A\right)=0$.
    Or $f'(x)=0 \ssi x(2-x)=0$ car la fonction exponentielle est strictement positive.
    $x(2-x)=0 \ssi x=0$ ou $x=2$.
    Cependant $f(0)=0$ et $f(2)=4\e^{-2}\neq 0$. Le point de coordonnées $(0;0)$ appartient à l’axe des abscisses mais le point de coordonnées $\left(2;4\e^{-2}\right)$ n’appartient pas à cet axe.
    L’axe des abscisses est tangent à la courbe $C$ qu’en l’origine du repère.
    Affirmation 3 vraie
    $\quad$
  4. La fonction $h$ est deux fois dérivable sur $\R$ en tant que produit de fonctions deux fois dérivables.
    Soit $x\in \R$
    $\begin{align*} h'(x)&=\e^x\left(1-x^2\right)-2x\e^x \\
    &=\e^x\left(-x^2-2x+1\right)\end{align*}$
    $\begin{align*} h\dsec(x)&=\e^x\left(-x^2-2x+1\right)+\e^{-x}(-2x-2)\\
    &=\e^x\left(-x^2-2x+1-2x-2\right) \\
    &=\e^x\left(-x^2-4x-1\right)\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$. Le signe de $h\dsec(x)$ ne dépend donc que de celui de $-x^2-4x-1$.
    Le discriminant de ce polynôme du second degré est $\Delta=12>0$.
    Ainsi l’équation $-x^2-4x-1=0$ admet $2$ solutions distinctes et $h\dsec(x)$ change deux fois de signe en s’annulant.
    La courbe représentative de la fonction $h$ admet donc deux points d’inflexion.
    Affirmation 4 fausse
    $\quad$
  5. Soit $x>0$. $\dfrac{\e^x}{\e^x+x}=\dfrac{1}{1+\dfrac{x}{\e^x}}$
    Or, par croissances comparées $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    Par conséquent $\lim\limits_{x\to +\infty} \dfrac{1}{1+\dfrac{x}{\e^x}}=1$
    Affirmation 5 fausse
    $\quad$
  6. $\quad$
    $\begin{align*} 1+\e^{2x}\pg 2\e^x &\ssi \left(\e^x\right)^2-2\e^x+1 \pg 0\\
    &\ssi \left(\e^x-1\right)^2 \pg 0\end{align*}$
    Cette dernière inégalité est vraie pour tout réel $x$.
    Affirmation 6 vraie
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Chaque chaque jour où il travaille, Paul doit se rendre à la gare pour rejoindre son lieu de travail en train. Pour cela, il prend son vélo deux fois sur trois et, si il ne prend pas son vélo, il prend sa voiture.

  1. lorsqu’il prend son vélo pour rejoindre la gare, Paul ne rate le train qu’une fois sur $50$ alors que, lorsqu’il prend sa voiture pour rejoindre la gare Paul rate son train une fois sur $10$.
    On considère une journée au hasard lors de laquelle Paul sera à la gare pour prendre le train qui le conduira au travail.
    On note :
    • $V$ l’évènement « Paul prend son vélo pour rejoindre la gare »;
    • $R$ l’évènement « Paul rate son train ».
    a. Faire un arbre pondéré résumant la situation.
    $\quad$
    b. Montrer que la probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. Paul a raté son train. Déterminer la valeur exacte de la probabilité qu’il ait pris son vélo pour rejoindre la gare.
    $\quad$
  2. On choisit au hasard un mois pendant lequel Paul s’est rendu $20$ jours à la gare pour rejoindre son lieu de travail selon les modalités décrites en préambule.
    On suppose que, pour chacun de ces $20$ jours, le choix entre le vélo et la voiture est indépendant des choix des autres jours.
    On note $X$ la variable aléatoire donnant le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    a. Déterminer la loi suivie par la variable aléatoire $X$. Préciser ses paramètres.
    $\quad$
    b. Quelle est la probabilité que Paul prenne son vélo exactement 10 jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    c. Quelle est la probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    d. En moyenne, combien de jours sur une période choisie au hasard de $20$ jours pour se rendre à la gare, Paul prend-il son vélo ? On arrondira la réponse à l’entier.
    $\quad$
  3. Dans le cas où Paul se rend à la gare en voiture, on note $T$ la variable aléatoire donnant le temps de trajet nécessaire pour se rendre à la gare. La durée du trajet est donnée en minutes, arrondie à la minute. La loi de probabilité de $T$ est donnée par le tableau ci-dessous :
    $\begin{array}{|l|c|c|c|c|c|c|c|c|c|}
    \hline
    k\text{ (en minutes)}&10&11&12&13&14&15&16&17&18\\
    \hline
    P(T=k)&0,14&0,13&0,13&0,12&0,12&0,11&0,10&0,08&0,07\\
    \hline
    \end{array}$
    Déterminer l’espérance de la variable aléatoire $T$ et interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites

Dans cet exercice, on considère la suite $\left(T_n\right)$ définie par :
$$T0 = 180 \text{ et, pour tout entier naturel }n,~ T_{n+1} = 0,955T_n +0,9$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$, $T_n > 20$.
    $\quad$
    b. Vérifier que pour tout entier naturel $n$, $T_{n+1}-T_n = −0,045\left(T_n-20\right))$. En déduire le sens de
    variation de la suite $\left(T_n\right)$.
    $\quad$
    c. Conclure de ce qui précède que la suite $\left(T_n\right)$ est convergente. Justifier.
    $\quad$
  2. Pour tout entier naturel $n$, on pose : $u_n = T_n-20$.
    a. Montrer que la suite $\left(u_n\right)$ est une suite géométrique dont on précisera la raison.
    $\quad$
    b. En déduire que pour tout entier naturel $n$, $T_n = 20+160×0,955^n$.
    $\quad$
    c. Calculer la limite de la suite $\left(T_n\right)$.
    $\quad$
    d. Résoudre l’inéquation $T_n\pp 120$ d’inconnue $n$ entier naturel.
    $\quad$
  3. Dans cette partie, on s’intéresse à l’évolution de la température au centre d’un gâteau après sa sortie du four.
    On considère qu’à la sortie du four, la température au centre du gâteau est de $180$° C et celle de l’air ambiant de $20$° C.
    La loi de refroidissement de Newton permet de modéliser la température au centre du gâteau par la suite précédente $\left(T_n\right)$. Plus précisément, $T_n$ représente la température au centre du gâteau, exprimée en degré Celsius, n minutes après sa sortie du four.
    a. Expliquer pourquoi la limite de la suite $\left(T_n\right)$ déterminée à la question 2. c. était prévisible dans le contexte de l’exercice.
    $\quad$
    b. On considère la fonction Python ci-dessous :
    $$\begin{array}{|l|}
    \hline
    \text{def temp(x):}\\
    \quad \text{T = 180} \\
    \quad \text{n = 0}\\
    \quad \text{while T > x:} \\
    \qquad \text{T = 0.955 * T + 0.9}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner le résultat obtenu en exécutant la commande $\texttt{temp(120)}$.
    Interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Dans l’espace muni d’un repère orthonormé $\Oijk$ d’unité $1$ cm, on considère les points suivants :
$$J(2 ; 0 ; 1),~~ K(1 ; 2 ; 1) \text{ et } L(−2 ; −2 ; −2)$$

  1. a. Montrer que le triangle $JKL$ est rectangle en $J$.
    $\quad$
    b. Calculer la valeur exacte de l’aire du triangle $JKL$ en cm$^2$.
    $\quad$
    c. Déterminer une valeur approchée au dixième près de l’angle géométrique $\widehat{JKL}.
    $\quad$
  2. a. Démontrer que le vecteur $\vec{n}$ de coordonnées$\begin{pmatrix}6\\3\\-10\end{pmatrix}$ est un vecteur normal au plan $(JKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(JKL)$.

$\quad$
Dans la suite, $T$ désigne le point de coordonnées $(10 ; 9 ; −6)$.

  1. a. Déterminer une représentation paramétrique de la droite $\Delta$ orthogonale au plan $(JKL)$ et passant par $T$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $T$ sur le plan $(JKL)$.
    $\quad$
    c. On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{B}\times h \text{où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur correspondante}$$
    Calculer la valeur exacte du volume du tétraèdre $JKLT$ en cm$^3$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonction exponentielle

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Justifier chaque réponse.

  1. Affirmation 1 : Pour tout réel $x$ : $1-\dfrac{1-\e^x}{1+\e^x}=\dfrac{2}{1+\e^{-x}}$.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par $g(x) =
    \dfrac{\e^x}{\e^x+1}$.
    Affirmation 2 : L’équation $g(x) = \dfrac{1}{2}$ admet une unique solution dans $\R$.
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par $f(x) = x^2\e^{-x}$ et on note $\mathscr{C}$ sa courbe dans un repère orthonormé.
    Affirmation 3 : L’axe des abscisses est tangent à la courbe $\mathscr{C}$ en un seul point.
    $\quad$
  4. On considère la fonction $h$ définie sur $\R$ par $h(x)=\e^x\left(1-x^2\right)$.
    Affirmation 4 : Dans le plan muni d’un repère orthonormé, la courbe représentative de la fonction $h$ n’admet pas de point d’inflexion.
    $\quad$
  5. Affirmation 5 : $\lim\limits_{x\to +\infty} \dfrac{\e^x}{\e^x+x}=0$.
    $\quad$
  6. Affirmation 6 : Pour tout réel $x$, $1+\e^{2x}\pg 2\e^x$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 12 mai 2022

Centres étrangers – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\dfrac{1\times\e^x-x\e^x}{\left(\e^x\right)^2} \\
    &=\dfrac{(1-x)\e^x}{\e^{2x}} \\
    &=\dfrac{1-x}{\e^x} \\
    &=(1-x)\e^{-x}\end{align*}$
    Réponse C
    $\quad$
  2. La fonction $f\dsec$ semble donc strictement positive sur $]-3;-1[$ et strictement négative sur $]-1;1[$.
    La fonction $f’$ semble donc croissante sur $[-3;-1]$ et strictement décroissante sur $[-1;1]$.
    Ainsi $f’$ admet un maximum en $x=-1$.
    Réponse D
    $\quad$
  3. On considère la fonction $F$ définie sur $\R$ par $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$.
    Elle est dérivable sur $\R$ en tant que produit et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$
    $\begin{align*} F'(x)&=-\dfrac{1}{2}\left(2x\e^{-x^2}+\left(x^2+1\right)\times (-2x)\e^{-x^2}\right)\\
    &=-\dfrac{1}{2}\left(2x\e^{-x^2}-2x^3\e^{-x^2}-2x\e^{-x^2}\right) \\
    &=-\dfrac{1}{2}\times \left(-2x^3\right) \e^{-x^2}\\
    &=f(x)\end{align*}$
    Réponse C
    $\quad$
  4. Pour tout réel $x$ on a
    $\begin{align*} \dfrac{\e^x+1}{\e^x-1}&=\dfrac{\e^x\left(1+\e^{-x}\right)}{\e^x\left(1-\e^{-x}\right)} \\
    &=\dfrac{1+\e^{-x}}{1-\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}=1$.
    Réponse B
    $\quad$
  5. Une primitive de la fonction $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{2x+1}+K$
    $\begin{align*} F(0)=1&\ssi \dfrac{1}{2}\e+K=1 \\
    &\ssi K=1-\dfrac{1}{2}\e\end{align*}$
    Donc, pour tout réel $x$, $F(x)=\dfrac{1}{2}\e^{2x+1}+1-\dfrac{1}{2}\e$.
    Réponse C
    $\quad$
  6. La fonction $f$ semble concave sur $[-2;1]$ et convexe sur $[1;4]$.
    Par conséquent $f\dsec(x)$ est négatif sur $[-2;1]$ et positif sur $[1;4]$ en ne s’annulant qu’en $1$.
    Réponse A
    $\quad$

 

Ex 2

Exercice 2

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=1$.
    $\quad$
    $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} x\ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. a. Pour tout réel $x$ strictement positif,
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x} \\
    &=\ln(x)+1\end{align*}$
    $\quad$
    b. $\ln(x)+1=0 \ssi \ln(x)=-1 \ssi x=\e^{-1}$
    $\ln(x)+1>0\ssi \ln(x)>-1 \ssi x>\e^{-1}$
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. La fonction $f$ est strictement décroissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left]0;\e^{-1}\right]$ on a $0<1-\e^{-1}\pp f(x) <1$.
    $f(1)=1$.
    La fonction $f$ est strictement croissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left[\e^{-1};1\right[$ on a $0<1-\e^{-1}\pp f(x) < 1$.
    Ainsi, pour tout $x\in [0;1]$ on a $0<f(x)<1$.
    $\quad$
  3. a. $f'(1)=1$ et $f(1)=1$
    Une équation de $(T)$ est donc $y=1\times (x-1)+1$ soit $y=x$.
    $\quad$
    b. La fonction $f’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    c. La courbe $C_f$ est donc au-dessus de toutes ses tangentes en particulier au-dessus de $T$.
    Donc, pour tout réel $x$ strictement positif, $f(x)\pg x$.
    $\quad$
  4. a. Pour tout entier naturel $n$ on pose $P(n):~0<u_n<1$.
    Initialisation : $u_0\in ]0;1[$ par définition. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    On a $0<u_n<1$ donc, d’après la question 2.c., $0<f\left(u_n\right)<1$ soit $0<u_{n+1}<1$.
    $P(n+1)$ est donc vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $0<u_n<1$.
    $\quad$
    b. Soit $n\in \N$
    D’après la question 3.c. on a $f\left(u_n\right)\pg u_n$ soit $u_{n+1}\pg u_n$.
    La suite $\left(u_n\right)$ est donc croissante.
    $\quad$
    c. La suite $\left(un\right)$ est croissante et majorée par $1$. Elle est donc convergente.
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $\vect{AB}\begin{pmatrix}3\\3\\3\end{pmatrix}$, $\vect{AC}\begin{pmatrix}3\\0\\-3\end{pmatrix}$ et $\vect{AD}\begin{pmatrix}-3\\6\\-3\end{pmatrix}$
    $A$, $B$, $C$ et $D$ sont coplanaires si, et seulement si, il existe deux réels $x$ et $y$ tels que :
    $\begin{align*} \vect{AD}=x\vect{AB}+y\vect{AC}&\ssi \begin{cases} 3x+3y&=-3\\3x&=6\\3x-3y&=-3\end{cases} \\
    &\ssi \begin{cases} x+y&=-3\\x&=2\\x-y&=-1\end{cases} \\
    &\ssi \begin{cases} x=2\\y=-5\\y=3\end{cases}\end{align*}$
    Les deux dernières lignes du système sont incompatibles.
    Les points $A$, $B$, $C$ et $D$ ne sont donc pas coplanaires.
    $\quad$
  2. a.
    $\begin{align*} \vect{AB}.\vect{AC}&=3\times 3+3\times 0+3\times (-3) \\
    &=9+0-9\\
    &=0\end{align*}$
    Ces deux vecteurs sont orthogonaux.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b.
    $\begin{align*} \vect{AD}.\vect{AB}&=-3\times 3+6\times 3+(-3)\times 3 \\
    &=-9+18-9 \\
    &=0\end{align*}$
    $\begin{align*} \vect{AD}.\vect{AC}&=-3\times 3+6\times 0+(-3)\times (-3) \\
    &=-9+0+9 \\
    &=0\end{align*}$
    Le vecteur $\vect{AD}$ est donc orthogonal à deux vecteurs non colinéaires (ils sont orthogonaux d’après la question précédente) du plan $(ABC)$.
    La droite $(AD)$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c.
    $\begin{align*} AD&=\sqrt{(-3)^2+6^2+(-3)^2} \\
    &=\sqrt{9+36+9} \\
    &=\sqrt{54}\end{align*}$
    $\begin{align*} AB&=\sqrt{3^2+3^2+3^2} \\
    &=\sqrt{9+9+9} \\
    &=\sqrt{27}\end{align*}$
    $\begin{align*} AC&=\sqrt{3^2+0^2+(-3)^2} \\
    &=\sqrt{9+0+9} \\
    &=\sqrt{18}\end{align*}$
    L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2} \\
    &=\dfrac{\sqrt{27}\times \sqrt{18}}{2}\\
    &=\dfrac{9\sqrt{6}}{2}\end{align*}$
    Par conséquent le volume du tétraèdre $ABCD$ est
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times AD\times \mathscr{A} \\
    &=\dfrac{1}{3}\times \sqrt{54}\times \dfrac{9\sqrt{6}}{2}\\
    &=27\end{align*}$
    $\quad$
  3. a. $\vect{BH}\begin{pmatrix}-1\\-1\\-4\end{pmatrix}$, $\vect{BC}\begin{pmatrix}0\\-3\\-6\end{pmatrix}$ et $\vect{BD}\begin{pmatrix}-6\\3\\-6\end{pmatrix}$
    $\begin{align*} \vect{BH}=\alpha\vect{BC}+\beta\vect{BD}&\ssi \begin{cases} -6\beta&=-1 \\
    -3\alpha+3\beta&=-1\\
    -6\alpha-6\beta&=-4\end{cases} \\
    &\ssi \begin{cases} \beta=\dfrac{1}{6}\\\alpha=\dfrac{1}{2}\end{cases}\end{align*}$
    Par conséquent $\vect{BH}=\dfrac{1}{2}\vect{BC}+\dfrac{1}{6}\vect{BD}$.
    $\quad$
    b. $\vect{AH}\begin{pmatrix}2\\2\\-1\end{pmatrix}$
    $\begin{align*} \vect{AH}.\vect{BC}&=2\times 0+2\times (-3)+(-1)\times (-6) \\
    &=0\end{align*}$
    $\begin{align*} \vect{AH}.\vect{BD}&=2\times (-6)+2\times 3+(-1)\times (-6) \\
    &=0\end{align*}$
    Le vecteur $\vect{AH}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(BCD)$.
    C’est donc un vecteur normal à ce plan.
    D’après la question précédente, $H$ appartient au plan $(BCD)$.
    Donc $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c.
    $\begin{align*} AH&=\sqrt{2^2+2^2+(-1)^2} \\
    &=\sqrt{9} \\
    &=3\end{align*}$
    La distance du point $A$ au plan $(BCD)$ est égale à $3$ unités de longueur.
    $\quad$

Ex 4

Exercice 4

  1. a. On appelle :
    $\bullet ~~N_i$ l’événement « le jeton tiré lors du $i$-ème tirage est noir » ;
    $\bullet ~~B_i$ l’événement « le jeton tiré lors du $i$-ème tirage est blanc ».
    On obtient donc l’arbre pondéré suivant :
    $ \quad$
    $\quad$
    b. La probabilité de perdre $9$ € sur une partie est égale à :
    $\begin{align*} P\left(B_1\cap B_2\right)&=P\left(B_1\right)\times P_{B_1}\left(B_2\right) \\
    &=\dfrac{3}{5}\times \dfrac{3}{5} \\
    &=\dfrac{9}{5}\end{align*}$
    $\quad$
  2. a. À chaque tirage, la probabilité de tirer un jeton noir vaut $\dfrac{3}{N+3}$ et la probabilité de tirer un jeton blanc vaut $\dfrac{N}{N+3}$.
    La probabilité de tirer deux jetons blancs est égale à $\left(\dfrac{3}{N+3}\right)^2$.
    La probabilité de tirer deux jetons noirs est égale à $\left(\dfrac{N}{N+3}\right)^2$.
    Par conséquent la probabilité de tirer deux jetons de couleurs différentes est égale à :
    $\begin{align*} p&=1-\left(\dfrac{3}{N+3}\right)^2-\left(\dfrac{N}{N+3}\right)^2 \\
    &=1-\dfrac{9}{(N+3)^2}-\dfrac{N^2}{(N+3)^2} \\
    &=\dfrac{(N+3)^2-9-N^2}{(N+3)^2} \\
    &=\dfrac{N^2+6N+9-9-N^2}{(N+3)^2} \\
    &=\dfrac{6N}{(N+3)^2}\end{align*}$
    On obtient ainsi la loi de probabilité suivante :
    $\begin{array}{|c|c|c|c|}
    \hline
    x&-9&-1&5\\
    \hline
    P(X=x)&\dfrac{9}{(N+3)^2}&\dfrac{N^2}{(N+3)^2}&\dfrac{6N}{(N+3)^2}\\
    \hline
    \end{array}$
    $\quad$
    b. Le discriminant de $-x^2+30x-81$ est $\Delta=576>0$.
    Les racines de $-x^2+3x-81$ sont donc $x_1=\dfrac{-30-\sqrt{576}}{-2}=27$ et $x_1=\dfrac{-30+\sqrt{576}}{-2}=3$.
    Le coefficient principal du polynôme du second degré est $a=-1<0$.
    Par conséquent l’ensemble solution de $-x^2+3x-81>0$ est $]3;27[$.
    $\quad$
    c. Le jeu est favorable au joueur si, et seulement si, l’espérance de $X$ est strictement positive.
    $\begin{align*} E(X)>0&\ssi -9\times \dfrac{9}{(N+3)^2}-1\times \dfrac{N^2}{(N+3)^2}+5\times \dfrac{6N}{(N+3)^2}>0 \\
    &\ssi -81-N^2+30N>0\end{align*}$
    D’après la question précédente, le jeu est favorable au joueur si, et seulement si, $N$ est un entier naturel compris entre $4$ et $26$, tous les deux inclus.
    $\quad$
    d. On considère la fonction $g$ définie sur $[0;+\infty[$ par $g(x)=\dfrac{-x^2+30x-81}{(x+3)^2}$.
    Elle est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in[0;+\infty[$ on a
    $\begin{align*} g'(x)&=\dfrac{(-2x+30)(x+3)^2-2(x+3)\left(-x^2+30x-81\right)}{(x+3)^4} \\
    &=\dfrac{(-2x+30)(x+3)-2\left(-x^2+30x-81\right)}{(x+3)^3} \\
    &=\dfrac{-2x^2-6x+30x+90+2x^2-60x+162}{(x+3)^3}\\
    &=\dfrac{-36x+252}{(x+3)^3}\end{align*}$
    $g'(x)$ est donc du signe de $-36x+252$ sur $[0;+\infty[$.
    Or $-36x+252>0\ssi -36x>-252 \ssi x<7$.
    Par conséquent $g$ est strictement croissante sur $[0;7]$ et strictement décroissante sur $[7;+\infty[$.
    Elle atteint donc son maximum pour $x=7$.
    Or $E(X)=g(N)$ et $7\in [4;26]$.
    Le gain moyen est donc maximal s’il y a $7$ jetons noirs.
    $\quad$
  3. $N=7$ donc $P(X=5)=0,42$.
    On répète $10$ fois de façons indépendantes la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire comptant le nombre de joueur ayant gagné $5$ euros.
    $Y$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,42$.
    $\begin{align*} P(Y\pg 1)&=1-P(Y=0) \\
    &=1-(1-0,42)^{10} \\
    &=1-0,58^{10}\\
    &\approx 0,996\end{align*}$
    La probabilité d’avoir au moins un joueur gagnant $5$ euros est environ égale à $0,996$.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction exponentielle

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question en rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. Soit $f$ la fonction définie sur $\R$ par $$f(x)=\dfrac{x}{\e^x}$$
    On suppose que $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. $f'(x)=\e^{-x}$
    b. $f'(x)=x\e^{-x}$
    c. $f'(x)=(1-x)\e^{-x}$
    d. $f'(x)=(1+x)\e^{-x}$
    $\quad$
  2. Soit $f $ une fonction deux fois dérivable sur l’intervalle $[-3;1]$. On donne ci-dessous la représentation graphique de sa fonction dérivée seconde $f\dsec$.
    On peut alors affirmer que :
    a. La fonction $f$ est convexe sur l’intervalle $[-1;1]$
    b. La fonction $f$ est concave sur l’intervalle $[-2;0]$
    c. La fonction $f’$ est décroissante sur l’intervalle $[-2;0]$
    d. La fonction $f’$ admet un maximum en $x=-1$
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par :
    Une primitive $F$ de la fonction $f$ est définie sur $\R$ par :
    a. $F(x)=-\dfrac{1}{6}\left(x^3+1\right)\e^{-x^2}$
    b. $F(x)=-\dfrac{1}{4}x^4\e^{-x^2}$
    c. $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$
    d. $F(x)=x^2\left(3-2x^2\right)\e^{-x^2}$
    $\quad$
  4. Que vaut  $$\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}$$
    a $-1$
    b. $1$
    c. $+\infty$
    d. N’existe pas
    $\quad$
  5. On considère la fonction $f$ définie sur $\R$ par $f(x)=\e^{2x+1}$.
    La seule primitive de $F$ sur $\R$ de la fonction $f$ telle que $F(0)=1$ est la fonction :
    a. $x\mapsto 2\e^{2x+1}-2\e+1$
    b. $x\mapsto \e^{2x+1}-\e$
    c. $x\mapsto \dfrac{1}{2}\e^{2x+1}-\dfrac{1}{2}\e+1$
    d. $x\mapsto \e^{x^2+x}$
    $\quad$
  6. Dans un repère, on a tracé ci-dessous la courbe représentative d’une fonction $f$ définie et deux fois dérivable sur $[-2;4]$.
    a.
    b.

    c.

    d.

    $\quad$

$\quad$

Exercice 2     7 points

Thème : Fonction logarithme et suite

Soit $f$ la fonction définie sur l’intervalle $]0;+\infty[$ par $$f(x)=x\ln(x)+1$$

On note $C_f$ sa courbe représentative dans un repère du plan.

  1. Déterminer la limite de la fonction $f$ en $0$ ainsi que sa limite en $+\infty$.
    $\quad$
  2. a. On admet que $f$ est dérivable sur $]0;+\infty[$ et on notera $f’$ sa fonction dérivée.
    Montrer que pour tout réel $x$ strictement positif : $$f'(x)=1+\ln(x)$$
    $\quad$
    b. En déduire le tableau de variation de la fonction $f$ sur $]0;+\infty[$.
    On y fera figurer la valeur exacte de l’extremum de $f$ sur $]0;+\infty[$ et les limites.
    $\quad$
    c. Justifier que pour tout $x\in ]0;1[$, $f(x)\in ]0;1[$.
    $\quad$
  3. a. Déterminer une équation de la tangente $(T)$ à la courbe $C_f$ au point d’abscisse $1$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $]0;+\infty[$.
    $\quad$
    c. En déduire que pour tout réel $x$ strictement positif $$f(x)\pg x$$
    $\quad$
  4. On définit la suite $\left(u_n\right)$ par son premier terme $u_0$ élément de l’intervalle $]0;1[$ et pour tout entier naturel $n$ : $$u_{n+1}=f\left(u_n\right)$$
    a. Démontrer par récurrence que pour tout entier naturel $n$, on a $0<u_n<1$.
    $\quad$
    b. Déduire de la question 3c la croissance de la suite $\left(u_n\right)$.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $Oijk$.

On considère les points $A(3;-2;2)$, $B(6;1;5)$, $C(6;-2;-1)$ et $D(0;4;-1)$.

On rappelle que le volume d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{A}\times h$$
où $\mathscr{A}$ est l’aire de la base et $h$ la hauteur correspondante.

  1. Démontrer que les points $A$, $B$, $C$ et $D$ ne sont pas coplanaires.
    $\quad$
  2. a. Montrer que le triangle $ABC$ est rectangle.
    $\quad$
    b. Montrer que la droite $(AD)$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. En déduire le volume du tétraèdre $ABCD$.
    $\quad$
  3. On considère le point $H(5;0;1)$.
    a. Montrer qu’il existe des réels $\alpha$ et $\beta$ tels que $\vect{BH}=\alpha \vect{BC}+\beta\vect{BD}$.
    $\quad$
    b. Démontrer que $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c. En déduire ma distance du point $A$ au plan $(BCD)$.
    $\quad$
  4. Déduire des questions précédentes l’aire du triangle $BCD$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Une urne contient des jetons blancs et noirs tous indiscernables au toucher.

Un partie consiste à prélever au hasard successivement et avec remise deux jetons de cette urne.

On établit la règle de jeu suivante :

  • un joueur perd $9$ euros si les deux jetons tirés sont de couleur blanche;
  • un joueur perd $1$ euro si les deux jetons tirés sont de couleur noire;
  • un joueur gagne $5$ euros si les deux jetons tirés sont de couleurs différentes.
  1. On considère que l’urne contient $2$ jetons noirs et $3$ jetons blancs.
    a. Modéliser la situation à l’aide d’un arbre pondéré.
    $\quad$
    b. Calculer la probabilité de perdre $9$ € sur une partie.
    $\quad$
  2. On considère maintenant que l’urne contient $2$ jetons blancs et au moins deux jetons noirs mais on ne connait pas le nombre exact de jetons noirs. On appellera $N$ le nombre de jetons noirs.
    a. Soit $X$ la variable aléatoire donnant le gain du jeu pour une partie.
    Déterminer la loi de probabilité de cette variable aléatoire.
    $\quad$
    b. Résoudre l’inéquation pour $x$ réel : $$-x^2+30x-81>0$$
    $\quad$
    c. En utilisant le résultat de la question précédente, déterminer le nombre de jetons noirs que l’une doit contenir afin que ce jeu soit favorable au joueur.
    $\quad$
    d. Combien de jetons noirs le joueur doit-il demander afin d’obtenir un gain moyen maximal?
    $\quad$
  3. On observe $10$ joueurs qui tentent leur chance en effectuant une partie de ce jeu, indépendamment les uns des autres. On suppose que $7$ jetons noirs ont été placés dans l’urne (avec $3$ jetons blancs). Quelle est la probabilité d’avoir au moins $1$ joueur gagnant $5$ euros?
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Métropole – sujet 2 – 12 mai 2022

Métropole – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(M\cap T)&=P(M)\times P_M(T) \\
    &=0,7\times 0,97 \\
    &=0,679\end{align*}$
    La probabilité que le coyote soit malade et que son test soit positif est égale à $0,679$.
    $\quad$
  3. $\left(M,\conj{M}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales :
    $\begin{align*} P(T)&=P(M\cap T)+P\left(\conj{M}\cap T\right)
    &=0,679+P\left(\conj{M}\right)\times P_{\conj{M}}(T)\\
    &=0,679+0,3\times 0,05 \\
    &=0,694\end{align*}$
    La probabilité de $T$ est égale à $0,694$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_T(M)&=\dfrac{P(T\cap M)}{P(T)} \\
    &=\dfrac{0,679}{0,694} \\
    &\approx 0,978\end{align*}$
    La valeur prédictive positive du test est environ égale à $0,978$.
    $\quad$
  5. a. La valeur prédictive négative du test est la probabilité que le coyote ne soit pas malade sachant que son test est négatif.
    On veut calculer :
    $\begin{align*} P_{\conj{T}}\left(\conj{M}\right))&=\dfrac{P\left(\conj{T}\cap \conj{M}\right)}{P\left(\conj{T}\right)} \\
    &=\dfrac{0,3\times 0,95}{1-0,694} \\
    &\approx 0,931 \end{align*}$
    La valeur prédictive négative du test est environ égale à $0,931$.
    $\quad$
    b. La valeur prédictive positive du test est donc supérieure à la valeur prédictive négative du test.
    Il est donc plus probable que le coyote soit malade quand le test est positif qu’il ne soit pas malade quand le test est négatif.
    $\quad$

Partie B

  1. a. On répète $5$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de coyote ayant un test positif.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,694$.
    $\quad$
    b.
    $\begin{align*} P(X=1)&=\dbinom{5}{1}\times 0,694^1 \times (1-0,694)^{5-1} \\
    &\approx 0,03\end{align*}$.
    La probabilité que dans cet échantillon de cinq coyote capturés au hasard, un seul ait un test positif est environ égale à $0,03$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 4)&=P(X=4)+P(X=5) \\
    &=\dbinom{5}{4}\times 0,694^4 \times (1-0,694)^{1}+\dbinom{5}{5}\times 0,694^5 \\
    &\approx 0,516\\
    &>0,5\end{align*}$
    L’affirmation est donc vraie.
    $\quad$
  2. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. La variable aléatoire $Y$ compte le nombre de coyote ayant un test positif.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,694$.
    $\begin{align*} P(Y\pg 1)>0,99&\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01 \\
    &\ssi (1-0,694)^n<0,01 \\
    &\ssi 0,306^n <0,01 \\
    &\ssi n\ln(0,306)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,306)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,306)} \approx 3,89$
    Il faut donc capturer au moins $4$ coyotes pour que la probabilité qu’au moins l’un d’entre eux présente un test positif soit supérieur à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. La fonction $f’$ semble donc strictement positive sur $\left]-\infty;-\dfrac{1}{2}\right[$ et strictement négative sur $\left]-\dfrac{1}{2};+\infty\right[$.
    $f$ présente donc un maximum en $-\dfrac{1}{2}$.
    Réponse B
    $\quad$
  2. La fonction $f’$ semble strictement croissante sur $\left]-\infty;-\dfrac{3}{2}\right]$ et strictement décroissante sur $\left[-\dfrac{3}{2};+\infty\right[$.
    Par conséquent $f$ est convexe sur $\left]-\infty;-\dfrac{3}{2}\right]$.
    Réponse A
    $\quad$
  3. La fonction $f’$ semble strictement croissante sur $\left]-\infty;-\dfrac{3}{2}\right]$ et strictement décroissante sur $\left[-\dfrac{3}{2};+\infty\right[$.
    Par conséquent $f\dsec(x)>0$ sur $\left]-\infty;-\dfrac{3}{2}\right[$, $f\dsec{x)}<0$ sur $\left[-\dfrac{3}{2};+\infty\right[$ et $f\dsec(x)\left(-\dfrac{3}{2}\right)=0$.
    Réponse C
    $\quad$
  4. Si la suite $\left(v_n\right)$ est croissante alors, pour tout entier naturel $n$, on a :
    $u_0\pp v_0 \pp v_1 \pp \ldots \pp v_n$.
    Ainsi, la suite $\left(v_n\right)$ est minorée par $u_0$.
    Réponse B
    $\quad$
  5. Pour tout entier naturel $n$ non nul on a $u_n\pp u_{n+1}$ : la suite $\left(u_n\right)$ est donc croissante.
    Pour tout entier naturel non nul on a $\dfrac{1}{n}\pp 1$.
    Donc, pour tout entier naturel $n$ non nul on a $u_n\pp u_{n+1} \pp \dfrac{1}{n}\pp 1$.
    La suite $\left(u_n\right)$ est donc croissante et majorée par $1$.
    Par conséquent elle converge.
    Réponse B
    $\quad$
  6. Pour tout entier naturel $n$ on a $n<u_n<n+1$ donc $n+1<u_{n+1}<n+2$
    Par conséquent $n<u_n<n+1<u_{n+1}$.
    La suite $\left(u_n\right)$ est croissante.
    Réponse B
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $E$ a pour coordonnées $(0;0;1)$.
    $F$ a pour coordonnées $(1;0;1)$.
    $G$ a pour coordonnées $(1;1;1)$.
    $K$ a pour coordonnées $\left(1;\dfrac{1}{2};0\right)$.
    $\quad$
  2. $\vect{EG}\begin{pmatrix}1\\1\\0\end{pmatrix}$ donc
    $\begin{align*} \vect{EG}.\vec{n}&=1\times 2+1\times (-2)+0\times 1\\
    &=0\end{align*}$
    $\vect{EK}\begin{pmatrix}1\\\dfrac{1}{2}\\-1\end{pmatrix}$ donc
    $\begin{align*} \vect{EG}.\vec{n}&=1\times 2+\dfrac{1}{2}\times (-2)+(-1)\times 1\\
    &=0\end{align*}$
    Les vecteurs $\vect{EG}$ et $\vect{EK}$ ne sont pas colinéaires car une coordonnées de $\vect{EG}$ est nulle et ce n’est pas le cas pour $\vect{EK}$.
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(EGK)$.
    $\vec{n}\begin{pmatrix} 2\\-2\\1\end{pmatrix}$  est orthogonal au plan $(EGK)$.
    $\quad$
  3. Une équation cartésienne du plan $(EGK)$ est donc de la forme : $2x-2y+z+d=0$
    Or $E(0;0;1)$ appartient à ce plan.
    Donc $0-0+1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(EGK)$ est $2x-2y+z-1=0$.
    $\quad$
  4. $\vec{n}$ est un vecteur directeur de cette droite.
    Ainsi une représentation paramétrique de $(d)$ est $\begin{cases} x=1+2t\\y=-2t\\z=1+t\end{cases} \quad ,t\in \R$
    $\quad$
  5. $2\times \dfrac{5}{9}-2\times \dfrac{4}{9}+\dfrac{7}{9}-1=\dfrac{9}{9}-1=0$ : le point de coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$ appartient au plan $(EGK)$.
    Prenons $t=-\dfrac{2}{9}$ dans la représentation paramétrique de $(d)$.
    On obtient $x=\dfrac{5}{9}$, $y=\dfrac{4}{9}$ et $z=\dfrac{7}{9}$.
    Le point de coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$ appartient à la droite $(d)$.
    Donc $L$ a pour coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$.
    $\quad$
  6. $\vect{LF}\begin{pmatrix} \dfrac{4}{9}\\-\dfrac{4}{9}\\\dfrac{2}{9} \end{pmatrix}$
    $\begin{align*} LF&=\sqrt{\left(\dfrac{4}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2+\left(\dfrac{2}{9}\right)^2} \\
    &=\sqrt{\dfrac{16}{81}+\dfrac{16}{81}+\dfrac{4}{81}}\\
    &=\sqrt{\dfrac{36}{81}}\\
    &=\dfrac{6}{9} \\
    &=\dfrac{2}{3}\end{align*}$
    $\quad$
  7. Le triangle $EFG$ est rectangle en $F$.
    Son aire est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{EF\times FG}{2}\\
    &=\dfrac{1\times 1}{2}\\
    &=\dfrac{1}{2}\end{align*}$
    $\quad$
    Le volume du tétraèdre $EFGK$ est donc :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times BF\times \mathscr{A}  \qquad (*)\\
    &=\dfrac{1}{3} \times 1 \times \dfrac{1}{2} \\
    &=\dfrac{1}{6}\end{align*}$
    $(*)$ : la hauteur du tétraèdre issue de $K$ a une longueur égale à $BF$.
    $\quad$
  8. On appelle $\mathscr{B}$ l’aire du triangle $EGK$.
    On a donc également
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times LF\times \mathscr{B} &\ssi \dfrac{1}{6}=\dfrac{1}{3}\times \dfrac{2}{3}\times \mathscr{B}\\
    &\ssi \dfrac{1}{6}=\dfrac{2}{9}\times \mathscr{B} \\
    &\ssi \mathscr{B}=\dfrac{3}{4}\end{align*}$
    $\quad$
  9. En appliquant le théorème des milieux (ou la réciproque du théorème de Thalès suivi du théorème de Thalès) on montre que les longueurs des côtés du triangle $PMN$ sont égales à la moitié des longueurs des côtés du triangle $EGK$.
    Le triangle $PMN$ est donc une réduction du triangle $EGK$ de rapport $\dfrac{1}{2}$.
    Ainsi l’aire du triangle $PMN$ est
    $\begin{align*} \mathscr{B}’&=\left(\dfrac{1}{2}\right)^2\times \mathscr{B} \\
    &=\dfrac{1}{4}\times \dfrac{3}{4} \\
    &=\dfrac{3}{16}\end{align*}$
    Le volume du tetraèdre $FPMN$ est donc :
    $\begin{align*} \mathscr{V}’&=\dfrac{1}{3}\times LF\times \mathscr{B}’ \\
    &=\dfrac{1}{3}\times \dfrac{2}{3}\times \dfrac{3}{16} \\
    &=\dfrac{1}{24}\end{align*}$
    Remarque 1: Le triangle $PMN$ est inclus dans le plan $(EGK)$. La hauteur du tétraèdre $FPMN$ est donc la même que celle du tétraèdre $EFGK$.
    Remarque 2 : La rédaction du théorème des milieux est un peu rapide ici. Il faudrait, en toute rigueur, proposée une démarche plus détaillée mais je ne suis pas certain que ce soit réellement un attendu du sujet.
    $\quad$

Ex 4

Exercice 4

Partie A : études de deux fonctions

  1. a. D’après la limite des termes de plus haut degré $\lim\limits_{x\to +\infty} -x^2+13,7x=\lim\limits_{x\to +\infty} -x^2=-\infty$ donc $\lim\limits_{x\to +\infty} -f(x)=-\infty$
    $\quad$
    b. $f$ est une fonction polynôme du second degré dont le coefficient principal est $a=-0,06<0$.
    Elle atteint donc son maximum en $-\dfrac{b}{2a}=\dfrac{13,7}{2}=6,85$.
    La fonction $f$ est donc strictement croissante sur $[0;6,85]$ et strictement décroissante sur $[6,85;+\infty[$.
    $\quad$
    c.
    $\begin{align*} f(x)=0&\ssi 0,06\left(-x^2+13,7x\right)=0 \\
    &\ssi -x^2+13,7x=0 \\
    &\ssi x(-x+13,7)=0 \\
    &\ssi x=0 \text{ ou } -x+13,7=0\\
    &\ssi x=0 \text{ ou } x=13,7\end{align*}$
    Les solutions de l’équation $f(x)=0$ sont donc $0$ et $13,7$.
    $\quad$
  2. a. $\lim\limits_{x\to +\infty} 0,2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to +\infty} \e^{0,2x}=+\infty$
    $\lim\limits_{x\to +\infty} -0,15x+2,2=-\infty$
    Donc par produit $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
    b. Pour tout réel $x\in [0;+\infty[$
    $\begin{align*} g'(x)&=-0,15\e^{0,2x}+(-0,15x+2,2)\times 0,2\e^{0,2x} \\
    &=(-0,15-0,03x+0,44)\e^{0,2x} \\
    &=(-0,03x+0,29)\e^{0,2x}\end{align*}$
    $\quad$
    c. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $g'(x)$ ne dépend donc que de celui de $-0,03x+0,29$.
    $-0,03x+0,29=0 \ssi x=\dfrac{29}{3}$
    $-0,03x+0,29>0 \ssi -0,03x>-0,29 \ssi x<\dfrac{29}{3}$
    On obtient donc le tableau de variations suivant :
    $\quad$
    où $\alpha \approx 2,98$.
    $\quad$
    d. La fonction $g$ est strictement croissante sur $\left[0;\dfrac{29}{3}\right]$ et $g(0)=0$.
    L’équation $g(x)=0$ n’admet donc pas de solution non nulle sur cet intervalle.
    $\quad$
    La fonction $f$ est dérivable donc continue et strictement décroissante sur $\left[\dfrac{29}{3};+\infty\right[$.
    De plus $g\left(\dfrac{29}{3}\right)>0$ et $\lim\limits_{x\to +\infty} g(x)=-\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution sur $\left[\dfrac{29}{3};+\infty\right[$.
    $\quad$
    L’équation $g(x)=0$ admet donc une unique solution non nulle sur $[0;+\infty[$ dont une valeur approchée est, d’après la calculatrice, $13,72$.
    $\quad$

Partie B : trajectoires d’une balle de golf

  1. a. On a $f(6,85)\approx 2,815$
    La hauteur maximale atteinte par la balle est donc environ égale à $28,15$ yards.
    $\quad$
    b. Pour tout réel $x$ strictement positif on a $f'(x)=0,06(-2x+13,7)$
    Donc $f'(0)=0,06\times 13,7=0,822$.
    $\quad$
    c. $f'(0)$ est le coefficient directeur de la tangente à la courbe $C_f$ au point d’abscisse $0$.
    Ainsi $\tan(d)=0,822$. Donc $d\approx 39,4$°.
    L’angle de décollage de la balle est donc environ égal à $39,4$°.
    $\quad$
    d. La courbe $C_f$ est symétrique par rapport à la droite d’équation $y=6,85$. Donc les angles de décollage et d’atterrissage de la balle sont égaux.
    $\quad$
  2. a. $g$ atteint son maximum pour $x=\dfrac{29}{3}$ et $\alpha \approx 2,98$.
    La hauteur maximale de balle est donc environ égale à $29,8$ yards.
    $\quad$
    b. On a $g'(0)=0,29$ donc $\tan(d)=0,29$ et $d\approx 16,2$°.
    L’angle de décollage de la balle est donc environ égal à $16,2$°.
    $\quad$
    c. On a $g'(13,7)\approx -1,87$ donc $\tan(a)\approx 1,87$ et $a\approx 62$°
    L’angle d’atterrissage de la balle est donc environ égal à $62$°.
    $\quad$

Partie C

Aucun des deux modèles ne semble estimer correctement les angles de décollage.

Le second modèle semble mieux estimer la hauteur maximale.

Le second modèle semble mieux estimer l’angle d’atterrissage.

Les deux modèle estiment correctement la distance au point de chute.

Le second modèle semble par conséquent le plus adapté pour décrire la frappe de la balle par un joueur professionnel.

$\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Le coyote est un animal sauvage proche du loup, qui vit en Amérique du Nord.
Dans l’état d’Oklahoma, aux États-Unis, $70 \%$ des coyotes sont touchés par une maladie appelée ehrlichiose.

Il existe un test aidant à la détection de cette maladie. Lorsque ce test est appliqué à un coyote, son résultat est soit positif, soit négatif, et on sait que:

  • Si le coyote est malade, le test est positif dans $97 \%$ des cas.
  • Si le coyote n’est pas malade, le test est négatif dans $95\%$ des cas.

Partie A

Des vétérinaires capturent un coyote d’Oklahoma au hasard et lui font subir un test pour l’ehrlichiose.
On considère les événements suivants :

  • $M$ : « le coyote est malade » ;
  • $T$ : « le test du coyote est positif ».

On note $\conj{M}$ et $\conj{T}$ respectivement les événements contraires de $M$ et $T$.

  1. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation.
    $\quad$
  2. Déterminer la probabilité que le coyote soit malade et que son test soit positif.
    $\quad$
  3. Démontrer que la probabilité de $T$ est égale à $0,694$.
    $\quad$
  4. On appelle « valeur prédictive positive du test » la probabilité que le coyote soit effectivement malade sachant que son test est positif.
    Calculer la valeur prédictive positive du test. On arrondira le résultat au millième.
    $\quad$
  5. a. Par analogie avec la question précédente, proposer une définition de la « valeur prédictive négative du test », et calculer cette valeur en arrondissant au millième.
    $\quad$
    b. Comparer les valeurs prédictives positive et négative du test, et interpréter.
    $\quad$

Partie B

On rappelle que la probabilité qu’un coyote capturé au hasard présente un test positif est de $0,694$.

  1. Lorsqu’on capture au hasard cinq coyotes, on assimile ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire qui à un échantillon de cinq coyotes capturés au hasard associe le nombre de coyotes dans cet échantillon ayant un test positif.
    a. Quelle est la loi de probabilité suivie par $X$ ? Justifier et préciser ses paramètres.
    $\quad$
    b. Calculer la probabilité que dans un échantillon de cinq coyotes capturés au hasard, un seul ait un test positif. On arrondira le résultat au centième.
    $\quad$
    c. Un vétérinaire affirme qu’il y a plus d’une chance sur deux qu’au moins quatre coyotes sur cinq aient un test positif : cette affirmation est-elle vraie ? Justifier la réponse.
    $\quad$
  2. Pour tester des médicaments, les vétérinaires ont besoin de disposer d’un coyote présentant un test positif. Combien doivent-ils capturer de coyotes pour que la probabilité qu’au moins l’un d’entre eux présente un test positif soit supérieure à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thèmes : fonctions numériques et suites

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

Pour les questions 1 à 3 ci-dessous, on considère une fonction $f$ définie et deux fois dérivable sur $\R$.
La courbe de sa fonction dérivée $f’$ est donnée ci-dessous.
On admet que $f’$ admet un maximum en $-\dfrac{3}{2}$ et que sa courbe coupe l’axe des abscisses au point de coordonnées $\left(-\dfrac{1}{2};0\right)$.

Question 1 :
a.
La fonction $f$ admet un maximum en $-\dfrac{3}{2}$;
b. La fonction $f$ admet un maximum en $-\dfrac{1}{2}$;
c. La fonction $f$ admet un minimum en $-\dfrac{1}{2}$;
d. Au point d’abscisse $-1$, la courbe de la fonction $f$ admet une tangente horizontale.
$\quad$

Question 2 :
a.
La fonction $f$ est convexe sur $\left]-\infty;-\dfrac{3}{2}\right[$;
b. La fonction $f$ est convexe sur $\left]-\infty;-\dfrac{1}{2}\right[$;
c. La courbe $C_f$ représentant la fonction $f$ n’admet pas de point d’inflexion;
d. La fonction $f$ est concave sur $\left]-\infty;-\dfrac{1}{2}\right[$.
$\quad$

Question 3 :
La dérivée seconde $f\dsec$ de la fonction $f$ vérifie :
a. $f\dsec(x)\pg 0$ pour $x\in \left]-\infty;-\dfrac{1}{2}\right[$;
b. $f\dsec(x)\pg 0$ pour $x\in [-2;-1]$;
c. $f\dsec\left(-\dfrac{3}{2}\right)=0$;
d. $f\dsec(-3)=0$.
$\quad$

Question 4 : On considère trois suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$.
On sait que, pour tout entier naturel $n$, on a $u_n \pp v_n \pp w_n$ et de plus : $\lim\limits_{n\to +\infty} u_n=1$ et $\lim\limits_{n\to +\infty} w_n=3$.
On peut alors affirmer que :
a. La suite $\left(v_n\right)$ converge;
b. Si la suite $\left(u_n\right)$ est croissante alors la suite $\left(v_n\right)$ est minorée par $u_0$;
c. $1\pp v_0\pp 3$;
d. La suite $\left(v_n\right)$ diverge.
$\quad$

Question 5 :
On considère une suite $\left(u_n\right)$ telle que, pour tout entier naturel $n$ non nul : $u_n \pp u_{n+1} \pp \dfrac{1}{n}$.
On peut alors affirmer que :
a. La suite $\left(u_n\right)$ diverge;
b. La suite $\left(u_n\right)$ converge;
c. $\lim\limits_{n\to +\infty} u_n=0$;
d. $\lim\limits_{n\to +\infty} u_n=1$;
$\quad$

Question 6 :
On considère $\left(u_n\right)$ une suite réelle telle que pour tout entier naturel $n$, on a $n<u_n<n+1$.
On peut affirmer que :
a. Il existe un entier naturel $N$ tel que $u_N$ est un entier;
b. La suite $\left(u_n\right)$ est croissante;
c. La suite $\left(u_n\right)$ est convergente;
d. La suite $\left(u_n\right)$ n’a pas de limite.
$\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

On considère un cube $ABCDEFGH$ et on appelle $K$ le milieu su segment $[BC]$.
On se place dans le repère $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$ et on considère le tétraèdre $EFGK$.

On rappelle que le volume d’un tétraèdre est donné par : $$V=\dfrac{1}{3}\times \mathscr{B}\times h$$
où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.

  1. Préciser les coordonnées des points $E$, $F$, $G$ et $K$.
    $\quad$
  2. Montrer que le vecteur $\vec{n}\begin{pmatrix}2\\-2\\1\end{pmatrix}$ est orthogonal au plan $(EGK)$.
    $\quad$
  3. Démontrer que le plan $(EGK)$ admet pour équation cartésienne : $2x-2y+z-1=0$.
    $\quad$
  4. Déterminer une représentation paramétrique de la droite $(d)$ orthogonale au plan $(EGK)$ passant par $F$.
    $\quad$
  5. Montrer que le projeté orthogonal $L$ de $F$ sur le plan $(EGK)$ a pour coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$.
    $\quad$
  6. Justifier que la longueur $LF$ est égale à $\dfrac{2}{3}$.
    $\quad$
  7. Calculer l’aire du triangle $EFG$. En déduire que le volume du tétraèdre $EFGK$ est égal à $\dfrac{1}{6}$.
    $\quad$
  8. Déduire des questions précédentes l’aire du triangle $EGK$.
    $\quad$
  9. On considère les points $P$ milieu du segment $[EG]$, $M$ milieu du segment $[EK]$ et $N$ milieu du segment $[GK]$. Déterminer le volume du tétraèdre $FPMN$.
    $\quad$

$\quad$

Exercice 4     7 points

Thèmes : fonctions numériques, fonction exponentielle

Partie A : étude de deux fonctions

On considère les deux fonctions $f$ et $g$ définies sur l’intervalle $[0;+\infty[$ par : $$f(x)=0,06\left(-x^2+13,7x\right) \text{ et } g(x)=(-0,15x+2,2)\e^{0,2x}-2,2.$$
On admet que les fonctions $f$ et $g$ sont dérivables et on note $f’$ et $g’$ leurs fonctions dérivées respectives.

  1. On donne le tableau de variations complet de la fonction $f$ sur l’intervalle $[0;+\infty[$.
    a. Justifier la limite de $f$ en $+\infty$.
    $\quad$
    b. Justifier les variations de la fonction $f$.
    $\quad$
    c. Résoudre l’équation $f(x)=0$.
    $\quad$
  2. a. Déterminer la limite de $g$ en $+\infty$.
    $\quad$
    b. Démontrer que, pour tout réel $x$ appartenant à $[0;+\infty[$ on a : $g'(x)=(-0,03x+0,29)\e^{0,2x}$.
    $\quad$
    c. Étudier les variations de la fonction 𝑔 et dresser son tableau de variations sur $[0;+\infty[$.
    Préciser une valeur approchée à $10^{-2}$ près du maximum de $g$.
    $\quad$
    d. Montrer que l’équation $g(x)=0$ admet une unique solution non nulle et déterminer, à $10^{-2}$ près, une valeur approchée de cette solution.
    $\quad$

Partie B : trajectoires d’une balle de golf

Pour frapper la balle, un joueur de golf utilise un instrument appelé « club » de golf.
On souhaite exploiter les fonctions $f$ et $g$ étudiées en Partie A pour modéliser de deux façons différentes la trajectoire d’une balle de golf. On suppose que le terrain est parfaitement plat.

On admettra ici que $13,7$ est la valeur qui annule la fonction $f$ et une approximation de la valeur qui annule la fonction $g$.
On donne ci-dessous les représentations graphiques de  $f$ et $g$ sur l’intervalle $[0; 13,7]$.

Pour 𝑥 représentant la distance horizontale parcourue par la balle en dizaine de yards après la frappe, (avec $0\pp x\pp 13,7$), $f(x)$ (ou $g(x)$ selon le modèle) représente la hauteur correspondante de la balle par rapport au sol, en dizaine de yards ($1$ yard correspond à environ $0,914$ mètre).

On appelle « angle de décollage » de la balle, l’angle entre l’axe des abscisses et la tangente à la courbe ($C_f$ ou $C_g$ selon le modèle) en son point d’abscisse $0$. Une mesure de l’angle de décollage de la balle est un nombre réel $d$ tel que $\tan(d)$ est égal au coefficient directeur de cette tangente.
De même, on appelle « angle d’atterrissage » de la balle, l’angle entre l’axe des abscisses et la tangente à la courbe ($C_f$ ou $C_g$ selon le modèle) en son point d’abscisse $13,7$. Une mesure de l’angle d’atterrissage de la balle est un nombre réel $a$ tel que $\tan(a)$ est égal à l’opposé du coefficient directeur de cette tangente.
Tous les angles sont mesurés en degré.

  1. Première modélisation : on rappelle qu’ici, l’unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $f(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    a. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    $\quad$
    b. Vérifier que $f'(0) = 0,822$.
    $\quad$
    c. Donner une mesure en degré de l’angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    $\quad$
    d. Quelle propriété graphique de la courbe $C_f$ permet de justifier que les angles de décollage et d’atterrissage de la balle sont égaux ?
    $\quad$
  2. Seconde modélisation : on rappelle qu’ici, l’unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $g(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    a. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    On précise que $g'(0) = 0,29$ et $g'(13,7)\approx −1,87$.
    $\quad$
    b. Donner une mesure en degré de l’angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    $\quad$
    c. Justifier que $62$ est une valeur approchée, arrondie à l’unité près, d’une mesure en degré de l’angle d’atterrissage de la balle.
    $\quad$

Tableau : extrait d’une feuille de calcul donnant une mesure en degré d’un angle quand on connait sa tangente :

$\quad$

Partie C : interrogation des modèles

À partir d’un grand nombre d’observations des performances de joueurs professionnels, on a obtenu les résultats moyens suivants :

$\begin{array}{|c|c|c|c|}
\hline
\text{Angle de décollage en}&\text{Hauteur maximale en}&\text{Angle d’atterrissage en}&\text{Distance horizontale}\\
\text{degré}&\text{yard}&\text{degré}&\text{en yard au point de}\\
&&&\text{chute}\\
\hline
\boldsymbol{24}&\boldsymbol{32}&\boldsymbol{52}&\boldsymbol{137}\\
\hline
\end{array}$

Quel modèle, parmi les deux étudiés précédemment, semble le plus adapté pour décrire la frappe de la balle par un joueur professionnel? La réponse sera justifiée.

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 11 mai 2022

Centres étrangers – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $\quad$
    $\begin{align*} f(x)=2~022 &\ssi \ln\left(1+x^2\right)=2~022\\
    &\ssi 1+x^2=\e^{2~022} \\
    &\ssi x^2=\e^{2~022}-1 \end{align*}$
    Or $\e^{2~022}-1>0$
    Les solutions de l’équation $x^2=\e^{2~022}-1$ sont donc $\sqrt{\e^{2~022}-1}$ et $-\sqrt{\e^{2~022}-1}$.
    Réponse C
    $\quad$
  2. La fonction $g$ dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g'(x)&=\ln(x)+x\times \dfrac{1}{x}-2x \\
    &=\ln(x)+1-2x\end{align*}$
    La fonction $g’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g\dsec(x)&=\dfrac{1}{x}-2 \\
    &=\dfrac{1-2x}{x}\end{align*}$
    Sur $]0;+\infty[$, $g\dsec(x)$ ne dépend que du signe de $1-2x$.
    Or $1-2x>0\ssi -2x>-1 \ssi x<\dfrac{1}{2}$ et $1-2x=0 \ssi x=\dfrac{1}{2}$.
    Ainsi $g\dsec(x)$ s’annule en changeant de signes qu’une seule fois pour $x=\dfrac{1}{2}$.
    La courbe $C_g$ admet donc exactement un point d’inflexion sur $]0;+\infty[$.
    Réponse C
    $\quad$
  3. Pour tout réel $x\in ]-1;1[$ on a $f(x)=-\dfrac{1}{2}\times \dfrac{-2x}{1-x^2}$
    On reconnaît une dérivée de la forme $\dfrac{u’}{u}$ dont une primitive est $\ln(u)$ avec $u(x)=1-x^2$.
    Une primitive de $f$ est donc la fonction $g$ définie sur $]-1;1[$ par $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$.
    Réponse A
    $\quad$
  4. La fonction $\ln$ est définie sur $]0;+\infty[$.
    $-x^2-x+6$ a pour discriminant $\Delta = 25>0$.
    Les solutions de l’équation $-x^2-x+6=0$ sont $x_1=2$ et $x_2=-3$.
    Le coefficient principal est $a=-1<0$.
    Ainsi $-x^2-x+6>0$ sur $]-3;2[$.
    Réponse A
    $\quad$
  5. La fonction $f$ est dérivable sur $]0,5;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout réel $x\in ]0,5;+\infty[$ on a $f'(x)=-2x-4+\dfrac{6}{2x-1}$
    Par conséquent $f'(1)=4$ et $f(1)=-3$.
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est $y=4(x-1)-3$ soit $y=4x-7$.
    Réponse A
    $\quad$
  6. $x+3>0\ssi x>-3$ et $x+1>0\ssi x>-1$.
    L’inégalité n’est donc définie que sur $]-1;+\infty[$.
    $\begin{align*} \ln(x+3)<2\ln(x+1)&\Rightarrow \ln(x+3) <\ln\left((x+1)^2\right) \\
    &\Rightarrow x+3<(x+1)^2 \\
    &\Rightarrow w+3<x^2+2x+1\\
    &\Rightarrow x^2+x-2>0\end{align*}$
    Le discriminant est $\Delta=9>0$.
    Les solutions de $x^2+x-2=0$ sont donc $-2$ et $1$.
    Le coefficient principal est $a=1>0$ donc $x^2+x-2>0$ sur $]-\infty;-2[\cup]1;+\infty[$.
    Ainsi
    $\begin{align*} \mathscr{S}&=]-1;+\infty[ \cap \left(]-\infty;-2[\cup]1;+\infty[\right) \\
    &=]1;+\infty[\end{align*}$
    Réponse B
    $\quad$

Ex 2

Exercice 2

  1. Calcul d’un angle
    a.
    On a $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    $\dfrac{-3}{-2}=1,5$ et $\dfrac{-1}{2}=-0,5$. Or $1,5\neq -0,5$.
    Les deux vecteurs ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b.
    $\begin{align*} AB&=\sqrt{(-2)^2+2^2+(-2)^2} \\
    &=\sqrt{12} \\
    &=2\sqrt{3}\end{align*}$
    $\begin{align*} AC&=\sqrt{(-3)^2+(-1)^2+(-1)^2} \\
    &=\sqrt{11}\end{align*}$
    $\quad$
    c.
    $\begin{align*} \vect{AB}.\vect{AC}&=-2\times (-3)+2\times (-1)+(-2)\times (-1) \\
    &=6\end{align*}$
    $\quad$
    $\begin{align*} \vect{AB}.\vect{AC}=AB\times AC\times \cos\left(\widehat{BAC}\right) &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{\vect{AB}.\vect{AC}}{AB\times AC} \\
    &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{6}{2\sqrt{3}\times \sqrt{11}} \\
    &=\dfrac{3}{\sqrt{33}}\end{align*}$
    Par conséquent $\widehat{BAC}\approx 58,5$°
    $\quad$
  2. Calcul d’une aire
    a.
    $\vect{AB}$ est donc un vecteur normal au plan $P$
    Une équation de $P$ est donc de la forme $-2x+2y-2z+d=0$.
    $C(-1;-1;2)$ appartient à $P$. Donc $2-2-4+d=0 \ssi d=4$.
    Une équation cartésienne de $P$ est $-2x+2y-2z+4=0$ ou encore $-x+y-z+2=0$.
    $\quad$
    b. Une représentation paramétrique de la droite $(AB)$ est $\begin{cases} x=2-2t\\y=2t\\z=3-2t\end{cases}$.
    $\quad$
    c.
    $\begin{align*}\begin{cases} x=2-2t\\y=2t\\z=3-2t\\-x+y-z+2=0\end{cases} &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-(2-2t)+2t-(3-2t)+2=0\end{cases} \\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-2+2t+2t-3+2t+2=0\end{cases}\\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\6t =3\end{cases}\\
    &\ssi \begin{cases} x=\dfrac{1}{2}\\x=1\\y=1\\z=2\end{cases}\end{align*}$
    Le point $E$ a donc pour coordonnées $(1;1;2)$.
    $\quad$
    d. L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{1}{2}\times AB\times AC\times \sin\left(\widehat{ABC}\right) \\
    &=\dfrac{1}{2}\times 2\sqrt{3}\times \sqrt{11}\times \sin\left(\widehat{ABC}\right) \\
    &=\sqrt{33}\times \sin\left(\widehat{ABC}\right)\\
    &=2\sqrt{6}\\
    &\approx 4,899\end{align*}$
    $\quad$
    Remarque : Pour calculer la valeur exacte de $\sin\left(\widehat{ABC}\right)$ on peut utiliser la propriété suivante : pour tout réel $x$, $\sin^2x+\cos^2 x=1$, connaissant la valeur de $\cos\left(\widehat{ABC}\right)=\dfrac{3}{\sqrt{33}}$
    On a donc $\sin^2\left(\widehat{ABC}\right)+\dfrac{9}{33}=1$ soit $\sin^2\left(\widehat{ABC}\right)=\dfrac{8}{11}$.
    Or $\sin\left(\widehat{ABC}\right)>0$ (sinon l’aire est négative!) donc $\sin\left(\widehat{ABC}\right)=\dfrac{2\sqrt{2}}{\sqrt{11}}$
    $\quad$
  3. Calcul d’un volume
    a.
    $\vect{AF}(-1;-1;0)$ or $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    Par conséquent (après résolution d’un système éventuellement) $\vect{AF}=-\dfrac{1}{4}\vect{AB}+\dfrac{1}{2}\vect{AC}$.
    Ainsi, les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. $\vect{FD}(2;-2;-4)$.
    $\begin{align*} \vect{FD}.\vect{AB}&=2\times (-2)-2\times 2-4\times (-2) \\
    &=0\end{align*}$
    $\begin{align*} \vect{FD}.\vect{AC}&=2\times (-3)-2\times (-1)-4\times (-1) \\
    &=0\end{align*}$
    Le vecteur $\vect{FD}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    $(FD)$ est orthogonale au plan $(ABC)$.
    c.
    $\begin{align*} FD&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    Le volume de $ABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times FD\times \mathscr{A} \\
    &=8\end{align*}$
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. $\lim\limits_{x\to -\infty} \e^x=0$ et $\lim\limits_{x\to -\infty} -x=+\infty$ donc $\lim\limits_{x\to -\infty} h(x)=+\infty$
    Pour tout réel $x$, $h(x)=\e^x\left(1-\dfrac{x}{\e^x}\right)$. $\lim\limits_{x\to +\infty} \e^x=+\infty$ et par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$.
    Donc $\lim\limits_{x\to +\infty} h(x)=+\infty$
    $\quad$
  2. La fonction $h$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $h'(x)=\e^x-1$.
    Or $\e^x-1=0 \ssi x=0$ et $\e^x-1>0 \ssi x>0$.
    La fonction $h$ est donc strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;+\infty[$.
    On obtient alors le tableau de variations suivant :$\quad$
  3. La fonction $h$ est strictement croissante sur $[0;+\infty[$.
    Donc, pour tous réels $a$ et $b$ tels que $0\pp a\pp b$ on a $h(a)\pp h(b)$ c’est-à-dire $h(a)-h(b) \pp 0$.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $\R$ en tant que fonction exponentielle.
    Pour tout réel $x$ on a $f'(x)=\e^x$.
    $f(0)=1$ et $f'(0)=1$.
    Une équation de $T$ est donc $y=x+1$.
    $\quad$
  2. $\lim\limits_{n\to +\infty } \dfrac{1}{n}=0$ et $\lim\limits_{x\to 0} \e^x=1$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  3. a. Soit $n$ un entier naturel non nul.
    $\begin{align*} u_{n+1}-u_n&=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-1-\left(\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1\right) \\
    &=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-\exp\left(\dfrac{1}{n}\right)+\dfrac{1}{n} \\
    &=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ non nul on a $\dfrac{1}{n+1}<\dfrac{1}{n}$.
    Donc d’après la question A.3. $h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\pp 0$.
    Donc $u_{n+1}-u_n\pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  4. D’après le tableau de valeurs $u_n<10^{-2}$ à partir de $n=8$.
    C’est donc à partir de $n=8$ que l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

Ex 4

Exercice 4

  1. On obtient le tableau suivant :
    $\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&0,05&0,15&0,2\\
    \hline
    \conj{B}&0,05&0,75&0,8 \\
    \hline
    \text{Total}&0,1&0,9&1\\
    \hline
    \end{array}$
    $\quad$
  2. a. On veut calculer
    $\begin{align*} P(A\cup B)&=1-P\left(\conj{A}\cap \conj{B}\right) \\
    &=1-0,75 \\
    &=0,25\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour au moins un des deux traitements est donc égale à $0,25$.
    $\quad$
    b. On veut calculer $P(A\cap B)=0,05$.
    La probabilité qu’une paire de verres présente un défaut pour les deux traitements est donc égale à $0,05$.
    $\quad$
    c. $P(A)\times P(B)=0,02$ et $P(A\cap B)=0,05$.
    Donc $P(A)P(B)\neq P(A\cap B)$
    Les événements $A$ et $B$ ne sont pas indépendants.
    $\quad$
  3. On veut calculer
    $\begin{align*} P\left(A\cap \conj{B}\right)+P\left(B\cap \conj{A}\right) &=0,15+0,05 \\
    &=0,2\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour un seul des deux traitements est donc égale à $0,2$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_A(B)&=\dfrac{P(A\cap B)}{P(A)} \\
    &=\dfrac{0,05}{0,1} \\
    &=0,5\end{align*}$
    La probabilité qu’une paire de verres présente un défaut de traitement T2 sachant qu’elle présente un défaut de traitement T1 est égale à $0,5$.
    $\quad$

Partie B

  1. On répète indépendamment $50$ fois la même expérience de Bernoulli. $X$ compte le nombre de paires de verres qui présentent le défaut pour le traitement T1.
    Donc $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,1$.
    $\quad$
  2. On veut calculer
    $\begin{align*} P(X=10)&=\dbinom{50}{10}\times 0,1^{10} \times (1-0,1)^{50-10} \\
    &\approx 0,015\end{align*}$
    La probabilité qu’exactement $10$ paires de verres présentent ce défaut dans l’échantillon est environ égale à $0,015$.
    $\quad$
  3. L’espérance de $X$ est $E(X)=50\times 0,1=5$.
    Ainsi, en moyenne, on peut trouver $5$ paires de verres ayant ce défaut dans un échantillon de $50$ paires.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction logarithme

Cet exercice est un questionnaire d choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Les six questions sont indépendantes.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $f$ définie pour tout réel $x$ par f$f(x)=\ln\left(1+x^2\right)$.
    Sur $\R$, l’équation $f(x)=2~022$
    a. n’admet aucune solution.
    b. admet exactement une solution.
    c. admet exactement deux solutions.
    d. admet une infinité de solutions.
    $\quad$
  2. Soit la fonction $g$ définie pour tout réel $x$ strictement positif par : $$g(x) = x \ln(x)− x^2$$
    On note $\mathscr{C}_g$ sa courbe représentative dans un repère du plan.
    a. La fonction $g$ est convexe sur $]0 ; +\infty[$.
    b. La fonction $g$ est concave sur $]0 ; +\infty[$.
    c. La courbe $\mathscr{C}_g$ admet exactement un point
    d’inflexion sur $]0 ; +\infty[$.
    d. La courbe $\mathscr{C}_g$ admet exactement deux
    points d’inflexion sur $]0 ; +\infty[$.
    $\quad$
  3. On considère la fonction $f$ définie sur $]-1;1[$ par $$f(x)=\dfrac{x}{1-x^2}$$
    Une primitive de la fonction $f$ est la fonction $g$ définie sur l’intervalle $]-1;1[$ par :
    a. $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$
    b. $g(x)=\dfrac{1+x^2}{\left(1-x^2\right)^2}$
    c. $g(x)=\dfrac{x^2}{2\left(x-\dfrac{x^3}{3}\right)}$
    d. $g(x)=\dfrac{x^2}{2}\ln\left(1-x^2\right)$
    $\quad$
  4. La fonction $x\mapsto \ln\left(-x^2-x+6\right)$ est définie sur
    a. $]-3;2[$
    b. $]-\infty;6[$
    c. $]0;+\infty[$
    d. $]2;+\infty[$
    $\quad$
  5. On considère la fonction $f$ définie sur $]0,5;+\infty[$ par $$f(x)=x^2-4x+3\ln(2x-1)$$
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est :
    a. $y=4x-7$
    b. $y=2x-4$
    c. $y=-3(x-1)+4$
    d. $y=2x-1$
    $\quad$
  6. L’ensemble $\mathscr{S}$ des solutions dans $\R$ de l’inéquation $\ln(x+3)<2\ln(x+1)$ est :
    a. $\mathscr{S}=]-\infty;-2[\cup]1;+\infty[$
    b. $\mathscr{S}=]1;+\infty[$
    c. $\mathscr{S}=\emptyset$
    d. $\mathscr{S}=]-1;1[$
    $\quad$

$\quad$

Exercice 2     7 points

Thème : Géométrie dans l’espace

Dans l’espace, rapporté à un repère orthonormé $\Oijk$, on considère les points : $$A(2;0;3),~B(0;2;1),~C(-1;-1;2) \text{ et } D(3;-3;-1)$$

  1. Calcul d’un angle.
    a.
     Calculer les coordonnées des vecteurs $\vect{AB}$ et
    $\vect{AC}$ et en déduire que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b. Calculer les longueurs $AB$ et $AC$.
    $\quad$
    c. À l’aide du produit scalaire $\vect{AB}.\vect{AC}$, déterminer la valeur du cosinus de l’angle $\widehat{BAC}$ puis donner une valeur approchée de la mesure de l’angle $\widehat{BAC}$ au dixième de degré.
    $\quad$
  2. Calcul d’une aire.
    a.
    Déterminer une équation du plan $P$ passant par le point $C$ et perpendiculaire à la droite $(AB)$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(AB)$.
    $\quad$
    c. En déduire les coordonnées du projeté orthogonal $E$ du point $C$ sur la droite $(AB)$, c’est-à-dire du point d’intersection de la droite $(AB)$ et du plan $P$.
    $\quad$
    d. Calculer l’aire du triangle $ABC$.
    $\quad$
  3. Calcul d’un volume.
    a.
    Soit le point $F(1 ; −1 ; 3)$. Montrer que les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. Vérifier que la droite $(FD)$ est orthogonale au plan $(ABC)$.
    $\quad$
    c. Sachant que le volume d’un tétraèdre est égal au tiers de l’aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre $ABCD$.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonction exponentielle et suite

Partie A :

Soit $h$ la fonction définie sur $\R$ par $$h(x)=\e^x-x$$

  1. Déterminer les limites de $h$ en $-\infty$ et $+\infty$.
    $\quad$
  2. Étudier les variations de $h$ et dresser son tableau de variation.
    $\quad$
  3. En déduire que :
    si $a$ et $b$ sont deux réels tels que $0\pp a\pp b$ alors $h(a)-h(b)\pp 0$.
    $\quad$

Partie B :

Soit $f$ la fonction définie sur $\R$ par $$f(x)=\e^x$$

On note $C_f$ sa courbe représentative dans un repère $\Oij$.

  1. Déterminer une équation de la tangente $T$ à $C_f$ au point d’abscisse $0$.

Dans la suite de l’exercice on s’intéresse à l’écart entre $T$ et $C_f$ au voisinage de $0$. Cet écart est défini comme la différence des ordonnées des points de $T$ et $C_f$ de même abscisse.

On s’intéresse aux points d’abscisse $\dfrac{1}{n}$, avec $n$ entier naturel non nul.

On considère alors la suite $\left(u_n\right)$ définie pour tout entier naturel non nul $n$ par : $$u_n=\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1$$

  1. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$
  2. a. Démontrer que, pour tout entier naturel non nul $n$, $$u_{n+1}-u_n=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)$$
    où $h$ est la fonction définie à la partie A.
    $\quad$
    b. En déduire le sens de variation de la suite $\left(u_n\right)$.
    $\quad$
  3. Le tableau ci-dessous donne des valeurs approchées à $10^{-9}$ des premiers termes de la suite $\left(u_n\right)$.
    $$\begin{array}{|c|c|}
    \hline
    n &u_n \\ \hline
    1 &0,718281828\\ \hline
    2& 0,148721271\\ \hline
    3& 0,062279092 \\ \hline
    4& 0,034025417\\ \hline
    5& 0,021402758\\ \hline
    6& 0,014693746\\ \hline
    7& 0,010707852\\ \hline
    8& 0,008148453\\ \hline
    9& 0,006407958\\ \hline
    10& 0,005170918\\ \hline
    \end{array}$$
    Donner la plus petite valeur de l’entier naturel $n$ pour laquelle l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Les parties A et B peuvent être traitées de façon indépendante.

Au cours de la fabrication d’une paire de lunettes, la paire de verres doit subir deux traitements notés T1 et T2.

Partie A

On prélève au hasard une paire de verres dans la production.

On désigne par $A$ l’évènement : « la paire de verres présente un défaut pour le traitement T1 ».

On désigne par $B$ l’évènement : « la paire de verres présente un défaut pour le traitement T2 ».

On note respectivement $\conj{A}$ et $\conj{B}$ les évènements contraires de $A$ et $B$.

Une étude a montré que :

  •  la probabilité qu’une paire de verres présente un défaut pour le traitement T1 notée $P(A)$ est égale à $0,1$.
  • la probabilité qu’une paire de verres présente un défaut pour le traitement T2 notée $P(B)$ est égale à $0,2$.
  • la probabilité qu’une paire de verres ne présente aucun des deux défauts est $0,75$.
  1. Recopier et compléter le tableau suivant avec les probabilités correspondantes $$\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \conj{B}&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \text{Total}&\phantom{123}&\phantom{123}&1\\
    \hline
    \end{array}$$
    $\quad$
  2. a. Déterminer, en justifiant la réponse, la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour au moins un des deux traitements T1 ou T2.
    $\quad$
    b. Donner la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente deux défauts, un pour chaque traitement T1 et T2.
    $\quad$
    c. Les évènements A et B sont-ils indépendants ? Justifier la réponse.
    $\quad$
  3. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour un seul des deux traitements.
    $\quad$
  4. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour le traitement T2, sachant que cette paire de verres présente un défaut pour le traitement T1.
    $\quad$

Partie B

On prélève, au hasard, un échantillon de $50$ paires de verres dans la production. On suppose que la production est suffisamment importante pour assimiler ce prélèvement à un tirage avec remise. On note $X$ la variable aléatoire qui, à chaque échantillon de ce type, associe le nombre de paires de verres qui présentent le défaut pour le traitement T1.

  1. Justifier que la variable aléatoire $X$ suit une loi binomiale et préciser les paramètres de cette loi.
    $\quad$
  2. Donner l’expression permettant de calculer la probabilité d’avoir, dans un tel échantillon, exactement $10$ paires de verres qui présentent ce défaut.
    Effectuer ce calcul et arrondir le résultat à $10^{-3}$.
    $\quad$
  3. En moyenne, combien de paires de verres ayant ce défaut peut-on trouver dans un échantillon de $50$ paires ?
    $\quad$

 

Bac – Spécialité mathématiques – Polynésie – sujet 2 – 5 mai 2022

Polynésie – 5 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1     7 points

Thèmes : fonctions, primitives, probabilités

  1. Pour tout $x\in ]0;+\infty[$ on a
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)\end{align*}$
    Réponse a
    $\quad$
  2. Pour tout réel $x\in ]0;+\infty[$ on a $g(x)=x^2-x^2\ln(x)$
    Or $\lim\limits_{x\to 0} x^2=0$ et, par croissances comparées, $\lim\limits_{x\to 0} x^2\ln(x)=0$.
    Donc $\lim\limits_{x\to 0} g(x)=0$.
    Réponse c
    $\quad$
  3. Pour tout réel $x$ on a $f(x)=x\left(x^2-0,9x-0,1\right)$
    $f(x)=0\ssi x=0$ ou $x^2-0,9x-0,1=0$.
    Le discriminant de $x^2-0,9x-0,1$ est $\Delta=(-0,9)^2-4\times \times 1\times (-0,1)=1,21>0$.
    L’équation $x^2-0,9x-0,1=0$ possède donc deux solutions distinctes. $0$ n’est pas solution de cette équation.
    Ainsi l’équation $f(x)=0$ admet exactement $3$ solutions.
    Réponse d
    $\quad$
  4. On considère la fonction $K$ définie sur $\R$ par $K(x)=\dfrac{1}{2}H(2x)$
    La fonction $K$ est dérivable sur $\R$ en tant que composée de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} K'(x)&=\dfrac{1}{2}\times 2H'(2x)\\
    &=H'(2x) \\
    &=h(2x)\\
    &=k(x)\end{align*}$
    Réponse c
    $\quad$
  5. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*}f'(x)&=\e^x+x\e^x \\
    &=(1+x)\e^x\end{align*}$
    Donc $f'(1)=2\e$.
    De plus $f(1)=\e$.
    Une équation de la tangente au point d’abscisse $1$ de la courbe de la fonction $f$ est donc $y=2\e(x-1)+\e$
    Soit $y=2\e x-\e$.
    Réponse b
    $\quad$
  6. $\quad$
    $\begin{align*} (0,2)^n<0,001&\ssi n\ln(0,2)<\ln(0,001) \\
    &\ssi n>\dfrac{\ln(0,001)}{\ln(0,2)}\qquad \text{(car $\ln(0,2)<0$)}\end{align*}$
    Or $\dfrac{\ln(0,001)}{\ln(0,2)}\approx 4,29$.
    L’ensemble solution de l’inéquation est donc l’ensemble des entiers naturels supérieurs ou égaux à $5$.
    Réponse d
    $\quad$

Ex 2

Exercice 2     7 points

Thème : probabilités

Partie 1

  1. On a $P(C)=0,2$ et $P_C(D)=0,1$
    Donc
    $\begin{align*} P(C\cap D)&=P(C)\times P_C(D) \\
    &=0,2\times 0,1\\
    &=0,02\end{align*}$
    $\quad$
  2. $\left(C,\conj{C}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales :
    $\begin{align*} P(D)&=P(C\cap D)+P\left(\conj{C}\cap D\right) \\
    &=0,02+P\left(\conj{C}\right)\times P_{\conj{C}}(D) \\
    &=0,02+0,8\times 0,02 \\
    &=0,036\end{align*}$
    $\quad$
  3. On veut calculer
    $\begin{align*} P_D(C)&=\dfrac{P(C\cap D)}{P(D)} \\
    &=\dfrac{0,02}{0,036} \\
    &=\dfrac{5}{9}\end{align*}$
    La probabilité que le casque soit contrefait sachant qu’il a un défaut est égale à $\dfrac{5}{9}$.
    $\quad$

Partie 2

  1. a. On répète $35$ fois la même expérience de Bernoulli de paramètre $0,036$. $X$ est égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n=35$ et $p=0,036$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X=1)&=\dbinom{35}{1}\times 0,036^1\times (1-0,036)^{35-1} \\
    &=35\times 0,036\times 0,964^{34} \\
    &\approx 0,362\end{align*}$
    La probabilité qu’il y ait parmi les casques commandés exactement un casque présentant un défaut de conception est environ égale à $0,362$.
    $\quad$
    c. 
    $\begin{align*}P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,964^{35}+35\times 0,036\times 0,964^{34} \\
    &\approx 0,639\end{align*}$
    $\quad$
  2. On répète $n$ fois la même expérience de Bernoulli de paramètre $0,036$. On appelle $Y$ la variable aléatoire égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n$ et $p=0,036$.
    $\begin{align*} P(Y\pg 1)>0,99 &\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01  \\
    &\ssi 0,964^n <0,01 \\
    &\ssi n\ln(0,964)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,964)} \qquad \text{(car $\ln(0,964)<0$)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,964)} \approx 125,6$.
    Il faut donc commander au moins $126$ casques pour que la probabilité qu’au moins un casque présente un défaut soit supérieure à $0,99$.
    $\quad$

Ex 3

Exercice 3     7 points

Thème : suites, fonctions

  1. $\quad$
    $\begin{align*} u_1&=0,008u_1\left(200-u_1\right) \\
    &=0,008\times 40(200-40)\\
    &=51,2\end{align*}$
    Selon ce modèle il y avait environ $52$ oiseaux dans la colonie au début de l’année 2022.
    $\quad$
  2. $\quad$
    $\begin{align*}
    f(x)=x&\ssi 0,008x(200-x)=x \\
    &\ssi 0,008x(200-x)-x=0 \\
    &\ssi x\left(0,008(200-x)-1\right)=0 \\
    &\ssi x(1,6-0,008x-1)=0 \\
    &\ssi (0,6-0,008x)=0\\
    &\ssi x=0 \text{ ou } 0,6-0,008x=0 \\
    &\ssi x=0 \text{ ou } x=\dfrac{0,6}{0,008} \\
    &\ssi x=0 \text{ ou } x=75 \end{align*}$
    Les solutions de l’équation $f(x)=x$ sont donc $0$ et $75$.
    $\quad$
  3. a. Il y a au moins deux méthodes pour répondre à la question :
    – étudier le signe de $f'(x)$;
    – utiliser les propriétés sur les variations des fonctions polynômes du second degré (ce qui va être fait ici)
    Pour tout réel $x$ on a
    $f(x)=-0,008x^2+1,6x$
    Le coefficient principal est $a=-0,008<0$.
    Ainsi $f$ admet un maximum au point d’abscisse $\dfrac{-1,6}{2\times (-0,008)} =100$.
    La fonction est donc strictement croissante sur l’intervalle $[0;100]$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
    b. Pour tout entier naturel $n$ on a $u_{n+1}=0,008u_n\left(200-u_n\right)$
    Donc $u_{n+1}=f\left(u_n\right)$.
    Pour tout entier naturel $n$ on pose $P(n):~0\pp u_n \pp u_{n+1}\pp 100$.
    Initialisation : $u_0=40$ et $u_1=51,2$. Or $0\pp 40\pp 51,2\pp 100$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp u_n \pp u_{n+1} \pp 100$.
    La fonction $f$ est croissante sur $[0;100]$.
    Donc $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(100)$
    Soit $0\pp u_{n+1} \pp u_{n+2} \pp 80\pp 100$. $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $0\pp u_n \pp u_{n+1} \pp 100$.
    $\quad$
    c. La suite $\left(u_n\right)$ est donc croissante et majorée par $100$.
    Elle converge donc vers un réel $\ell$.
    $\quad$
    d. La fonction $f$ est continue sur $[0;100]$.
    Donc $\ell$ est solution de l’équation $f(x)=x$ dont l’unique solution est $75$ d’après la question 2.
    Ainsi $\ell=75$.
    Cela signifie que sur le long terme la colonie comptera $75$ individus.
    $\quad$
  4. La fonction renvoie l’année où la population dépasse la valeur $p$ envoyée en paramètre.
    La suite $\left(u_n\right)$ est majorée par $75$. Elle ne peut donc pas prendre de valeurs supérieures à $100$.
    Cela explique donc pourquoi $\texttt{seuil(100)}$ ne renvoie aucune valeur.
    Remarque : On se retrouve dans une boucle infinie!
    $\quad$

Ex 4

Exercice 4     7 points

Thème : géométrie dans le plan et l’espace

Partie 1. Première méthode

  1. On a $A(0;0;0)$ , $B(1;0;0)$ et $G(1;1;1)$.
    $\quad$
  2. $\vect{BK}\left(-1;\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\vect{AI}\left(\dfrac{1}{2};0;1\right)$ et $\vect{AG}(1;1;1)$.
    Les vecteurs $\vect{AI}$ et $\vect{AG}$ ne sont pas colinéaires.
    $\begin{align*} \vect{BK}.\vect{AI}&=-1\times \dfrac{1}{2}+\dfrac{1}{2}\times 0+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    $\begin{align*} \vect{BK}.\vect{AG}&=-1\times 1+\dfrac{1}{2}\times 1+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    Le vecteur $\vect{BK}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AIG)$.
    Par conséquent la droite $(BK)$ est orthogonale au plan $(AIG)$.
    $\quad$
  3. $-2\vect{BK}(2;-1;-1)$ est normal au plan $(AIG)$.
    Une équation cartésienne du plan $(AIG)$ est donc de la forme $2x-y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Ainsi, une équation cartésienne du plan $(AIG)$ est 2x-y-z=0$.
    $\quad$
  4. Une représentation paramétrique de la droite $(BK)$ est :
    $\begin{cases} x=1+2t\\y=-t\\z=-t\end{cases} \qquad ,t\in \R$.
    Remarque : plutôt que de prendre le vecteur $\vect{BK}$ comme vecteur directeur, on peut choisir $2\vect{BK}$ dont les coordonnées sont entières.
    $\quad$
  5. $2\times \dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{3}=0$ donc $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ appartient au plan $(AIG)$.
    En prenant $t=-\dfrac{1}{3}$ dans la représentation paramétrique de la droite $(BK)$ on retrouve les coordonnées du point $L$.
    Ainsi $L$ appartient à la fois à la droite $(BK)$ et au plan $(AIG)$.
    $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ est le projeté orthogonal du point $B$ sur le plan $(AIG)$.
    $\quad$
  6. $\vect{BL}\left(-\dfrac{2}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$
    $\begin{align*} BL&=\sqrt{\left(-\dfrac{2}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2} \\
    &=\sqrt{\dfrac{6}{9}} \\
    &=\sqrt{\dfrac{2}{3}}\end{align*}$
    La distance du point $B$ au plan $(AIG)$ est donc égale à $\sqrt{\dfrac{2}{3}}$.
    $\quad$

Partie 2. Deuxième méthode

  1. a. $ABCDEFGH$ est un cube. L’arête $[FG]$ est perpendiculaire au plan $(ABF)$ auquel appartient le point $I$.
    Donc, dans le tétraèdre $ABIG$, $[GF]$ est la hauteur relative à la base $AIB$.
    $\quad$
    b. L’aire de $AIB$ est :
    $\begin{align*} \mathscr{B}&=\dfrac{AE\times AB}{2} \\
    &=\dfrac{1}{2}\end{align*}$
    De plus $GF=1$
    Ainsi, le volume de $ABIG$ est :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times GF\times \mathscr{B} \\
    &=\dfrac{1}{6}\end{align*}$
    $\quad$
  2. Le triangle $AIG$ est donc isocèle en $I$.
    La hauteur issue de $I$ coupe donc le côté $[AG]$ en son milieu $0$.
    Ainsi $AO=\dfrac{\sqrt{3}}{2}$.
    Dans le triangle $AOI$ rectangle en $O$ on applique le théorème de Pythagore.
    $\begin{align*}AI^2=AO^2+OI^2 &\ssi OI^2=AI^2-AO^2 \\
    &\ssi OI^2=\dfrac{5}{4}-\dfrac{3}{4} \\
    &\ssi OI^2=\dfrac{1}{2}\end{align*}$
    Donc $OI=\dfrac{1}{\sqrt{2}}$.
    L’aire du triangle $AIG$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{OI\times AG}{2} \\
    &=\dfrac{\dfrac{1}{\sqrt{2}}\times \sqrt{3}}{2} \\
    &=\dfrac{\sqrt{3}}{2\sqrt{2}} \\
    &=\dfrac{\sqrt{6}}{4}\end{align*}$
    $\quad$
  3. On appelle $h$ la longueur de la hauteur issue de $B$ dans le tétraèdre $ABIG$
    Ainsi
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times h\times \mathscr{A} &\ssi
    \dfrac{1}{6}=\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}h\\
    &\ssi h=\dfrac{\dfrac{1}{6}}{\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}} \\
    &\ssi h=\dfrac{\sqrt{6}}{3}\end{align*}$
    On retrouve bien la valeur trouvée à la question 6. puisque :
    $\begin{align*} \sqrt{\dfrac{2}{3}}&=\sqrt{\dfrac{2}{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}} \\
    &=\dfrac{\sqrt{6}}{3}\end{align*}$
    $\quad$

Énoncé

Télécharger (PDF, 896KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.

Bac – Spécialité mathématiques – Métropole – sujet 1 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. $f'(0)$ est le coefficient directeur de la droite $(AB)$ tangente à $\mathscr{C}_f$ en $A$.
    Ainsi,
    $\begin{align*} f'(0)&=\dfrac{20-5}{1-0} \\
    &=15\end{align*}$
    Réponse c
    $\quad$
  2. $A(0;5)$ appartient à $\mathscr{C}_f$. Donc $f(0)=5 \ssi b=5$.
    Donc $f(x)=(ax+5)\e^x$.
    Le point de coordonnées $(-0,5;0)$ appartient à $\mathscr{C}_f$.
    Donc $f(-0,5)=0 \ssi (-0,5a+5)\e^{-0,5}=0 \ssi -0,5a+5=0 \ssi a=10$
    (La fonction exponentielle est, en effet, strictement positive.)
    Réponse a
    $\quad$
  3. La fonction exponentielle est, en effet, strictement positive. Le signe de $f\dsec(x)$ ne dépend donc que de celui de $10x+25$.
    Or $10x+25>0 \ssi 10x>-25 \ssi x>-2,5$
    Et $10x+25=0 \ssi 10x=-25\ssi x=-2,5$
    Ainsi $f\dsec(x)$ change de signe en s’annulant en $-2,5$.
    Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$.
    Réponse c
    $\quad$
  4. Si on prend $U_n=-n$ et $V_n=2$ pour tout $n\in \N$ alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$. Mais $\lim\limits_{n\to +\infty} U_n=-\infty$. La réponse a est donc fausse.
    Si on prend $V_n=2+\dfrac{1}{n}$ et $U_n=V_n-1$ pour tout $n\in \N$. alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$ mais $V_n >2$ pour tout $n\in \N$ et $\lim\limits_{n\to +\infty} U_n=1$. Les reponses b et c sont fausses.
    Réponse d
    $\quad$
    Remarque : On pouvait également montrer que la réponse c était la bonne directement de la façon suivante :
    $\lim\limits_{n\to +\infty} V_n=2$. Il existe donc un entier naturel $n_0$ tel que, pour tout $n\pg n_0$, $\abs{V_n-2}<1$ (On peut remplacer $1$ par n’importe quel réel strictement positif).
    Ainsi, pour tout $n\pg n_0$ on a $-1< V_n-2<1$ soit $1<V_n<3$.
    Or, pour tout $n\in N$, on a $U_n\pp V_n$ donc, pour tout $n\pg n_0$, $U_n<3$.
    Ainsi, pour tout $n\in \N$, $U_n \pp \max\left(U_0,U_1,\ldots, U_{n_0},3\right)$ et la suite $\left(U_n\right)$ est majorée (mais on ne connaît pas le majorant).
    $\quad$

 

 

 

Ex 2

Exercice 2 (5 points)

  1. On a
    $\begin{align*} u_1&=f\left(u_0\right) \\
    &=f\left(\dfrac{1}{2}\right) \\
    &=\dfrac{2}{1+\dfrac{3}{2}} \\
    &=\dfrac{4}{5}\end{align*}$
    $\quad$
  2. a. Initialisation : On a $u_0=\dfrac{1}{2}$ et $u_1=\dfrac{4}{5}$ donc $\dfrac{1}{2} \pp u_0 \pp u_1 \pp 2$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$, c’est-à-dire $\dfrac{1}{2} \pp u_n\pp u_{n+1} \pp 2$.
    La fonction $f$ est croissante sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$.
    Ainsi $f\left(\dfrac{1}{2}\right) \pp f\left(u_n\right)\pp f\left(u_{n+1}\right) \pp f(2)$
    Soit $\dfrac{4}{5} \pp u_{n+1} \pp u_{n+2} \pp \dfrac{8}{7}$
    Donc $\dfrac{1}{2} \pp u_{n+1} \pp u_{n+2} \pp 2$.
    La propriété est, par conséquent, vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout $n\in \N$, on a $\dfrac{1}{2} \pp u_n \pp u_{n+1} \pp 2$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $2$. Elle est donc convergente.
    $\quad$
    c. La fonction $f$ est continue sur $\left[\dfrac{1}{2};2\right]$ comme quotient de fonctions continues dont le dénominateur ne s’annule pas.
    Ainsi $\ell$ est solution de l’équation, définie sur $\left[\dfrac{1}{2};2\right]$ :
    $\begin{align*} f(x)=x&\ssi \dfrac{4x}{1+3x}=x \\
    &\ssi 4x=x+3x^2\\
    &\ssi 3x^2-3x=0\\
    &\ssi 3x(x-1)=0\end{align*}$
    Les solutions de cette équation sont $0$ et $1$.
    $1$ est la seule valeur appartenant à $\left[\dfrac{1}{2};2\right]$.
    Par conséquent $\ell=1$.
    $\quad
  3. a. On peut écrire
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E):} \\
    \quad \text{u = 0.5} \\
    \quad \text{n = 0} \\
    \quad \text{while 1 – u >= E :} \\
    \qquad \text{u = 4 * u / (1 + 3 * u)} \\
    \qquad \text{n = n + 1} \\
    \quad \text{return n} \\
    \hline
    \end{array}$$
    $\quad$
    b. Si $E = 10^{-4}$
    Voici les premières valeurs (approchées pour certaines) de $u_n$ et de $1-u_n$
    $\begin{array}{|c|c|c|}
    \hline
    n& u_n &1-u_n \\ \hline
    0& 0,5& 0,5\\ \hline
    1& 0,8& 0,2\\ \hline
    2& 0,9411764706& 0,05882352941\\ \hline
    3& 0,9846153846& 0,01538461538\\ \hline
    4& 0,9961089494& 0,003891050584\\ \hline
    5& 0,9990243902& 0,0009756097561\\ \hline
    6& 0,999755919& 0,0002440810349\\ \hline
    7& 0,9999389686& 0,00006103143119\\ \hline
    \end{array}$
    Le programme renvoie donc $7$.
    $\quad$
  4. a. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\dfrac{u_{n+1}}{1-u_{n+1}} \\
    &=\dfrac{\dfrac{4u_n}{1+3u_n}}{1-\dfrac{4u_n}{1+3u_n}} \\
    &=\dfrac{4u_n}{1+3u_n-4u_n} \\
    &=\dfrac{4u_n}{1-u_n} \\
    &=4v_n\end{align*}$.
    La suite $\left(v_n\right)$ est donc géométrique de raison $4$ et de premier terme $v_0=\dfrac{u_0}{1-u_0}=1$.
    Ainsi, pour tout $n\in \N$, on a $v_n=4^n$.
    $\quad$
    b. Soit $n\in \N$.
    \begin{align*} v_n=\dfrac{u_n}{1-u_n} &\ssi v_n\left(1-u_n\right)=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n-u_nv_n=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n+u_nv_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n\left(1+v_n\right) \text{  et } u_n\neq 1\end{align*}$
    Ainsi $u_n=\dfrac{v_n}{1+v_n}$.
    $\quad$
    c. Soit $n\in \N$ on a
    $\begin{align*} u_n&=\dfrac{v_n}{1+v_n} \\
    &=\dfrac{4^n}{1+4^n} \\
    &=\dfrac{4^n}{4^n\left(0,25^n+1\right)} \\
    &=\dfrac{1}{1+0,25^n}\end{align*}$
    On a $-1<0,25<1$ donc $\lim\limits_{n\to +\infty} 0,25^n=0$ et $\lim\limits_{n\to +\infty} u_n=1$.

 

 

Ex 3

Exercice 3 (6 points)

Partie I : Effet de l’introduction d’une nouvelle espèce

  1. On a $f(0)=440$.
    Il y avait donc $440$ crapauds dans le lac lors de l’introduction des truites.
    $\quad$
  2. Pour tout $t\in [0;120]$ on a
    $\begin{align*} f'(t)&=(0,08t-8)\e^{\frac{t}{50}}+\left(0,04t^2-8t+400\right)\times \dfrac{1}{50}\e^{\frac{t}{50}} \\
    &=\left(0,08t-8+0,0008t^2-0,16t+8\right)\e^{\frac{t}{50}} \\
    &=\left(0,0008t^2-0,08t\right)\e^{\frac{t}{50}} \\
    &=0,0008t(t-100)\e^{\frac{t}{50}} \\
    &=8\times 10^{-4}t(t-100)\e^{\frac{t}{50}} \end{align*}$
    $\quad$
  3. La fonction exponentielle est strictement positive sur $\R$.
    Sur $[0;120]$ on a $t\pg 0$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $t-100$.
    Or $t-100=0 \ssi t=100$ et $t-100>0 \ssi t>100$.
    On obtient donc le tableau de variations suivant :
    $\quad$
  4. a. D’après le tableau de variations, la fonction $f$ atteint son minimum pour $t=100$.
    Ainsi, le nombre de crapauds atteint son minimum au bout de $100$ jours. Il y a alors $40$ crapauds dans le lac.
    $\quad$
    b. La fonction $f$ est strictement croissante sur l’intervalle $[100;120]$ et $f(120)\approx 216,37 > 140$.
    Ainsi, le nombre de crapauds dépassera un jour $140$ individus après avoir atteint son minimum.
    $\quad$
    c. D’après la calculatrice, $f(t)=140$ pour $t\approx 115,72$.
    C’est donc à partir du $116$ ième jour que le nombre de crapauds dépassera $140$ individus.
    $\quad$

 

Partie II : Effet de la Chytridiomycose sur une population de têtards

  1. On obtient l’arbre de probabilité suivant :
    $\quad$$\quad$
  2. $\left(L,\conj{L}\right)$ est un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(T)&=P(L)\times P_L(T)+P\left(\conj{L}\right)P_{\conj{L}}(T) \\
    &=0,25 \times 0,74+0\\
    &=0,185\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_{\conj{T}}(L)&=\dfrac{P(L)\times P_L\left(\conj{T}\right)}{1-P(T)} \\
    &=\dfrac{0,25 \times 0,26}{1-0,185} \\
    &\approx 0,080\end{align*}$
    La probabilité que le lac soit infecté sachant que le tétard n’est pas contaminé est environ égale à $0,08$.
    $\quad$

 

Ex A

Exercice A (5 points)

  1. On a $I\left(\dfrac{1}{4};0;1\right)$, $J\left(0;\dfrac{1}{4};1\right)$ et $K\left(1;0;\dfrac{1}{4}\right)$.
    $\quad$
  2. On a $\vect{AG}\begin{pmatrix}1\\1\\1\end{pmatrix}$, $\vect{IJ}\begin{pmatrix} -\dfrac{1}{4}\\[2mm] \dfrac{1}{4}\\[2mm]\\0\end{pmatrix}$ et $\vect{IK}\begin{pmatrix} \dfrac{3}{4} \\[2mm]0\\-\dfrac{3}{4}\end{pmatrix}$
    Ainsi $\vect{AG}.\vect{IJ}=-\dfrac{1}{4}+0+\dfrac{1}{4}=0$ et $\vect{AG}.\vect{IK}=\dfrac{3}{4}+0-\dfrac{3}{4}=0$
    Le vecteur $\vect{AG}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(IJK)$. Il est par conséquent normal à celui-ci.
    $\quad$
  3. Une équation cartésienne du plan $(IJK)$ est donc de la forme $x+y+z+d=0$.
    Le point $I\left(\dfrac{1}{4};0;1\right)$ appartient à ce plan.
    Ainsi $\dfrac{1}{4}+0+1+d=0 \ssi d=-\dfrac{5}{4}$
    Une équation cartésienne du plan $(IJK)$ est donc $x+y+z-\dfrac{5}{4}=0$ soit $4x+4y+4z-5=0$.
    $\quad$
  4. On a $\vect{BC}\begin{pmatrix} 0\\1\\0\end{pmatrix}$
    Une représentation paramétrique de $(BC)$ est donc $\begin{cases} x=1\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  5. On résout le système
    $\begin{align*} \begin{cases} x=1\\y=t\\z=0\\4x+4y+4z-5=0 \end{cases} &\ssi \begin{cases} x=1\\y=t\\z=0\\4+4t-5=0 \end{cases} \\
    &\ssi \begin{cases}x=1\\y=t\\z=0\\t=\dfrac{1}{4}\end{cases}\end{align*}$
    Ainsi les coordonnées du point $L$ sont $\left(1;\dfrac{1}{4};0\right)$.
    $\quad$
  6. On obtient la figure suivante :
    $\quad$

    $\quad$
  7. On a $\vect{LM}\begin{pmatrix} -\dfrac{3}{4} \\[2mm]\dfrac{3}{4}\\[2mm]0\end{pmatrix}$
    Ainsi $\vect{LM}=3\vect{IJ}$
    Les vecteurs $\vect{LM}$ et $\vect{IJ}$ sont colinéaires. Les points $I,J,L$ et $M$ sont donc coplanaires.
    $\quad$

 

 

 

Ex B

Exercice B (5 points)

Partie I

  1. On a $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{x\to 0^+} h(x)=-\infty$.
    $\quad$
  2. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\quad$
  3. La fonction $h$ est dérivable sur $]0;+\infty[$ en tant que somme et quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]0;+\infty[$.
    Ainsi, pour tout $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)\times 1}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
  4. Le signe de $h'(x)$ ne dépend que de celui de $1-\ln(x)$.
    Or $1-\ln(x)=0 \ssi \ln(x)=1 \ssi x=\e$ et $1-\ln(x)>0 \ssi -\ln(x)>-1 \ssi \ln(x)<1 \ssi x< \e$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$
  5. Sur l’intervalle $[\e;+\infty[$ on a $h(x)>1$. L’équation $h(x)=0$ ne possède donc pas de solution sur cet intervalle.
    Sur l’intervalle $]0;\e[$, la fonction $h$ est continue (car dérivable) et strictement croissante.
    De plus, $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h(\e)=\dfrac{1+\e}{\e}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une unique solution sur $]0;+\e[$.
    Ainsi, l’équation $h(x)=0$ possède une unique solution sur $]0;+\infty[$.
    De plus $h(0,5) \approx -0,39<0$ et $h(0,6)\approx 0,15>0$
    La fonction $h$ est strictement croissante sur $]0;\e[$ donc $0,5<\alpha<0,6$.
    $\quad$

Partie II

  1. Le coefficient directeur de $D_a$ au point d’abscisse $a$ est $g'(a)=\dfrac{1}{a}$.
    $\quad$
  2. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=x\times \dfrac{1}{x}+1\times \ln(x)-1 \\
    &=1+\ln(x)-1\\
    &=\ln(x)\end{align*}$
    Ainsi, le coefficient directeur de $T_a$ est $f'(a)=\ln(a)$.
    $\quad$
  3. $T_a$ et $D_a$ sont perpendiculaires
    $\ssi \dfrac{1}{a}\ln(a)=-1 $
    $\ssi 1+\dfrac{\ln(a)}{a}=0$
    $\ssi h(a)=0$
    $\ssi a=\alpha$
    Il existe donc une unique valeur de $a$ pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires. Il s’agit de $a=\alpha$.
    $\quad$

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Le graphique ci-dessous donne la représentation graphique $\mathscr{C}_f$ dans un repère orthogonal d’une fonction $f$ définie et dérivable sur $\R$.
On notera $f’$ la fonction dérivée de $f$ .
On donne les points $A$ de coordonnées $(0; 5)$ et $B$ de coordonnées $(1; 20)$. Le point $C$ est le point de la courbe $\mathscr{C}_f$ ayant pour abscisse $-2,5$. La droite $(AB)$ est la
tangente à la courbe $\mathscr{C}_f$ au point $A$.
Les questions 1 à 3 se rapportent à cette même fonction $f$.

  1. On peut affirmer que :
    a. $f'(-0,5)=0$
    b. si $x\in]-\infty ; -0,5[$, alors $f'(x)< 0$
    c. $f'(0) = 15$
    d. la fonction dérivée $f’$ ne change pas de signe sur $\R$.
    $\quad$
  2. On admet que la fonction $f$ représentée ci-dessus est définie sur $\R$ par $f(x) = (ax +b)\e^x$, où $a$ et $b$ sont deux nombres réels et que sa courbe coupe l’axe des abscisses en son point de coordonnées $(-0,5 ; 0)$.
    On peut affirmer que :
    a. $a = 10$ et $b = 5$
    b. $a = 2,5$ et $b = -0,5$
    c. $a = -1,5$ et $b = 5$
    d. $a=0$ et $b=5$
    $\quad$
  3. . On admet que la dérivée seconde de la fonction $f$ est définie sur $\R$ par : $f\dsec(x)= (10x +25)\e^x$.
    On peut affirmer que :
    a. La fonction $f$ est convexe sur $\R$
    b. La fonction $f$ est concave sur $\R$
    c. Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$
    d. $\mathscr{C}_f$ n’admet pas de point d’inflexion
    $\quad$
  4. On considère deux suites $\left(U_n\right)$ et $\left(V_n\right)$ définies sur $\N$ telles que :
    $\bullet$ pour tout entier naturel $n$, $U_n \pp V_n$ ;
    $\bullet$  $\lim\limits_{n\to +\infty} V_n=2$.
    On peut affirmer que :
    a. la suite $\left(U_n\right)$ converge
    b. pour tout entier naturel $n$, $V_n \pp 2$
    c. la suite $\left(U_n\right)$ diverge
    d. la suite $\left(U_n\right)$ est majorée
    $\quad$

$\quad$

Exercice 2     5 points

Soit $f$ la fonction définie sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$ par $$f(x)

On considère la suite $\left(u_n\right)$ définie par : $u_0=\dfrac{1}{2}$ et, pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$.

  1. Calculer $u_1$.
    $\quad$
  2. On admet que la fonction f est croissante sur l’intervalle ¸$\left]-\dfrac{1}{3};+\infty\right[$.
    a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $\dfrac{1}{2} \pp u_n \pp u_{n+1}\pp 2$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    c. On appelle $\ell$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $\ell$.
    $\quad$
  3. a. Recopier et compléter la fonction Python ci-dessous qui, pour tout réel positif $E$, détermine la plus petite valeur $P$ tel que : $1-u_P < E$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E) :}\\
    \quad \text{u = 0.5}\\
    \quad \text{n = 0}\\
    \quad \text{while . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{u = . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. Donner la valeur renvoyée par ce programme dans le cas où $E = 10^{-4}$.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par : $$v_n =\dfrac{u_n}{1-u_n}$$
    a. Montrer que la suite $\left(v_n\right)$ est géométrique de raison $4$.
    En déduire, pour tout entier naturel $n$, l’expression de $v_n$ en fonction de $n$.
    $\quad$
    b. Démontrer que, pour tout entier naturel $n$, on a : $u_n = \dfrac{v_n}{v_n+1}$.
    $\quad$
    c. Montrer alors que, pour tout entier naturel $n$ , on a :
    $$u_n =\dfrac{1}{1+0,25^n}$$
    Retrouver par le calcul la limite de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 3     5 points

Dans le parc national des Pyrénées, un chercheur travaille sur le déclin d’une espèce protégée dans les lacs de haute-montagne : le «crapaud accoucheur».
Les parties I et II peuvent être abordées de façon indépendante.

Partie I : Effet de l’introduction d’une nouvelle espèce.

Dans certains lacs des Pyrénées, des truites ont été introduites par l’homme afin de permettre des activités de pêche en montagne. Le chercheur a étudié l’impact de cette introduction sur la population de crapauds accoucheurs d’un lac.
Ses études précédentes l’amènent à modéliser l’évolution de cette population en fonction du temps par la fonction f suivante : $$f(t)=\left(0,04t^2-8t+400\right)\e^{\frac{t}{50}}+40 \text{ pour } t\in [0;120]$$

La variable $t$ représente le temps écoulé, en jour, à partir de l’introduction à l’instant $t = 0$ des truites dans le lac, et $f(t)$ modélise le nombre de crapauds à l’instant $t$.

  1. Déterminer le nombre de crapauds présents dans le lac lors de l’introduction des truites.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 120]$ et on note $f′$ sa fonction dérivée.
    Montrer, en faisant apparaitre les étapes du calcul, que pour tout nombre réel $t$ appartenant à l’intervalle $[0; 120]$ on a : $$f'(t)=t(t-100)\e^{\frac{t}{50}}\times 8\times 10^{-4}$$
    $\quad$
  3. Étudier les variations de la fonction $f$ sur l’intervalle $[0; 120]$, puis dresser le tableau de variations de $f$ sur cet intervalle (on donnera des valeurs approchées au centième).
    $\quad$
  4. Selon cette modélisation :
    a. Déterminer le nombre de jours $J$ nécessaires afin que le nombre de crapauds atteigne son minimum. Quel est ce nombre minimum ?
    $\quad$
    b. Justifier que, après avoir atteint son minimum, le nombre de crapauds dépassera un jour $140$ individus.
    $\quad$
    c. À l’aide de la calculatrice, déterminer la durée en jour à partir de laquelle le nombre de crapauds dépassera $140$ individus.
    $\quad$

Partie II : Effet de la Chytridiomycose sur une population de têtards

Une des principales causes du déclin de cette espèce de crapaud en haute montagne est une maladie, la « Chytridiomycose », provoquée par un champignon.
Le chercheur considère que :

  • Les trois quarts des lacs de montagne des Pyrénées ne sont pas infectés par le champignon, c’est-à-dire qu’ils ne contiennent aucun têtard (larve du crapaud) contaminé.
  • Dans les lacs restants, la probabilité qu’un têtard soit contaminé est de $0,74$.

Le chercheur choisit au hasard un lac des Pyrénées, et y procède à des prélèvements.
Pour la suite de l’exercice, les résultats seront arrondis au millième lorsque cela est nécessaire.
Le chercheur prélève au hasard un têtard du lac choisi afin d’effectuer un test avant de le relâcher.
On notera $T$ l’évènement « Le têtard est contaminé par la maladie » et $L$ l’évènement « Le lac est infecté par le champignon ».
On notera $\conj{L}$ l’évènement contraire de $L$ et $\conj{T}$ l’évènement contraire de $T$.

  1. Recopier et compléter l’arbre de probabilité suivant en utilisant les données de l’énoncé :$\quad$
  2. Montrer que la probabilité $P(T )$ que le têtard prélevé soit contaminé est de $0,185$.
    $\quad$
  3. Le têtard n’est pas contaminé. Quelle est la probabilité que le lac soit infecté ?
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Géométrie de l’espace rapporté à un repère orthonormé.

On considère le cube $ABCDEFGH$ donné en annexe.
On donne trois points $I$, $J$ et $K$ vérifiant : $$\vect{EI}=\dfrac{1}{4}\vect{EH}, \quad \vect{EJ}=\dfrac{1}{4}\vect{EF},\quad \vect{BK}=\dfrac{1}{4}\vect{BF}$$
Les points $I$, $J$ et $K$ sont représentés sur la figure donnée en annexe, à compléter et à rendre avec la copie.
On se place dans le repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. Donner sans justification les coordonnées des points $I$, $J$ et $K$.
    $\quad$
  2. Démontrer que le vecteur $\vect{AG}$ est normal au plan $(IJK)$.
    $\quad$
  3. Montrer qu’une équation cartésienne du plan $(IJK)$ est $4x +4y +4z -5 = 0$.
    $\quad$
  4. Déterminer une représentation paramétrique de la droite $(BC)$.
    $\quad$
  5. En déduire les coordonnées du point $L$, point d’intersection de la droite $(BC)$ avec le plan $(IJK)$.
    $\quad$
  6. Sur la figure en annexe, placer le point $L$ et construire  l’intersection du plan $(IJK)$ avec la face $(BCGF)$.
    $\quad$
  7. Soit $M\left(\dfrac{1}{4};1;0\right)$. Montrer que les points $I$, $J$, $L$ et $M$ sont coplanaires.
    $\quad$

ANNEXE

$\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme.

Partie I

On considère la fonction h définie sur l’intervalle $]0 ; +\infty[$ par : $$h(x) = 1+\dfrac{\ln(x)}{x}$$

  1. Déterminer la limite de la fonction $h$ en $0$.
    $\quad$
  2. Déterminer la limite de la fonction $h$ en $+\infty$.
    $\quad$
  3. On note $h’$ la fonction dérivée de $h$. Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $$h'(x) =\dfrac{1-\ln(x)}{x^2}$$
    $\quad$
  4. Dresser le tableau de variations de la fonction $h$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  5. Démontrer que l’équation $h(x) = 0$ admet une unique solution $\alpha$ dans $]0 ; +\infty[$.
    Justifier que l’on a : $0,5 < \alpha < 0,6$.$\quad$

Partie II

Dans cette partie, on considère les fonctions $f$ et $g$ définies sur $]0 ; +\infty[$ par : $$f (x) = x \ln(x)− x;\quad g(x) = \ln(x)$$
On note $\mathscr{C}_f$ et $\mathscr{C_g}$ les courbes représentant respectivement les fonctions $f$ et $g$ dans un repère orthonormé $\Oij$.
Pout tout nombre réel $a$ strictement positif, on appelle :

  • $T_a$ la tangente à $\mathscr{C}_f$ en son point d’abscisse $a$ ;
  • $D_a$ la tangente à $\mathscr{C}_g$ en son point d’abscisse $a$.

Les courbes $\mathscr{C}_f$ et $\mathscr{C}g$ ainsi que deux tangentes $T_a$ et $D_a$ sont représentées ci-dessous.

On recherche d’éventuelles valeurs de $a$ pour lesquelles les droites $T_a$ et $D_a$ sont perpendiculaires.
Soit $a$ un nombre réel appartenant à l’intervalle $]0 ; +\infty[$.

  1. Justifier que la droite $D_a$ a pour coefficient directeur $\dfrac{1}{a}$.
    $\quad$
  2. Justifier que la droite $T_a$ a pour coefficient directeur $\ln(a)$.

On rappelle que dans un repère orthonormé, deux droites de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si et seulement si $mm’ = -1$.

  1. Démontrer qu’il existe une unique valeur de $a$, que l’on identifiera, pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Asie – sujet 2 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    f'(x)&=(2x-2)\e^x+\left(x^2-2x-1\right)\e^x \\
    &=\left(2x-2+x^2-2x-1\right)\e^x \\
    &=\left(x^2-3\right)\e^x\end{align*}$
    L’affirmation A est donc fausse.
    $f'(2)>0$ et $f(0)<0$ : l’affirmation B est donc fausse
    Réponse C
    $\quad$
  2. $\lim\limits_{x\to +\infty} \e^x=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=0$
    La droite d’équation $y=0$ est donc asymptote à la courbe représentant la fonction $f$.
    $\lim\limits_{x\to -\infty} \e^x=-\infty$ donc $\lim\limits_{x\to -\infty} f(x)=\dfrac{3}{5}$
    La droite d’équation $y=\dfrac{3}{5}$ est donc asymptote à la courbe représentant la fonction $f$.
    Réponse C
    $\quad$
  3. La fonction $f\dsec$ s’annule en changeant de signe à trois reprise.
    La courbe représentant la fonction $f$ possède donc trois points d’inflexion.
    Réponse B
    $\quad$
  4. $\left(u_n\right)$ est une suite définie de manière explicite par un polynôme du second degré dont le coefficient principal est $a=1>0$.
    La fonction du second degré associée possède un minimum, d’abscisse $\dfrac{17}{2}$.
    $\left(u_n\right)$ est donc minorée.
    Réponse A
    $\quad$
  5. Cette fonction renvoie le plus entier naturel $n$ tel que $u_n\pg 45$.
    Réponse ARemarque :dans les faits cette fonction ne renvoie aucun résultat car la suite $\left(u_n\right)$ est croissante et majorée par $20$. Il est donc impossible que $u_n\pg 45$ !
    $\quad$

Ex 2

Exercice 2 (5 points)

  1. On a $A(0;0;0)$, $C(1;1;0)$ et $D(0;1;0)$
    Par conséquent $K\left(\dfrac{1}{2};1;0\right)$
    Donc $\vect{AK}\left(\dfrac{1}{2};1;0\right)$ et $\vect{AL}\left(0;1;\dfrac{3}{2}\right)$.
    $\quad$
  2. a. On a $\vec{n}.\vect{AK}=3-3+0=0$ et $\vec{n}.\vect{AL}=0-3+3=0$.
    $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AKL)$.
    C’est par conséquent un vecteur normal au plan $(AKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(AKL)$ est donc de la forme $6x-3y+2z+d=0$.
    Le point $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Une équation cartésienne du plan $(AKL)$ est alors $6x-3y+2z=0$.
    $\quad$
    c. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Ainsi une représentation paramétrique de la droite $\Delta$ est $$\begin{cases} x=6t\\y=1-3t\\z=2t\end{cases} \quad,t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{3}{49}$, on constate que le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient à la droite $\Delta$.
    De plus
    $\begin{align*} 6\times \dfrac{18}{49}-3\dfrac{40}{49}+2\dfrac{6}{49}&=\dfrac{108}{49}-\dfrac{120}{49}+\dfrac{12}{49} \\
    &=0\end{align*}$
    Le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient donc également au plan $(AKL)$.
    Par conséquent $N$ a pour coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$.
    $\quad$
  3. a. L’aire de la base $ADK$ est
    $\begin{align*} \mathcal{A}&=\dfrac{AD\times DK}{2} \\
    &=\dfrac{1\times \dfrac{1}{2}}{2} \\
    &=\dfrac{1}{4}\end{align*}$
    Ainsi
    $\begin{align*} \mathcal{V}&=\dfrac{\mathcal{A}\times DL}{3} \\
    &=\dfrac{\dfrac{1}{4}\times \dfrac{3}{2}}{3} \\
    &=\dfrac{1}{8}\end{align*}$
    $\quad$
    b. La distance du point $D$ au plan $(AKL)$ est
    $\begin{align*} DN&=\sqrt{\left(\dfrac{18}{49}\right)^2+\left(\dfrac{40}{49}-1\right)^2+\left(\dfrac{6}{49}\right)^2} \\
    &=\sqrt{\dfrac{9}{49}} \\
    &=\dfrac{3}{7}\end{align*}$
    $\quad$
    c. On a
    $\begin{align*} \mathcal{V}=\dfrac{1}{8}&\ssi \dfrac{\mathcal{A}_{AKL}\times DN}{3}=\dfrac{1}{8} \\
    &\ssi \dfrac{3}{7}\mathcal{A}_{AKL}=\dfrac{3}{8} \\
    &\ssi \mathcal{A}_{AKL}=\dfrac{7}{8}\end{align*}$
    L’aire du triangle $AKL$ est donc $\dfrac{7}{8}$.
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. Il y a $\dbinom{9}{3}=84$ façons différentes de positionner les trois cœurs.
    $\quad$
  2. Il y a $3$ façons de placer les cœurs sur une ligne pour gagner.
    Il y a $3$ façons de placer les cœurs sur une colonne pour gagner.
    Il y a $2$ façons de placer les cœurs sur une diagonale pour gagner.
    La probabilité qu’un ticket soit gagnant est donc $\dfrac{3+3+2}{84}=\dfrac{2}{21}$.
    $\quad$
  3. On appelle $G$ la variable aléatoire égale au gain algébrique du joeur.
    $G$ ne prend donc que $2$ valeurs $4$ et $-1$.
    $p(G=4)=\dfrac{2}{21}$ et $p(G=-1)=\dfrac{19}{21}$.
    L’espérance de $G$ est :
    $\begin{align*} E(G)&=4\times \dfrac{2}{21}+(-1)\times \dfrac{19}{21} \\
    &=-\dfrac{11}{21}\\
    &<0\end{align*}$
    Le jeu est donc défavorable au joueur.
    $\quad$
  4. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : le joueur gagne ou le joueur perd.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{21}$.
    $\quad$
    b. $p(X=5)=\dbinom{20}{5}\left(\dfrac{2}{21}\right)^5\left(\dfrac{19}{21}\right)^{15} \approx 0,027$.
    $\quad$
    c. On a
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-\left(\dfrac{19}{21}\right)^{20} \\
    & \approx 0,865\end{align*}$
    La probabilité qu’il y ait au moins un gagnant est environ égale à $0,865$.
    $\quad$

 

 

Ex A

Exercice A (5 points)

Partie I : modèle discret

  1. On a
    $\begin{align*} u_1&=u_0+0,05\left(20-u_0\right) \\
    &=1+0,05\times 19\\
    &=1,95\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}&=u_n+0,05\left(20-u_n\right) \\
    &=u_n+1-0,05u_n \\
    &=0,95u_n+1\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ on a $v_n=20-u_n$ soit $u_n=20-v_n$.
    $\begin{align*} v_{n+1}&=20-u_{n+1} \\
    &=20-0,95u_n-1 \\
    &=19-0,95u_n \\
    &=19-0,95\left(20-v_n\right) \\
    &=19-19+0,95v_n\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=20-1=19$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $v_n=19\times 0,95^n$.
    Par conséquent $u_n=20-19\times 0,95^n$.
    $\quad$
  3. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 0,95^n=0$ et $\lim\limits_{n\to +\infty}u_n=20$.
    $\quad$

Partie II : modèle continu

  1. La fonction $L$ est dérivable sur $[0;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $t\pg 0$ on a d’une part :
    $\begin{align*} L'(t)&=-19\times (-0,05)\e^{-0,05t}\\
    &=0,95\e^{-0,05t}\end{align*}$
    D’autre part :
    $\begin{align*} 0,05\left(20-L(t)\right)&=0,05\left(20-20+19\e^{-0,05t}\right) \\
    &=0,05 \times 19\e^{-0,05t} \\
    &=0,95\e^{-0,05t}\end{align*}$
    Ainsi $L$ est solution de $(E)$.
    De plus $L(0)=20-19=1$.
    $\quad$
  2. a. On a $L'(0)=0,95$ et $L'(5)=0,95\e^{-0,25} \approx 0,74$.
    Ainsi $L'(0)>L'(5)$
    $\quad$
    b. $\lim\limits_{t\to +\infty} -0,05t=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{t\to +\infty} L'(t)=0$.
    Ce résultat est cohérent avec la description du modèle de croissance exposé au début de l’exercice : le bambou croît de moins en moins rapidement et atteint finalement une taille de $20$ mètres. Au début de l’observation il mesure bien $1$ mètre.
    $\quad$

Ex B

Exercice B (5 points)

Partie I

  1. On a pu saisir la formule $=B2-\ln(B2-1)$.
    $\quad$
  2. Il semblerait que la suite $\left(u_n\right)$ soit décroissante et converge vers $2$.
    $\quad$

Partie II

  1. $\lim\limits_{x\to 1} x-1=0$ et $\lim\limits_{X\to 0} \ln(X)=-\infty$
    Donc $\lim\limits_{x\to 1} f(x)=+\infty$.
    $\quad$
  2. a. $f$ est dérivable sur $]1;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $x>1$ on a
    $\begin{align*} f'(x)&=1-\dfrac{1}{x-1} \\
    &=\dfrac{x-1-1}{x-1} \\
    &=\dfrac{x-2}{x-1}\end{align*}$
    $\quad$
    b. Le signe de $f'(x)$ ne dépend que de celui de $x-2$.
    Or $x-2=0 \ssi x=2$ et $x-2>0 \ssi x>2$.
    On obtient donc le tableau de signes suivant :
    $\quad$$\quad$
    c. D’après la question précédente, la fonction $f$ admet $2$ pour minimum atteint pour $x=2$.
    Ainsi, pour tout réel $x\pg 2, ~f(x)\pg 2$.
    $\quad$

Partie III

  1. Initialisation : Si $n=0$ alors $u_0=10\pg 2$. La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n\in \N$.
    Donc $u_n\pg 2$.
    D’après la question précédente $u_{n+1}=f\left(u_n\right) \pg 2$.
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n\pg 2$.
    $\quad$
  2. Soit $n\in \N$
    $\begin{align*} u_{n+1}-u_n&= u_n-\ln\left(u_n-1\right)-u_n \\
    &=-\ln\left(u_n-1\right)\end{align*}$
    Or $u_n\pg 2$ donc $u_n-1\pg 1$ et $\ln\left(u_n-1\right)\pg 0$.
    Donc $u_{n+1}-u_n \pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $2$. Elle converge donc.
    $\quad$
  4. $\ell$ est donc solution de l’équation $f(x)=x$.
    Or
    $\begin{align*} f(x)=x&\ssi x-\ln(x-1)=x\\
    &\ssi -\ln(x-1)=0\\
    &\ssi x-1=1 \\
    &\ssi x=2\end{align*}$
    Par conséquent $\ell=2$.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

Cet exercice est un questionnaire à choix multiples (QCM)

Pour chaque question, trois affirmations sont proposées, une seule de ces affirmations est exacte.
Le candidat recopiera sur sa copie le numéro de chaque question et la lettre de la réponse choisie pour celle-ci.
AUCUNE JUSTIFICATION n’est demandée. Une réponse fausse ou l’absence de réponse n’enlève aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par $$f(x) = \left(x^2-2x-1\right)\e^x$$
    A. La fonction dérivée de $f$ est la fonction définie par $f'(x) = (2x-2)\e^x$.
    B. La fonction $f$ est décroissante sur l’intervalle $]-\infty;2]$.
    C. $\ds\lim\limits_{x \to -\infty} f(x) = 0$.
    $\quad$
  2. On considère la fonction $f$ définie sur $\R$ par $f(x) = \dfrac{3}{5 + \e^x}$.
    Sa courbe représentative dans un repère admet :
    A. une seule asymptote horizontale;
    B. une asymptote horizontale et une asymptote verticale;
    C. deux asymptotes horizontales.
    $\quad$
  3. On donne ci-dessous la courbe $\mathcal{C}_{f”}$ représentant la fonction dérivée seconde $f”$ d’une fonction $f$ définie et deux fois dérivable sur l’intervalle $[-3,5;6]$.
    $\quad$

    A. La fonction $f$ est convexe sur l’intervalle $[-3;3]$.
    B. La fonction $f$ admet trois points d’inflexion.
    C. La fonction dérivée $f’$ de $f$ est décroissante sur l’intervalle $[0;2]$.
    $\quad$

  4. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n = n^2-17n+20$.
    A. La suite $\left(u_n\right)$ est minorée.
    B. La suite $\left(u_n\right)$ est décroissante.
    C. L’un des termes de la suite $\left(u_n\right)$ est égal à $2~021$.
    $\quad$
  5. On considère la suite $\left(u_n\right)$ définie par $u_0 = 2$ et, pour tout entier naturel $n$, $u_{n+1} = 0,75u_n +5$.
    On considère la fonction « seuil » suivante écrite en Python :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() }:\\
    \quad \text{u} = 2\\
    \quad \text{n} = 0\\
    \quad \text{while u} < 45 :\\
    \qquad \text{u} = 0.75*u + 5\\
    \qquad \text{n} = \text{n} + 1\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Cette fonction renvoie :
    A. la plus petite valeur de $n$ telle que $u_n \pg 45$ ;
    B. la plus petite valeur de $n$ telle que $u_n < 45$ ;
    C. la plus grande valeur de $n$ telle que $u_n \pg 45$.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un pavé droit $ABCDEFGH$ tel que $AB = AD = 1$ et $AE = 2$, représenté ci- dessous.
Le point $I$ est le milieu du segment $[AE]$. Le point $K$ est le milieu du segment $[DC]$.
Le point $L$ est défini par: $\vect{DL} = \dfrac{3}{2}\vect{AI}$. $N$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.

 

 

On se place dans le repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AI}\right)$.
On admet que le point $L$ a pour coordonnées $\left(0;1;\dfrac{3}{2}\right)$.

  1. Déterminer les coordonnées des vecteurs $\vect{AK}$ et $\vect{AL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vect{n}$ de coordonnées $(6;-3;2)$ est un vecteur normal au plan $(AKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(AKL)$.
    $\quad$
    c. Déterminer un système d’équations paramétriques de la droite $\Delta$ passant par $D$ et perpendiculaire au plan $(AKL)$.
    $\quad$
    d. En déduire que le point $N$ de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.
    $\quad$

On rappelle que le volume $\mathcal{V}$ d’un tétraèdre est donné par la formule : $$\mathcal{V} = \dfrac{1}{3}\times (\text{aire de la base}) \times \text{hauteur}$$

  1. a. Calculer le volume du tétraèdre $ADKL$ en utilisant le triangle $ADK$ comme base.
    $\quad$
    b. Calculer la distance du point $D$ au plan $(AKL)$.
    $\quad$
    c. Déduire des questions précédentes l’aire du triangle $AKL$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Une société de jeu en ligne propose une nouvelle application pour smartphone nommée « Tickets coeurs! ».
Chaque participant génère sur son smartphone un ticket comportant une grille de taille $3 \times 3$ sur laquelle sont placés trois cœurs répartis au hasard, comme par exemple ci-dessous.

 

 

Le ticket est gagnant si les trois cœurs sont positionnés côte à côte sur une même ligne, sur une même colonne ou sur une même diagonale.

  1. Justifier qu’il y a exactement $84$ façons différentes de positionner les trois cœurs sur une grille.
    $\quad$
  2. Montrer que la probabilité qu’un ticket soit gagnant est égale à $\dfrac{2}{21}$.
    $\quad$
  3. Lorsqu’un joueur génère un ticket, la société prélève $1$ € sur son compte en banque. Si le ticket est gagnant, la société verse alors au joueur $5$ €. Le jeu est-il favorable au joueur?
    $\quad$
  4. Un joueur décide de générer $20$ tickets sur cette application. On suppose que les générations des tickets sont indépendantes entre elles.
    a. Donner la loi de probabilité de la variable aléatoire $X$ qui compte le nombre de tickets gagnants parmi les $20$ tickets générés.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X = 5)$.
    $\quad$
    c. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X \pg 1)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • Suites
  • Équations différentielles

Dans cet exercice, on s’intéresse à la croissance du bambou Moso de taille maximale $20$ mètres.
Le modèle de croissance de Ludwig von Bertalanffy suppose que la vitesse de croissance pour un tel bambou est proportionnelle à l’écart entre sa taille et la taille maximale.

Partie I : modèle discret

Dans cette partie, on observe un bambou de taille initiale $1$ mètre.
Pour tout entier naturel $n$, on note $u_n$ la taille, en mètre, du bambou $n$ jours après le début de l’observation. On a ainsi $u_0 = 1$.
Le modèle de von Bertalanffy pour la croissance du bambou entre deux jours consécutifs se traduit par l’égalité : $$u_{n+1} = u_n + 0,05\left(20-u_n\right)~~ \text{pour tout entier naturel } n$$

  1. Vérifier que $u_1 = 1,95$.
    $\quad$
  2. a. Montrer que pour tout entier naturel $n$, $u_{n+1} = 0,95u_n + 1$.
    $\quad$
    b. On pose pour tout entier naturel $n$, $v_n = 20-u_n$.
    Démontrer que la suite $\left(v_n\right)$ est une suite géométrique dont on précisera le terme initial $v_0$ et la raison.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $u_n = 20-19 \times 0,95^n$.
    $\quad$
  3. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II : modèle continu

Dans cette partie, on souhaite modéliser la taille du même bambou Moso par une fonction donnant sa taille, en mètre, en fonction du temps $t$ exprimé en jour.
D’après le modèle de von Bertalanffy, cette fonction est solution de l’équation différentielle $$(E) \qquad y’ = 0,05(20-y)$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0;+\infty[$ et $y’$ désigne sa fonction dérivée.
Soit la fonction $L$ définie sur l’intervalle $[0;+\infty[$ par $$L(t) = 20-19\e^{-0,05t}$$

  1. Vérifier que la fonction $L$ est une solution de $(E)$ et qu’on a également $L(0) = 1$.
    $\quad$
  2. On prend cette fonction $L$ comme modèle et on admet que, si on note $L’$ sa fonction dérivée, $L'(t)$ représente la vitesse de croissance du bambou à l’instant $t$.
    a. Comparer $L'(0)$ et $L'(5)$.
    $\quad$
    b. Calculer la limite de la fonction dérivée $L’$ en $+\infty$.
    Ce résultat est-il en cohérence avec la description du modèle de croissance exposé au début de l’exercice ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Suites, étude de fonction
  • Fonction logarithme

Soit la fonction $f$ définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$
On considère la suite $\left(u_n\right)$ de terme initial $u_0 = 10$ et telle que $u_{n+1} = f\left(u_n\right)$ pour tout entier naturel $n$.

Partie I :

La feuille de calcul ci-dessous a permis d’obtenir des valeurs approchées des premiers termes de la suite $\left(u_n\right)$.

$$\begin{array}{|c|c|c|}
\hline
&\phantom{12345}A\phantom{12345} &B\\
\hline
1 &n&u_n\\
\hline
2 &0&10\\
\hline
3& 1&7,802~775~42\\
\hline
4& 2&5,885~444~74\\
\hline
5& 3&4,299~184~42\\
\hline
6& 4&3,105~509~13\\
\hline
7& 5&2,360~951~82\\
\hline
8& 6&2,052~767~5\\
\hline
9& 7&2,001~345~09\\
\hline
10& 8&2,000~000~9\\
\hline
\end{array}$$

  1. Quelle formule a été saisie dans la cellule B3 pour permettre le calcul des valeurs approchées de $\left(u_n\right)$ par recopie vers le bas ?
    $\quad$
  2. À l’aide de ces valeurs, conjecturer le sens de variation et la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II :

On rappelle que la fonction $f$ est définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$

  1. Calculer $\lim\limits_{x \to 1} f(x)$. On admettra que $\lim\limits_{x \to + \infty} f(x) = +\infty$.
    $\quad$
  2. a. Soit $f’$ la fonction dérivée de $f$. Montrer que pour tout $x \in ]1; +\infty[$, $f'(x) = \dfrac{x-2}{x-1}$.
    $\quad$
    b. En déduire le tableau des variations de $f$ sur l’intervalle $]1;+\infty[$, complété par les limites.
    $\quad$
    c. Justifier que pour tout $x\pg 2$, $f(x) \pg 2$.
    $\quad$

Partie III :

  1. En utilisant les résultats de la partie II, démontrer par récurrence que $u_n \pg 2$ pour tout entier naturel $n$.
    $\quad$
  2. Montrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
  4. On admet que $\ell$ vérifie $f(\ell) = \ell$. Donner la valeur de $\ell$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – mars 2021

Centres étrangers – mars 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\e^{-2x}+x\times \left(-2\e^{-2x}\right)\\
    &=(1-2x)\e^{-2x}\end{align*}$
    La fonction $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f\dsec(x)&=-2\e^{-2x}+(1-2x)\times \left(-2\e^{-2x}\right)\\
    &=\left(-2-2(1-2x)\right)\e^{-2x} \\
    &=(-4+4x)\e^{-2x} \\
    &=4(x-1)\e^{-2x}\end{align*}$
    Réponse b
    $\quad$
  2. Le nombre de combinaisons possibles est :
    $\begin{align*} N&=\dbinom{12}{3} \\
    &=220\end{align*}$
    Réponse c
    $\quad$
  3. $f'(x)>0$ sur $[2;5]$.
    Réponse b
    $\quad$
  4. On appelle $A$ l’événement « La puce possède le défaut A » et $B$ l’événement « La puce possède le défaut B ».
    Ainsi $p(A)=0,028$, $p(B)=0,022$ et $p\left(\conj{A\cup B}\right)=0,954$.
    Par conséquent $p(A\cup B)=1-0,954=0,046$.
    Or
    $\begin{align*} p(A\cap B)&=p(A)+p(B)-p(A\cap B) \\
    &=0,028+0,022-0,046\\
    &=0,004\end{align*}$
    Réponse b
    $\quad$
  5. La fonction $f$ est strictement croissante sur $]-\infty;-1]$ donc $f’$ est positive sur cet intervalle.
    Réponse b
    $\quad$

Ex 2

Exercice 2

Partie A

  1. On obtient l’arbre pondéré suivant :

    $\quad$

  2. On a
    $\begin{align*} P(R\cap J)&=P(R)\times P_R(J) \\
    &=0,17\times 0,32\\
    &=0,0544\end{align*}$
    $\quad$
  3. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} &P(J)=P(R)\times P_R(J)+P\left(\conj{R}\cap J\right) \\
    \ssi&0,11=0,0544+P\left(\conj{R}\cap J\right) \\
    \ssi&0,0556=P\left(\conj{R}\cap J\right) \end{align*}$
    La probabilité que la personne interrogée soit un jeune de 18 à 24 ans n’utilisant pas régulièrement les transports en commun est $0,056$ à $10^{-3}$ près.
    $\quad$
  4. Ainsi :
    $\begin{align*} P_{\conj{R}}(J)&=\dfrac{P\left(\conj{R}\cap J\right) }{P\left(\conj{R}\right)} \\
    &\approx \dfrac{0,056}{1-0,17} \\
    &\approx 0,067\end{align*}$
    La proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun est environ égale à $0,067$.
    $\quad$

Partie B

  1. On réalise $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues $R$ et $\conj{R}$.
    Ainsi $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,17$.
    $\quad$
  2. On a
    $\begin{align*} P(X=5)&=\dbinom{50}{5}\times 0,17^5 \times 0,83^{45} \\
    &\approx 0,069\end{align*}$
    La probabilité d’avoir $5$ personnes utilisant les transports en commun parmi les $50$ interrogées est environ égale à $0,069$.
    $\quad$
  3. D’après la calculatrice $P(X\pp 13)\approx 0,964>0,95$
    L’affirmation est donc vraie.
    $\quad$
  4. L’espérance de $X$ est $E(X)=np=8,5$.
    Il y a donc en moyenne $8,5$ personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. On a
    $\begin{align*} a_1&=0,85\times 5~000+450 \\
    &=4~700\end{align*}$
    $\quad$
  2. Soit $n\in \N$.
    Chaque mois, depuis la mise en place de cette mesure, les dirigeants de l’entreprise constatent que $85 \%$ de ceux qui avaient choisi le télétravail le mois précédent choisissent de continuer. Cela représente donc $0,85a_n$.
    Chaque mois, $450$ collaborateurs supplémentaires choisissent le télétravail.
    Par conséquent $a_{n+1}=0,85a_n+450$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on a $v_n=a_n-3~000 \ssi a_n=v_n+3~000$.
    $\begin{align*} v_{n+1}&=a_{n+1}-3~000\\
    &=0,85a_n+450-3~000\\
    &=0,85a_n-2~550\\
    &=0,85\left(v_n+3~000\right)-2~550 \\
    &=0,85v_n+2~550-2~550\\
    &=0,85v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,85$ et de premier terme $v_0=200-3~000=-2~800$.
    $\quad$
    b. Pour tout entier naturel $n$, $v_n=-2~800\times 0,85^n$.
    $\quad$
    c. Par conséquent, pour tout entier naturel $n$ on a
    \begin{align*} a_n&=v_n+3~000 \\
    &=-2~800\times 0,85^n+3~000\end{align*}$
    $\quad$
  4. On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} a_n>2~500 &\ssi -2~800\times 0,85^n+3~000>2~500 \\
    &\ssi -2~800 \times 0,85^n >-500 \\
    &\ssi 0,85^n <\dfrac{5}{28} \\
    &\ssi n\ln(0,85)<\ln\left(\dfrac{5}{28}\right) \\
    &\ssi n > \dfrac{\ln\left(\dfrac{5}{28}\right)}{\ln(0,85)} \end{align*}$
    Or $\dfrac{\ln\left(\dfrac{5}{28}\right)}{\ln(0,85)} \approx 10,6$
    C’est donc au bout du $11$ème mois que le nombre de télétravailleurs sera strictement supérieur à $2~500$, après la mise en place de cette mesure dans l’entreprise.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout réel $x>0$
    $\begin{align*} f'(x)&=\dfrac{5(x+2)-(5x+4)}{(x+2)^2} \\
    &=\dfrac{5x+10-5x-4}{(x+2)^2} \\
    &=\dfrac{6}{(x+2)^2} \\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. a. Initialisation : $u_0=1$ et $u_1=3$
    Ainsi $0\pp u_0 \pp u_1 \pp 4$ et la propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    Donc $0\pp u_n \pp u_{n+1} \pp 4$
    La fonction $f$ est strictement croissante sur $[0;+\infty[$.
    Par conséquent $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(4)$
    Soit $0\pp 2 \pp u_{n+1} \pp u_{n+2} \pp 4$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp u_n\pp _{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(u_n\right)$ est donc croissante et majorée par $4$. Elle converge.
    $\quad$
  3. $-1< \dfrac{1}{2}<1$ donc $\lim\limits_{n\to +\infty} 3\times \left(\dfrac{1}{2}\right)^n=0$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} 4-u_n=0$ soit $\lim\limits_{n\to +\infty} u_n=4$.
    Sur le long terme, $4~000$ collaborateurs seront satisfaits par cette mesure.
    $\quad$

Ex A

Exercice A

  1. $\vect{AB}\begin{pmatrix} 1\\0\\2\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}-2\\5\\1\end{pmatrix}$
    Par conséquent $\vect{AB}.\vect{AC}=-2+0+2=0$.
    Ces deux vecteurs sont donc orthogonaux et le triangle $ABC$ est rectangle en $A$.
    $\quad$
  2. a. $\vec{n}.\vect{AB}=2+0-2=0$ et $\vec{n}.\vect{AC}=-4+5-1=0$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$. Il est par conséquent normal au plan $(ABC)$.
    $\quad$
    b. Une équation cartésienne du plan $(ABC)$ est donc de la forme $2x+y-z+d=0$.
    Le point $A$ appartient au plan $(ABC)$
    Par conséquent $4-1+d=0 \ssi d=-3$.
    Une équation cartésienne du plan $(ABC)$ est donc $2x+y-z-3=0$.
    $\quad$
    c. $2\times 0+1-4-3=-6\neq 0$.
    Le point $S$ n’appartient donc pas au plan $(ABC)$.
    Les points $A$, $B$, $C$ et $S$ ne sont, par conséquent, pas coplanaires.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $(d)$.
    Une représentation paramétrique de la droite $(d)$ est donc $\begin{cases} x=2t\\y=1+t\\z=4-t\end{cases} \quad t\in \R$.
    $\quad$
    b. $2\times 2\times 2+2-3-3=0$ : le point de coordonnées $(2;2;3)$ appartient au plan $(ABC)$
    En prenant $t=1$ dans la représentation paramétrique de $(d)$ on retrouve le point de coordonnées $(2;2;3)$. Il appartient ainsi à la droite $(d)$.
    Les coordonnées du point $H$ sont donc $(2;2;3)$.
    $\quad$
  4. Aire de la base :
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2}\\
    &=\dfrac{\sqrt{1^2+0^2+2^2}\times \sqrt{(-2)^2+5^2+1^2}}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{30}}{2} \\
    &=\dfrac{\sqrt{150}}{2}\end{align*}$
    Hauteur :
    $\begin{align*} SH&=\sqrt{2^2+(2-1)^2+(3-4)$2} \\
    &=\sqrt{6}\end{align*}$
    Le volume du tétraèdre est donc
    $\begin{align*} V&=\dfrac{\dfrac{\sqrt{150}}{2}\times \sqrt{6}}{3}\\
    &=5\end{align*}$
    $\quad$
  5. a. $SA\begin{pmatrix}2\\-2\\-4\end{pmatrix}$
    $\begin{align*} SA&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    $\quad$
    b. $SB\begin{pmatrix}3\\-2\\-2\end{pmatrix}$
    D’une part $\vect{SA}.\vect{SB}=6+4+8=18$;
    D’autre part $\vect{SA}.\vect{SB}=SA\times SB\times \cos\widehat{ASB}$

    Donc $\sqrt{24}\times \sqrt{17} \cos\widehat{ASB}=18$
    D’où $ \cos\widehat{ASB}=\dfrac{18}{\sqrt{408}}$
    Donc $ \widehat{ASB} \approx 27,0$°
    $\quad$

 

Ex B

Exercice B

Partie A

  1. Pour tout réel $x$ on a
    $\begin{align*} g'(x)&=2\times \left(-\dfrac{1}{3}\e^{\frac{-1}{3}x}\right)+\dfrac{2}{3} \\
    &=-\dfrac{2}{3}\e^{\frac{-1}{3}x}+\dfrac{2}{3}\end{align*}$
    $\quad$
  2. On a $g'(x)=\dfrac{2}{3}\left(1-\e^{\frac{-1}{3}x}\right)$
    Ainsi $g'(x)=0 \ssi 1-\e^{\frac{-1}{3}x}=0 \ssi \dfrac{-1}{3}x=0 \ssi x=0$
    $g'(x)>0 \ssi 1-\e^{\frac{-1}{3}x}>0 \ssi \e^{\frac{-1}{3}x}<1 \ssi x<0$
    La fonction $g$ est donc strictement croissante sur $]-\infty;0]$ et strictement décroissante sur $[0;+\infty[$.
    $\quad$
  3. Or $g(0)=2-2=0$.
    Ainsi $g(x)<0$ pour tout réel $x$ non nul et $g(0)=0$.
    $\quad$

Partie B

  1. $3y’+y=0 \ssi y’=-\dfrac{1}{3}y$
    Les solutions de cette équation sont donc les fonctions $f$ définies sur $\R$ par $f(x)=K\e^{\frac{-1}{3}x}$ où $K\in \R$.
    $\quad$
  2. On veut que $f(0)=2$ soit $K=2$.
    Par conséquent la fonction $f$ est définie sur $\R$ par $f(x)=2\e^{\frac{-1}{3}x}$.
    $\quad$
  3. a. Pour tout réel $x$ on a $f'(x)=-\dfrac{2}{3}\e^{\frac{-1}{3}x}$.
    Ainsi $f'(0)=-\dfrac{2}{3}$ et $f(0)=2$.
    Une équation de $\left(\Delta_0\right)$ est donc $y=-\dfrac{2}{3}x+2$.
    $\quad$
    b. Pour tout réel $x$ on a
    $\begin{align*} f(x)-\left(-\dfrac{2}{3}x+2\right) &=g(x) \\
    &\pp 0\end{align*}$
    La courbe $\mathcal{C}_f$ est donc toujours située sous la droite $\left(\Delta_0\right)$.
    $\quad$

Partie B

  1. Une équation de $\left(\Delta_a\right)$ est $y=-\dfrac{2}{3}\e^{\frac{-a}{3}}(x-a)+2\e^{\frac{-a}{3}}$
    Soit $y=2\e^{\frac{-a}{3}}\left(-\dfrac{1}{3}(x-a)+1\right)$.
    L’abscisse du point d’intersection de cette droite avec l’axe des abscisses vérifie donc
    $-\dfrac{1}{3}(x-a)+1=0\ssi x-a=3 \ssi x=a+3$.
    La tangente $\left(\Delta_a\right)$ coupe l’axe des abscisses au point $P$ d’abscisse $a+3$.
    $\quad$
  2. La droite $\left(\Delta_{-2}\right)$ coupe donc l’axe des abscisses au point d’abscisse $1$.
    Ainsi la droite $\left(\Delta_{-2}\right)$ passe par le point $B$ et le point de coordonnées $(1;0)$.
    $\quad$

 

Énoncé

Exercice 1     5 points

Ceci est un questionnaire à choix multiples (QCM). Pour chacune des questions, une
seule des quatre affirmations est exacte. Le candidat recopiera sur sa copie le numéro de la question et la réponse correspondante. Aucune justification n’est demandée.

Une réponse exacte rapporte un point, une réponse fausse ou une absence de réponse
ne rapporte ni n’enlève aucun point.

  1. On considère la fonction définie sur $\R$ par $f(x)=x\e^{-2x}$. On note $f\dsec$ la dérivée seconde de la fonction $f$.
    Quel que soit le réel $x$, $f\dsec(x)$ est égal à :
    a. $(1-2x)\e^{-2x}$
    b. $4(x-1)\e^{-2x}$
    c. $4\e^{-2x}$
    d. $(x+2)\e^{-2x}$
    $\quad$
  2. Un élève de première générale choisit trois spécialités parmi les douze proposées.
    Le nombre de combinaisons possibles est :
    a. $1~728$
    b. $1~320$
    c. $220$
    d. $33$
    $\quad$
  3. On donne ci-dessous la représentation graphique de $f’$ fonction dérivée d’une fonction $f$ définie sur $[0 ; 7]$.


    Le tableau de variations de $f$ sur l’intervalle $[0;7]$ est :


    $\quad$

  4. Une entreprise fabrique des cartes à puces. Chaque puce peut présenter deux défauts notés A et B.
    Une étude statistique montre que $2,8 \%$ des puces ont le défaut A, $2,2 \%$ des puces ont le défaut B et, heureusement, $95,4 \%$ des puces n’ont aucun des deux défauts.
    La probabilité qu’une puce prélevée au hasard ait les deux défauts est :
    a. $0,05$
    b. $0,004$
    c. $0,046$
    d. On ne peut pas le savoir
    $\quad$
  5. On se donne une fonction $f$, supposée dérivable sur $\R$, et on note $f’$ sa fonction dérivée.
    On donne ci-dessous le tableau de variation de $f$ :

    D’après ce tableau de variation :
    a. $f’$ est positive sur $\R$
    b. $f’$ est positive sur $]-\infty;-1[$
    c. $f’$ est négative sur $\R$
    d. $f’$ est positive sur $[-1;+\infty[$.
    $\quad$

$\quad$

Exercice 2     5 points

Dans tout cet exercice, les probabilités seront arrondies, si nécessaire, à $10^{-3}$.

D’après une étude, les utilisateurs réguliers de transports en commun représentent $17 \%$ de la population française. Parmi ces utilisateurs réguliers, $32 \%$ sont des jeunes âgés de 18 à 24 ans.

(Source : TNS-Sofres)

Partie A

On interroge une personne au hasard et on note :

  • $R$ l’événement : « La personne interrogée utilise régulièrement les transports en commun ».
  • $J$ l’événement : « La personne interrogée est âgée de 18 à 24 ans ».
  1. Représentez la situation à l’aide de cet arbre pondéré, que vous recopierez sur votre copie, en y reportant les données de l’énoncé.

    $\quad$

  2. Calculer la probabilité $P(R\cap J)$.
    $\quad$
  3. D’après cette même étude, les jeunes de 18 à 24 ans représentent $11 \%$ de la
    population française.
    Montrer que la probabilité que la personne interrogée soit un jeune de 18 à 24 ans n’utilisant pas régulièrement les transports en commun est $0,056$ à $10^{-3}$ près.
    $\quad$
  4. En déduire la proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun.
    $\quad$

Partie B :

Lors d’un recensement sur la population française, un recenseur interroge au hasard $50$ personnes en une journée sur leur pratique des transports en commun.
La population française est suffisamment importante pour assimiler ce recensement à un tirage avec remise.

Soit $X$ la variable aléatoire dénombrant les personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées.

  1. Déterminer, en justifiant, la loi de $X$ et préciser ses paramètres.
    $\quad$
  2. Calculer $P(X=5)$ et interpréter le résultat.
    $\quad$
  3. Le recenseur indique qu’il y a plus de $95 \%$ de chance pour que, parmi les $50$ personnes interrogées, moins de $13$ d’entre elles utilisent régulièrement les transports en commun.
    Cette affirmation est-elle vraie ? Justifier votre réponse.
    $\quad$
  4. Quel est le nombre moyen de personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées ?
    $\quad$

$\quad$

Exercice 3     5 points

En mai 2020, une entreprise fait le choix de développer le télétravail afin de s’inscrire dans une démarche écoresponsable.
Elle propose alors à ses $5~000$ collaborateurs en France de choisir entre le télétravail et le travail au sein des locaux de l’entreprise.
En mai 2020, seuls $200$ d’entre eux ont choisi le télétravail.
Chaque mois, depuis la mise en place de cette mesure, les dirigeants de l’entreprise constatent que $85 \%$ de ceux qui avaient choisi le télétravail le mois précédent choisissent de continuer, et que, chaque mois, $450$ collaborateurs supplémentaires choisissent le télétravail.

On modélise le nombre de collaborateurs de cette entreprise en télétravail par la suite $\left(a_n\right)$.

Le terme $a_n$ désigne ainsi une estimation du nombre de collaborateurs en télétravail le $n$-ième mois après le mois de mai 2020. Ainsi $a_0=200$.

Partie A :

  1. Calculer $a_1$.
    $\quad$
  2. Justifier que pour tout entier naturel $n$, $$a_{n+1}=0,85a_n+450$$
    $\quad$
  3. On considère la suite $\left(v_n\right)$ définie pour tout entier naturel $n$ par : $$v_n=a_n-3~000$$
    a. Démontrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,85$.
    $\quad$
    b. Exprimer $v_n$ en fonction de $n$ pour tout entier naturel $n$.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $$a_n=-2~800\times 0,85^n+3~0000$$
    $\quad$
  4. Déterminer le nombre de mois au bout duquel le nombre de télétravailleurs sera strictement supérieur à $2~500$, après la mise en place de cette mesure dans l’entreprise.
    $\quad$

Partie B :

Afin d’évaluer l’impact de cette mesure sur son personnel, les dirigeants de l’entreprise sont parvenus à modéliser le nombre de collaborateurs satisfaits par ce dispositif à l’aide de la suite $\left(u_n\right)$ définie par $u_0 = 1$ et, pour tout entier naturel $n$, $$u_{n+1}=\dfrac{5u_n+4}{u_n+2}$$
où $u_n$ désigne le nombre de milliers de collaborateurs satisfaits par cette nouvelle mesure au bout de 푛 mois après le mois de mai 2020.

  1. Démontrer que la fonction $f$ définie pour tout $x\in [0;+\infty[$ par $f(x)=\dfrac{5x+4}{x+2}$ est strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. a. Démontrer par récurrence que pour tout entier naturel $n$, $$0\pp u_n\pp u_{n+1} \pp 4$$
    $\quad$
    b. Justifier que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  3. On admet que pour tout entier naturel $$0\pp 4-u_n\pp 3\times \left(\dfrac{1}{2}\right)^n$$
    En déduire la limite de la suite $\left(u_n\right)$ et l’interpréter dans le contexte de la modélisation.
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Exercice A

Géométrie dans l’espace

Dans un repère orthonormé de l’espace, on considère les points suivants : $$A(2;-1;0) ; B(3;-1;2) ; C(0;4;1) \text{ et } S(0;1;4)$$

  1. Montrer que le triangle $ABC$ est rectangle en $A$
    $\quad$
  2. a. Montrer que le vecteur$\vec{n}\begin{pmatrix} 2\\1\\-1\end{pmatrix}$ est orthogonal au plan $(ABC)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(ABC)$.
    $\quad$
    c. Montrer que les points $A$, $B$, $C$ et $S$ ne sont pas coplanaires.
    $\quad$
  3. Soit $(d)$ la droite orthogonale au plan $(ABC)$ passant par $S$. Elle coupe le plan
    $(ABC)$ en $H$.
    a. Déterminer une représentation paramétrique de la droite $(d)$.
    $\quad$
    b. Montrer que les coordonnées du point $H$ sont $H(2;2;3)$.
    $\quad$
  4. On rappelle que le volume $V$ d’un tétraèdre est $V =  \dfrac{\text{Aire de la base $\times$ hauteur}}{3}$.
    Calculer le volume du tétraèdre $SABC$.
    $\quad$
  5. a. Calculer la longueur $SA$.
    $\quad$
    b. On indique que $SB=\sqrt{17}$.
    En déduire une mesure de l’angle $\widehat{ASB}$ approchée au dixième de degré.
    $\quad$

$\quad$

Exercice B

Équations différentielles

Partie A :

Soit $g$ la fonction définie sur $\R$ par : $$g(x)=2\e^{\frac{-1}{3}x}+\dfrac{2}{3}x-2$$

  1. On admet que la fonction $g$ est dérivable sur $\R$ et on note $g’$ sa fonction dérivée. Montrer que, pour tout réel $x$ :$$g'(x)=\dfrac{-2}{3}\e^{\frac{-1}{3}x}+\dfrac{2}{3}$$
    $\quad$
  2. En déduire le sens de variations de la fonction $g$ sur $\R$.
    $\quad$
  3. Déterminer le signe de $g(x)$, pour tout $x$ réel.
    $\quad$

Partie B

  1. On considère l’équation différentielle $$(E): \quad 3y’+y=0$$
    Résoudre l’équation différentielle $(E)$.
    $\quad$
  2. Déterminer la solution particulière dont la courbe représentative, dans un repère du plan, passe par le point $M(0;2)$.
    $\quad$
  3. Soit $f$ la fonction définie sur $\R$ par : $$f(x)=2\e^{-\dfrac{1}{3}x}$$
    et $\mathcal{C}_f$ sa courbe représentative.
    a. Montrer que la tangente $\left(\Delta_0\right)$ à la courbe $\mathcal{C}_f$ au point $M(0;2)$ admet une équation de la forme : $$y=-\dfrac{2}{3}x+2$$
    $\quad$
    b. Étudier, sur $\R$, la position de cette courbe $\mathcal{C}_f$ par rapport à la tangente $\left(\Delta_0\right)$.
    $\quad$

Partie C :

  1. Soit $A$ le point de la courbe $\mathcal{C}_f$ d’abscisse $a$, $a$ réel quelconque.
    Montrer que la tangente $\left(\Delta_0\right)$ à la courbe $\mathcal{C}_f$ au point $a$ coupe l’axe des abscisses en un point $P$ d’abscisse $a+3$.
    $\quad$
  2. Expliquer la construction de la tangente $\left(\Delta_{-2}\right)$ à la courbe $\mathcal{C}_f$ au point $B$ d’abscisse $-2$.
    $\quad$

$\quad$