Bac – Spécialité mathématiques – Nouvelle Calédonie- sujet 2 – 27 octobre 2022

Nouvelle Calédonie – 27 octobre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
    b. On a
    $\begin{align*} p\left(\conj{D}\cap R\right)&=p\left(\conj{D}\right)\times p_{\conj{D}}(R) \\
    &=\dfrac{3}{4}\times 0,35 \\
    &=0,262~5\end{align*}$
    $\quad$
    c. $\left(D,\conj{D}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(R)&=p(R\cap D)+ p\left(\conj{D}\cap R\right) \\
    &=p(D)\times p_D(R)+0,262~5 \\
    &=\dfrac{1}{4}\times 0,6+0,262~5 \\
    &=0,412~5\end{align*}$
    La probabilité que Stéphanie réussisse un tir est bien égale à $0,412~5$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} p_R\left(\conj{D}\right)&=\dfrac{p\left(R\cap \conj{D}\right)}{p(R)} \\
    &=\dfrac{0,262~5}{0,262~5} \\
    &\approx 0,636\end{align*}$
    La probabilité qu’il s’agisse d’un tir à trois points si Stéphanie réussit un tir est environ égale à $0,636$.
    $\quad$
  2. a. On répète $10$ fois de façon indépendantes la même expérience de Bernoulli de paramètre $0,35$.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,35$.
    $\quad$
    b. L’espérance de $X$ est :
    $\begin{align*} E(X)&=10\times 0,35 \\
    &=3,5\end{align*}$
    Sur $100$ tirs à trois points elle en réussit donc en moyenne $35$.
    $\quad$
    c. On veut calculer $P(X\pp 6)\approx 0,97$.
    La probabilité que Stéphanie rate $4$ tirs ou plus est environ égale à $0,97$.
    $\quad$
    d. On veut calculer $P(X\pg 6)=1-P(X\pp 5)\approx 0,09$.
    La probabilité que Stéphanie rate au plus $4$ tirs est environ égale à $0,09$.
    $\quad$
  3. On note $Y$ la variable aléatoire qui compte le nombre de tirs réussis.
    On répète $n$ fois de façon indépendantes la même expérience de Bernoulli de paramètre $0,35$.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,35$
    On veut déterminer le plus plus petit entier naturel $n$ tel que :
    $\begin{align*} p(Y\pg 1)\pg 0,99 &\ssi 1-P(X=0)\pg 0,99 \\
    &\ssi P(X=0) \pp 0,01 \\
    &\ssi 0,65^n \pp 0,01 \\
    &\ssi n\ln(0,65) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,65)}\quad \text{car } \ln(0,65)>0\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,65)}\approx 10,69$.
    La plus petite valeur de $n$ telle que la probabilité que Stéphanie réussisse au moins un tir parmi les $n$ tirs soit supérieure ou égale à $0,99$ est donc $11$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. La fonction $f$ est dérivable sur $]0;+\infty[$ par hypothèse.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=\ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)+1-1\\
    &=\ln(x)\end{align*}$
    $\quad$
    b. On a $f(\e)=-2$ et $f'(\e)=1$.
    Une équation de la tangente $T$ est donc $y=1\times (x-\e)-2$ soit $y=x-\e-2$.
    $\quad$
    c. Par hypothèse la fonction $f$ est deux fois dérivables sur $]0;+\infty[$.
    Par conséquent, pour tout réel $x>0$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    d. La fonction $f$ est convexe sur $]0;+\infty[$. La courbe $\mathscr{C}_f$ est donc au-dessus de toutes ses tangentes.
    Ainsi $\mathscr{C}_f$ est au-dessus de $T$.
    $\quad$
  2. a. Par croissances comparées $\lim\limits_{x\to 0} x\ln(x)=0$. Donc $\lim\limits_{x\to 0} f(x)=-2$.
    $\quad$
    b. Pour tout réel $x>0$ on a $f(x)=x\left(\ln(x)-1-\dfrac{2}{x}\right)$.
    Or $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} \dfrac{1}{x}=0$.
    Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
  3. $\ln(x)=0\ssi x=1$ et $\ln(x)>0 \ssi x>1$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  4. a. Pour tout réel $x\in ]0;1]$ on a, d’après la question précédente, $f(x)<-2$. L’équation $f(x)=0$ n’admet donc aucune solution sur l’intervalle $]0;1]$.
    La fonction $f$ est continue (car dérivable) et strictement croissante sur l’intervalle $[1;+\infty[$.
    $f(1)=-3<0$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur l’intervalle $[1;+\infty[$.
    Ainsi l’équation $f(x)=0$ admet une unique solution sur $]0;+\infty[$.
    $\quad$
    b. $f(4,3)\approx -0,03<0$ et $f(4,4)\approx 0,12>0$.
    Donc $f(4,3)<f(\alpha)<f(4,4)$.
    La fonction $f$ est strictement croissante sur l’intervalle $[4,3;4;4]$.
    Par conséquent $4,3<\alpha<4,4$.
    Ainsi $\alpha\in ]4,3;4,4[$.
    $\quad$
    c. D’après les questions précédentes :
    $\bullet$ $f(x)<0$ sur $]0;\alpha[$;
    $\bullet$ $f(\alpha)=0$;
    $\bullet$ $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$
  5. $\texttt{seuil(0.01)}$ renvoie la valeur $4,32$.
    Il s’agit d’une valeur approchée à $10^{-2}$ près de $\alpha$.
    $\quad$

 

Ex 3

Exercice 3

  1. On a $B(6;4;0)$, $E(0;4;4)$, $F(6;4;4)$ et $G(6;0;4)$.
    $\quad$
  2. Le volume du toit est
    $\begin{align*}V_{pyramide}&=\dfrac{1}{3}\times 6\times 4\times (6-4) \\
    &=16\end{align*}$
    Le volume de $EFGHS$ est donc égale à $16$ u.v.
    Le volume du parallélépipède est :
    $\begin{align*} V_{parallélépipède}&=6\times 4\times 4\\
    &=96\end{align*}$
    Le volume de la maison est donc $V=16+96=112$ u.v.
    $\dfrac{16}{112}=\dfrac{1}{7}$
    Le volume de la pyramide $EFGHS$ représente bien le septième du volume total de la maison.
    $\quad$
  3. a. On a $\vect{EF}\begin{pmatrix} 6\\0\\0\end{pmatrix}$ et $\vect{ES}\begin{pmatrix}3\\-2\\2\end{pmatrix}$.
    Ces deux vecteurs sont clairement non colinéaires.
    Ainsi $\vec{n}.\vect{EF}=0+0+0=0$ et $\vec{n}.\vect{ES}=0-2+2=0$.
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(EFS)$. Il est, par conséquent, normal au plan $(EFS)$.
    $\quad$
    b. Une équation cartésienne du plan $(EFS)$ est donc de la forme $y+z+d=0$.
    Le point $E(0;4;4)$ appartient au plan $(EFS)$.
    Donc $4+4+d=0 \ssi d=-8$.
    Une équation cartésienne du plan $(EFS)$ est donc $y+z+8=0$.
    $\quad$
  4. a. La droite $(PQ)$ est dirigée par $\vec{k}$ et passe par $Q(2;3;5,5)$.
    Une représentation paramétrique de la droite $(PQ)$ est donc $$\begin{cases} x=2\\y=3\\z=5,5+t\end{cases} \qquad t\in \R$$
    $\quad$
    b. Le point $P$ est le point d’intersection de la droite $(PQ)$ et du plan $(EFS)$. Déterminons les coordonnées de ce point à l’aide du système :
    $\begin{align*}\begin{cases} y+z-8=0 \\x=2\\y=3\\z=5,5+t\end{cases} &\ssi \begin{cases}x=2\\y=3\\z=5,5+t\\3+5,5+t-8=0\end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\t=-0,5\\z=5\end{cases}\end{align*}$
    Ainsi $P$ a pour coordonnées $(2;3;5)$.
    $\quad$
    c. On a alors $\vect{PQ}\begin{pmatrix}0\\0\\0,5\end{pmatrix}$.
    Ainsi $PQ=0,5$.
    $\quad$
  5. Un vecteur directeur de $\Delta$ est $\vec{u}\begin{pmatrix} 6\\-4\\4\end{pmatrix}$
    $\vec{k}$ et $\vec{u}$ ne sont pas colinéaires. Les droites $(PQ)$ et $\Delta$ ne sont donc pas parallèles.
    Déterminons si elles sont sécantes.
    $\begin{align*} \begin{cases} x=2\\y=3\\z=5,5+t\\x=-4+6s\\y=7-4s\\z=2+4s\end{cases}&\ssi \begin{cases} x=2\\y=3\\z=5,5+t\\-4+6s=2\\7-4s=3\\z=2+4s\end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\s=1\\z=2+4s\\z=5,5+t \end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\z=6\\s=1\\t=0,5\end{cases}\end{align*}$
    Les droites $(PQ)$ et $\Delta$ sont donc sécantes. Leur point d’intersection a pour coordonnées $(2;3;6)$.
    L’oiseau passe donc $0,5$ unité au-dessus de l’antenne. Par conséquent, il ne la percute pas.
    $\quad$

 

Ex 4

Exercice 4

  1. Pour tout $n\in \N$ on a $-1\pp (-1)^n \pp 1$ donc $-\dfrac{1}{n}\pp u_n \pp \dfrac{1}{n}$.
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{n}=0$.
    D’après le théorème des gendarmes $\lim\limits_{n\to +\infty} u_n=0$.
    Réponse D
    $\quad$
  2. On a :
    $\begin{align*} w_0&=\e^{-2\ln(a)}+2 \\
    &=a^{-2}+2 \\
    &=\dfrac{1}{a^2}+2\end{align*}$
    Réponse A
    $\quad$
  3. La suite $\left(v_n\right)$ est décroissante.
    Pour tout $n\in \N$
    $\begin{align*} v_n\pp v_{n+1} &\ssi -2v_n\pg -2v_{n+1} \\
    &\ssi \e^{-2v_n}\pg \e^{-2v_{n+1}} \\
    &\ssi w_n\pg w_{n+1}\end{align*}$
    La suite $\left(w_n\right)$ est donc décroissante.
    La fonction exponentielle est strictement positive. Par conséquent, pour tout $n\in \N$, $\e^{-2v_n}>0$ et $w_n>2$.
    Réponse B
    $\quad$
  4. Montrons que la bonne réponse est la B.
    Il suffisait ici de calculer les premiers termes de chacune des $5$ suites pour déterminer que seule la proposition convenait.
    $-\dfrac{2}{3^0}+4=2$ ce qui correspond bien à $a_0=2$.
    $\begin{align*} -\dfrac{2}{3^{n+1}}+4&=\dfrac{1}{3}\times \dfrac{-2}{3^n}+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4-4\right)+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4\right)-\dfrac{4}{3}+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4\right)+\dfrac{8}{3}\end{align*}$
    On retrouve bien la relation de récurrence $a_{n+1}=\dfrac{1}{3}a_n+\dfrac{8}{3}$.
    Réponse B
    $\quad$
  5. Pour tout $n\in \N$ on a $b_{n+1}-b_n=\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)$.
    Or $\left(b_n\right)^2+3>2$ donc $\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)<0$.
    La suite $\left(b_n\right)$ est par conséquent décroissante.
    Réponse B
    $\quad$
  6. $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{x\to 0^+} g(x)=+\infty$.
    La droite d’équation $x=0$ est asymptote à la courbe $\mathscr{C}_g$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    La courbe $\mathscr{C}_g$ ne possède pas d’asymptote horizontale.
    Réponse B
    $\quad$
  7. On considère la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2+1}$
    $F$ est dérivable sur $\R$ en tant que composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} F'(x)&=\dfrac{1}{2}\times 2x\e^{x^2+1} \\
    &=f(x)\end{align*}$
    Réponse D
    $\quad$

 

Énoncé

Le sujet propose 4 exercices.
Le candidat choisit 3 exercices parmi les 4 et ne doit traiter que ces 3 exercices.

Exercice 1     7 points

Principaux domaines abordés : probabilités

Au basket-ball, il existe deux sortes de tir :

  • les tirs à deux points.
    Ils sont réalisés près du panier et rapportent deux points s’ils sont réussis.
  • les tirs à trois points.
    Ils sont réalisés loin du panier et rapportent trois points s’ils sont réussis.

Stéphanie s’entraîne au tir. On dispose des données suivantes :

  • Un quart de ses tirs sont des tirs à deux points. Parmi eux, $60 \%$ sont réussis.
  • Trois quarts de ses tirs sont des tirs à trois points. Parmi eux, $35\%$ sont réussis.
  1. Stéphanie réalise un tir.
    On considère les évènements suivants :
    $D$ : « Il s’agit d’un tir à deux points ».
    $R$ : « le tir est réussi ».
    a. Représenter la situation à l’aide d’un arbre de probabilités.
    $\quad$
    b. Calculer la probabilité $p(D \cap R)$.
    $\quad$
    c. Démontrer que la probabilité que Stéphanie réussisse un tir est égale à $0,412~5$.
    $\quad$
    d. Stéphanie réussit un tir. Calculer la probabilité qu’il s’agisse d’un tir à trois points.
    Arrondir le résultat au centième.
    $\quad$
  2. Stéphanie réalise à présent une série de $10$ tirs à trois points.
    On note $X$ la variable aléatoire qui compte le nombre de tirs réussis.
    On considère que les tirs sont indépendants. On rappelle que la probabilité que Stéphanie réussisse un tir à trois points est égale à $0,35$.
    a. Justifier que $X$ suit une loi binomiale. Préciser ses paramètres.
    $\quad$
    b. Calculer l’espérance de $X$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
    c. Déterminer la probabilité que Stéphanie rate $4$ tirs ou plus. Arrondir le résultat au centième.
    $\quad$
    d. Déterminer la probabilité que Stéphanie rate au plus $4$ tirs. Arrondir le résultat au centième.
    $\quad$
  3. Soit $n$ un entier naturel non nul.
    Stéphanie souhaite réaliser une série de $n$ tirs à trois points.
    On considère que les tirs sont indépendants. On rappelle que la probabilité qu’elle réussisse un tir à trois points est égale à $0,35$.
    Déterminer la valeur minimale de $n$ pour que la probabilité que Stéphanie réussisse au moins un tir parmi les n tirs soit supérieure ou égale à $0,99$.
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : fonctions, fonction logarithme.

Soit $f$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par :
$$f(x) = x\ln(x)-x-2$$
On admet que la fonction $f$ est deux fois dérivable sur $]0 ; +\infty[$.
On note $f’$ sa dérivée, $f\dsec$ sa dérivée seconde et $\mathscr{C}_f$ sa courbe représentative dans un repère.

  1. a. Démontrer que, pour tout $x$ appartenant à $]0 ; +\infty[$, on a $f'(x) = \ln(x)$.
    $\quad$
    b. Déterminer une équation de la tangente $T$ à la courbe $\mathscr{C}_f$ au point d’abscisse $x =\e$.
    $\quad$
    c. Justifier que la fonction $f$ est convexe sur l’intervalle $]0 ; +\infty[$.
    $\quad$
    d. En déduire la position relative de la courbe $\mathscr{C}_f$ et de la tangente $T$.
    $\quad$
  2. a. Calculer la limite de la fonction $f$ en $0$.
    $\quad$
    b. Démontrer que la limite de la fonction $f$ en $+\infty$ est égale à $+\infty$.
    $\quad$
  3. Dresser le tableau de variations de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  4. a. Démontrer que l’équation $f (x) = 0$ admet une unique solution dans l’intervalle $]0 ; +\infty[$. On note $\alpha$ cette solution.
    $\quad$
    b. Justifier que le réel $\alpha$ appartient à l’intervalle $]4,3; 4,4[$.
    $\quad$
    c. En déduire le signe de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  5. On considère la fonction $\texttt{seuil}$ suivante écrite dans le langage Python :
    On rappelle que la fonction $\texttt{log}$ du module $\texttt{math}$ (que l’on suppose importé) désigne
    la fonction logarithme népérien $\ln$.$$\begin{array}{|l|}
    \hline
    \text{def seuil(pas) :}\\
    \quad  \text{x=4.3}\\
    \quad  \text{while x*log (x) – x – 2 < 0:}\\
    \qquad  \text{x=x+pas}\\
    \quad  \text{return x}\\
    \hline
    \end{array}$$
    Quelle est la valeur renvoyée à l’appel de la fonction $\texttt{seuil(0.01)}$?
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés : géométrie dans l’espace

Une maison est modélisée par un parallélépipède rectangle $ABCDEFGH$ surmonté d’une pyramide $EFGHS$.
On a $DC = 6$, $DA = DH = 4$.
Soit les points $I$, $J$ et $K$ tels que $\vect{DI}=\dfrac{1}{6}\vect{DC}$, $\vect{DJ}=\dfrac{1}{4}\vect{DA}$, $\vect{DK}=\dfrac{1}{6}\vect{DH}$.
On note $\vec{i}=\vect{DI}$, $\vec{j}=\vect{DJ}$, $\vec{k}=\vect{DK}$.
On se place dans le repère orthonormé $\left(D;\vec{i},\vec{j},\vec{k}\right)$.
On admet que le point $S$ a pour coordonnées $(3; 2; 6)$.

  1. Donner, sans justifier, les coordonnées des points $B$, $E$, $F$ et $G$.
    $\quad$
  2. Démontrer que le volume de la pyramide $EFGHS$ représente le septième du volume total de la maison.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V =\dfrac{1}{3}\times \text{(aire de la base)}\times \text{hauteur}$$
    $\quad$
  3. a. Démontrer que le vecteur $\vec{n}$ de coordonnées $\begin{pmatrix}0\\1\\0\end{pmatrix}$ est normal au plan $(EFS)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(EFS)$ est $y +z-8 = 0$.
    $\quad$
  4. On installe une antenne sur le toit, représentée par le  segment $[PQ]$. On dispose des
    données suivantes :
    $\bullet$ le point $P$ appartient au plan $(EFS)$;
    $\bullet$ le point $Q$ a pour coordonnées $(2; 3; 5,5)$;
    $\bullet$ la droite $(PQ)$ est dirigée par le vecteur $\vec{k}$.
    a. Justifier qu’une représentation paramétrique de la droite $(PQ)$ est :
    $$\begin{cases}x=2\\y = 3\\z = 5,5+t\end{cases} \quad (t \in \R)$$
    b. En déduire les coordonnées du point $P$.
    $\quad$
    c. En déduire la longueur $PQ$ de l’antenne.
    $\quad$
  5. Un oiseau vole en suivant une trajectoire modélisée par la droite $\Delta$ dont une représentation paramétrique est : $$\begin{cases} x=-4+6s\\y=7-4s\\z=2+4s\end{cases} \quad (s\in \R)$$
    Déterminer la position relative des droites $(PQ)$ et $\Delta$.
    L’oiseau va-t-il percuter l’antenne représentée par le segment $[PQ]$?
    $\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés : : suites, fonctions, primitives

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée

  1. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $$u_n=\dfrac{(-1)^n}{n+1}$$
    On peut affirmer que :
    a. la suite $\left(u_n\right)$ diverge vers $+\infty$.
    b. la suite $\left(u_n\right)$ diverge vers $-\infty$.
    c. la suite $\left(u_n\right)$ n’a pas de limite.
    d. la suite $\left(u_n\right)$ converge.
    $\quad$

Dans les questions 2 et 3, on considère deux suites $\left(v_n\right)$ et $\left(u_n\right)$ vérifiant la relation : $$w_n=\e^{-2v_n+2}$$

  1. . Soit $a$ un nombre réel strictement positif. On a $v_0 = \ln(a)$.
    a. $w_0=\dfrac{1}{a^2}+2$
    b. $w_0=\dfrac{1}{a^2+2}$
    c. $w_0=-2a+2$
    d. $w_0=\dfrac{1}{-2a}+2$
    $\quad$
  2. On sait que la suite $\left(v_n\right)$ est croissante. On peut affirmer que la suite $\left(w_n\right)$ est :
    a. décroissante et majorée par $3$.
    b. décroissante et minorée par $2$.
    c. croissante et majorée par $3$.
    d. croissante et minorée par $2$.
    $\quad$
  3. On considère la suite $\left(a_n\right)$ ainsi définie : $$a_0=2 \text{ et, pour tout entier naturel }n,~~a_{n+1}=\dfrac{1}{3}a_n+\dfrac{8}{3}$$
    Pour tout entier naturel $n$, on a :
    a. $a_n=4\times \left(\dfrac{1}{3}\right)^n-2$
    b. $a_n=-\dfrac{2}{3^n}+4$
    c. $a_n=4-\left(\dfrac{1}{3}\right)^n$
    d. $a_n=2\times \left(\dfrac{1}{3}\right)^n+\dfrac{8n}{3}$
    $\quad$
  4. On considère une suite $\left(b_n\right)$ telle que, pour tout entier naturel $n$, on a : $$b_{n+1}=b_n+\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)$$
    On peut affirmer que :
    a. la suite $\left(b_n\right)$ est croissante.
    b. la suite $\left(b_n\right)$ est décroissante.
    c. la suite $\left(b_n\right)$ n’est pas monotone.
    d. le sens de variation de la suite $\left(b_n\right)$ dépend de $b_0$.
    $\quad$
  5. On considère la fonction $g$ définie sur l’intervalle $]0 ; +\infty[$ par : $$g(x)=\dfrac{\e^x}{x}$$
    On note $\mathscr{C}_g$ la courbe représentative de la fonction $g$ dans un repère orthogonal.
    La courbe $\mathscr{C}_g$ admet :
    a. une asymptote verticale et une asymptote horizontale.
    b. une asymptote verticale et aucune asymptote horizontale.
    c. aucune asymptote verticale et une asymptote horizontale.
    d. aucune asymptote verticale et aucune asymptote horizontale.
    $\quad$
  6. Soit $f$ la fonction définie sur $\R$ par $$f(x)=x\e^{x^2+1}$$
    Soit $F$ une primitive sur $\R$ de la fonction $f$. Pour tout réel $x$, on a :
    a. $F(x)=\dfrac{1}{2}x^2\e^{x^2+1}$
    b. $F(x)=\left(1+2x^2\right)\e^{x^2+1}$
    c. $F(x)=\e^{x^2+1}$
    d. $F(x)=\dfrac{1}{2}\e^{x^2+1}$
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Métropole, Antilles, Guyane – sujet 2 – 9 septembre 2022

Métropole Antilles/Guyane – 9 septembre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient l’arbre pondéré suivant :
    $\quad$$\quad$
  2. a. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} p(E)&=p(R)\times p_R(E)+p\left(\conj{R}\right)\times p_{\conj{R}}(E) \\
    &=0,4\alpha+0,7(1-\alpha) \\
    &=0,7-0,3\alpha\end{align*}$
    $\quad$
    b.
    $\begin{align*} p(E)=0,58&\ssi 0,7-0,3\alpha=0,58 \\
    &\ssi -0,12=-0,3\alpha\\
    &\ssi  \alpha=0,4\end{align*}$
    $\quad$
  3. On a
    $\begin{align*}
    p_E\left(\conj{R}\right)&=\dfrac{p\left(E\cap \conj{R}\right)}{p(E)} \\
    &=\dfrac{p\left(\conj{R}\right)\times P_{\conj{R}}(E)}{p(E)} \\
    &=\dfrac{0,7(1-\alpha)}{0,58} \\
    &=\dfrac{0,7\times 0,6}{0,58} \\
    &=\dfrac{21}{29}\\
    &\approx 0,72
    \end{align*}$
    La probabilité que le client ayant loué un vélo électrique ait loué un vélo tout terrain est environ égale à $0,72$.
    $\quad$
  4. On a
    $\begin{align*} p\left(\conj{R}\cap E\right)&=p\left(\conj{R}\right)\times p_{\conj{R}}(E) \\
    &=0,7(1-\alpha)\\
    &=0,7\times 0,6\\
    &=0,42\end{align*}$
    La probabilité que le client loue un vélo tout terrain électrique est égale à $0,42$.
    $\quad$
  5. a. $X(\Omega)=\acco{25,~35,~40,~50}$
    $\begin{align*} p(X=25)&=p\left(R\cap \conj{E}\right) \\
    &= 0,4\times 0,4\\
    &=0,24\end{align*}$
    $\begin{align*} p(X=35)&=p\left(\conj{R}\cap \conj{E}\right) \\
    &= 0,6\times 0,3\\
    &=0,18\end{align*}$
    $\begin{align*} p(X=40)&=p\left(R\cap \conj{E}\right) \\
    &= 0,4\times 0,4\\
    &=0,16\end{align*}$
    $\begin{align*} p(X=50)&=p\left(\conj{R}\cap E\right) \\
    &= 0,6\times 0,7\\
    &=0,42\end{align*}$
    On obtient ainsi le tableau de loi de probabilité de $X$ suivant :
    $\begin{array}{|c|c|c|c|c|}
    \hline
    x&25&35&40&50\\
    \hline
    p(X=x)&0,24&0,18&0,16&0,42\\
    \hline
    \end{array}$
    $\quad$
    b. L’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=25\times 0,24+35\times 0,18+40\times 0,16+50\times 0,42 \\
    &=39,7\end{align*}$
    En moyenne, une location de vélo coûte $39,70$ euros.
    $\quad$
  6. a. On répète $30$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,58$.
    $Y$ suit donc la loi binomiale de paramètres $n=30$ et $p=0,58$.
    $\quad$
    b.
    $\begin{align*} p(X=20)&=\dbinom{30}{20} 0,58^{20}\times 0,42^{10} \\
    &\approx 0,095\end{align*}$
    La probabilité qu’un échantillon contienne exactement $20$ clients qui
    louent un vélo électrique est environ égale à $0,095$.
    $\quad$
    c. On veut calculer $P(X\pg 15) \approx 0,858$.
    La probabilité qu’un échantillon contienne au moins $15$ clients qui louent un vélo électrique est environ égale à $0,858$.
    $\quad$

Ex 2

Exercice 2

  1. Soit $n\in \N$
    $\begin{align*} b_{n+1}&=a_{n+1}-2 \\
    &=0,5a_n+1-2 \\
    &=0,5a_n-1 \\
    &=0,5\left(a_n-2\right) \\
    &=0,5b_n\end{align*}$
    La suite $\left(b_n\right)$ est donc géométrique de raison $0,5$.
    Réponse b
    $\quad$
  2. On a donc $u_1=5$, $v_1=3$, $u_2=14$ et $v_2=8$.
    Donc $\dfrac{u_2}{v_2}=1,75$
    Réponse c
    $\quad$
  3. La boucle du programme calcule tous les termes $u_n$ et $v_n$ pour $n$ allant de $1$ à $10$.
    Le programme renvoie donc $u_{10}$ et $v_{10}$.
    Réponse d
    $\quad$
  4. La fonction $f’$ semble croissante sur l’intervalle $[-4;0]$.
    Par conséquent la fonction $f$ semble convexe sur cet intervalle.
    Réponse b
    $\quad$
  5. Le coefficient directeur de la droite $(BC)$ est
    $\begin{align*} f\dsec(1)&=\dfrac{y_C-y_B}{x_C-x_B} \\
    &=5\end{align*}$
    Réponse d
    $\quad$
  6. On considère la fonction $F$ définie sur $\R$ par $F(x)=\left(x^2-2x+3\right)\e^x-2$.
    La fonction $F$ est dérivable sur $\R$ en tant que somme et produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} F'(x)&=(2x-2)\e^x+\left(x^2-2x+3\right)\e^x \\
    &=\left(2x-2+x^2-2x+3\right)\e^x \\
    &=\left(x^2+1\right)\e^x\end{align*}$
    Ainsi $F$ est une primitive de la fonction $f$ sur $\R$.
    De plus $F(0)=3-2=1$.
    Réponse b
    $\quad$

Ex 3

Exercice 3

Partie A

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=0$.
    $\quad$
  2. Pour tout réel $x>0$ on a $f(x)=x\left(1-\ln(x)\right)$.
    Or $\lim\limits_{x\to +\infty}\ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} 1-\ln(x)=-\infty$ ainsi $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. a. Pour tout réel $x>0$ on a
    $\begin{align*} f'(x)&=1-\ln(x)-x\times \dfrac{1}{x} \\
    &=1-\ln(x)+1\\
    &=-\ln(x)\end{align*}$
    $\quad$
    b. $f'(x)=0\ssi -\ln(x)=0 \ssi x=1$
    $f'(x)>0 \ssi -\ln(x)>0 \ssi x\in ]0;1[$.
    La fonction $f$ est donc strictement croissante sur $]0;1]$ et strictement décroissante sur $[1;+\infty[$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$

    $\quad$
  4. $f(x)=x\ssi x-x\ln(x)=x \ssi -x\ln(x)=0 \ssi x=1$ (la valeur $0$ n’est pas solution puisque $f$ n’est pas définie en $0$).
    $\quad$

Partie B

  1. Pour tout $n\in \N$ on pose $P(n):~0,5\pp u_n\pp u_{n+1} \pp 1$.
    Initialisation : $u_0=0,5$ et $u_1\approx 0,85$.
    Par conséquent $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $0,5\pp u_n \pp u_{n+1} \pp 1$.
    La fonction $f$ est croissante sur l’intervalle $[0,5;1]$.
    Par conséquent $f(0,5) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp p(1)$ c’est-à-dire $u_1\pp u_{n+1} \pp u_{n+2} \pp 1$.
    Or $u_1\approx 0,85$.
    La propriété $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout $n\in \N$, $0,5\pp u_n\pp u_{n+1} \pp 1$.
    $\quad$
  2. a. La suite $\left(u_n\right)$ est croissante et majorée par $1$. Elle converge donc vers un réel $\ell$.
    $\quad$
    b. La fonction $f$ est continue sur $]0;+\infty[$ et, pour tout $n\in \N$, on a $u_{n+1}=f\left(u_n\right)$.
    Par conséquent $\ell$ est solution de l’équation $f(x)=x$.
    D’après la question A.4. l’unique solution de cette équation est $1$.
    Ainsi $\ell=1$.
    $\quad$

Partie C

  1. La fonction $f_k$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f_k'(x)&=k-\ln(x)-x\times \dfrac{1}{x} \\
    &=-\ln(x)+k-1\end{align*}$
    $f_k'(x)>0 \ssi -\ln(x)+k-1>0 \ssi \ln(x)<k-1 \ssi x<\e^{k-1}$
    La fonction $f_k$ est donc strictement croissante sur $\left]0;\e^{k-1}\right]$ et strictement décroissante sur $\left[\e^{k-1};+\infty\right[$.
    La fonction $f_k$ admet par conséquent un maximum en $x_k=\e^{k-1}$.
    $\quad$
  2. Soit $k\in \R$.
    $\begin{align*} y_k=f_k\left(x_k\right)\\
    &=k\e^{k-1}-\e^{k-1}\ln\left(\e^{k-1}\right) \\
    &=k\e^{k-1}-(k-1)\e^{k-1} \\
    &=\e^{k-1}\left(k-(k-1)\right) \\
    &=\e^{k-1}\\
    &=x_k\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. a. Les coordonnées du vecteur $\vec{u}’$ sont $\begin{pmatrix} 0\\1\\1\end{pmatrix}$.
    $\quad$
    b. Les vecteurs $\vec{u}$ et $\vec{u}’$ ne sont pas colinéaires (ils n’ont pas les mêmes coordonnées nulles). Les droites $\mathscr{D}$ et $\mathscr{D}’$ ne sont donc pas parallèles.
    $\quad$
    c. Une représentation paramétrique de la droite $\mathscr{D}$ est $\begin{cases} x=2+k\\y=4+2k\\z=0\end{cases}$.
    $\quad$
  2. $\vec{v}.\vec{u}=2-2+0=0$ et $\vec{v}3.\vec{u}’=0-1+1=0$.
    $\vec{v}$ est donc orthogonal aux deux vecteurs, non colinéaires, $\vec{u}$ et $\vec{u}’$.
    $\vec{v}$ est donc un vecteur directeur de la droite perpendiculaire à la fois à $\mathscr{D}$ et $\mathscr{D}’$.
    Ainsi $\vec{v}\begin{pmatrix}2\\-1\\1\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$.
    $\quad$
  3. a. $\vec{n}.\vec{u}=2-2+0=0$ et $\vec{n}.\vec{v}= 4+1-5=0$.
    Ainsi $\vec{n}$ orthogonal à deux vecteurs non colinéaires du plan $\mathscr{P}$.
    $\quad$
    b. Une équation cartésienne du plan $\mathscr{P}$ est donc de la forme $2x-y-5z+d=0$.
    Le point $A(2;4;0)$ appartient au plan $\mathscr{P}$.
    Par conséquent $4-4-0+d=0 \ssi d=0$.
    Une équation cartésienne du plan $\mathscr{P}$ est donc $2x-y-5z=0$.
    $\quad$
    c. $M’$ est un point de $Delta$. Il appartient donc également au plan $\mathscr{P}$ qui contient cette droite.
    $M’$ est un point de $\mathscr{D}’$.
    $M’$ est donc le point d’intersection de la droite $\mathscr{D}’$ avec le plan $\mathscr{P}$.
    $2\times 3-1-5=0$ : le point de coordonnées $(3;1;1)$ appartient donc au plan $\mathscr{P}$.
    En prenant $t=-2$ dans la représentation paramétrique de la droite $\mathscr{D}’$ on obtient le point de coordonnées $(3;1;1)$.
    Ainsi ce point est le point d’intersection de la droite $\mathscr{D}’$ et $\mathscr{P}$.
    Ainsi $M’$ a pour coordonnées $(3;1;1)$.
    $\quad$
  4. a. $\vec{v}$ est un vecteur directeur de $\Delta$ et $M’$ appartient à cette droite.
    Une représentation paramétrique de la droite $\Delta$ est donc $\begin{cases} x= 3+2k’\\y=1-k’\\z=1+k’\end{cases} \qquad k’\in \R$.
    $\quad$
    b. En prenant $k’=-1$ dans la représentation paramétrique de $\Delta$ on obtient le point de coordonnées $(-1;2;0)$.
    En prenant $k=-1$ dans la représentation paramétrique de $\mathscr{D}$ on obtient le point de coordonnées $(-1;2;0)$.
    $M$ est le point d’intersection de ces deux droites. Donc $M$ a pour coordonnées $(1;2;0)$.
    $\quad$
    c. Les coordonnées de $\vect{MM’}$ sont $\begin{pmatrix}2\\-1\\1\end{pmatrix}$.
    Par conséquent
    $\begin{align*} MM’&=\sqrt{2^2+(-1)^2+1^2}\\
    &=\sqrt{4+1+1} \\
    &=\sqrt{6}\end{align*}$.
    $\quad$
  5. a. Un vecteur directeur de la droite $d$ est $\vec{r}\begin{pmatrix} 5\\5\\1\end{pmatrix}$.
    $\vec{n}.\vec{r}=10-5-5=0$. Par conséquent $\vec{n}$ est normal à la droite $d$.
    Ainsi $d$ est parallèle au plan $\mathscr{P}$.
    $\quad$
    b. Les droites $\mathscr{D}$ et $\Delta$ sont perpendiculaires en $M$.
    Le point $A$ appartient à la droite $\mathscr{D}$ et le point $M’$ appartient à la droite $\Delta$.
    Le triangle $AMM’$ est rectangle en $M$.
    Les coordonnées de $\vect{AM}$ sont $\begin{pmatrix} -1\\-2\\0\end{pmatrix}$.
    Par conséquent
    $\begin{align*} AM&=\sqrt{(-1)^2+(-2)^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    Ainsi l’aire du triangle $AMM’$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AM\times MM’}{2} \\
    &=\dfrac{\sqrt{30}}{2}\end{align*}$.
    Le volume du tétraèdre $ANMM’$ est donc $V=\dfrac{\sqrt{30}}{3}\ell$.
    $\quad$
    c. La droite $d$ est parallèle au plan $\mathscr{P}$. La distance d’un point de la droite $d$ à ce plan est donc toujours la même. Ainsi $\ell$ ne dépend pas du point $N$ choisi.
    Par conséquent $AN_1MM’$ et $AN_2MM’$ ont le même volume.
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : probabilités

Dans le magasin d’Hugo, les clients peuvent louer deux types de vélos : vélos de route ou bien vélos tout terrain. Chaque type de vélo peut être loué dans sa version électrique ou non.
On choisit un client du magasin au hasard, et on admet que :

  • Si le client loue un vélo de route, la probabilité que ce soit un vélo électrique est de $0,4$ ;
  • Si le client loue un vélo tout terrain, la probabilité que ce soit un vélo électrique est de $0,7$ ;
  • La probabilité que le client loue un vélo électrique est de $0,58$.

On appelle $\alpha$ la probabilité que le client loue un vélo de route, avec $0\pp \alpha\pp 1$.

On considère les événements suivants :

  • $R$ : « le client loue un vélo de route » ;
  • $E$ : « le client loue un vélo électrique » ;
  • $\conj{R}$ et $\conj{E}$ , événements contraires de $R$ et $E$.

On modélise cette situation aléatoire à l’aide de l’arbre reproduit ci-dessous :

Si $F$ désigne un événement quelconque, on notera $p(F)$ la probabilité de $F$.

  1. Recopier cet arbre sur la copie et le compléter.
    $\quad$
  2. a. Montrer que $p(E)=0,7-0,3\alpha$.
    $\quad$
    b. En déduire que : $\alpha = 0,4$.
    $\quad$
  3. On sait que le client a loué un vélo électrique. Déterminer la probabilité qu’il ait loué un vélo tout terrain. On donnera le résultat arrondi au centième.
    $\quad$
  4. Quelle est la probabilité que le client loue un vélo tout terrain électrique ?
    $\quad$
  5. Le prix de la location à la journée d’un vélo de route non électrique est de $25$ euros, celui d’un vélo tout terrain non électrique de $35$ euros. Pour chaque type de vélo, le choix de la version électrique augmente le prix de location à la journée de $15$ euros.
    On appelle $X$ la variable aléatoire modélisant le prix de location d’un vélo à la journée.
    a. Donner la loi de probabilité de $X$. On présentera les résultats sous forme d’un tableau.
    $\quad$
    b. Calculer l’espérance mathématique de $X$ et interpréter ce résultat.
    $\quad$
  6. Lorsqu’on choisit $30$ clients d’Hugo au hasard, on assimile ce choix à un tirage avec remise. On note $Y$ la variable aléatoire associant à un échantillon de $30$ clients choisis au hasard le nombre de clients qui louent un vélo électrique.
    On rappelle que la probabilité de l’événement $E$ est : $p(E) = 0,58$.
    a. Justifier que $Y$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Déterminer la probabilité qu’un échantillon contienne exactement $20$ clients qui louent un vélo électrique. On donnera le résultat arrondi au millième.
    $\quad$
    c. Déterminer la probabilité qu’un échantillon contienne au moins $15$ clients qui louent un vélo électrique. On donnera le résultat arrondi au millième.
    $\quad$

$\quad$

Exercice 2     7 points
Thèmes : suites, fonctions

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère les suites $\left(a_n\right)$ et $\left(b_n\right)$ définie par $a_0=1$ et, pour tout entier naturel $n$, $a_{n+1} = 0,5a_n+1$ et $b_n=a_n-2$.
    On peut affirmer que :
    a. $\left(a_n\right)$ est arithmétique ;
    b. $\left(b_n\right)$ est géométrique ;
    c. $\left(a_n\right)$ est géométrique ;
    d. $\left(b_n\right)$ est arithmétique.
    $\quad$

Dans les questions 2. et 3., on considère les suites $\left(u_n\right)$ et $\left(b_n\right)$ définies par :$$u_0=2,~v_0=1 \text{ et, pour tout entier naturel }n :\begin{cases} u_{n+1}=u_n+3v_n\\v_{n+1}=u_n+v_n\end{cases}$$

  1. On peut affirmer que :
    a. $\begin{cases} u_2=5\\v_2=3\end{cases}$;
    b. $u_2^2-3v_2^2=-2^2$;
    c. $\dfrac{u_2}{v_2}=1,75$;
    d. $5u_1=3v_1$.
    $\quad$
  2. On considère le programme ci-dessous écrit en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def valeurs() :}\\
    \quad \text{u = 2}\\
    \quad \text{v = 1}\\
    \quad \text{for k in range(1,11) :}\\
    \qquad \text{c = u}\\
    \qquad \text{u = u+3*v}\\
    \qquad \text{v = c+v}\\
    \quad \text{return (u,v)}\\
    \hline
    \end{array}$$
    Ce programme renvoie :
    a. $u_{11} et $v_{11};
    b. $u_{10}$ et $v_{11}$;
    c. les valeurs de $u_n$ et $v_n$ pour $n$ allant de $1$ à $10$;
    d. $u_{10}$ et $v_{10}$.
    $\quad$

Pour les questions 4. et 5., on considère une fonction $f$ deux fois dérivable sur l’intervalle $[-4 ; 2]$. On note $f’$ la fonction dérivée de $f$ et $f\dsec$ la dérivée seconde de $f$.
On donne ci-dessous la courbe représentative $\mathcal{C}’$ de la fonction dérivée $f’$ dans un repère du plan. On donne de plus les points $A(-2; 0)$, $B(1; 0)$ et $C(0; 5)$.

  1. La fonction $f$ est :
    a. concave sur $[-2; 1]$;
    b. convexe sur $[-4; 0]$;
    c. convexe sur $[-2; 1]$;
    d. convexe sur $[0; 2]$.
    $\quad$
  2. On admet que la droite $(BC)$ est la tangente à la courbe $\mathcal{C}’$ au point $B$.
    On a :
    a. $f'(1) < 0$;
    b. $f'(1)= 5$;
    c. $f\dsec(1) > 0$;
    d. $f\dsec(1) = -5$.
    $\quad$
  3. Soit $f$ la fonction définie sur $\R$ par $f(x)=\left(x^2+1\right)\e^x$.
    La primitive $F$ de $f$ sur $\R$ telle que $F(0) = 1$ est définie par :
    a. $F(x)=\left(x^2-2x+3\right)\e^x$;
    b. $F(x)=\left(x^2-2x+3\right)\e^x-2$;
    c. $F(x)=\left(\dfrac{1}{3}x^3+x\right)\e^x+1$;
    d. $F(x)=\left(\dfrac{1}{3}x^3+x\right)\e^x$;
    $\quad$

$\quad$

Exercice 3     7 points
Thèmes : fonction logarithme, suites

Les parties B et C sont indépendantes.

On considère la fonction $f$ définie sur $]0; +\infty[$ par $f(x) = x-x\ln(x)$, où $\ln$ désigne la fonction logarithme népérien.

Partie A

  1. Déterminer la limite de $f(x)$ quand $x$ tend vers $0$.
    $\quad$
  2. Déterminer la limite de $f(x)$ quand $x$ tend vers $+\infty$.
    $\quad$
  3. On admet que la fonction $f$ est dérivable sur $]0; +\infty[$ et on note $f’$ sa fonction dérivée.
    a. Démontrer que, pour tout réel $x>0$, on a : $f'(x)=-\ln(x)$.
    $\quad$
    b. En déduire les variations de la fonction $f$ sur $]0; +\infty[$ et dresser son tableau de variation.
    $\quad$
  4. Résoudre l’équation $f(x) = x$ sur $]0; +\infty[$.
    $\quad$

Partie B

Dans cette partie, on pourra utiliser avec profit certains résultats de la partie A.

On considère la suite $\left(u_n\right)$ définie par : $$\begin{cases} u_0=0,5\\\text{pour tout entier naturel }n, u_{n+1}=u_n-u_n\ln\left(u_n\right)\end{cases}$$
Ainsi, pour tout entier naturel $n$, on a : $u_{n+1}=f\left(u_n\right)$.

  1. On rappelle que la fonction $f$ est croissante sur l’intervalle $[0,5; 1]$.
    Démontrer par récurrence que, pour tout entier naturel $n$, on a : $0,5\pp u_n\pp u_{n+1}\pp 1$.
    $\quad$
  2. a. Montrer que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    b. On note $l$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $l$.
    $\quad$

Partie C

Pour un nombre réel $k$ quelconque, on considère la fonction $f_k$ définie sur $]0; +\infty[$ par : $$f_k(x)=kx-x\ln(x)$$

  1. Pour tout nombre réel $k$, montrer que $f_k$ admet un maximum $y_k$ atteint en $x_k=\e^{k-1}$.
    $\quad$
  2. Vérifier que, pour tout nombre réel $k$, on a : $x_k=y_k$.
    $\quad$

$\quad$

 

Exercice 4     7 points
Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère :

  • la droite $\mathcal{D}$ passant par le point $𝐴(2; 4; 0)$ et dont un vecteur directeur est $\vec{u}\begin{pmatrix}1\\2\\0\end{pmatrix}$;
  • la droite $\mathcal{D}’$ dont une représentation paramétrique est : $\begin{cases}x=3\\y=3+t\\z=3+t\end{cases} \quad, t\in \R$.
  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u’}de la droite $\mathcal{D}’$.
    $\quad$
    b. Montrer que les droites $\mathcal{D}$ et $\mathcal{D}’$ ne sont pas parallèles.
    $\quad$
    c. Déterminer une représentation paramétrique de la droite $\mathcal{D}$.

On admet dans la suite de cet exercice qu’il existe une unique droite $\Delta$ perpendiculaire aux droites $\mathcal{D}$ et $\mathcal{D}’$. Cette droite ∆$\Delta$ coupe chacune des droites $\mathcal{D}$ et $\mathcal{D}’$. On appellera $M$ le point d’intersection de $\Delta$ et $\mathcal{D}$, et $M’$ le point d’intersection de $\Delta$ et $\mathcal{D}’$.

On se propose de déterminer la distance $MM’$ appelée « distance entre les droites $\mathcal{D}$ et $\mathcal{D}’$ ».

  1. Montrer que le vecteur $\vec{v}\begin{pmatrix}2\\-1\\1\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$.
    $\quad$
  2. On note $\mathcal{P}$ le plan contenant les droites $\mathcal{D}$ et $\Delta$, c’est-à-dire le plan passant par le point $A$ et de vecteurs directeurs $\vec{u}$ et $\vec{v}$.
    a. Montrer que le vecteur $\vec{n}\begin{pmatrix}2\\-1\\-5\end{pmatrix}$ est un vecteur normal au plan $\mathcal{P}$.
    $\quad$
    b. En déduire qu’une équation du plan $\mathcal{P}$ est : $2x-y-5z=0$.
    $\quad$
    c. On rappelle que $M’$ est le point d’intersection des droites $\Delta$ et $\mathcal{D}’$. Justifier que $M’$ est également le point d’intersection de $\mathcal{D}’$ et du plan $\mathcal{P}$.
    En déduire que les coordonnées du point $M’$ sont $(3; 1; 1)$.
    $\quad$
  3. a. Déterminer une représentation paramétrique de la droite $\Delta$.
    $\quad$
    b. Justifier que le point $M$ a pour coordonnées $(1; 2; 0)$.
    $\quad$
    c. Calculer la distance $MM’$.
    $\quad$
  4. On considère la droite $d$ de représentation paramétrique $\begin{cases} x=5t\\y=2+5t\\z=1+t\end{cases} \quad$ avec $t\in \R$.
    a. Montrer que la droite $d$ est parallèle au plan $\mathcal{P}$.
    $\quad$
    b. On note $\ell$ la distance d’un point $N$ de la droite $d$ au plan $\mathcal{P}$. Exprimer le volume du tétraèdre $ANMM’$ en fonction de $\ell$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$
    c. Justifier que, si $N_1$ et $N_2$ sont deux points quelconques de la droite $d$, les tétraèdres $AN_1MM’$ et $AN_2MM’$ ont le même volume.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole, Antilles, Guyane – sujet 1 – 8 septembre 2022

Métropole Antilles/Guyane – 8 septembre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. Pour tout réel $x$
    $\begin{align*} g(x)&=\dfrac{2\e^x}{\e^x+1} \\
    &=\dfrac{2\e^x}{\e^x\left(1+\e^{-x}\right) }\\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$ et $\lim\limits_{x\to +\infty} g(x)=2$.
    La droite d’équation $y=2$ est donc asymptote à la courbe représentative de la fonction $g$ en $+\infty$.
    Réponse b
    $\quad$
  2. La fonction $f\dsec$ semble positive sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Par conséquent $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Réponse c
    $\quad$
  3. Pour tout $n\in \N$ on a :
    $\begin{align*} v_{n+1}&=u_{n+1}-2 \\
    &=\dfrac{1}{2}u_{n+1}+1-2 \\
    &=\dfrac{1}{2}u_{n+1}-1 \\
    &=\dfrac{1}{2}\left(u_n-2\right)\\
    &=\dfrac{1}{2}v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $\dfrac{1}{2}$.
    Réponse d
    $\quad$
  4. $0<\dfrac{1}{4}<1$ donc $\lim\limits_{n\to +\infty} \left(\dfrac{1}{4}\right)^n=0$. Par conséquent $\lim\limits_{n\to +\infty} 1+\left(\dfrac{1}{4}\right)^n=1$.
    $\begin{align*}\dfrac{n}{n+1}&=\dfrac{n}{n\left(1+\dfrac{1}{n}\right)}\\
    &=\dfrac{1}{1+\dfrac{1}{n}}\end{align*}$
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{n}=0$.
    Par conséquent $\lim\limits_{n\to +\infty} \dfrac{n}{n+1}=1$ et $\lim\limits_{n\to +\infty} 2-\dfrac{n}{n+1}=1$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} u_n=1$.
    Réponse b
    $\quad$
  5. On considère la fonction $F$ définie sur $]0;+\infty[$ par $F(x)=\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$.
    La fonction $F$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a :
    $\begin{align*} F'(x)&=\dfrac{1}{3}\times 3x^2\left(\ln(x)-\dfrac{1}{3}\right)+\dfrac{1}{3}x^3\times \dfrac{1}{x}\\
    &=x^2\ln(x)-\dfrac{1}{3}x^2+\dfrac{1}{3}x^2 \\
    &=x^2\ln(x)\end{align*}$
    Ainsi $F$ est une primitive de la fonction $f$.
    Réponse a
    $\quad$
  6. Soit $x\in \R$
    $\begin{align*} 2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}&=\dfrac{2\e^{-x}+2+3\e^{-x}-5}{\e^{-x}+1} \\
    &=\dfrac{5\e^{-x}-3}{\e^{-x}+1} \\
    &=\dfrac{\e^{-x}\left(5-3\e^x\right)}{\e^{-x}\left(1+\e^x\right)} \\
    &=\dfrac{5-3\e^x}{1+\e^x}\end{align*}$
    Réponse a
    $\quad$

Ex 2

Exercice 2

  1. a. On a $p\left(\conj{M}\cap \conj{G}\right)=0,06$ et $p\left(\conj{M}\right)=1-0,7$ c’est-à-dire $p\left(\conj{M}\right)=0,3$.
    Or
    $\begin{align*} P_{\conj{M}}\left(\conj{G}\right)&=\dfrac{p\left(\conj{M}\cap \conj{G}\right)}{p\left(\conj{M}\right)} \\
    &=\dfrac{0,06}{0,3} \\
    &=0,2\end{align*}$
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    $\quad$
    c. On veut calculer
    $\begin{align*} p\left(G\cap \conj{M}\right)&=p\left(\conj{M}\right)\times p_{\conj{M}}(G) \\
    &=0,3\times 0,8\\
    &=0,24\end{align*}$
    La probabilité de l’événement « le client visite la grotte et ne visite pas le musée » est égale à $0,24$.
    $\quad$
    d. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} p(G)&=p(G\cap M)+p\left(\conj{M}\cap G\right) \\
    &=p(M)\times p_M(G)+p\left(\conj{M}\cap G\right) \\
    &=0,7\times 0,6+0,24 \\
    &=0,66\end{align*}$
    $\quad$
  2. On veut calculer
    $\begin{align*} p_G(M)&=\dfrac{p(G\cap M)}{p(G)} \\
    &=\dfrac{0,7\times 0,6}{0,66} \\
    &=\dfrac{7}{11} \\
    &>\dfrac{1}{2}
    \end{align*}$
    L’affirmation est donc exacte.
    $\quad$
  3. a. On a $T(\Omega)=\acco{0,~5,~12,~17}$
    $\begin{align*} p(T=0)&=p\left(\conj{G}\cap \conj{M}\right) \\
    &=0,06\end{align*}$
    $\begin{align*} p(T=5)&=p\left(G\cap \conj{M}\right) \\
    &=0,24\end{align*}$
    $\begin{align*} p(T=12)&=p\left(\conj{G}\cap M\right) \\
    &=0,28\end{align*}$
    $\begin{align*} p(T=17)&=p\left(G\cap M\right) \\
    &=0,42\end{align*}$
    Ainsi
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&5&12&17\\
    \hline
    p(T=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    $\quad$
    b. L’espérance mathématique de $T$ est donc
    $\begin{align*} E(T)&=0\times 0,06+5\times 0,24+12\times 0,28+17\times 0,42 \\
    &=11,7\end{align*}$
    $\quad$
    c. Un client dépense donc en moyenne $11,70$ €.
    On appelle $N$ le nombre moyen de clients par journée.
    $11,7N\pg 700 \ssi x\pg \dfrac{700}{11,7}$
    Or $\dfrac{700}{11,7}\approx 59,83$.
    Il faut donc, en moyenne, au moins $60$ clients par journée pour atteindre cet objectif.
    $\quad$
  4. On appelle $p$ le prix de la visite de la grotte. On appelle $T’$ la variable aléatoire qui modélise la somme dépensée par un client de l’hôtel pour ces visites. On obtient alors la loi de probabilité suivante
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&x&12&12+x\\
    \hline
    p(T’=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    Son espérance est donc
    $\begin{align*} E(T’)&=0,24x+12\times 0,28+0,42(12+x) \\
    &=0,24x+3,36+5,04+0,42x \\
    &=8,4+0,66x\end{align*}$
    $\begin{align*} E(T’)=15&\ssi 8,4+0,66x=15 \\
    &\ssi 0,66x=6,6 \\
    &\ssi x=10\end{align*}$
    Le prix de la visite de la grotte devrait donc être de $10$ euros pour atteindre l’objectif.
    $\quad$
  5. On appelle $X$ la variable aléatoire comptant le nombre de clients ayant visité la grotte. On répète $100$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,66$.
    $X$ suit donc la loi binomiale de paramètres $n=100$ et $p=0,66$.
    D’après la calculatrice :
    $\begin{align*} P(X\pg 75)&=1-P(X\pp 74) \\
    &\approx 0,034\end{align*}$
    La probabilité qu’au moins les trois quarts des clients de l’hôtel aient visité la grotte est environ égale à $0,034$.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. Par croissances comparées,$\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    $\quad$
  2. a. Pour tout réel $x\pg 1$ on a :
    $\begin{align*} f'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
    b. Pour tout réel $x\pg 1$ on a $x^2\pg 1$
    $1-\ln(x)=0\ssi \ln(x)=1\ssi=\e$ donc $f'(x)=0 \ssi x=\e$
    $1-\ln(x)>0 \ssi \ln(x)<1 \ssi x<\e$ donc $f'(x)>0 \ssi x\in [1;\e]$
    $1-\ln(x)<0 \ssi \ln(x)>1 \ssi x>\e$ donc $f'(x)>0 \ssi x\in [\e;+\infty[$
    $\quad$
    c. On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  3. a. Soit $k$ un réel, $0\pp k \pp \e^{-1}$. La fonction $f$ est continue et strictement croissante sur $[1;\e]$.
    $f(0)=0\pp k$ et $f(\e)=\e^{-1}\pg k$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=k$ admet une unique solution $\alpha$ sur l’intervalle $[1;\e]$.
    $\quad$
    b. Soit $k$ strictement supérieur à $\dfrac{1}{\e}$.
    Pour tout réel $x\pg 1$ on a $fx)\pp \e^{-1}$.
    Par conséquent l’équation $f(x)=k$ n’admet aucune solution sur $[1;+\infty[$.
    $\quad$

Partie B

  1. La fonction $g$ est dérivable sur $\R$ comme composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $g'(x)=\dfrac{1}{4}\e^{\frac{x}{4}}>0$ car la fonction exponentielle est strictement positive.
    La fonction $g$ est donc strictement croissante sur $\R$.
    $\quad$
  2. Pour tout $n\in \N$ on pose $P(n):~u_n \pp u_{n+1} \pp \e$.
    Initialisation : $u_0=1$ et $u_1=\e^{\frac{1}{4}}\approx 1,28$
    Par conséquent $u_0\pp u_1 \pp \e$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $u_n \pp u_{n+1} \pp \e$. La fonction $g$ est strictement croissante sur $[1;\e]$. Par conséquent :
    $g\left(u_{n+1}\right) \pp g\left(u_{n+1}\right) \pp g(\e)$ soit $u_{n+1} \pp u_{n+2} \pp \e^{-1}\pp \e$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$, on a $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. La suite $\left(u_n\right)$ est croissante et majorée par $\e$.
    Par conséquent $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  4. $\e^{\frac{x}{4}}=x \ssi \dfrac{x}{4}=\ln(x) \ssi \dfrac{1}{4}=\dfrac{\ln(x)}{x} \ssi f(x)=\dfrac{1}{4}$
    $\quad$
  5. D’après la calculatrice une solution de l’équation $f(x)=\dfrac{1}{4}$ est environ égale à $1,43$ qui appartient bien à $[1;\e]$.
    Ainsi $\ell \approx 1,43$.

Ex 4

Exercice 4

  1. a. $\vect{DE}\begin{pmatrix} 12\\-15\\-6\end{pmatrix}$
    Par conséquent $\dfrac{1}{3}\vect{DE}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$ est un vecteur directeur de $\Delta$.
    Ainsi, une représentation paramétrique de $\Delta$ est $\begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\end{cases} \qquad t\in \R$.
    $\quad$
    b. $\Delta$ et $\Delta’$ sont parallèles. Un vecteur directeur de de $\Delta$ est donc également un vecteur directeur de $\Delta’$.
    Une représentation paramétrique de $\Delta’$ est donc $\begin{cases} x=4t\\y=-5t\\z=-2t\end{cases} \qquad t\in \R$.
    $\quad$
    c. $4t=1,36 \ssi t=0,34$
    De plus $-5\times 0,34=-1,7$ et $-2\times 0,34=-0,68 \neq -0,7$.
    Donc $F$ n’appartient pas à la droite $\Delta’$.
    $\quad$
  2. a. $\vect{AB}\begin{pmatrix}2\\2\\-1\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}2\\0\\4\end{pmatrix}$.
    Ces deux vecteurs ne sont clairement pas colinéaires (aucune coordonnée nulle pour le vecteur $\vect{AB}$). Les points $A$, $B$ et $C$ définissent donc bien un plan.
    $\quad$
    b. On note $\vec{n}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$.
    $\vec{n}.\vect{AB}=8-10+2=0$ et $\vec{n}.\vect{AC}=8+0-8=0$.
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    La droite $\Delta$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Une équation du plan $(ABC)$ est donc de la forme $4x-5y-2z+d=0$.
    Le point $A(-1;-1;3)$ appartient au plan $(ABC)$.
    Par conséquent $-4+5-6+d=0 \ssi d=5$.
    Une équation cartésienne du plan $(ABC)$ est donc $4x-5y-2z+5=0$.
    $\quad$
  3. a. Prenons $t=2$ dans la représentation paramétrique de $\Delta$.
    Le point de coordonnées $(7;-4;5)$ appartient donc à la droite $\Delta$.
    Donc $G(7;-4;4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Les coordonnées du point $H$ sont solution du système
    $\begin{align*} \begin{cases} 4x-5y-2z+5=0\\x=-1+4t\\y=6-5t\\z=8-2t\end{cases}&\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\-4+16t-30+25t-16+4t+5=0\end{cases} \\
    &\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\45t=45\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=1\\z=6\end{cases} \end{align*}$.
    Le point $H$ a donc pour coordonnées $(3;1;6)$.
    $\quad$
    c. La distance du point $G$ au plan $(ABC)$ est par conséquent $HG$.
    Or $\vect{HG}$ a pour coordonnées $\begin{pmatrix} -4\\5\\2\end{pmatrix}$
    Ainsi
    $\begin{align*} HG&=\sqrt{(-4)^2+5^2+2^2} \\
    &=\sqrt{16+25+4} \\
    &=\sqrt{45} \\
    &=\sqrt{9\times 5}\\
    &=3\sqrt{5}\end{align*}$
    $\quad$
  4. a. $\vect{AB}.\vect{AC}=4+0-4=0$.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b. $AB=\sqrt{9}=3$ et $AC=\sqrt{20}=2\sqrt{5}$
    Le volume du tétraèdre $ABCG$ est donc
    $\begin{align*} V&=\dfrac{\dfrac{AB\times AC}{2}\times HG}{3} \\
    &=\dfrac{3\times \sqrt{5}\times 3\sqrt{5}}{3} \\
    &=15\end{align*}$
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thèmes : fonctions, suites

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $g$ définie sur $\R$ par : $g(x)=\dfrac{2\e^x}{\e^x+1}$.
    La courbe représentative de la fonction $g$ admet pour asymptote en $+\infty$ la droite d’équation :
    a. $x=2$;
    b. $y=2$;
    c. $y=0$
    d. $x=-1$.
    $\quad$
  2. On considère une fonction $f$ définie et deux fois dérivable sur $\R$.
    On appelle $C$ sa représentation graphique.
    $\quad$
    On désigne par $d\dsec$ la dérivée seconde de $f$.
    $\quad$
    On a représenté sur le graphique ci-dessous la courbe de $f\dsec$, notée $C\dsec$.
    $\quad$

    $\quad$
    a. $C$ admet un unique point d’inflexion;
    b. $f$ est convexe sur l’intervalle $[-1;2]$;
    c. $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$;
    d. $f$ est convexe sur $\R$.
    $\quad$
  3. On donne la suite $\left(u_n\right)$ définie par : $u_0= 0$ et pour tout entier naturel $n$, $u_{n+1}=\dfrac{1}{2}u_n+1$.
    La suite $\left(v_n\right)$, définie pour tout entier naturel $n$ par $v_n=u_n-2$, est :
    a. arithmétique de raison $-2$;
    b. géométrique de raison $-2$;
    c. arithmétique de raison $1$;
    d. géométrique de raison $\dfrac{1}{2}$.
    $\quad$
  4. On considère une suite $\left(u_n\right)$ telle que, pour tout entier naturel $n$, on a : $$1+\left(\dfrac{1}{4}\right)^n \pp u_n \pp 2-\dfrac{n}{n+1}$$
    On peut affirmer que la suite $\left(u_n\right)$ :
    a. converge vers $2$;
    b. converge vers $1$;
    c. diverge vers $+\infty$;
    d. n’a pas de limite.
    $\quad$
  5. Soit $f$ la fonction définie sur $]0; +\infty[$ par $f(x)=x^2\ln(x)$.
    Une primitive $F$ de $f$ sur $]0; +\infty[$ est définie par :
    a. $F(𝑥) =\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$;
    b. $F(x) = \dfrac{1}{3}x^3\left(\ln(x)-1\right)$;
    c. $F(x) = \dfrac{1}{3}x^2$;
    d. $F(x) = \dfrac{1}{3}x^2\left(\ln(x)-1\right)$.
    $\quad$
  6. Pour tout réel $x$ , l’expression $2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}$ est égale à :
    a. $\dfrac{5-3\e^x}{1+\e^x}$;
    b. $\dfrac{5+3\e^x}{1-\e^x}$;
    c. $\dfrac{5+3\e^x}{1+\e^x}$;
    d. $\dfrac{5-3\e^x}{1-\e^x}$.
    $\quad$

$\quad$

Exercice 2     7 points
Thème : probabilités

Un hôtel situé à proximité d’un site touristique dédié à la préhistoire propose deux visites dans les environs, celle d’un musée et celle d’une grotte.

Une étude a montré que $70\%$ des clients de l’hôtel visitent le musée. De plus, parmi les clients visitant le musée, $60\%$ visitent la grotte.
Cette étude montre aussi que $6\%$ des clients de l’hôtel ne font aucune visite.
On interroge au hasard un client de l’hôtel et on note :

  • $M$ l’événement : « le client visite le musée » ;
  • $G$ l’événement : « le client visite la grotte ».

On note $\conj{M}$ l’événement contraire de $M$, 𝐺$\conj{G}$ l’événement contraire de $G$, et pour tout événement $E$, on note $p(E)$ la probabilité de $E$.

Ainsi, d’après l’énoncé, on a : $p\left(\conj{M}\cap \conj{G}\right)= 0,06$

  1. a. Vérifier que $p_{\conj{M}}\left(\conj{G}\right) = 0,2$, où $p_{\conj{M}}\left(\conj{G}\right)$ désigne la probabilité que le client interrogé ne visite pas la grotte sachant qu’il ne visite pas le musée.
    $\quad$
    b. L’arbre pondéré ci-dessous modélise la situation. Recopier et
    compléter cet arbre en indiquant sur chaque branche la probabilité
    associée.
    $\quad$
    $\quad$
    c. Quelle est la probabilité de l’événement « le client visite la grotte et ne visite pas le musée » ?
    $\quad$
    d. Montrer que $p(G) = 0,66$.
    $\quad$
  2. Le responsable de l’hôtel affirme que parmi les clients qui visitent la grotte, plus de la moitié visitent également le musée. Cette affirmation est-elle exacte ?
    $\quad$
  3. Les tarifs pour les visites sont les suivants :
    $\bullet$ visite du musée : $12$ euros ;
    $\bullet$ visite de la grotte : $5$ euros.
    On considère la variable aléatoire $T$ qui modélise la somme dépensée par un client de l’hôtel pour ces visites.
    a. Donner la loi de probabilité de $T$. On présentera les résultats sous la forme d’un tableau.
    $\quad$
    b. Calculer l’espérance mathématique de $T$.
    $\quad$
    c. Pour des questions de rentabilité, le responsable de l’hôtel estime que le montant moyen des recettes des visites doit être supérieur à $700$ euros par jour. Déterminer le nombre moyen de clients par journée permettant d’atteindre cet objectif.
    $\quad$
  4. Pour augmenter les recettes, le responsable souhaite que l’espérance de la variable aléatoire modélisant la somme dépensée par un client de l’hôtel pour ces visites passe à $15$ euros, sans modifier le prix de visite du musée qui demeure à $12$ euros. Quel prix faut-il fixer pour la visite de la grotte afin d’atteindre cet objectif ? (On admettra que l’augmentation du
    prix d’entrée de la grotte ne modifie pas la fréquentation des deux sites).
    $\quad$
  5.  On choisit au hasard $100$ clients de l’hôtel, en assimilant ce choix à un tirage avec remise. Quelle est la probabilité qu’au moins les trois quarts de ces clients aient visité la grotte à l’occasion de leur séjour à l’hôtel ? On donnera une valeur du résultat à $10^{-3}$ près.
    $\quad$

$\quad$

Exercice 3     7 points
Thèmes : fonctions logarithme et exponentielle, suites

Les parties A et B sont, dans une large mesure, indépendantes.

Partie A

On considère la fonction $f$ définie sur l’intervalle $[1 ; +\infty[$ par $f(x)=\dfrac{\ln(x)}{x}$, où $\ln$ désigne la fonction logarithme népérien.

  1. Donner la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[1 ; +\infty[$ et on note $f’$ sa fonction dérivée.
    a. Montrer que, pour tout nombre réel $x\pg 1$, $f'(x)=\dfrac{1-\ln(x)}{x^2}$.
    $\quad$
    b. Justifier le tableau de signes suivant, donnant le signe de $f'(x)$ suivant les valeurs de $x$.
    $\quad$

    $\quad$
    c. Dresser le tableau de variations complet de la fonction $f$.
    $\quad$
  3. Soit $k$ un nombre réel positif ou nul.
    a. Montrer que, si $0\pp k\pp \dfrac{1}{\e}$, l’équation $f(x)=k$ admet une unique solution sur l’intervalle $[1 ;\e]$.
    $\quad$
    b. Si $k>\dfrac{1}{\e}$, l’équation $𝑓(𝑥) = k$ admet-elle des solutions sur l’intervalle $[1 ; +\infty[$ ?
    Justifier.
    $\quad$

Partie B

Soit $g$ la fonction définie sur $\R$ par : $g(x)=\e^{\frac{x}{4}}$.
On considère la suite $\left(u_n\right)$ définie par $u_0 = 1$ et, pour tout entier naturel $n$ : $$u_{n+1}=\e^{\frac{u_n}{4}} \text{  c’est à dire : } u_{n+1}=g\left(u_n\right)$$

  1. Justifier que la fonction $g$ est croissante sur $\R$.
    $\quad$
  2. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

On note $\ell$ la limite de la suite $\left(u_n\right)$, et on admet que $\ell$ est solution de l’équation : $$\e^{\frac{x}{4}}=x$$

  1. En déduire que $\ell$ est solution de l’équation $f(x)=\dfrac{1}{4}$, où $f$ est la fonction étudiée dans la partie A.
    $\quad$
  2. Donner une valeur approchée à $10^{-2}$ près de la limite $\ell$ de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points
$A(-1 ; -1 ; 3)$, $B(1 ; 1 ; 2)$, $C(1 ; -1 ; 7)$.
On considère également la droite ∆ passant par les points $D(-1 ; 6 ; 8)$ et $E(11 ; -9 ; 2)$.

  1. a. Vérifier que la droite $\Delta$ admet pour représentation paramétrique :
    $$\begin{cases}x = -1 + 4t\\y = 6-5t,z = 8-2t\end{cases} \quad \text{avec }t\in \R$$
    $\quad$
    b. Préciser une représentation paramétrique de la droite $\Delta’$ parallèle à $\Delta$ et passant par l’origine $O$ du repère.
    $\quad$
    c. Le point $F(1,36 ; -1,7 ; -0,7)$ appartient-il à la droite $\Delta’$ ?
    $\quad$
  2. a. Montrer que les points $A$, $B$ et $C$ définissent un plan.
    $\quad$
    b. Montrer que la droite $\Delta$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Montrer qu’une équation cartésienne du plan $(ABC)$ est : $4x-5y-2z+5=0$.
    $\quad$
  3. a. Montrer que le point $G(7; -4; 4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $G$ sur le plan $(ABC)$.
    $\quad$
    c. En déduire que la distance du point $G$ au plan $(ABC)$ est égale à $3\sqrt{5}$.
    $\quad$
  4. a. Montrer que le triangle $ABC$ est rectangle en $A$.
    $\quad$
    b. Calculer le volume $V$ du tétraèdre $ABCG$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ est l’aire d’une base et $h$ la hauteur correspondant à cette base.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Polynésie – sujet 1 – 30 août 2022

Polynésie – 30 août 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie 1

  1. On peut utiliser l’arbre suivant :
    $\quad$
    On a alors :
    $\begin{align*} P(A\cap T)&=P(A)\times P_A(T) \\
    &=\dfrac{1}{4}\times 0,9 \\
    &=0,225\end{align*}$
    $\quad$
  2. $\left(A,\conj{A}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a
    $\begin{align*} P(T)&=P(A\cap T)+P\left(\conj{A}\cap T\right) \\
    &=0,225+P\left(\conj{A}\right)\times P_{\conj{A}}(T) \\
    &=0,225+\dfrac{3}{4}\times 0,05 \\
    &=0,262~5\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_T(A)&=\dfrac{P(A\cap T)}{P(T)} \\
    &=\dfrac{0,225}{0,262~5} \\
    &=\dfrac{6}{7}\\
    &\approx 0,857~1\end{align*}$
    La probabilité que le patient soit atteint d’une angine nécessitant la prise d’antibiotiques sachant que sont test est positif est environ égale à $0,857~1$.
    $\quad$
  4. a. Les résultats erronés correspondent à :
    – le patient est atteint d’une angine nécessitant la prise d’antibiotique et le test est négatif;
    – le patient n’est pas atteint d’une angine nécessitant la prise d’antibiotique et le test est positif.
    Il s’agit donc des événements $A\cap \conj{T}$ et $\conj{A}\cap T$.
    $\quad$
    b. Les événements $A\cap \conj{T}$ et $\conj{A}\cap T$ sont disjoints donc
    $\begin{align*} P(E)&=P\left(\left(A\cap \conj{T}\right) \cup \left(\conj{A}\cap T\right)\right) \\
    &=P\left(A\cap \conj{T}\right)+P\left(\conj{A}\cap T\right) \\
    &=P(A)\times P_A\left(\conj{T}\right)+P\left(\conj{A}\right)\times P_{\conj{A}}(T) \\
    &=\dfrac{1}{4}\times 0,1+\dfrac{3}{4}\times 0,05 \\
    &=0,062~5 \end{align*}$
    $\quad$

Partie 2

  1. a. On réalise $50$ fois la même expérience de Bernoulli de paramètre $P(E)=0,062~5$ de façon indépendantes.
    Par conséquent $X$ suit la loi binomiale de paramètre $n=50$ et $p=0,062~5$.
    $\quad$
    b. On a :
    $\begin{align*} P(X=7)&=\dbinom{50}{7} \times 0,0625^7 \times (1-0,062~5)^{43} \\
    &\approx 0,023~2\end{align*}$
    $\quad$
    c. On veut calculer
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,062~5)^{50} \\
    &\approx 0,960~3\end{align*}$
    La probabilité qu’il y ait au moins un patient dans l’échantillon dont le test est erroné est environ égale à $0,960~3$.
    $\quad$
  2. $X$ suit donc la loi binomiale de paramètres $n$ et $p=0,062~5$.
    À l’aide de la calculatrice, on constate que pour tout entier $n$ inférieur ou égal à $247$ on a $P(X\pg 10) < 0,95$, avec en particulier $P(X\pg 10) \approx 0,948~6$ si $n=247$.
    On constate également que si $n=248$ alors $P(X\pg 10) \approx 0,950~2$.
    La valeur minimale de la taille de l’échantillon est donc $248$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. Pour tout réel $x$ appartenant à $[0;1]$ on a $f(x)=-1,9x^2+1,9x$.
    La fonction $f$ est une fonction polynôme du second degré dont le coefficient principal est $a=-1,9<0$ et les racines sont $0$ et $1$. Le sommet a donc pour abscisse $\dfrac{0+1}{2}=\dfrac{1}{2}$.
    Ainsi $f$ est strictement croissante sur $\left[0;\dfrac{1}{2}\right]$ et strictement décroissante sur $\left[\dfrac{1}{2};1\right]$.
    $\quad$
    b. On a $f(0)=0$ et $f\left(\dfrac{1}{2}\right)=0,475$.
    De plus $f$ est croissante sur $\left[0;\dfrac{1}{2}\right]$.
    Par conséquent, pour tout réel $x \in \left[0;\dfrac{1}{2}\right]$ on a $f(x) \in \left[0;\dfrac{1}{2}\right]$.
    $\quad$
  2. Il semblerait que la suite soit strictement croissante et converge vers un réel $\ell \approx 0,47$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on pose $P(n):~0\pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$.
    Initialisation : On a $u_0=0,1$ et $u_1=0,171$. Donc $0\pp u_0\pp u_1 \pp \dfrac{1}{2}$.
    Ainsi $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$
    La fonction $f$ est croissante sur $\left[0;\dfrac{1}{2}\right]$.
    Par conséquent $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f\left(\dfrac{1}{2}\right)$.
    Soit $0\pp f(0) \pp u_{n+1} \pp u_{n+2} \pp f\left(\dfrac{1}{2} \pp \dfrac{1}{2}\right)$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$, on a $0\pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $\dfrac{1}{2}$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. La fonction $f$ est continue sur $[0;1]$ en tant que fonction polynôme, $u_{n+1}=f\left(u_n\right)$ et $0\pp u_n\pp u_{n+1}$ pour tout entier naturel $n$.
    Ainsi $\ell$ est solution de l’équation $f(x)=x$.
    Or :
    $\begin{align*} f(x)=x&\ssi -1,9x^2+1,9x=x\\
    &\ssi -1,9x^2+0,9x=0\\
    &\ssi x(-1,9x+0,9)=0\end{align*}$
    Les solutions de cette équation sont donc $0$ et $\dfrac{0,9}{1,9}=\dfrac{9}{19}$.
    La suite $\left(u_n\right)$ est croissante et $u_0=0,1$. Ainsi, la seule solution possible est $\dfrac{9}{19}$.
    Par conséquent $\lim\limits_{n\to +\infty} u_n=\dfrac{9}{19}$.
    $\quad$

Partie 2

  1. On a $\lim\limits_{n\to +\infty} \left(\dfrac{1}{2}\right)^n=0$ car $-1<\dfrac{1}{2}<1$.
    De plus, pour tout entier naturel $n$, on a $0\pp u_n \pp \left(\dfrac{1}{2}\right)^n$.
    Par conséquent, d’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  2. $\lim\limits_{n\to +\infty} u_n=0$ et, pour tout entier naturel $n$, $u_n\pg 0$. Donc pour tout réel $\alpha>0$ il existe un entier naturel $n_0$ tel que, pour tout entier naturel $n\pg n_0$, on ait $0\pp u_n\pp x$.
    C’est en particulier vrai, pour $x=10^{-p}$ où $p\in \N$.
    Cela explique pourquoi la boucle $\texttt{while}$ ne tourne pas indéfiniment.
    $\quad$

 

Ex 3

Exercice 3

Partie 1

  1. La fonction $g$ est dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables sur $]0;+\infty[$ dont le dénominateur ne s’annule pas.
    Ainsi, pour tout réel $x>0$, on a :
    $\begin{align*} g'(x)&=\dfrac{\dfrac{2}{x}\times x-2\ln(x)\times 1}{x^2} \\
    &=\dfrac{2-2\ln(x)}{x^2}\end{align*}$.
    $\quad$
  2. a. On a
    $\begin{align*} g(\e)&=\dfrac{2\ln(\e)}{\e} \\
    &=\dfrac{2\times 1}{\e} \\
    &=\dfrac{2}{\e}\end{align*}$.
    $\quad$
    b. $g'(x)$ est du signe de $2-2\ln(x)$.
    Or $2-2\ln(x)>0 \ssi -2\ln(x)>-2 \ssi \ln(x)<1 \ssi x<\e$.
    La fonction $g$ est donc strictement croissante sur $]0;\e]$ et strictement décroissante sur $[\e;+\infty[$.
    $\quad$
    c. $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$.
    Par produit, $\lim\limits_{x\to 0^+} g(x)=-\infty$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} g(x)=0$.
    $\quad$
  3. La fonction $g$ est strictement croissante sur $]0;\e[$ et s’annule en $1$. Par conséquent $g(x)<0$ sur $]0;1[$, $g(1)=0$ et $g(x)>0$ sur $]1;\e[$.
    La fonction $g$ est strictement décroissante sur $[\e;+\infty[$ et $\lim\limits_{x\to +\infty} g(x)=0$. Par conséquent, pour tout réel $x\pg \e$ on a $g(x)>0$.
    On obtient ainsi le tableau de signes suivant :
    $\quad$

    $\quad$

Partie 2

  1. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    On a donc, pour tout réel $x>0$ :
    $\begin{align*} f'(x)&=2\times \dfrac{1}{x} \times \left(\ln(x)\right)^{2-1} \\
    &=\dfrac{2\ln(x)}{x} \\
    &=g(x)\end{align*}$
    Ainsi $f$ est une primitive de $g$ sur $]0;+\infty[$.
    $\quad$
  2. a. D’après la partie 1 on sait que, pour tout réel $x>0$ on a $g$ est strictement croissante sur $]0;+\e]$ et strictement décroissante sur $[\e;+\infty[$.
    Or $f'(x)=g(x)$ pour tout réel $x>0$.
    Ainsi, $f$ est convexe sur $]0;\e]$ et concave sur $[\e;+\infty[$.
    $\quad$
    b. D’après la partie 1, $g(x)<0$ sur $]0;1[$, $g(1)=0$ et $g(x)>0$ sur $]1;+\infty[$.
    Or $f'(x)=g(x)$ pour tout réel $x>0$.
    Donc $f$ est strictement décroissante sur $]0;1]$ et strictement croissante sur $[1;+\infty[$.
    $\quad$
  3. a. Une équation de la tangente à la courbe représentative de la fonction $f$ au point d’abscisse $\e$ est $y=f'(\e)(x-\e)+f(\e)$.
    Or $f'(\e)=g(\e)=\dfrac{2}{\e}$ et $f(\e)=1$.
    Ainsi, une équation de cette tangente est $y=\dfrac{2}{\e}(x-\e)+1$ soit $y=\dfrac{2}{\e}x-1$.
    $\quad$
    b. La fonction $f$ est convexe sur $]0;\e]$. Sa courbe représentative est donc située au-dessus de ses tangentes sur cet intervalle.
    Ainsi, pour tout $x\in]0;\e]$ on a $\left(\ln(x)\right)^2\pg \dfrac{2}{\e}x-1$.
    $\quad$

 

 

Ex 4

Exercice 4

  1. a. $C$ a pour coordonnées $(1;1;0)$, $F$ a pour coordonnées $(1;0;1)$ et $G$ a pour coordonnées $(1;1;1)$.
    $\quad$
    b. $\vect{CF}\begin{pmatrix}0\\-1\\1\end{pmatrix}$ et $\vect{CI}\begin{pmatrix}-1\\-\dfrac{1}{2}\\[2mm]1\end{pmatrix}$ sont deux vecteurs non colinéaires (ils n’ont pas la même coordonnée nulle) du plan $(CFI)$.
    De plus :
    $\vect{CF}.\vec{n}=0-2+2=0$ et $\vect{CI}.\vec{n}=-1-1+2=0$.
    Par conséquent $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(CFI)$. Il est donc normal à ce plan.
    $\quad$
    c. Une équation cartésienne du plan $(CFI)$ est donc de la forme $x+2y+2z+d=0$.
    Or $C(1;1;0)$ appartient à ce plan. Donc $1+2+0+d=0 \ssi d=-3$.
    Une équation cartésienne du plan $(CFI)$ est donc $x+2y+2z-3=0$.
    $\quad$
  2. a. Le vecteur $\vec{n}$ est un vecteur directeur de $d$.
    Une représentation paramétrique de la droite $d$ est donc $$\begin{cases} x=1+t\\y=1+2t\\z=1+2t\end{cases} \quad t\in \R$$
    $\quad$
    b. Montrons que le point $K$ appartient à la fois au plan $(CFI)$ et à la droite $d$.
    $\dfrac{7}{9}+2\times \dfrac{5}{9}+2\times \dfrac{5}{9}-3=\dfrac{27}{9}-3=0$ : $K$ appartient au plan $(CFI)$.
    En prenant $t=-\dfrac{2}{9}$ dans la représentation paramétrique de $d$ on obtient $\begin{cases} x=\dfrac{7}{9}\\[2mm] y=\dfrac{5}{9}\\[2mm]z=\dfrac{5}{9}\end{cases}$. Donc $K$ appartient à $d$.
    La droite $d$ passe par le point $G$ et est orthogonale au plan $(CFI)$.
    Par conséquent $K\left(\dfrac{7}{9};\dfrac{5}{9};\dfrac{5}{9}\right)$ est le projeté orthogonal du point $G$ sur le plan $(CFI)$.
    $\quad$
    c. La distance cherchée est égale à $GK$. Or $\vect{GK}$ a pour coordonnées $\begin{pmatrix} -\dfrac{2}{9}\\[2mm]-\dfrac{4}{9}\\[2mm]-\dfrac{4}{9}\end{pmatrix}$.
    Ainsi :
    $\begin{align*} GK&=\sqrt{\left(-\dfrac{2}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2} \\
    &=\sqrt{\dfrac{4}{81}+\dfrac{16}{81}+\dfrac{16}{81}} \\
    &=\dfrac{6}{9} \\
    &=\dfrac{2}{3}\end{align*}$
    $\quad$
  3. a. L’aire du triangle $CFG$ rectangle en $G$ est $\mathscr{A}=\dfrac{1\times 1}{2}$ u.a.
    La hauteur de la pyramide $CFGI$ relative au somme $I$ est $[IJ]$ où $J$ est le milieu de $[FG]$ et mesure donc $1$ u.
    Ainsi le volume de cette pyramide est :
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times IJ \\
    &=\dfrac{1}{3}\times \dfrac{1}{2}\times 1\\
    &=\dfrac{1}{6} \text{ u.v.}\end{align*}$
    $\quad$
    b. On appelle $\mathscr{A}’$ l’aire du triangle $CFI$.
    On a donc
    $\dfrac{1}{6}=\dfrac{1}{3}\mathscr{A}’\times GK \ssi \mathscr{A}’=\dfrac{1}{2GK} \ssi \mathscr{A}’=\dfrac{3}{4}$ u.a.
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : probabilités

Parmi les angines, un quart nécessite la prise d’antibiotiques, les autres non.
Afin d’éviter de prescrire inutilement des antibiotiques, les médecins disposent d’un test de diagnostic ayant les caractéristiques suivantes :

  • lorsque l’angine nécessite la prise d’antibiotiques, le test est positif dans $90 \%$ des cas ;
  • lorsque l’angine ne nécessite pas la prise d’antibiotiques, le test est négatif dans $95 \%$ des cas.

Les probabilités demandées dans la suite de l’exercice seront arrondies à $10{-4}$ près si nécessaire.

Partie 1

Un patient atteint d’angine et ayant subi le test est choisi au hasard.
On considère les événements suivants :

  • $A$ : « le patient est atteint d’une angine nécessitant la prise d’antibiotiques » ;
  • $T$ : « le test est positif » ;
  • $\conj{A}$et $\conj{T}$ sont respectivement les événements contraires de $A$ et $T$.
  1. Calculer $P(A\cap T)$. On pourra s’appuyer sur un arbre pondéré.
    $\quad$
  2. Démontrer que $P(T) = 0,262~5$.
    $\quad$
  3. On choisit un patient ayant un test positif. Calculer la probabilité qu’il soit atteint d’une angine nécessitant la prise d’antibiotiques.
    $\quad$
  4. a. Parmi les événements suivants, déterminer ceux qui correspondent à un résultat erroné du test : $A\cap T$, $\conj{A}\cap T$, $A\cap \conj{T}$, $\conj{A}\cap \conj{T}$.
    $\quad$
    b. On définit l’événement $E$ : « le test fournit un résultat erroné ».
    Démontrer que $P(E) = 0,062~5$.
    $\quad$

Partie 2

On sélectionne au hasard un échantillon de 𝑛 patients qui ont été testés.
On admet que l’on peut assimiler ce choix d’échantillon à un tirage avec remise.
On note $X$ la variable aléatoire qui donne le nombre de patients de cet échantillon ayant un test erroné.

  1. On suppose que $n = 50$.
    a. Justifier que la variable aléatoire $X$ suit une loi binomiale $\mathscr{B}(n,p)$ de paramètres $n = 50$ et $p = 0,062~5$.
    $\quad$
    b. Calculer $P(X=7)$.
    $\quad$
    c. Calculer la probabilité qu’il y ait au moins un patient dans l’échantillon dont le test est erroné.
    $\quad$
  2. Quelle valeur minimale de la taille de l’échantillon faut-il choisir pour que $P(X\pg 10)$ soit supérieure à $0,95$ ?
    $\quad$

$\quad$

Exercice 2     7 points
Thème : suites, fonctions

Soit $k$ un nombre réel.
On considère la suite $\left(u_n\right)$ définie par son premier terme $u_0$ et pour tout entier naturel $n$, $$u_{n+1}=ku_n\left(1-u_n\right)$$

Les deux parties de cet exercice sont indépendantes. On y étudie deux cas de figure selon les valeurs de $\boldsymbol{k}$.

Partie 1

Dans cette partie, $k = 1,9$ et $u_0 = 0,1$.
On a donc, pour tout entier naturel $n$, $u_{n+1}=1,9u_n\left(1-u_n\right)$.

  1. On considère la fonction $f$ définie sur $[0 ; 1]$ par $f(x) = 1,9x(1-x)$.
    a. Etudier les variations de $f$ sur l’intervalle $[0 ; 1]$.
    $\quad$
    b. En déduire que si $x\in \left[0 ;\dfrac{1}{2}\right]$ alors $f(x)\in  \left[0 ;\dfrac{1}{2}\right]$.
    $\quad$
  2. Ci-dessous sont représentés les premiers termes de la suite $\left(u_n\right)$ construits à partir de la courbe $C_f$ de la fonction $f$ et de la droite $D$ d’équation $y=x$.
    Conjecturer le sens de variation de la suite $\left(u_n\right)$ et sa limite éventuelle.
    $\quad$

    $\quad$
  3. a. En utilisant les résultats de la question 1, démontrer par récurrence que pour tout entier naturel $n$ : $$0 \pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ converge.
    $\quad$
    c. Déterminer sa limite.
    $\quad$

Partie 2

Dans cette partie, $k=\dfrac{1}{2}$ et $u_0=\dfrac{1}{4}$.
On a donc, pour tout entier naturel $n$, $u_{n+1}=\dfrac{1}{2}u_n\left(1-u_n\right)$ et $u_0=\dfrac{1}{4}$.
On admet que pour tout entier naturel $n$ ∶ $0\pp u_n\pp \left(\dfrac{1}{2}\right)^n$.

  1. Démontrer que la suite $\left(u_n\right)$ converge et déterminer sa limite.
    $\quad$
  2. On considère la fonction Python $\texttt{algo(p)}$ où $\texttt{p}$ désigne un entier naturel non nul :
    $$\begin{array}{|l|}
    \hline
    \text{def algo(p) :}\\
    \quad \text{u = 1/4}\\
    \quad \text{ n = 0}\\
    \quad \text{while u > 10**(-9):}\\
    \qquad \text{u = 1/2*u*(1-u)}\\
    \qquad \text{n = n+1} \\
    \quad \text{return(n)}\\
    \hline
    \end{array}$$
    Expliquer pourquoi, pour tout entier naturel non nul $\texttt{p}$, la boucle $\texttt{while}$ ne tourne pas indéfiniment, ce qui permet à la commande $\texttt{algo(p)}$ de renvoyer une valeur.
    $\quad$

$\quad$

Exercice 3     7 points
Thème : fonctions

Partie 1

Soit $g$ la fonction définie pour tout nombre réel $x$ de l’intervalle $]0;+\infty[$ par : $$g(x) =
\dfrac{2\ln(x)}{x}$$

  1. On note $g’$ la dérivée de $g$. Démontrer que pour tout réel $x$ strictement positif : $$g'(x)=\dfrac{2-2\ln(x)}{x^2}$$
    $\quad$
  2. On dispose de ce tableau de variations de la fonction g sur l’intervalle $]0 ; +\infty[$ :
    $\quad$

    $\quad$
    Justifier les informations suivantes lues dans ce tableau :
    a. la valeur $\dfrac{2}{\e}$;
    $\quad$
    b. les variations de la fonction $g$ sur son ensemble de définition ;
    $\quad$
    c. les limites de la fonction $g$ aux bornes de son ensemble de définition.
    $\quad$
  3. En déduire le tableau de signes de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$

Partie 2

Soit $f$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par $f(x)=\left(\ln(x)\right)^2$.
Dans cette partie, chaque étude est effectuée sur l’intervalle $]0 ; +\infty[$.

  1. Démontrer que sur l’intervalle $]0 ; +\infty[$, la fonction $f$ est une primitive de la fonction $g$.
    $\quad$
  2. À l’aide de la partie 1, étudier :
    a. la convexité de la fonction $f$ ;
    $\quad$
    b. les variations de la fonction $f$.
    $\quad$
  3. a. Donner une équation de la tangente à la courbe représentative de la fonction $f$ au point d’abscisse $\e$.
    $\quad$
    b. En déduire que, pour tout réel $x$ dans $]0 ; \e]$ : $$\left(\ln(x)\right)^2 \pg \dfrac{2}{\e}x-1$$
    $\quad$

$\quad$

Exercice 4     7 points
Thème : géométrie dans le plan et dans l’espace

On considère le cube $ABCDEFGH$. On note $I$ le milieu du segment $[EH]$ et on considère le triangle $CFI$.
L’espace est muni du repère orthonormé $\left(A;\vect{AB},\vect{AC},\vect{AD}\right)$ et on admet que le point $I$ a pour coordonnées $\left(0 ;\dfrac{1}{2};1\right)$ dans ce repère.
$\quad$

$\quad$

  1. a. Donner sans justifier les coordonnées des points $C$, $F$ et $G$.
    $\quad$
    b. Démontrer que le vecteur $\vec{n}\begin{pmatrix}1\\2\\2\end{pmatrix}$ est normal au plan $(CFI)$.
    $\quad$
    c. Vérifier qu’une équation cartésienne du plan $(CFI)$ est : $x+2y+2z-3=0$.
    $\quad$
  2. On note $d$ la droite passant par $G$ et orthogonale au plan $(CFI)$.
    a. Déterminer une représentation paramétrique de la droite $d$.
    $\quad$
    b. Démontrer que le point $K \left(\dfrac{7}{9};\dfrac{5}{9};\dfrac{5}{9}\right)$ est le projeté orthogonal du point $G$ sur le
    plan $(CFI)$.
    $\quad$
    c. Déduire des questions précédentes que la distance du point $G$ au plan $(CFI)$ est égale à $\dfrac{2}{3}$.
    $\quad$
  3. On considère la pyramide $GCFI$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule $V=\dfrac{1}{3}\times b\times h$, $b$ est l’aire d’une base et $h$ la hauteur associée à cette base.
    a. Démontrer que le volume de la pyramide $GCFI$ est égal à $\dfrac{1}{6}$, exprimé en unité de volume.
    $\quad$
    b. En déduire l’aire du triangle $CFI$, en unité d’aire.
    $\quad$

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 12 mai 2022

Centres étrangers – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\dfrac{1\times\e^x-x\e^x}{\left(\e^x\right)^2} \\
    &=\dfrac{(1-x)\e^x}{\e^{2x}} \\
    &=\dfrac{1-x}{\e^x} \\
    &=(1-x)\e^{-x}\end{align*}$
    Réponse C
    $\quad$
  2. La fonction $f\dsec$ semble donc strictement positive sur $]-3;-1[$ et strictement négative sur $]-1;1[$.
    La fonction $f’$ semble donc croissante sur $[-3;-1]$ et strictement décroissante sur $[-1;1]$.
    Ainsi $f’$ admet un maximum en $x=-1$.
    Réponse D
    $\quad$
  3. On considère la fonction $F$ définie sur $\R$ par $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$.
    Elle est dérivable sur $\R$ en tant que produit et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$
    $\begin{align*} F'(x)&=-\dfrac{1}{2}\left(2x\e^{-x^2}+\left(x^2+1\right)\times (-2x)\e^{-x^2}\right)\\
    &=-\dfrac{1}{2}\left(2x\e^{-x^2}-2x^3\e^{-x^2}-2x\e^{-x^2}\right) \\
    &=-\dfrac{1}{2}\times \left(-2x^3\right) \e^{-x^2}\\
    &=f(x)\end{align*}$
    Réponse C
    $\quad$
  4. Pour tout réel $x$ on a
    $\begin{align*} \dfrac{\e^x+1}{\e^x-1}&=\dfrac{\e^x\left(1+\e^{-x}\right)}{\e^x\left(1-\e^{-x}\right)} \\
    &=\dfrac{1+\e^{-x}}{1-\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}=1$.
    Réponse B
    $\quad$
  5. Une primitive de la fonction $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{2x+1}+K$
    $\begin{align*} F(0)=1&\ssi \dfrac{1}{2}\e+K=1 \\
    &\ssi K=1-\dfrac{1}{2}\e\end{align*}$
    Donc, pour tout réel $x$, $F(x)=\dfrac{1}{2}\e^{2x+1}+1-\dfrac{1}{2}\e$.
    Réponse C
    $\quad$
  6. La fonction $f$ semble concave sur $[-2;1]$ et convexe sur $[1;4]$.
    Par conséquent $f\dsec(x)$ est négatif sur $[-2;1]$ et positif sur $[1;4]$ en ne s’annulant qu’en $1$.
    Réponse A
    $\quad$

 

Ex 2

Exercice 2

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=1$.
    $\quad$
    $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} x\ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. a. Pour tout réel $x$ strictement positif,
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x} \\
    &=\ln(x)+1\end{align*}$
    $\quad$
    b. $\ln(x)+1=0 \ssi \ln(x)=-1 \ssi x=\e^{-1}$
    $\ln(x)+1>0\ssi \ln(x)>-1 \ssi x>\e^{-1}$
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. La fonction $f$ est strictement décroissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left]0;\e^{-1}\right]$ on a $0<1-\e^{-1}\pp f(x) <1$.
    $f(1)=1$.
    La fonction $f$ est strictement croissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left[\e^{-1};1\right[$ on a $0<1-\e^{-1}\pp f(x) < 1$.
    Ainsi, pour tout $x\in [0;1]$ on a $0<f(x)<1$.
    $\quad$
  3. a. $f'(1)=1$ et $f(1)=1$
    Une équation de $(T)$ est donc $y=1\times (x-1)+1$ soit $y=x$.
    $\quad$
    b. La fonction $f’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    c. La courbe $C_f$ est donc au-dessus de toutes ses tangentes en particulier au-dessus de $T$.
    Donc, pour tout réel $x$ strictement positif, $f(x)\pg x$.
    $\quad$
  4. a. Pour tout entier naturel $n$ on pose $P(n):~0<u_n<1$.
    Initialisation : $u_0\in ]0;1[$ par définition. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    On a $0<u_n<1$ donc, d’après la question 2.c., $0<f\left(u_n\right)<1$ soit $0<u_{n+1}<1$.
    $P(n+1)$ est donc vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $0<u_n<1$.
    $\quad$
    b. Soit $n\in \N$
    D’après la question 3.c. on a $f\left(u_n\right)\pg u_n$ soit $u_{n+1}\pg u_n$.
    La suite $\left(u_n\right)$ est donc croissante.
    $\quad$
    c. La suite $\left(un\right)$ est croissante et majorée par $1$. Elle est donc convergente.
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $\vect{AB}\begin{pmatrix}3\\3\\3\end{pmatrix}$, $\vect{AC}\begin{pmatrix}3\\0\\-3\end{pmatrix}$ et $\vect{AD}\begin{pmatrix}-3\\6\\-3\end{pmatrix}$
    $A$, $B$, $C$ et $D$ sont coplanaires si, et seulement si, il existe deux réels $x$ et $y$ tels que :
    $\begin{align*} \vect{AD}=x\vect{AB}+y\vect{AC}&\ssi \begin{cases} 3x+3y&=-3\\3x&=6\\3x-3y&=-3\end{cases} \\
    &\ssi \begin{cases} x+y&=-3\\x&=2\\x-y&=-1\end{cases} \\
    &\ssi \begin{cases} x=2\\y=-5\\y=3\end{cases}\end{align*}$
    Les deux dernières lignes du système sont incompatibles.
    Les points $A$, $B$, $C$ et $D$ ne sont donc pas coplanaires.
    $\quad$
  2. a.
    $\begin{align*} \vect{AB}.\vect{AC}&=3\times 3+3\times 0+3\times (-3) \\
    &=9+0-9\\
    &=0\end{align*}$
    Ces deux vecteurs sont orthogonaux.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b.
    $\begin{align*} \vect{AD}.\vect{AB}&=-3\times 3+6\times 3+(-3)\times 3 \\
    &=-9+18-9 \\
    &=0\end{align*}$
    $\begin{align*} \vect{AD}.\vect{AC}&=-3\times 3+6\times 0+(-3)\times (-3) \\
    &=-9+0+9 \\
    &=0\end{align*}$
    Le vecteur $\vect{AD}$ est donc orthogonal à deux vecteurs non colinéaires (ils sont orthogonaux d’après la question précédente) du plan $(ABC)$.
    La droite $(AD)$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c.
    $\begin{align*} AD&=\sqrt{(-3)^2+6^2+(-3)^2} \\
    &=\sqrt{9+36+9} \\
    &=\sqrt{54}\end{align*}$
    $\begin{align*} AB&=\sqrt{3^2+3^2+3^2} \\
    &=\sqrt{9+9+9} \\
    &=\sqrt{27}\end{align*}$
    $\begin{align*} AC&=\sqrt{3^2+0^2+(-3)^2} \\
    &=\sqrt{9+0+9} \\
    &=\sqrt{18}\end{align*}$
    L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2} \\
    &=\dfrac{\sqrt{27}\times \sqrt{18}}{2}\\
    &=\dfrac{9\sqrt{6}}{2}\end{align*}$
    Par conséquent le volume du tétraèdre $ABCD$ est
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times AD\times \mathscr{A} \\
    &=\dfrac{1}{3}\times \sqrt{54}\times \dfrac{9\sqrt{6}}{2}\\
    &=27\end{align*}$
    $\quad$
  3. a. $\vect{BH}\begin{pmatrix}-1\\-1\\-4\end{pmatrix}$, $\vect{BC}\begin{pmatrix}0\\-3\\-6\end{pmatrix}$ et $\vect{BD}\begin{pmatrix}-6\\3\\-6\end{pmatrix}$
    $\begin{align*} \vect{BH}=\alpha\vect{BC}+\beta\vect{BD}&\ssi \begin{cases} -6\beta&=-1 \\
    -3\alpha+3\beta&=-1\\
    -6\alpha-6\beta&=-4\end{cases} \\
    &\ssi \begin{cases} \beta=\dfrac{1}{6}\\\alpha=\dfrac{1}{2}\end{cases}\end{align*}$
    Par conséquent $\vect{BH}=\dfrac{1}{2}\vect{BC}+\dfrac{1}{6}\vect{BD}$.
    $\quad$
    b. $\vect{AH}\begin{pmatrix}2\\2\\-1\end{pmatrix}$
    $\begin{align*} \vect{AH}.\vect{BC}&=2\times 0+2\times (-3)+(-1)\times (-6) \\
    &=0\end{align*}$
    $\begin{align*} \vect{AH}.\vect{BD}&=2\times (-6)+2\times 3+(-1)\times (-6) \\
    &=0\end{align*}$
    Le vecteur $\vect{AH}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(BCD)$.
    C’est donc un vecteur normal à ce plan.
    D’après la question précédente, $H$ appartient au plan $(BCD)$.
    Donc $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c.
    $\begin{align*} AH&=\sqrt{2^2+2^2+(-1)^2} \\
    &=\sqrt{9} \\
    &=3\end{align*}$
    La distance du point $A$ au plan $(BCD)$ est égale à $3$ unités de longueur.
    $\quad$

Ex 4

Exercice 4

  1. a. On appelle :
    $\bullet ~~N_i$ l’événement « le jeton tiré lors du $i$-ème tirage est noir » ;
    $\bullet ~~B_i$ l’événement « le jeton tiré lors du $i$-ème tirage est blanc ».
    On obtient donc l’arbre pondéré suivant :
    $ \quad$
    $\quad$
    b. La probabilité de perdre $9$ € sur une partie est égale à :
    $\begin{align*} P\left(B_1\cap B_2\right)&=P\left(B_1\right)\times P_{B_1}\left(B_2\right) \\
    &=\dfrac{3}{5}\times \dfrac{3}{5} \\
    &=\dfrac{9}{5}\end{align*}$
    $\quad$
  2. a. À chaque tirage, la probabilité de tirer un jeton noir vaut $\dfrac{3}{N+3}$ et la probabilité de tirer un jeton blanc vaut $\dfrac{N}{N+3}$.
    La probabilité de tirer deux jetons blancs est égale à $\left(\dfrac{3}{N+3}\right)^2$.
    La probabilité de tirer deux jetons noirs est égale à $\left(\dfrac{N}{N+3}\right)^2$.
    Par conséquent la probabilité de tirer deux jetons de couleurs différentes est égale à :
    $\begin{align*} p&=1-\left(\dfrac{3}{N+3}\right)^2-\left(\dfrac{N}{N+3}\right)^2 \\
    &=1-\dfrac{9}{(N+3)^2}-\dfrac{N^2}{(N+3)^2} \\
    &=\dfrac{(N+3)^2-9-N^2}{(N+3)^2} \\
    &=\dfrac{N^2+6N+9-9-N^2}{(N+3)^2} \\
    &=\dfrac{6N}{(N+3)^2}\end{align*}$
    On obtient ainsi la loi de probabilité suivante :
    $\begin{array}{|c|c|c|c|}
    \hline
    x&-9&-1&5\\
    \hline
    P(X=x)&\dfrac{9}{(N+3)^2}&\dfrac{N^2}{(N+3)^2}&\dfrac{6N}{(N+3)^2}\\
    \hline
    \end{array}$
    $\quad$
    b. Le discriminant de $-x^2+30x-81$ est $\Delta=576>0$.
    Les racines de $-x^2+3x-81$ sont donc $x_1=\dfrac{-30-\sqrt{576}}{-2}=27$ et $x_1=\dfrac{-30+\sqrt{576}}{-2}=3$.
    Le coefficient principal du polynôme du second degré est $a=-1<0$.
    Par conséquent l’ensemble solution de $-x^2+3x-81>0$ est $]3;27[$.
    $\quad$
    c. Le jeu est favorable au joueur si, et seulement si, l’espérance de $X$ est strictement positive.
    $\begin{align*} E(X)>0&\ssi -9\times \dfrac{9}{(N+3)^2}-1\times \dfrac{N^2}{(N+3)^2}+5\times \dfrac{6N}{(N+3)^2}>0 \\
    &\ssi -81-N^2+30N>0\end{align*}$
    D’après la question précédente, le jeu est favorable au joueur si, et seulement si, $N$ est un entier naturel compris entre $4$ et $26$, tous les deux inclus.
    $\quad$
    d. On considère la fonction $g$ définie sur $[0;+\infty[$ par $g(x)=\dfrac{-x^2+30x-81}{(x+3)^2}$.
    Elle est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in[0;+\infty[$ on a
    $\begin{align*} g'(x)&=\dfrac{(-2x+30)(x+3)^2-2(x+3)\left(-x^2+30x-81\right)}{(x+3)^4} \\
    &=\dfrac{(-2x+30)(x+3)-2\left(-x^2+30x-81\right)}{(x+3)^3} \\
    &=\dfrac{-2x^2-6x+30x+90+2x^2-60x+162}{(x+3)^3}\\
    &=\dfrac{-36x+252}{(x+3)^3}\end{align*}$
    $g'(x)$ est donc du signe de $-36x+252$ sur $[0;+\infty[$.
    Or $-36x+252>0\ssi -36x>-252 \ssi x<7$.
    Par conséquent $g$ est strictement croissante sur $[0;7]$ et strictement décroissante sur $[7;+\infty[$.
    Elle atteint donc son maximum pour $x=7$.
    Or $E(X)=g(N)$ et $7\in [4;26]$.
    Le gain moyen est donc maximal s’il y a $7$ jetons noirs.
    $\quad$
  3. $N=7$ donc $P(X=5)=0,42$.
    On répète $10$ fois de façons indépendantes la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire comptant le nombre de joueur ayant gagné $5$ euros.
    $Y$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,42$.
    $\begin{align*} P(Y\pg 1)&=1-P(Y=0) \\
    &=1-(1-0,42)^{10} \\
    &=1-0,58^{10}\\
    &\approx 0,996\end{align*}$
    La probabilité d’avoir au moins un joueur gagnant $5$ euros est environ égale à $0,996$.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction exponentielle

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question en rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. Soit $f$ la fonction définie sur $\R$ par $$f(x)=\dfrac{x}{\e^x}$$
    On suppose que $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. $f'(x)=\e^{-x}$
    b. $f'(x)=x\e^{-x}$
    c. $f'(x)=(1-x)\e^{-x}$
    d. $f'(x)=(1+x)\e^{-x}$
    $\quad$
  2. Soit $f $ une fonction deux fois dérivable sur l’intervalle $[-3;1]$. On donne ci-dessous la représentation graphique de sa fonction dérivée seconde $f\dsec$.
    On peut alors affirmer que :
    a. La fonction $f$ est convexe sur l’intervalle $[-1;1]$
    b. La fonction $f$ est concave sur l’intervalle $[-2;0]$
    c. La fonction $f’$ est décroissante sur l’intervalle $[-2;0]$
    d. La fonction $f’$ admet un maximum en $x=-1$
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par :
    Une primitive $F$ de la fonction $f$ est définie sur $\R$ par :
    a. $F(x)=-\dfrac{1}{6}\left(x^3+1\right)\e^{-x^2}$
    b. $F(x)=-\dfrac{1}{4}x^4\e^{-x^2}$
    c. $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$
    d. $F(x)=x^2\left(3-2x^2\right)\e^{-x^2}$
    $\quad$
  4. Que vaut  $$\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}$$
    a $-1$
    b. $1$
    c. $+\infty$
    d. N’existe pas
    $\quad$
  5. On considère la fonction $f$ définie sur $\R$ par $f(x)=\e^{2x+1}$.
    La seule primitive de $F$ sur $\R$ de la fonction $f$ telle que $F(0)=1$ est la fonction :
    a. $x\mapsto 2\e^{2x+1}-2\e+1$
    b. $x\mapsto \e^{2x+1}-\e$
    c. $x\mapsto \dfrac{1}{2}\e^{2x+1}-\dfrac{1}{2}\e+1$
    d. $x\mapsto \e^{x^2+x}$
    $\quad$
  6. Dans un repère, on a tracé ci-dessous la courbe représentative d’une fonction $f$ définie et deux fois dérivable sur $[-2;4]$.
    a.
    b.
    c.

    d.

    $\quad$

$\quad$

Exercice 2     7 points

Thème : Fonction logarithme et suite

Soit $f$ la fonction définie sur l’intervalle $]0;+\infty[$ par $$f(x)=x\ln(x)+1$$

On note $C_f$ sa courbe représentative dans un repère du plan.

  1. Déterminer la limite de la fonction $f$ en $0$ ainsi que sa limite en $+\infty$.
    $\quad$
  2. a. On admet que $f$ est dérivable sur $]0;+\infty[$ et on notera $f’$ sa fonction dérivée.
    Montrer que pour tout réel $x$ strictement positif : $$f'(x)=1+\ln(x)$$
    $\quad$
    b. En déduire le tableau de variation de la fonction $f$ sur $]0;+\infty[$.
    On y fera figurer la valeur exacte de l’extremum de $f$ sur $]0;+\infty[$ et les limites.
    $\quad$
    c. Justifier que pour tout $x\in ]0;1[$, $f(x)\in ]0;1[$.
    $\quad$
  3. a. Déterminer une équation de la tangente $(T)$ à la courbe $C_f$ au point d’abscisse $1$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $]0;+\infty[$.
    $\quad$
    c. En déduire que pour tout réel $x$ strictement positif $$f(x)\pg x$$
    $\quad$
  4. On définit la suite $\left(u_n\right)$ par son premier terme $u_0$ élément de l’intervalle $]0;1[$ et pour tout entier naturel $n$ : $$u_{n+1}=f\left(u_n\right)$$
    a. Démontrer par récurrence que pour tout entier naturel $n$, on a $0<u_n<1$.
    $\quad$
    b. Déduire de la question 3c la croissance de la suite $\left(u_n\right)$.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $Oijk$.

On considère les points $A(3;-2;2)$, $B(6;1;5)$, $C(6;-2;-1)$ et $D(0;4;-1)$.

On rappelle que le volume d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{A}\times h$$
où $\mathscr{A}$ est l’aire de la base et $h$ la hauteur correspondante.

  1. Démontrer que les points $A$, $B$, $C$ et $D$ ne sont pas coplanaires.
    $\quad$
  2. a. Montrer que le triangle $ABC$ est rectangle.
    $\quad$
    b. Montrer que la droite $(AD)$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. En déduire le volume du tétraèdre $ABCD$.
    $\quad$
  3. On considère le point $H(5;0;1)$.
    a. Montrer qu’il existe des réels $\alpha$ et $\beta$ tels que $\vect{BH}=\alpha \vect{BC}+\beta\vect{BD}$.
    $\quad$
    b. Démontrer que $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c. En déduire ma distance du point $A$ au plan $(BCD)$.
    $\quad$
  4. Déduire des questions précédentes l’aire du triangle $BCD$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Une urne contient des jetons blancs et noirs tous indiscernables au toucher.

Un partie consiste à prélever au hasard successivement et avec remise deux jetons de cette urne.

On établit la règle de jeu suivante :

  • un joueur perd $9$ euros si les deux jetons tirés sont de couleur blanche;
  • un joueur perd $1$ euro si les deux jetons tirés sont de couleur noire;
  • un joueur gagne $5$ euros si les deux jetons tirés sont de couleurs différentes.
  1. On considère que l’urne contient $2$ jetons noirs et $3$ jetons blancs.
    a. Modéliser la situation à l’aide d’un arbre pondéré.
    $\quad$
    b. Calculer la probabilité de perdre $9$ € sur une partie.
    $\quad$
  2. On considère maintenant que l’urne contient $2$ jetons blancs et au moins deux jetons noirs mais on ne connait pas le nombre exact de jetons noirs. On appellera $N$ le nombre de jetons noirs.
    a. Soit $X$ la variable aléatoire donnant le gain du jeu pour une partie.
    Déterminer la loi de probabilité de cette variable aléatoire.
    $\quad$
    b. Résoudre l’inéquation pour $x$ réel : $$-x^2+30x-81>0$$
    $\quad$
    c. En utilisant le résultat de la question précédente, déterminer le nombre de jetons noirs que l’une doit contenir afin que ce jeu soit favorable au joueur.
    $\quad$
    d. Combien de jetons noirs le joueur doit-il demander afin d’obtenir un gain moyen maximal?
    $\quad$
  3. On observe $10$ joueurs qui tentent leur chance en effectuant une partie de ce jeu, indépendamment les uns des autres. On suppose que $7$ jetons noirs ont été placés dans l’urne (avec $3$ jetons blancs). Quelle est la probabilité d’avoir au moins $1$ joueur gagnant $5$ euros?
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 11 mai 2022

Centres étrangers – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $\quad$
    $\begin{align*} f(x)=2~022 &\ssi \ln\left(1+x^2\right)=2~022\\
    &\ssi 1+x^2=\e^{2~022} \\
    &\ssi x^2=\e^{2~022}-1 \end{align*}$
    Or $\e^{2~022}-1>0$
    Les solutions de l’équation $x^2=\e^{2~022}-1$ sont donc $\sqrt{\e^{2~022}-1}$ et $-\sqrt{\e^{2~022}-1}$.
    Réponse C
    $\quad$
  2. La fonction $g$ dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g'(x)&=\ln(x)+x\times \dfrac{1}{x}-2x \\
    &=\ln(x)+1-2x\end{align*}$
    La fonction $g’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g\dsec(x)&=\dfrac{1}{x}-2 \\
    &=\dfrac{1-2x}{x}\end{align*}$
    Sur $]0;+\infty[$, $g\dsec(x)$ ne dépend que du signe de $1-2x$.
    Or $1-2x>0\ssi -2x>-1 \ssi x<\dfrac{1}{2}$ et $1-2x=0 \ssi x=\dfrac{1}{2}$.
    Ainsi $g\dsec(x)$ s’annule en changeant de signes qu’une seule fois pour $x=\dfrac{1}{2}$.
    La courbe $C_g$ admet donc exactement un point d’inflexion sur $]0;+\infty[$.
    Réponse C
    $\quad$
  3. Pour tout réel $x\in ]-1;1[$ on a $f(x)=-\dfrac{1}{2}\times \dfrac{-2x}{1-x^2}$
    On reconnaît une dérivée de la forme $\dfrac{u’}{u}$ dont une primitive est $\ln(u)$ avec $u(x)=1-x^2$.
    Une primitive de $f$ est donc la fonction $g$ définie sur $]-1;1[$ par $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$.
    Réponse A
    $\quad$
  4. La fonction $\ln$ est définie sur $]0;+\infty[$.
    $-x^2-x+6$ a pour discriminant $\Delta = 25>0$.
    Les solutions de l’équation $-x^2-x+6=0$ sont $x_1=2$ et $x_2=-3$.
    Le coefficient principal est $a=-1<0$.
    Ainsi $-x^2-x+6>0$ sur $]-3;2[$.
    Réponse A
    $\quad$
  5. La fonction $f$ est dérivable sur $]0,5;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout réel $x\in ]0,5;+\infty[$ on a $f'(x)=-2x-4+\dfrac{6}{2x-1}$
    Par conséquent $f'(1)=4$ et $f(1)=-3$.
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est $y=4(x-1)-3$ soit $y=4x-7$.
    Réponse A
    $\quad$
  6. $x+3>0\ssi x>-3$ et $x+1>0\ssi x>-1$.
    L’inégalité n’est donc définie que sur $]-1;+\infty[$.
    $\begin{align*} \ln(x+3)<2\ln(x+1)&\Rightarrow \ln(x+3) <\ln\left((x+1)^2\right) \\
    &\Rightarrow x+3<(x+1)^2 \\
    &\Rightarrow w+3<x^2+2x+1\\
    &\Rightarrow x^2+x-2>0\end{align*}$
    Le discriminant est $\Delta=9>0$.
    Les solutions de $x^2+x-2=0$ sont donc $-2$ et $1$.
    Le coefficient principal est $a=1>0$ donc $x^2+x-2>0$ sur $]-\infty;-2[\cup]1;+\infty[$.
    Ainsi
    $\begin{align*} \mathscr{S}&=]-1;+\infty[ \cap \left(]-\infty;-2[\cup]1;+\infty[\right) \\
    &=]1;+\infty[\end{align*}$
    Réponse B
    $\quad$

Ex 2

Exercice 2

  1. Calcul d’un angle
    a.
    On a $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    $\dfrac{-3}{-2}=1,5$ et $\dfrac{-1}{2}=-0,5$. Or $1,5\neq -0,5$.
    Les deux vecteurs ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b.
    $\begin{align*} AB&=\sqrt{(-2)^2+2^2+(-2)^2} \\
    &=\sqrt{12} \\
    &=2\sqrt{3}\end{align*}$
    $\begin{align*} AC&=\sqrt{(-3)^2+(-1)^2+(-1)^2} \\
    &=\sqrt{11}\end{align*}$
    $\quad$
    c.
    $\begin{align*} \vect{AB}.\vect{AC}&=-2\times (-3)+2\times (-1)+(-2)\times (-1) \\
    &=6\end{align*}$
    $\quad$
    $\begin{align*} \vect{AB}.\vect{AC}=AB\times AC\times \cos\left(\widehat{BAC}\right) &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{\vect{AB}.\vect{AC}}{AB\times AC} \\
    &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{6}{2\sqrt{3}\times \sqrt{11}} \\
    &=\dfrac{3}{\sqrt{33}}\end{align*}$
    Par conséquent $\widehat{BAC}\approx 58,5$°
    $\quad$
  2. Calcul d’une aire
    a.
    $\vect{AB}$ est donc un vecteur normal au plan $P$
    Une équation de $P$ est donc de la forme $-2x+2y-2z+d=0$.
    $C(-1;-1;2)$ appartient à $P$. Donc $2-2-4+d=0 \ssi d=4$.
    Une équation cartésienne de $P$ est $-2x+2y-2z+4=0$ ou encore $-x+y-z+2=0$.
    $\quad$
    b. Une représentation paramétrique de la droite $(AB)$ est $\begin{cases} x=2-2t\\y=2t\\z=3-2t\end{cases}$.
    $\quad$
    c.
    $\begin{align*}\begin{cases} x=2-2t\\y=2t\\z=3-2t\\-x+y-z+2=0\end{cases} &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-(2-2t)+2t-(3-2t)+2=0\end{cases} \\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-2+2t+2t-3+2t+2=0\end{cases}\\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\6t =3\end{cases}\\
    &\ssi \begin{cases} x=\dfrac{1}{2}\\x=1\\y=1\\z=2\end{cases}\end{align*}$
    Le point $E$ a donc pour coordonnées $(1;1;2)$.
    $\quad$
    d. L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{1}{2}\times AB\times AC\times \sin\left(\widehat{ABC}\right) \\
    &=\dfrac{1}{2}\times 2\sqrt{3}\times \sqrt{11}\times \sin\left(\widehat{ABC}\right) \\
    &=\sqrt{33}\times \sin\left(\widehat{ABC}\right)\\
    &=2\sqrt{6}\\
    &\approx 4,899\end{align*}$
    $\quad$
    Remarque : Pour calculer la valeur exacte de $\sin\left(\widehat{ABC}\right)$ on peut utiliser la propriété suivante : pour tout réel $x$, $\sin^2x+\cos^2 x=1$, connaissant la valeur de $\cos\left(\widehat{ABC}\right)=\dfrac{3}{\sqrt{33}}$
    On a donc $\sin^2\left(\widehat{ABC}\right)+\dfrac{9}{33}=1$ soit $\sin^2\left(\widehat{ABC}\right)=\dfrac{8}{11}$.
    Or $\sin\left(\widehat{ABC}\right)>0$ (sinon l’aire est négative!) donc $\sin\left(\widehat{ABC}\right)=\dfrac{2\sqrt{2}}{\sqrt{11}}$
    $\quad$
  3. Calcul d’un volume
    a.
    $\vect{AF}(-1;-1;0)$ or $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    Par conséquent (après résolution d’un système éventuellement) $\vect{AF}=-\dfrac{1}{4}\vect{AB}+\dfrac{1}{2}\vect{AC}$.
    Ainsi, les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. $\vect{FD}(2;-2;-4)$.
    $\begin{align*} \vect{FD}.\vect{AB}&=2\times (-2)-2\times 2-4\times (-2) \\
    &=0\end{align*}$
    $\begin{align*} \vect{FD}.\vect{AC}&=2\times (-3)-2\times (-1)-4\times (-1) \\
    &=0\end{align*}$
    Le vecteur $\vect{FD}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    $(FD)$ est orthogonale au plan $(ABC)$.
    c.
    $\begin{align*} FD&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    Le volume de $ABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times FD\times \mathscr{A} \\
    &=8\end{align*}$
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. $\lim\limits_{x\to -\infty} \e^x=0$ et $\lim\limits_{x\to -\infty} -x=+\infty$ donc $\lim\limits_{x\to -\infty} h(x)=+\infty$
    Pour tout réel $x$, $h(x)=\e^x\left(1-\dfrac{x}{\e^x}\right)$. $\lim\limits_{x\to +\infty} \e^x=+\infty$ et par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$.
    Donc $\lim\limits_{x\to +\infty} h(x)=+\infty$
    $\quad$
  2. La fonction $h$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $h'(x)=\e^x-1$.
    Or $\e^x-1=0 \ssi x=0$ et $\e^x-1>0 \ssi x>0$.
    La fonction $h$ est donc strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;+\infty[$.
    On obtient alors le tableau de variations suivant :$\quad$
  3. La fonction $h$ est strictement croissante sur $[0;+\infty[$.
    Donc, pour tous réels $a$ et $b$ tels que $0\pp a\pp b$ on a $h(a)\pp h(b)$ c’est-à-dire $h(a)-h(b) \pp 0$.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $\R$ en tant que fonction exponentielle.
    Pour tout réel $x$ on a $f'(x)=\e^x$.
    $f(0)=1$ et $f'(0)=1$.
    Une équation de $T$ est donc $y=x+1$.
    $\quad$
  2. $\lim\limits_{n\to +\infty } \dfrac{1}{n}=0$ et $\lim\limits_{x\to 0} \e^x=1$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  3. a. Soit $n$ un entier naturel non nul.
    $\begin{align*} u_{n+1}-u_n&=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-1-\left(\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1\right) \\
    &=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-\exp\left(\dfrac{1}{n}\right)+\dfrac{1}{n} \\
    &=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ non nul on a $\dfrac{1}{n+1}<\dfrac{1}{n}$.
    Donc d’après la question A.3. $h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\pp 0$.
    Donc $u_{n+1}-u_n\pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  4. D’après le tableau de valeurs $u_n<10^{-2}$ à partir de $n=8$.
    C’est donc à partir de $n=8$ que l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

Ex 4

Exercice 4

  1. On obtient le tableau suivant :
    $\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&0,05&0,15&0,2\\
    \hline
    \conj{B}&0,05&0,75&0,8 \\
    \hline
    \text{Total}&0,1&0,9&1\\
    \hline
    \end{array}$
    $\quad$
  2. a. On veut calculer
    $\begin{align*} P(A\cup B)&=1-P\left(\conj{A}\cap \conj{B}\right) \\
    &=1-0,75 \\
    &=0,25\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour au moins un des deux traitements est donc égale à $0,25$.
    $\quad$
    b. On veut calculer $P(A\cap B)=0,05$.
    La probabilité qu’une paire de verres présente un défaut pour les deux traitements est donc égale à $0,05$.
    $\quad$
    c. $P(A)\times P(B)=0,02$ et $P(A\cap B)=0,05$.
    Donc $P(A)P(B)\neq P(A\cap B)$
    Les événements $A$ et $B$ ne sont pas indépendants.
    $\quad$
  3. On veut calculer
    $\begin{align*} P\left(A\cap \conj{B}\right)+P\left(B\cap \conj{A}\right) &=0,15+0,05 \\
    &=0,2\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour un seul des deux traitements est donc égale à $0,2$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_A(B)&=\dfrac{P(A\cap B)}{P(A)} \\
    &=\dfrac{0,05}{0,1} \\
    &=0,5\end{align*}$
    La probabilité qu’une paire de verres présente un défaut de traitement T2 sachant qu’elle présente un défaut de traitement T1 est égale à $0,5$.
    $\quad$

Partie B

  1. On répète indépendamment $50$ fois la même expérience de Bernoulli. $X$ compte le nombre de paires de verres qui présentent le défaut pour le traitement T1.
    Donc $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,1$.
    $\quad$
  2. On veut calculer
    $\begin{align*} P(X=10)&=\dbinom{50}{10}\times 0,1^{10} \times (1-0,1)^{50-10} \\
    &\approx 0,015\end{align*}$
    La probabilité qu’exactement $10$ paires de verres présentent ce défaut dans l’échantillon est environ égale à $0,015$.
    $\quad$
  3. L’espérance de $X$ est $E(X)=50\times 0,1=5$.
    Ainsi, en moyenne, on peut trouver $5$ paires de verres ayant ce défaut dans un échantillon de $50$ paires.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction logarithme

Cet exercice est un questionnaire d choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Les six questions sont indépendantes.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $f$ définie pour tout réel $x$ par f$f(x)=\ln\left(1+x^2\right)$.
    Sur $\R$, l’équation $f(x)=2~022$
    a. n’admet aucune solution.
    b. admet exactement une solution.
    c. admet exactement deux solutions.
    d. admet une infinité de solutions.
    $\quad$
  2. Soit la fonction $g$ définie pour tout réel $x$ strictement positif par : $$g(x) = x \ln(x)− x^2$$
    On note $\mathscr{C}_g$ sa courbe représentative dans un repère du plan.
    a. La fonction $g$ est convexe sur $]0 ; +\infty[$.
    b. La fonction $g$ est concave sur $]0 ; +\infty[$.
    c. La courbe $\mathscr{C}_g$ admet exactement un point
    d’inflexion sur $]0 ; +\infty[$.
    d. La courbe $\mathscr{C}_g$ admet exactement deux
    points d’inflexion sur $]0 ; +\infty[$.
    $\quad$
  3. On considère la fonction $f$ définie sur $]-1;1[$ par $$f(x)=\dfrac{x}{1-x^2}$$
    Une primitive de la fonction $f$ est la fonction $g$ définie sur l’intervalle $]-1;1[$ par :
    a. $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$
    b. $g(x)=\dfrac{1+x^2}{\left(1-x^2\right)^2}$
    c. $g(x)=\dfrac{x^2}{2\left(x-\dfrac{x^3}{3}\right)}$
    d. $g(x)=\dfrac{x^2}{2}\ln\left(1-x^2\right)$
    $\quad$
  4. La fonction $x\mapsto \ln\left(-x^2-x+6\right)$ est définie sur
    a. $]-3;2[$
    b. $]-\infty;6[$
    c. $]0;+\infty[$
    d. $]2;+\infty[$
    $\quad$
  5. On considère la fonction $f$ définie sur $]0,5;+\infty[$ par $$f(x)=x^2-4x+3\ln(2x-1)$$
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est :
    a. $y=4x-7$
    b. $y=2x-4$
    c. $y=-3(x-1)+4$
    d. $y=2x-1$
    $\quad$
  6. L’ensemble $\mathscr{S}$ des solutions dans $\R$ de l’inéquation $\ln(x+3)<2\ln(x+1)$ est :
    a. $\mathscr{S}=]-\infty;-2[\cup]1;+\infty[$
    b. $\mathscr{S}=]1;+\infty[$
    c. $\mathscr{S}=\emptyset$
    d. $\mathscr{S}=]-1;1[$
    $\quad$

$\quad$

Exercice 2     7 points

Thème : Géométrie dans l’espace

Dans l’espace, rapporté à un repère orthonormé $\Oijk$, on considère les points : $$A(2;0;3),~B(0;2;1),~C(-1;-1;2) \text{ et } D(3;-3;-1)$$

  1. Calcul d’un angle.
    a.
     Calculer les coordonnées des vecteurs $\vect{AB}$ et
    $\vect{AC}$ et en déduire que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b. Calculer les longueurs $AB$ et $AC$.
    $\quad$
    c. À l’aide du produit scalaire $\vect{AB}.\vect{AC}$, déterminer la valeur du cosinus de l’angle $\widehat{BAC}$ puis donner une valeur approchée de la mesure de l’angle $\widehat{BAC}$ au dixième de degré.
    $\quad$
  2. Calcul d’une aire.
    a.
    Déterminer une équation du plan $P$ passant par le point $C$ et perpendiculaire à la droite $(AB)$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(AB)$.
    $\quad$
    c. En déduire les coordonnées du projeté orthogonal $E$ du point $C$ sur la droite $(AB)$, c’est-à-dire du point d’intersection de la droite $(AB)$ et du plan $P$.
    $\quad$
    d. Calculer l’aire du triangle $ABC$.
    $\quad$
  3. Calcul d’un volume.
    a.
    Soit le point $F(1 ; −1 ; 3)$. Montrer que les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. Vérifier que la droite $(FD)$ est orthogonale au plan $(ABC)$.
    $\quad$
    c. Sachant que le volume d’un tétraèdre est égal au tiers de l’aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre $ABCD$.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonction exponentielle et suite

Partie A :

Soit $h$ la fonction définie sur $\R$ par $$h(x)=\e^x-x$$

  1. Déterminer les limites de $h$ en $-\infty$ et $+\infty$.
    $\quad$
  2. Étudier les variations de $h$ et dresser son tableau de variation.
    $\quad$
  3. En déduire que :
    si $a$ et $b$ sont deux réels tels que $0\pp a\pp b$ alors $h(a)-h(b)\pp 0$.
    $\quad$

Partie B :

Soit $f$ la fonction définie sur $\R$ par $$f(x)=\e^x$$

On note $C_f$ sa courbe représentative dans un repère $\Oij$.

  1. Déterminer une équation de la tangente $T$ à $C_f$ au point d’abscisse $0$.

Dans la suite de l’exercice on s’intéresse à l’écart entre $T$ et $C_f$ au voisinage de $0$. Cet écart est défini comme la différence des ordonnées des points de $T$ et $C_f$ de même abscisse.

On s’intéresse aux points d’abscisse $\dfrac{1}{n}$, avec $n$ entier naturel non nul.

On considère alors la suite $\left(u_n\right)$ définie pour tout entier naturel non nul $n$ par : $$u_n=\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1$$

  1. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$
  2. a. Démontrer que, pour tout entier naturel non nul $n$, $$u_{n+1}-u_n=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)$$
    où $h$ est la fonction définie à la partie A.
    $\quad$
    b. En déduire le sens de variation de la suite $\left(u_n\right)$.
    $\quad$
  3. Le tableau ci-dessous donne des valeurs approchées à $10^{-9}$ des premiers termes de la suite $\left(u_n\right)$.
    $$\begin{array}{|c|c|}
    \hline
    n &u_n \\ \hline
    1 &0,718281828\\ \hline
    2& 0,148721271\\ \hline
    3& 0,062279092 \\ \hline
    4& 0,034025417\\ \hline
    5& 0,021402758\\ \hline
    6& 0,014693746\\ \hline
    7& 0,010707852\\ \hline
    8& 0,008148453\\ \hline
    9& 0,006407958\\ \hline
    10& 0,005170918\\ \hline
    \end{array}$$
    Donner la plus petite valeur de l’entier naturel $n$ pour laquelle l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Les parties A et B peuvent être traitées de façon indépendante.

Au cours de la fabrication d’une paire de lunettes, la paire de verres doit subir deux traitements notés T1 et T2.

Partie A

On prélève au hasard une paire de verres dans la production.

On désigne par $A$ l’évènement : « la paire de verres présente un défaut pour le traitement T1 ».

On désigne par $B$ l’évènement : « la paire de verres présente un défaut pour le traitement T2 ».

On note respectivement $\conj{A}$ et $\conj{B}$ les évènements contraires de $A$ et $B$.

Une étude a montré que :

  •  la probabilité qu’une paire de verres présente un défaut pour le traitement T1 notée $P(A)$ est égale à $0,1$.
  • la probabilité qu’une paire de verres présente un défaut pour le traitement T2 notée $P(B)$ est égale à $0,2$.
  • la probabilité qu’une paire de verres ne présente aucun des deux défauts est $0,75$.
  1. Recopier et compléter le tableau suivant avec les probabilités correspondantes $$\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \conj{B}&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \text{Total}&\phantom{123}&\phantom{123}&1\\
    \hline
    \end{array}$$
    $\quad$
  2. a. Déterminer, en justifiant la réponse, la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour au moins un des deux traitements T1 ou T2.
    $\quad$
    b. Donner la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente deux défauts, un pour chaque traitement T1 et T2.
    $\quad$
    c. Les évènements A et B sont-ils indépendants ? Justifier la réponse.
    $\quad$
  3. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour un seul des deux traitements.
    $\quad$
  4. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour le traitement T2, sachant que cette paire de verres présente un défaut pour le traitement T1.
    $\quad$

Partie B

On prélève, au hasard, un échantillon de $50$ paires de verres dans la production. On suppose que la production est suffisamment importante pour assimiler ce prélèvement à un tirage avec remise. On note $X$ la variable aléatoire qui, à chaque échantillon de ce type, associe le nombre de paires de verres qui présentent le défaut pour le traitement T1.

  1. Justifier que la variable aléatoire $X$ suit une loi binomiale et préciser les paramètres de cette loi.
    $\quad$
  2. Donner l’expression permettant de calculer la probabilité d’avoir, dans un tel échantillon, exactement $10$ paires de verres qui présentent ce défaut.
    Effectuer ce calcul et arrondir le résultat à $10^{-3}$.
    $\quad$
  3. En moyenne, combien de paires de verres ayant ce défaut peut-on trouver dans un échantillon de $50$ paires ?
    $\quad$

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – 11 mai 2022

Métropole – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A : Étude du premier protocole

  1. a. Pour tout $t\in[0;10]$ on a
    $\begin{align*} f'(t)&=3\e^{-0,5t+1}+3t\times (-0,5)\e^{-0,5t+1} \\
    &=3(-0,5t+1)\e^{-0,5t+1}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $-0,5t+1$.
    Or $-0,5t+1=0 \ssi -0,5t=-1 \ssi t=2$
    et $-0,5t+1>0 \ssi -0,5t>-1 \ssi t<2$
    On obtient donc le tableau de variations suivant :$\quad$
    c. D’après le tableau de variations, la fonction $f$ atteint son maximum pour $t=2$ et celui-ci vaut $f(2)=6$.
    La quantité de médicament présente dans le sang est donc maximale au bout de $2$ h et elle vaut alors $6$ mg.
    $\quad$
  2. a. La fonction $f$ est continue et strictement croissante sur $[0;2]$.
    De plus, $f(0)=0<5$ et $f(2)=6>5$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(t)=5$ admet une unique solution $\alpha$ sur $[0;2]$.
    D’après la calculatrice $\alpha \approx 1,02$.
    $\quad$
    b. $\beta-\alpha \approx 2,44$. Le médicament est donc efficace environ $2,44$ heures soit $2$ heures et $26$ minutes.
    $\quad$

Partie B : Étude du deuxième protocole

  1. La quantité de médicament baisse de $30\%$ au bout d’une heure. Il en reste donc $70\%$ soit $0,7u_0=1,4$.
    On réinjecte $1,8$ mg
    Donc $u_1=1,4+1,8=3,2$.
    Après l’injection de la première heure, il y a donc $3,2$ mg de médicament dans le sang.
    $\quad$
  2. La quantité de médicament baisse de $30\%$ en une heure. Il est donc $70\%$ soit $0,7u_n$.
    On réinjecte $1,8$ mg.
    Donc, pour tout $n\in \N$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on note $P(n):~u_b \pp u_{n+1} <6$.
    Initialisation : $u_0=2$ et $u_1=3,2$. Donc $u_0\pp u_1<6$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <6 &\ssi 0,7u_n \pp 0,7u_{n+1} < 4,2 \\
    &\ssi 0,7u_n+1,8 \pp 0,7u_{n+1}+1,8<6 \\
    &\ssi u_{n+1} \pp u_{n+2}<6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n\pp u_{n+1} <6$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $6$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. On considère la fonction $g$ définie sur $\R$ par $g(x)=0,7x+1,8$.
    La fonction $f$ est continue sur $\R$ en tant que fonction affine et, pour tout $n\in \N$ on a $u_{n+1}=g\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $g(x)=x$
    $\begin{align*} 0,7x+1,8=x&\ssi 0,3x=1,8 \\
    &\ssi x=6\end{align*}$
    Donc $\ell=6$.
    Sur le long terme, le patient aura $6$ mg de médicament dans le sang.
    $\quad$
  4. a. Pour tout $n\in \N$
    $\begin{align*} v_{n+1}&=6-u_{n+1} \\
    &=6-0,7u_n-1,8 \\
    &=4,2-0,7u_n \\
    &=0,7\left(6-u_n\right)\\
    &=0,7v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,7$ et de premier terme $v_0=6-u_0=4$.
    $\quad$
    b. On a donc, pour tout $n\in \N$, $v_n=4\times 0,7^n$.
    Par conséquent $u_n=6-v_n=6-4\times 0,7^n$.
    $\quad$
    c. $\quad$
    $\begin{align*} u_n\pg 5,5&\ssi 6-4\times 0,7^n \pg 5,5 \\
    &\ssi -4\times 0,7^n \pg 0,5 \\
    &\ssi 0,7^n \pp 0,125 \\
    &\ssi n\ln(0,7) \pp \ln(0,125) \\
    &\ssi n \pg \dfrac{\ln(0,125)}{\ln(0,7)} \qquad \text{car } \ln(0,7)<0\end{align*}$
    $\quad$

 

Ex 2

Exercice 2

  1. a. On a $\vec{u}(2;-1;2)$.
    $\quad$
    b. Si $t=-1$ alors $x=-1$, $y=3$ et $z=0$ donc $B(-1;3;0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. $\vect{AB}(0;2;-3)$.
    Donc
    $\begin{align*} \vect{AB}.\vec{u}&=0\times 2+2\times (-1)+2\times (-3) \\
    &=-8\end{align*}$
    $\quad$
  2. a. $\vec{u}$ est donc un vecteur normal au plan $\mathscr{P}$.
    Une équation cartésienne de ce plan est par conséquent de la forme : $2x-y+2z+d=0$.
    Or $A(-1;1;3)$ appartient à $\mathscr{P}$.
    Donc $-2-1+6+d=0\ssi d=-3$.
    Une équation cartésienne de $\mathscr{P}$ est $2x-y+2z-3=0$.
    $\quad$
    b. $2\times \dfrac{7}{9}-\dfrac{19}{9}+2\times \dfrac{16}{9}-3=\dfrac{27}{9}-3=0$ : le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{P}$.
    $1+2t=\dfrac{7}{9}\ssi 2t=\dfrac{-2}{9}\ssi t=\dfrac{-1}{9}$.
    En prenant $t=-\dfrac{1}{9}$ dans l’équation de $\mathscr{D}$ on obtient $\begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}$ donc le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{D}$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$
    c. $\vect{AH}\left(\dfrac{16}{9};\dfrac{10}{9};-\dfrac{11}{9}\right)$
    Donc
    $\begin{align*} AH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{10}{9}\right)^2+\left(\dfrac{-11}{9}\right)^2} \\
    &=\dfrac{\sqrt{477}}{9} \\
    &=\dfrac{\sqrt{53}}{3}\end{align*}$
    $\quad$
  3. a. $(HB)$ est orthogonale au plan $\mathscr{P}$. Par conséquent $\vect{HB}$ et $\vec{u}$ sont colinéaires.
    Il existe donc un réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b.
    $\begin{align*} \vect{AB}.\vec{u}&=\left(\vect{AH}+\vect{HB}\right).\vec{u} \\
    &= \vect{AH}.\vec{u}+ \vect{HB}.\vec{u} \\
    &=0+k\vec{u}.\vec{u} \\
    &=k\left\|\vec{u}\right\|^2\end{align*}$
    Ainsi $kj=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. On a $\left\|\vec{u}\right\|^2=2^2+(-1)^2+2^2=9$.
    Ainsi $k=-\dfrac{8}{9}$
    $\quad$
    Soit $H(x;y;z)$
    $\vect{HB}(-1-x;3-x;-z)$.
    $\begin{align*} \vect{HB}=-\dfrac{8}{9}\vec{u}&\ssi \begin{cases} 1-x=-\dfrac{8}{9}\times 2\\3-y=-\dfrac{8}{9}\times (-1)\\-z=-\dfrac{8}{9}\times 2\end{cases} \\
    &\ssi \begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}\end{align*}$
    On retrouve donc les coordonnées du point $H$ trouvées à la question 2.b.
    $\quad$
  4. $\vect{BH}\left(\dfrac{16}{9};\dfrac{-8}{9};\dfrac{16}{9}\right)$
    Donc
    $\begin{align*} BH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{-8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2} \\
    &=\dfrac{8}{3}\end{align*}$
    On appelle $\mathscr{B}$ l’aire du triangle $ACH$.
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times BH\times \mathscr{B} &\ssi \dfrac{8}{9}&=\dfrac{1}{3}\times \dfrac{8}{3}\times \mathscr{B} \\
    &\ssi \mathscr{B}=1\end{align*}$
    L’aire du triangle $ACH$ vaut $1$ unité d’aire.
    $\quad$

 

 

Ex 3

Exercice 3

  1. a. D’après l’énoncé $P(S)=0,25$.
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    c. On a
    $\begin{align*} P(F\cap S)&=P(F)\times P_F(S) \\
    &=0,52\times 0,4\\
    &=0,208\end{align*}$
    La probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On veut calculer
    $\begin{align*} P_F(S)&=\dfrac{P(S\cap F)}{P(S)} \\
    &=\dfrac{0,208}{0,25} \\
    &=0,832\end{align*}$
    La probabilité que la personne interrogée soit une femme sachant qu’elle a suivi le stage est égale à $0,832$.
    $\quad$
    e. $\left(F,\conj{F}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales
    $\begin{align*} P(S)=P(S\cap F)+P\left(S\cap \conj{F}\right) &\ssi P\left(S\cap \conj{F}\right)=P(S)-P(S\cap F)\\
    &\ssi P\left(S\cap \conj{F}\right)=0,042\end{align*}$
    Par conséquent
    $\begin{align*} P_F(S)&=\dfrac{P\left(S\cap \conj{F}\right)}{P\left(\conj{F}\right)} \\
    &=\dfrac{0,042}{0,48} \\
    &=0,0875 \\
    &<0,1\end{align*}$
    $\quad$
  2. a. On répète indépendamment $20$ fois  la même expérience de Bernoulli. $X$ compte le nombre de salariés ayant suivi le stage.
    Donc $X$ suit la loi binomiale de paramètres $n=20$ et $p=0,25$.
    $\quad$
    b.
    $\begin{align*} P(X=5)&=\dbinom{10}{5}\times 0,25^5\times (1-0,25)^{10-5} \\
    &\approx 0,202\end{align*}$
    La probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage est environ égale à $0,202$.
    $\quad$
    c. Ce programme calcule $P(X\pp k)$.
    D’après la calculatrice $P(X\pp 5) \approx 0,617$.
    Le programme renvoie donc $0,617$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} P(X\pg 6)&=1-P(X<6) \\
    &=1-P(X\pp 5) \\
    &\approx 0,383\end{align*}$
    $\quad$
  3. $1,05\times 0,25+1,02\times 0,75=1,0275$.
    Le pourcentage moyen d’augmentation des salaires de cette entreprise est donc de $2,75\%$.
    $\quad$

Ex 4

Exercice 4

  1. D’après la limite des termes de plus haut degré
    $\begin{align*} \lim\limits_{x\to +\infty} f(x)&=\lim\limits_{x\to +\infty} \dfrac{-2x^2}{x^2} \\
    &=-2\end{align*}$
    La droite d’équation $y=-2$ est donc asymptote à la courbe représentative de la fonction $f$.
    Réponse C
    $\quad$
  2. Une primitive de $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2}+K$
    $F(0)=1 \ssi \dfrac{1}{2}+K=1 \ssi K=\dfrac{1}{2}$
    Réponse D
    $\quad$
  3. $f’$ semble être strictement croissante sur $]-\infty;4[$ et strictement décroissante sur $[4;+\infty[$.
    Donc $f$ est convexe sur $]-\infty;4]$ et concave sur $[4;+\infty[$.
    Réponse C
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$. Par conséquent, pour tout réel $x$, $f(x)>0$ sur $\R$. $f$ est la dérivée de chacune de ses primitives.
    Réponse A
    $\quad
  5. Pour tout réel $x$, $f(x)=\dfrac{2\ln(x)}{3x^2}\times \dfrac{1}{1+\dfrac{3}{x^2}}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$
    De plus $\lim\limits_{x\to +\infty}  \dfrac{1}{1+\dfrac{3}{x^2}}=0$
    Par conséquent $\lim\limits_{x\to +\infty}f(x)=0$.
    Réponse D
    $\quad$
  6. L’équation peut s’écrire $\left(\e^x\right)^2+\e^x-12=0 \ssi \begin{cases} X=\e^x\\X^2+X-12=0\end{cases}$
    $X^2+X-12=0$ a pour discriminant $\Delta=49>0$
    Ses racines sont donc $X_1=-4$ et $X_2=3$.
    Or $\e^x=-4$ n’admet pas de solution et $\e^x=3$ admet une unique solution $x=\ln(3)$.
    Réponse C
    $\quad$

 

Énoncé

Exercice 1     7 points

Thèmes : fonction exponentielle, suites

Dans le cadre d’un essai clinique, on envisage deux protocoles de traitement d’une maladie.
L’objectif de cet exercice est d’étudier, pour ces deux protocoles, l’évolution de la quantité de médicament présente dans le sang d’un patient en fonction du temps.

Les parties A et B sont indépendantes.

Partie A : Étude du premier protocole

Le premier protocole consiste à faire absorber un médicament, sous forme de comprimé, au patient.
On modélise la quantité de médicament présente dans le sang du patient, exprimée en mg, par la fonction $f$ définie sur l’intervalle $[0; 10]$ par $f(t)=3t\e^{-0,5t+1}$, où $t$ désigne le temps, exprimé en heure, écoulé depuis la prise du comprimé.

  1. a. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 10]$ et on note $f’$ sa fonction dérivée.
    Montrer que, pour tout nombre réel $t$ de $[0; 10]$, on a : $f'(t)=3(-0,5t+1)\e^{-0,5t+1}$.
    $\quad$
    b. En déduire le tableau de variations de la fonction $f$ sur l’intervalle $[0; 10]$.
    $\quad$
    c. Selon cette modélisation, au bout de combien de temps la quantité de médicament présente dans le sang du patient sera-t-elle maximale ? Quelle est alors cette quantité maximale ?
    $\quad$
  2. a. Montrer que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[0; 2]$, notée $\alpha$, dont
    on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
    On admet que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[2; 10]$, notée $\beta$, et qu’une
    valeur approchée de $\beta$ à $10^{-2}$ près est $3,46$.
    $\quad$
    b. On considère que ce traitement est efficace lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5$ mg.
    Déterminer, à la minute près, la durée d’efficacité du  médicament dans le cas de ce protocole.
    $\quad$

Partie B : Étude du deuxième protocole

Le deuxième protocole consiste à injecter initialement au patient, par piqûre intraveineuse, une dose de $2$ mg de médicament puis à réinjecter toutes les heures une dose de $1,8$ mg.

On suppose que le médicament se diffuse instantanément dans le sang et qu’il est ensuite progressivement éliminé.

On estime que lorsqu’une heure s’est écoulée après une injection, la quantité de médicament dans le sang a diminué de $30 \%$ par rapport à la quantité présente immédiatement après cette injection.

On modélise cette situation à l’aide de la suite $\left(u_n\right)$ où, pour tout entier naturel $n$, $u_n$ désigne la quantité de médicament, exprimée en mg, présente dans le sang du patient immédiatement après l’injection de la $n$-ème heure. On a donc $u_0=2$.

  1. Calculer, selon cette modélisation, la quantité $u_1$ de médicament (en mg) présente dans le sang du patient immédiatement après l’injection de la première heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pp u_{n+1} <6$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
    c. Déterminer la valeur de $\ell$. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par $v_n=6-u_n$.
    a. Montrer que la suite $\left(v_bn\right)$ est une suite géométrique de raison $0,7$ dont on précisera le premier terme.
    $\quad$
    b. Déterminer l’expression de $v_n$ en fonction de $n$, puis de $u_n$ en fonction de $𝑛$.
    $\quad$
    c. Avec ce protocole, on arrête les injections lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5,5$ mg.
    Déterminer, en détaillant les calculs, le nombre d’injections réalisées en appliquant ce protocole.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$ on considère :

  • Le point $A$ de coordonnées $(-1;1;3)$;
  • La droite $\mathscr{D}$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=2-t\\z=2+2t\end{cases} \quad ,t\in \R$.

On admet que le point $A$ n’appartient pas à la droite $\mathscr{D}$.

  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u}$ de la droite $\mathscr{D}$.
    $\quad$
    b. Montrer que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. Calculer le produit scalaire $\vect{AB}.\vec{u}$.
    $\quad$
  2. On note $\mathscr{P}$ le plan passant par le point $A$ et orthogonal à la droite $\mathscr{D}$, et on appelle $H$ le point d’intersection du plan $\mathscr{P}$ et de la droite $\mathscr{D}$. Ainsi, $H$ est le projeté orthogonal de $A$ sur la droite $\mathscr{D}$.
    a. Montrer que le plan $\mathscr{P}$ admet pour équation cartésienne : $2x-y+2z-3=0$.
    $\quad$
    b. En déduire que le point $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    c. Calculer la longueur $AH$. On donnera une valeur exacte.
    $\quad$
  3. Dans cette question, on se propose de retrouver les coordonnées du point $H$, projeté orthogonal du point $A$ sur la droite $\mathscr{D}$, par une autre méthode.On rappelle que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$ et que le vecteur $\vec{u}$ est un vecteur directeur de la droite $\mathscr{D}$.
    a. Justifier qu’il existe un nombre réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b. Montrer que $k=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. Calculer la valeur du nombre réel $k$ et retrouver les coordonnées du point $H$.
    $\quad$
  4. On considère un point $C$ appartenant au plan $\mathscr{P}$ tel que le volume du tétraèdre $ABCH$ soit égal à $\dfrac{8}{9}$.
    Calculer l’aire du triangle $ACH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : probabilités

Le directeur d’une grande entreprise a proposé à l’ensemble de ses salariés un stage de formation à l’utilisation d’un nouveau logiciel.

Ce stage a été suivi par $25 \%$ des salariés.

  1. Dans cette entreprise, $52 \%$ des salariés sont des femmes, parmi lesquelles $40 \%$ ont suivi le stage.
    On interroge au hasard un salarié de l’entreprise et on considère les événements :
    $\bullet$ $F$ : « le salarié interrogé est une femme »,
    $\bullet$ $S$ : « le salarié interrogé a suivi le stage ».
    $\conj{F}$ et $\conj{S}$ désignent les événements contraires des événements $F$ et $S$.
    a. Donner la probabilité de l’événement $S$.
    $\quad$
    b. Recopier et compléter les pointillés de l’arbre pondéré ci-dessous sur les quatre branches indiquées.$\quad$
    c. Démontrer que la probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On sait que la personne interrogée a suivi le stage. Quelle est la probabilité que ce soit une femme ?
    $\quad$
    e. Le directeur affirme que, parmi les hommes salariés de l’entreprise, moins de $10 \%$ ont suivi le stage.
    Justifier l’affirmation du directeur.
    $\quad$
  2. On note $X$ la variable aléatoire qui à un échantillon de $20$ salariés de cette entreprise choisis au hasard associe le nombre de salariés de cet échantillon ayant suivi le stage. On suppose que l’effectif des salariés de l’entreprise est suffisamment important pour assimiler ce choix à un tirage avec remise.
    a. Déterminer, en justifiant, la loi de probabilité suivie par la variable aléatoire $X$.
    $\quad$
    b. Déterminer, à $10^{-3}$ près, la probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
    c. Le programme ci-dessous, écrit en langage Python, utilise la fonction $\texttt{binomiale(i,n,p)}$ créée pour l’occasion qui renvoie la valeur de la probabilité $P(X=i)$ dans le cas où la variable aléatoire $X$ suit une loi binomiale de paramètres $n$ et $p$.
    $\begin{array}{|l|}
    \hline
    \textbf{def proba}\text{(k):}\\
    \quad \text{P = 0}\\
    \quad \text{for i in range(0 , k + 1):}\\
    \qquad \text{P = P + binomiale(i,20,0.25)}\\
    \quad \textbf{return P}\\
    \hline
    \end{array}$
    Déterminer, à $10^{-3}$ près, la valeur renvoyée par ce programme lorsque l’on saisit $\texttt{proba(5)}$ dans la console Python. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
    d. Déterminer, à $10^{-3}$ près, la probabilité qu’au  moins $6$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
  3. Cette question est indépendante des questions 1 et 2.
    Pour inciter les salariés à suivre le stage, l’entreprise avait décidé d’augmenter les salaires des salariés ayant suivi le stage de $5\ %$, contre $2\%$ d’augmentation pour les salariés n’ayant pas suivi le stage.
    Quel est le pourcentage moyen d’augmentation des salaires de cette entreprise dans ces conditions ?
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonctions numériques

Cet exercice est un questionnaire à choix multiple.
Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la réponse choisie. Aucune justification n’est  demandée.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Les six questions sont indépendantes.

  1. La courbe représentative de la fonction $f$ définie sur $\R$ par $f(x)=\dfrac{-2x^2+3x-1}{x^2+1}$ admet pour asymptote la droite d’équation :
    a. $x=-2$;
    b. $y=-1$;
    c. $y=-2$;
    d. $y=0$.
    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=x\e^{x^2}$.
    La primitive $F$ de $f$ sur $\R$ qui vérifie $F(0)=1$ est définie par :
    a. $F(x)=\dfrac{x^2}{2}\e^{x^2}$;
    b. $F(x)=\dfrac{1}{2}\e^{x^2}$;
    c. $F(x)=\left(1+2x^2\right)\e^{x^2}$;
    d. $F(x)=\dfrac{1}{2}\e^{x^2}+\dfrac{1}{2}$.
    $\quad$
  3. On donne ci-dessous la représentation graphique $\mathscr{C}_{f’}$ de la fonction dérivée $f’$ d’une fonction $f$ définie sur ℝ.
    On peut affirmer que la fonction $f$ est :
    a. concave sur $]0; +\infty[$ ;
    b. convexe sur $]0; +\infty[$ ;
    c. convexe sur $[0; 2]$ ;
    d. convexe sur $[2; +\infty[$.
    $\quad$
  4. Parmi les primitives de la fonction $f$ définie sur $\R$ par $f(x)=3\e^{-x^2}+2$:
    a. toutes sont croissantes sur $\R$ ;
    b. toutes sont décroissantes sur $\R$ ;
    c. certaines sont croissantes sur $\R$ et d’autres décroissantes sur $\R$ ;
    d. toutes sont croissantes sur $]−\infty; 0]$ et décroissantes sur $[0; +\infty[$.
    $\quad$
  5. La limite en $+\infty$ de la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=\dfrac{2\ln(x)}{3x^2+1}$ est égale à :
    a. $\dfrac{2}{3}$ ;
    b. $+\infty$ ;
    c. $-\infty$ ;
    d. $0$.
    $\quad$
  6. L’équation $\e^{2x}+\e^x-12=0$ admet dans $\R$ :
    a. trois solutions ;
    b. deux solutions ;
    c. une seule solution ;
    d. aucune solution.
    $\quad$

 

Bac – Spécialité mathématiques – Polynésie – sujet 2 – 5 mai 2022

Polynésie – 5 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1     7 points

Thèmes : fonctions, primitives, probabilités

  1. Pour tout $x\in ]0;+\infty[$ on a
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)\end{align*}$
    Réponse a
    $\quad$
  2. Pour tout réel $x\in ]0;+\infty[$ on a $g(x)=x^2-x^2\ln(x)$
    Or $\lim\limits_{x\to 0} x^2=0$ et, par croissances comparées, $\lim\limits_{x\to 0} x^2\ln(x)=0$.
    Donc $\lim\limits_{x\to 0} g(x)=0$.
    Réponse c
    $\quad$
  3. Pour tout réel $x$ on a $f(x)=x\left(x^2-0,9x-0,1\right)$
    $f(x)=0\ssi x=0$ ou $x^2-0,9x-0,1=0$.
    Le discriminant de $x^2-0,9x-0,1$ est $\Delta=(-0,9)^2-4\times \times 1\times (-0,1)=1,21>0$.
    L’équation $x^2-0,9x-0,1=0$ possède donc deux solutions distinctes. $0$ n’est pas solution de cette équation.
    Ainsi l’équation $f(x)=0$ admet exactement $3$ solutions.
    Réponse d
    $\quad$
  4. On considère la fonction $K$ définie sur $\R$ par $K(x)=\dfrac{1}{2}H(2x)$
    La fonction $K$ est dérivable sur $\R$ en tant que composée de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} K'(x)&=\dfrac{1}{2}\times 2H'(2x)\\
    &=H'(2x) \\
    &=h(2x)\\
    &=k(x)\end{align*}$
    Réponse c
    $\quad$
  5. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*}f'(x)&=\e^x+x\e^x \\
    &=(1+x)\e^x\end{align*}$
    Donc $f'(1)=2\e$.
    De plus $f(1)=\e$.
    Une équation de la tangente au point d’abscisse $1$ de la courbe de la fonction $f$ est donc $y=2\e(x-1)+\e$
    Soit $y=2\e x-\e$.
    Réponse b
    $\quad$
  6. $\quad$
    $\begin{align*} (0,2)^n<0,001&\ssi n\ln(0,2)<\ln(0,001) \\
    &\ssi n>\dfrac{\ln(0,001)}{\ln(0,2)}\qquad \text{(car $\ln(0,2)<0$)}\end{align*}$
    Or $\dfrac{\ln(0,001)}{\ln(0,2)}\approx 4,29$.
    L’ensemble solution de l’inéquation est donc l’ensemble des entiers naturels supérieurs ou égaux à $5$.
    Réponse d
    $\quad$

Ex 2

Exercice 2     7 points

Thème : probabilités

Partie 1

  1. On a $P(C)=0,2$ et $P_C(D)=0,1$
    Donc
    $\begin{align*} P(C\cap D)&=P(C)\times P_C(D) \\
    &=0,2\times 0,1\\
    &=0,02\end{align*}$
    $\quad$
  2. $\left(C,\conj{C}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales :
    $\begin{align*} P(D)&=P(C\cap D)+P\left(\conj{C}\cap D\right) \\
    &=0,02+P\left(\conj{C}\right)\times P_{\conj{C}}(D) \\
    &=0,02+0,8\times 0,02 \\
    &=0,036\end{align*}$
    $\quad$
  3. On veut calculer
    $\begin{align*} P_D(C)&=\dfrac{P(C\cap D)}{P(D)} \\
    &=\dfrac{0,02}{0,036} \\
    &=\dfrac{5}{9}\end{align*}$
    La probabilité que le casque soit contrefait sachant qu’il a un défaut est égale à $\dfrac{5}{9}$.
    $\quad$

Partie 2

  1. a. On répète $35$ fois la même expérience de Bernoulli de paramètre $0,036$. $X$ est égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n=35$ et $p=0,036$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X=1)&=\dbinom{35}{1}\times 0,036^1\times (1-0,036)^{35-1} \\
    &=35\times 0,036\times 0,964^{34} \\
    &\approx 0,362\end{align*}$
    La probabilité qu’il y ait parmi les casques commandés exactement un casque présentant un défaut de conception est environ égale à $0,362$.
    $\quad$
    c. 
    $\begin{align*}P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,964^{35}+35\times 0,036\times 0,964^{34} \\
    &\approx 0,639\end{align*}$
    $\quad$
  2. On répète $n$ fois la même expérience de Bernoulli de paramètre $0,036$. On appelle $Y$ la variable aléatoire égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n$ et $p=0,036$.
    $\begin{align*} P(Y\pg 1)>0,99 &\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01  \\
    &\ssi 0,964^n <0,01 \\
    &\ssi n\ln(0,964)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,964)} \qquad \text{(car $\ln(0,964)<0$)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,964)} \approx 125,6$.
    Il faut donc commander au moins $126$ casques pour que la probabilité qu’au moins un casque présente un défaut soit supérieure à $0,99$.
    $\quad$

Ex 3

Exercice 3     7 points

Thème : suites, fonctions

  1. $\quad$
    $\begin{align*} u_1&=0,008u_1\left(200-u_1\right) \\
    &=0,008\times 40(200-40)\\
    &=51,2\end{align*}$
    Selon ce modèle il y avait environ $52$ oiseaux dans la colonie au début de l’année 2022.
    $\quad$
  2. $\quad$
    $\begin{align*}
    f(x)=x&\ssi 0,008x(200-x)=x \\
    &\ssi 0,008x(200-x)-x=0 \\
    &\ssi x\left(0,008(200-x)-1\right)=0 \\
    &\ssi x(1,6-0,008x-1)=0 \\
    &\ssi (0,6-0,008x)=0\\
    &\ssi x=0 \text{ ou } 0,6-0,008x=0 \\
    &\ssi x=0 \text{ ou } x=\dfrac{0,6}{0,008} \\
    &\ssi x=0 \text{ ou } x=75 \end{align*}$
    Les solutions de l’équation $f(x)=x$ sont donc $0$ et $75$.
    $\quad$
  3. a. Il y a au moins deux méthodes pour répondre à la question :
    – étudier le signe de $f'(x)$;
    – utiliser les propriétés sur les variations des fonctions polynômes du second degré (ce qui va être fait ici)
    Pour tout réel $x$ on a
    $f(x)=-0,008x^2+1,6x$
    Le coefficient principal est $a=-0,008<0$.
    Ainsi $f$ admet un maximum au point d’abscisse $\dfrac{-1,6}{2\times (-0,008)} =100$.
    La fonction est donc strictement croissante sur l’intervalle $[0;100]$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
    b. Pour tout entier naturel $n$ on a $u_{n+1}=0,008u_n\left(200-u_n\right)$
    Donc $u_{n+1}=f\left(u_n\right)$.
    Pour tout entier naturel $n$ on pose $P(n):~0\pp u_n \pp u_{n+1}\pp 100$.
    Initialisation : $u_0=40$ et $u_1=51,2$. Or $0\pp 40\pp 51,2\pp 100$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp u_n \pp u_{n+1} \pp 100$.
    La fonction $f$ est croissante sur $[0;100]$.
    Donc $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(100)$
    Soit $0\pp u_{n+1} \pp u_{n+2} \pp 80\pp 100$. $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $0\pp u_n \pp u_{n+1} \pp 100$.
    $\quad$
    c. La suite $\left(u_n\right)$ est donc croissante et majorée par $100$.
    Elle converge donc vers un réel $\ell$.
    $\quad$
    d. La fonction $f$ est continue sur $[0;100]$.
    Donc $\ell$ est solution de l’équation $f(x)=x$ dont l’unique solution est $75$ d’après la question 2.
    Ainsi $\ell=75$.
    Cela signifie que sur le long terme la colonie comptera $75$ individus.
    $\quad$
  4. La fonction renvoie l’année où la population dépasse la valeur $p$ envoyée en paramètre.
    La suite $\left(u_n\right)$ est majorée par $75$. Elle ne peut donc pas prendre de valeurs supérieures à $100$.
    Cela explique donc pourquoi $\texttt{seuil(100)}$ ne renvoie aucune valeur.
    Remarque : On se retrouve dans une boucle infinie!
    $\quad$

Ex 4

Exercice 4     7 points

Thème : géométrie dans le plan et l’espace

Partie 1. Première méthode

  1. On a $A(0;0;0)$ , $B(1;0;0)$ et $G(1;1;1)$.
    $\quad$
  2. $\vect{BK}\left(-1;\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\vect{AI}\left(\dfrac{1}{2};0;1\right)$ et $\vect{AG}(1;1;1)$.
    Les vecteurs $\vect{AI}$ et $\vect{AG}$ ne sont pas colinéaires.
    $\begin{align*} \vect{BK}.\vect{AI}&=-1\times \dfrac{1}{2}+\dfrac{1}{2}\times 0+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    $\begin{align*} \vect{BK}.\vect{AG}&=-1\times 1+\dfrac{1}{2}\times 1+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    Le vecteur $\vect{BK}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AIG)$.
    Par conséquent la droite $(BK)$ est orthogonale au plan $(AIG)$.
    $\quad$
  3. $-2\vect{BK}(2;-1;-1)$ est normal au plan $(AIG)$.
    Une équation cartésienne du plan $(AIG)$ est donc de la forme $2x-y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Ainsi, une équation cartésienne du plan $(AIG)$ est 2x-y-z=0$.
    $\quad$
  4. Une représentation paramétrique de la droite $(BK)$ est :
    $\begin{cases} x=1+2t\\y=-t\\z=-t\end{cases} \qquad ,t\in \R$.
    Remarque : plutôt que de prendre le vecteur $\vect{BK}$ comme vecteur directeur, on peut choisir $2\vect{BK}$ dont les coordonnées sont entières.
    $\quad$
  5. $2\times \dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{3}=0$ donc $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ appartient au plan $(AIG)$.
    En prenant $t=-\dfrac{1}{3}$ dans la représentation paramétrique de la droite $(BK)$ on retrouve les coordonnées du point $L$.
    Ainsi $L$ appartient à la fois à la droite $(BK)$ et au plan $(AIG)$.
    $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ est le projeté orthogonal du point $B$ sur le plan $(AIG)$.
    $\quad$
  6. $\vect{BL}\left(-\dfrac{2}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$
    $\begin{align*} BL&=\sqrt{\left(-\dfrac{2}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2} \\
    &=\sqrt{\dfrac{6}{9}} \\
    &=\sqrt{\dfrac{2}{3}}\end{align*}$
    La distance du point $B$ au plan $(AIG)$ est donc égale à $\sqrt{\dfrac{2}{3}}$.
    $\quad$

Partie 2. Deuxième méthode

  1. a. $ABCDEFGH$ est un cube. L’arête $[FG]$ est perpendiculaire au plan $(ABF)$ auquel appartient le point $I$.
    Donc, dans le tétraèdre $ABIG$, $[GF]$ est la hauteur relative à la base $AIB$.
    $\quad$
    b. L’aire de $AIB$ est :
    $\begin{align*} \mathscr{B}&=\dfrac{AE\times AB}{2} \\
    &=\dfrac{1}{2}\end{align*}$
    De plus $GF=1$
    Ainsi, le volume de $ABIG$ est :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times GF\times \mathscr{B} \\
    &=\dfrac{1}{6}\end{align*}$
    $\quad$
  2. Le triangle $AIG$ est donc isocèle en $I$.
    La hauteur issue de $I$ coupe donc le côté $[AG]$ en son milieu $0$.
    Ainsi $AO=\dfrac{\sqrt{3}}{2}$.
    Dans le triangle $AOI$ rectangle en $O$ on applique le théorème de Pythagore.
    $\begin{align*}AI^2=AO^2+OI^2 &\ssi OI^2=AI^2-AO^2 \\
    &\ssi OI^2=\dfrac{5}{4}-\dfrac{3}{4} \\
    &\ssi OI^2=\dfrac{1}{2}\end{align*}$
    Donc $OI=\dfrac{1}{\sqrt{2}}$.
    L’aire du triangle $AIG$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{OI\times AG}{2} \\
    &=\dfrac{\dfrac{1}{\sqrt{2}}\times \sqrt{3}}{2} \\
    &=\dfrac{\sqrt{3}}{2\sqrt{2}} \\
    &=\dfrac{\sqrt{6}}{4}\end{align*}$
    $\quad$
  3. On appelle $h$ la longueur de la hauteur issue de $B$ dans le tétraèdre $ABIG$
    Ainsi
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times h\times \mathscr{A} &\ssi
    \dfrac{1}{6}=\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}h\\
    &\ssi h=\dfrac{\dfrac{1}{6}}{\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}} \\
    &\ssi h=\dfrac{\sqrt{6}}{3}\end{align*}$
    On retrouve bien la valeur trouvée à la question 6. puisque :
    $\begin{align*} \sqrt{\dfrac{2}{3}}&=\sqrt{\dfrac{2}{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}} \\
    &=\dfrac{\sqrt{6}}{3}\end{align*}$
    $\quad$

Énoncé

Télécharger (PDF, 896KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.

Bac – Spécialité mathématiques – Polynésie – sujet 1 – 4 mai 2022

Polynésie – 4 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1     7 points

Thèmes : fonctions, suites

  1. $g$ est de la forme $ln(u)$ dont la dérivée, quand elle existe, est $\dfrac{u’}{u}$.
    Ici, pour tout $x\in ]0;+\infty[$, $u(x)=x^2+x+1$ et $u'(x)=2x+1$.
    Donc $g'(x)=\dfrac{2x+1}{x^2+x+1}$
    Réponse d
    $\quad$
  2. On considère la fonction $f$ définie sur $]0;+\infty[$ par $f(x)=x\ln(x)-x$.
    $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables.
    Pour tout $x\in ]0;+\infty[$,
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)+1-1\\
    &=\ln(x)\end{align*}$
    Réponde c
    $\quad$
  3. Pour tout $n\in \N$ on a
    $\begin{align*}a_n&=\dfrac{3^n\left(\dfrac{1}{3^n}-1\right)}{2^n\left(\dfrac{1}{2^{-n}}+1\right)}\\
    &=\left(\dfrac{3}{2}\right)^n \times \dfrac{\dfrac{1}{3^n}-1}{\dfrac{1}{2^n}+1}\end{align*}$
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{3^n}=0$ et $\lim\limits_{n\to +\infty} \dfrac{1}{2^n}=0$
    Donc $\lim\limits_{n\to +\infty} \dfrac{\dfrac{1}{3^n}-1}{\dfrac{1}{2^n}+1}=-1$
    de plus $1<\dfrac{3}{2}$ donc $\lim\limits_{n\to +\infty} \left(\dfrac{3}{2}\right)^n=+\infty$
    Par conséquent $\lim\limits_{n\to +\infty} a_n=-\infty$^.
    Réponse a
    $\quad$
  4. La fonction $f’$ est strictement décroissante sur $[-2;0]$.
    Donc $f$ est concave sur $[-2;0]$.
    Réponse d
    $\quad$
  5. On a $f'(x)>0$ sur $[0;1[$ et $f'(x)<0$ sur $]1;2]$.
    $f$ est donc strictement croissante sur $[0;1]$ et strictement décroissante sur $[1;2]$.
    $f$ admet donc un maximum en $1$ sur $[0;2]$.
    Réponse c
    $\quad$
  6. Le programme b ne convient pas car on ne rentre jamais dans la boucle “while”.
    Le programme c ne convient pas car on effectue $200$ fois la boucle “for” et la fonction renvoie la valeur de l’action après $200$ mois.
    Le programme d ne convient pas il ne teste que la valeur initiale de l’action. Il s’arrête aussitôt après.
    Réponse a
    $\quad$

Ex 2

Exercice 2     7 points

Thèmes : probabilités

 

  1. On a $P(M)=0,07$ et $P_M(T)=0,8$
    Donc
    $\begin{align*} P(M\cap T)&=P(M)\times P_M(T) \\
    &=0,07\times 0,8\\
    &=0,056\end{align*}$
    $\quad$
    $\quad$
  2. $\left(M,\conj{M}\right)$ est un système complet d’événements.
    D’après la formule des probabilités totales
    $\begin{align*} P(T)&=P(M\cap T)+P\left(\conj{M}\cap T\right) \\
    &=0,056+P\left(\conj{M}\right)\times P_{\conj{M}}(T)\\
    &=0,056+0,93\times 0,01 \\
    &=0,065~3\end{align*}$
    $\quad$
  3. Il est plus pertinent de connaître $P_T(M)$ puisqu’on veut déterminer si la personne testée est malade.
    $\quad$
  4. On veut calculer
    $\begin{align*} P_T(M)&=\dfrac{P(M\cap T)}{P(T)} \\
    &=\dfrac{0,056}{0,065~3} \\
    &\approx 0,86\end{align*}$
    La probabilité que la personne soit malade sachant que son test est positif est environ égale à $0,86$.
    $\quad$
  5. a. On répète $10$ fois la même expérience de Bernoulli de paramètres $0,065~3$. $X$ est égale au nombre d’individus ayant un test positif.
    Donc $X$ suit la loi binomiale de paramètres $n=10$ et $p=0,065~3$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X=2)&=\dbinom{10}{2}0,065~3^2\times (1-0,065~3)^{10-2}\\
    &=45\times 0,065~3^2\times 0,934~7^8\\
    &\approx 0,11\end{align*}$
    La probabilité pour qu’exactement deux personnes aient un test positif est environ égale à $0,11$.
    $\quad$
  6. On répète $n$ fois la même expérience de Bernoulli de paramètres $0,065~3$. On appelle $Y$ la variable aléatoire égale au nombre d’individus ayant un test positif.
    Donc $Y$ suit la loi binomiale de paramètres $n$ et $p=0,065~3$.
    $\begin{align*} P(Y\pg 1)>0,99 &\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01 \\
    &\ssi 0,934~7^n <0,01\\
    &\ssi n\ln(0,934~7) <\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,934~7)} \qquad \text{(car $\ln(0,934~7)<0$)}
    \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,934~7)}\approx 68,2$.
    Il faut donc tester au moins $69$ personnes pour que la probabilité qu’au moins l’une d’entre elle ait un test positif soit supérieur à $99\%$.
    $\quad$

 

Ex 3

Exercice 3     7 points

Thèmes : suites

  1. a.
    $\begin{align*}u_1&=\dfrac{u_0}{1+u_0}\\
    &=\dfrac{1}{1+1}\\
    &=\dfrac{1}{2}\end{align*}$
    $\begin{align*}u_2&=\dfrac{u_1}{1+u_1}\\
    &=\dfrac{\dfrac{1}{2}}{1+\dfrac{1}{2}}\\
    &=\dfrac{1}{3}\end{align*}$
    $\begin{align*}u_3&=\dfrac{u_2}{1+u_2}\\
    &=\dfrac{\dfrac{1}{3}}{1+\dfrac{1}{3}}\\
    &=\dfrac{1}{4}\end{align*}$
    $\quad$
    b.
    $\begin{array}{|c|l|}
    \hline
    1.&\text{def liste(k):}\\
    2.&\quad \text{L=[]}\\
    3.&\quad \text{u = 1}\\
    4.&\quad \text{for i in range(0,k+1):}\\
    5.&\qquad \text{L.append(u)}\\
    6.&\qquad \text{u = u / (1 + u)}\\
    7.&\quad \text{return(L)}\\
    \hline
    \end{array}$
    $\quad$
  2. Soit $n\in \N$.
    $\begin{align*} u_{n+1}-u_n&=\dfrac{u_n}{1+u_n}-u_n \\
    &=u_n\left(\dfrac{1}{1+u_n}-1\right) \end{align*}$
    $u_n>0$ donc $1+u_n>1$ et $\dfrac{1}{1+u_n}<1$
    Ainsi $u_{n+1}-u_n<0$
    La suite $\left(u_n\right)$ est donc strictement décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $0$.
    La suite $\left(u_n\right)$ converge donc vers un réel $\ell$.
    $\quad$
  4. On considère la fonction $f$ définie sur $]-\infty;-1[\cup]-1;+\infty[$ par $f(x)=\dfrac{x}{1+x}$.
    La fonction $f$ est continue sur $[0;+\infty[$ en tant que quotient de fonctions continues dont le dénominateur ne s’annule pas.
    De plus, pour tout entier naturel $n$ on a $u_{n+1}=f\left(u_n\right)$.
    $\ell$ est donc solution de l’équation
    $\begin{align*}x=\dfrac{x}{x+1} &\ssi x-\dfrac{x}{x+1}=0 \\
    &\ssi x\left(1-\dfrac{1}{x+1}\right)=0 \\
    &\ssi x\times \dfrac{x}{x+1}=0\\
    &\ssi x=0\end{align*}$
    Ainsi $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  5. a. Il semblerait que pour tout entier naturel $n$ on ait $u_n=\dfrac{1}{1+n}$
    $\quad$
    b. Pour tout entier naturel $n$ on pose $P(n):~u_n=\dfrac{1}{1+n}$.
    Initialisation : $u_0=1$ et $\dfrac{1}{1+0}=1$. Donc $P(1)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_{n+1}&=\dfrac{u_n}{1+u_n}\\
    &=\dfrac{\dfrac{1}{1+n}}{1+\dfrac{1}{1+n}} \\
    &=\dfrac{\dfrac{1}{1+n}}{\dfrac{1+n+1}{1+n}} \\
    &=\dfrac{1}{1+(n+1)}\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n=\dfrac{1}{1+n}$.
    $\quad$

 

Ex 4

Exercice 4     7 points

Thèmes : géométrie dans le plan et dans l’espace

  1. a. $\vect{AB}(-1;1;-3)$ et $\vect{AC}(4;7;1)$.
    Par conséquent :
    $\begin{align*} \vect{AB}.\vect{AC}&=-1\times 4+1\times 7-3\times 1\\
    &=-4+7-3 \\
    &=0\end{align*}$
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b. $\vect{BA}(1;-1;3)$ et $\vect{BC}(5;6;4)$
    Par conséquent :
    $\begin{align*} \vect{BA}.\vect{BC}&=1\times 5-1\times 6+3\times 4\\
    &=5-6+12\\
    &=11\end{align*}$
    $\begin{align*} BA&=\sqrt{1^2+(-1)^2+3^2}\\
    &=\sqrt{11}\end{align*}$
    $\begin{align*} BC&=\sqrt{5^2+6^2+4^2} \\
    &=\sqrt{25+36+16}\\
    &=\sqrt{77}\end{align*}$
    $\quad$
    c. On a
    $\begin{align*} \vect{BA}.\vect{BC}=BA\times BC\times \cos\left(\widehat{ABC}\right)&\ssi 11=\sqrt{11}\times \sqrt{77} \times \cos\left(\widehat{ABC}\right) \\
    &\ssi 11=\sqrt{11}\times \sqrt{11}\times \sqrt{7}\times \cos\left(\widehat{ABC}\right) \\
    &\ssi \cos\left(\widehat{ABC}\right)=\dfrac{1}{\sqrt{7}}\end{align*}$
    Par conséquent $\widehat{ABC}\approx 68$°.
    $\quad$
  2. a. Un vecteur normal au plan $\mathscr{P}$ est $\vec{n}(2;-1;-1)$.
    Les vecteurs $\vect{AB}$ et $vect{AC}$ ne sont pas colinéaires d’après la question 1.a.
    De plus :
    $\begin{align*} \vec{n}.\vect{AB}&=2\times (-1)-1\times 1-1\times (-3) \\
    &=-2-1+3 \\
    &=0\end{align*}$
    $\begin{align*} \vec{n}.\vect{AC}&=2\times 4-1\times 7-1\times 1 \\
    &=8-7-1 \\
    &=0\end{align*}$
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $ABC$.
    $\vec{n}$ est donc un vecteur normal à $(ABC)$ et $\mathscr{P}$.
    Par conséquent $\mathscr{P}$ et $(ABC)$ sont parallèles.
    $\quad$
    b. Une équation cartésienne du plan $(ABC)$ est donc de la forme $2x-y-z+d=0$
    Le point $B(1;0;-3)$ appartient au plan $(ABC)$. Ses coordonnées vérifient donc son équation
    $2\times 1-0-(-3)+d=0 \ssi d=-5$
    Une équation cartésienne du plan $(ABC)$ est donc $2x-y-z-5=0$.
    $\quad$
    c. Une représentation paramétrique de la droite $\mathscr{D}$ est
    $\begin{cases} x=1+2t\\y=2-t\\z=4-t\end{cases} \qquad ,t\in \R$
    $\quad$
    d. Les coordonnées du point $H$ sont solution du système :
    $\begin{align*}\begin{cases} x=1+2t\\y=2-t\\z=4-t\\2x-y-z-5=0\end{cases}& \ssi \begin{cases} x=1+2t\\y=2-t\\z=4-t\\2(1+2t)-(2-t)-(4-t)-5=0\end{cases} \\
    &\ssi \begin{cases} x=1+2t\\y=2-t\\z=4-t\\6t-9=0\end{cases} \\
    &\ssi \begin{cases} t=\dfrac{3}{2}\\x=4\\\dfrac{1}{2}\\z=\dfrac{5}{2}\end{cases}\end{align*}$
    Par conséquent $H$ a pour coordonnées $\left(4;\dfrac{1}{2}; \dfrac{5}{2}\right)$.
    $\quad$
  3. On a $AC=\sqrt{4^2+7^2+1^2}=\sqrt{66}$.
    Ainsi l’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{B}&=\dfrac{AB\times AB}{2} \\
    &=\dfrac{\sqrt{11}\times \sqrt{66}}{2} \\
    &=\dfrac{11\sqrt{6}}{2}\end{align*}$
    $[HE]$ est la hauteur de la pyramide $ABCE$ associée à la base $ABC$
    $\vect{HE}\left(-3;\dfrac{3}{2};\dfrac{3}{2}\right)$
    Par conséquent $HE=\sqrt{(-3)^2+\left(\dfrac{3}{2}\right)^2+\left(\dfrac{3}{2}\right)^2}=\sqrt{\dfrac{27}{2}}$
    Ainsi le volume de la pyramide $ABCE$  est :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times \dfrac{11\sqrt{6}}{2}\times \sqrt{\dfrac{27}{2}} \\
    &=16,5\end{align*}$
    $\quad$

Énoncé

Télécharger (PDF, 841KB)

Si l’énoncé ne s’affiche pas directement rafraîchissez l’affichage.