E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Une entreprise fabrique des jeux en bois. Avant sa commercialisation, chaque jeu est soumis à deux contrôles : un contrôle de peinture et un contrôle de solidité.

Après un très grand nombre de vérifications, on constate que :

  • $8 \%$ des jeux ont un défaut de peinture,
  • parmi les jeux qui n’ont pas de défaut de peinture, $5 \%$ ont un défaut de solidité,
  • $2 \%$ des jeux présentent les deux défauts.

On choisit au hasard un jeu parmi ceux fabriqués par l’entreprise. On note :

  • $T$ l’événement : « le jeu a un défaut de peinture. »
  • $S$ l’événement : « le jeu a un défaut de solidité. »
  1. Démontrer que $P_T(S) = 0,25$.
    $\quad$
  2. Recopier et compléter l’arbre pondéré de probabilité ci-dessous traduisant les données de l’énoncé.

    $\quad$
  3. Démontrer que la probabilité que le jeu choisi au hasard n’ait pas de défaut de solidité est égale à $0,934$.
    $\quad$
  4. Les jeux qui présentent un défaut de solidité sont détruits. Dans cette question, on leur attribuera un prix de vente de $0$ €.
    Les jeux ne présentant aucun défaut sont vendus $14$ € chacun.
    Les autres jeux sont vendus $9$ € chacun.
    $\quad$
    On note $X$ la variable aléatoire qui donne le prix de vente, en euros, d’un jeu.
    a. Recopier et compléter le tableau ci-dessous donnant, pour chaque valeur $x_i$ de $X$, la probabilité de l’événement $\left\{X=x_i\right\}$.
    $$\begin{array}{|c|c|c|c|}
    \hline
    x_i&0&9&14\\
    \hline
    P\left(X=x_i\right)&\phantom{1234}&\phantom{1234}&\phantom{1234}\\
    \hline
    \end{array}$$
    $\quad$
    b. Quel est le prix de vente moyen d’un jeu fabriqué par cette entreprise ?
    On arrondira le résultat au centime d’euro.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} P(T\cap S)=P(T)\times P_T(S)&\ssi 0,02=0,08P_T(S)\\
    &\ssi P_T(S)=0,25\end{align*}$
    $\quad$
  2. On obtient l’arbre pondéré :
    $\quad$
  3. $T$ et $\conj{T}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P\left(\conj{S}\right)&=P\left(T\cap \conj{S}\right)+P\left(\conj{T}\cap \conj{S}\right) \\
    &=0,08\times 0,75+0,92\times 0,95\\
    &=0,934\end{align*}$
    La probabilité que le jeu choisi au hasard n’ait pas de défaut de solidité est égale à $0,934$.
    $\quad$
  4. a. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    x_i&0&9&14\\
    \hline
    P\left(X=x_i\right)&0,066&0,06&0,874\\
    \hline
    \end{array}$$
    $P(X=0)=1-0,934=0,066$
    $P(X=14)=0,92\times 0,95=0,874$
    $P(X=9)=1-(0,066+0,874)=0,06$
    $\quad$
    Remarque : On peut calculer $P(X=9)$ directement.
    $\begin{align*} P(X=9)&=P\left(T\cap \conj{S}\right) \\
    &=P(T)-P(T\cap S) \\
    &=0,08-0,02\\
    &=0,06\end{align*}$
    $\quad$
    b. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=0\times 0,066+9\times 0,06+14\times 0,874 \\
    &=12,776\end{align*}$
    Le prix de vente moyen d’un jeu fabriqué par cette entreprise est d’environ $12,78$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Une fleuriste met en vente quatre sortes de bouquets dont les tarifs et la composition sont indiqués dans le tableau ci-dessous : $$\begin{array}{|l|l|}
\hline
\text{Bouquet de tulipes orange : }10,50 \text{ €}&\text{Bouquet de roses orange : }23,50 \text{ €}\\
\hline
\text{Bouquet de tulipes blanches : }11,60 \text{ €}&\text{Bouquet de roses blanches :} 25,50 \text{ €}\\
\hline
\end{array}$$

  • $72 \%$ des bouquets mis en vente ne contiennent que des roses.
  • Les autres bouquets mis en vente ne contiennent que des tulipes.
  • $20 \%$ des bouquets de tulipe mis en vente ne contiennent que des tulipes orange.
  • $36 \%$ des bouquets mis en vente ne contiennent que des roses blanches.

Un client achète au hasard un bouquet parmi ceux mis en vente par la fleuriste. On note :

  • $R$ l’événement : « Le bouquet acheté par ce client est composé de roses. »
  • $B$ l’événement : « Le bouquet acheté par ce client est composé de fleurs blanches. »

Les événements contraires des événements $R$ et $B$ sont notés respectivement $\conj{R}$ et $\conj{B}$.

  1. a. Donner, sans justifier, la probabilité $P(R\cap B)$.
    $\quad$
    b. Recopier et compléter le plus possible l’arbre de probabilité ci-dessous en traduisant uniquement les données de l’énoncé.

    $\quad$
    c. Montrer que $P(B) = 0,584$.
    $\quad$
  2. On note $X$ la variable aléatoire qui donne le prix d’un bouquet acheté par un client.
    a. Recopier et compléter le tableau ci-dessous donnant, pour chaque valeur $x_i$ de $X$, la probabilité de l’événement $\left\{X=x_i\right\}$. Justifier.
    $$\begin{array}{|c|c|c|c|c|}
    \hline
    x_i&&&&\\
    \hline
    P\left(X=x_i\right)&\phantom{12345}&\phantom{12345}&\phantom{12345}&\phantom{12345}\\
    \hline
    \end{array}$$
    $\quad$
    b. Calculer l’espérance de la variable aléatoire $X$. On arrondira le résultat au centième.
    $\quad$

$\quad$

Correction Exercice

  1. a.$36 \%$ des bouquets mis en vente ne contiennent que des roses blanches.
    Donc $P(R\cap B)=0,36$
    $\quad$
    b. On obtient l’arbre pondéré suivant :

    $\quad$
    c. $R$ et $\conj{R}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(B)&=P(R\cap B)+P\left(\conj{R}\cap B\right)\\
    &=0,36+0,28\times 0,8\\
    &=0,584\end{align*}$
    $\quad$
  2. a. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|}
    \hline
    x_i&10,5&11,6&23,5&25,5\\
    \hline
    P\left(X=x_i\right)&0,056&0,224&0,36&0,36\\
    \hline
    \end{array}$$
    En effet :
    $\begin{align*} P(X=25,5)&=P(R\cap B)\\
    &=0,36\end{align*}$
    $\begin{align*} P(X=10,5)&=P\left(\conj{R}\cap \conj{B}\right)\\
    &=0,28\times 0,2 \\
    &=0,056\end{align*}$
    $\begin{align*} P(X=11,6)&=P\left(\conj{R}\cap B\right)\\
    &=0,28\times 0,8 \\
    &=0,224\end{align*}$
    $\begin{align*} P(X=23,5)&=1-\left(0,056+0,224+0,36\right)\\
    &=0,36\end{align*}$
    $\quad$
    Remarque : On peut également calculer $P(X=23,5)$ directement.
    $\begin{align*} P(R\cap B)=P(R)\times P_R(B)& \ssi 0,36 = 0,72 P_R(B) \\
    &\ssi P_R(B)=\dfrac{1}{2}\end{align*}$
    Par conséquent $P_R\left(\conj{B}\right)=\dfrac{1}{2}$
    Ainsi
    $\begin{align*} P(X=23,5)&=P\left(R\cap \conj{B}\right) \\
    &=P(R)\times P_R\left(\conj{B}\right) \\
    &=0,72 \times \dfrac{1}{2} \\
    &=0,36\end{align*}$
    $\quad$b. L’espérance de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=10,5\times 0,056+11,6\times 0,224+23,5\times 0,36+25,5\times 0,36 \\
    &\approx 20,83\end{align*}$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

On considère deux élevages de chatons sacrés de Birmanie :

  • Dans le premier élevage $75 \%$ des chatons deviennent couleur Chocolat et $25 \%$ deviennent couleur Blue.
  • Dans le second élevage $30 \%$ des chatons deviennent couleur Chocolat et $70 \%$ deviennent couleur Blue.

Une animalerie se fournit dans ces deux élevages. Elle achète $40 \%$ de ses chatons au premier élevage et $60 \%$ au deuxième.
On choisit au hasard un chaton de l’animalerie.
On note $A$ l’événement « Le chaton provient du premier élevage » et $B$ l’événement « Le chaton est de couleur Blue ».
On note $\conj{A}$ l’événement contraire de $A$ et $\conj{B}$ l’événement contraire de $B$.

  1. a. Recopier sur la copie et compléter l’arbre de probabilité ci-dessous :

    $\quad$
    b. Calculer $P\left(\conj{A}\cap \conj{B}\right)$ et interpréter ce résultat.
    $\quad$
    c. Montrer que la probabilité que le chaton soit de couleur Chocolat est $0,48$.
    $\quad$
    d. Sachant que Jules a choisi un chaton couleur Blue dans cette animalerie, quelle est la probabilité que le chaton provienne du deuxième élevage ? On donnera le résultat à $10^{-2}$ près.
    $\quad$
  2. Le responsable du rayon fixe à $100$ € le prix de vente d’un chaton couleur Blue et à $75$€ le prix d’un chaton couleur Chocolat.
    On choisit au hasard un chaton de l’animalerie et on désigne par $X$ la variable aléatoire égale au prix en euros du chaton acheté. Déterminer la loi de probabilité de $X$.
    $\quad$

$\quad$

Correction Exercice

  1. a. On obtient l’arbre pondéré suivant :

    $\quad$
    b. On a :
    $\begin{align*} P\left(\conj{A}\cap \conj{B}\right)&=P\left(\conj{A}\right) \times P_{\conj{A}}\left(\conj{B}\right) \\
    &=0,6\times 0,3\\
    &=0,18\end{align*}$
    La probabilité que le chaton choisi provienne du second élevage et devienne couleur Chocolat est égale à $0,18$.
    $\quad$
    c. $A$ et $\conj{A}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a:
    $\begin{align*} P\left(\conj{B}\right)&=P\left(A\cap \conj{B}\right)+P\left(\conj{A}\cap \conj{B}\right) \\
    &=0,4\times 0,75+0,18\\
    &=0,48\end{align*}$
    La probabilité que le chaton soit de couleur Chocolat est $0,48$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} P_{B}\left(\conj{A}\right) &=\dfrac{P\left(\conj{A}\cap B\right)}{P(B)} \\
    &=\dfrac{0,6\times 0,7}{1-0,48}\\
    &\approx 0,81\end{align*}$
    La probabilité que le chaton provienne du deuxième élevage sachant que c’est un chaton couleur Blue est environ égale à $0,81$.
    $\quad$
  2. $X$ ne peut prendre que les valeurs $100$ et $75$.
    $\begin{align*} P(X=100)&=P(B)\\
    &=1-0,48\\
    &=0,52\end{align*}$
    $\begin{align*} P(X=75)&=P\left(\conj{B}\right)\\
    &=0,48\end{align*}$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Un constructeur de véhicules fabrique deux types d’automobiles : « Citadine » ou « Routière ».
Pour ces véhicules, ce constructeur propose deux finitions :

  • « Sport » au tarif de $2~500$ euros par véhicule,
  • « Luxe » au tarif de $4~000$ euros par véhicule.

En consultant le carnet de commandes de ce constructeur, on recueille les indications suivantes :

  • $80\%$ des clients ont commandé une automobile « Citadine ». Les autres clients ont commandé une automobile « Routière ».
  • Parmi les clients possédant une automobile « Citadine », $70\%$ ont pris la finition « Sport ».
  • Parmi les clients possédant une automobile « Routière », $60\%$ ont pris la finition « Luxe ».

On choisit un client au hasard et on considère les évènements suivants :

  • $C$ : « Le client a commandé une automobile « Citadine » »,
  • $L$ : « Le client a choisi la finition « Luxe » ».

D’une manière générale, on note $\conj{A}$ l’évènement contraire d’un évènement $A$.
On note $X$ la variable aléatoire qui donne le montant en euros de la finition choisie par un client.

  1. Construire l’arbre pondéré de probabilité traduisant les données de l’exercice.
    $\quad$
  2. Calculer la probabilité que le client ait commandé une automobile « Citadine » et ait choisi la finition « Luxe », c’est-à-dire calculer $P(C\cap L)$.
    $\quad$
  3. Justifier que $P(L) = 0,36$.
    $\quad$
  4. La variable aléatoire $X$ ne prend que deux valeurs $a$ et $b$.
    a. Déterminer les probabilités $P(X = a)$ et $P(X = b)$.
    $\quad$
    b. Déterminer l’espérance de $X$.
    $\quad$

$\quad$

Correction Exercice

  1. On obtient l’arbre pondéré suivant :

    $\quad$
  2. On a :
    $\begin{align*} P(C\cap L)&=P(C)\times P_C(L)\\
    &=0,8\times 0,3\\
    &=0,24\end{align*}$
    La probabilité que le client ait commandé une automobile « Citadine » et ait choisi la finition « Luxe » est égale à $0,24$.
    $\quad$
  3. $C$ et $\conj{C}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(L)&=P(C\cap L)+P\left(\conj{C}\cap L\right) \\
    &=0,24+0,2\times 0,6\\
    &=0,36\end{align*}$
    $\quad$
  4. a. On a donc
    $\begin{align*} P(X=2~500)&=P\left(\conj{L}\right) \\
    &=1-0,36\\
    &=0,64\end{align*}$ $\quad$ et $\quad$ $\begin{align*} P(X=4~000)&=P(L) \\
    &=0,36\end{align*}$
    $\quad$
    b. L’espérance de $X$ est :
    $\begin{align*} E(X)&=2~500P(X=2~500)+4~000P(X=4~000)\\
    &=2~500\times 0,64+4~000\times 0,36\\
    &=3~040\end{align*}$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Dans cet exercice, les résultats seront arrondis au centième.

Un gérant d’un salon de thé achète des boîtes de thé vert chez deux fournisseurs.
Il achète $80 \%$ de ses boîtes chez le fournisseur « Au thé de qualité » et $20 \%$ de ses boîtes chez le fournisseur « Bon thé ».
Des contrôles de qualité montrent que $10 \%$ des boîtes provenant du fournisseur « Au thé de qualité » présentent des traces de pesticides et que $20 \%$ de celles provenant du fournisseur « Bon thé » présentent aussi des traces de pesticides.
On prélève au hasard une boîte du stock du gérant et on considère les événements suivants :
$A$ : « la boîte provient du fournisseur « Au thé de qualité » » ;
$B$ : « la boîte provient du fournisseur « Bon thé » » ;
$T$ : « la boîte présente des traces de pesticides ».

  1. Traduire l’énoncé à l’aide d’un arbre pondéré.
    $\quad$
  2. Quelle est la probabilité que la boîte prélevée provienne du fournisseur A et contienne des traces de pesticide ?
    $\quad$
  3. Que représente l’événement $B\cap \conj{T}$ ? Quelle est la probabilité de cet événement ?
    $\quad$
  4. Justifier que la probabilité que la boîte ne présente aucune trace de pesticides est égale à $0,88$.
    $\quad$
  5. On constate que la boîte prélevée présente des traces de pesticides. Quelle est la probabilité que cette boîte provienne du fournisseur « Bon thé » ?
    $\quad$

$\quad$

Correction Exercice

  1. On obtient l’arbre pondéré suivant :

    $\quad$
  2. On veut calculer :
    $\begin{align*} P(A\cap T)&=P(A)\times P_A(T) \\
    &=0,8\times 0,1\\
    &=0,08\end{align*}$
    La probabilité que la boîte prélevée provienne du fournisseur A et contienne des traces de pesticide est égale à $0,08$.
    $\quad$
  3. L’événement $B\cap \conj{T}$ est « la boîte provient du fournisseur « Bon thé » et ne contient pas de pesticide. »
    $\begin{align*} P\left(B\cap \conj{T}\right) &=P(B)\times P_B\left(\conj{T}\right) \\
    &=0,2\times 0,8 \\
    &=0,16\end{align*}$
    $\quad$
  4. $A$ et $B$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P\left(\conj{T}\right)&=P\left(A\cap \conj{T}\right)+P\left(B\cap \conj{T}\right) \\
    &=0,8\times 0,9+0,16 \\
    &=0,88\end{align*}$
    La probabilité que la boîte ne présente aucune trace de pesticides est égale à $0,88$.
    $\quad$
  5. On veut calculer :
    $\begin{align*} P_T(B)&=\dfrac{P(B\cap T)}{P(T)} \\
    &=\dfrac{0,2\times 0,2}{1-0,88}\\
    &=\dfrac{1}{3}\\
    &\approx 0,33\end{align*}$
    La probabilité que la boîte prélevée provienne du fournisseur « Bon thé » sachant qu’elle présente des traces de pesticides est environ égale à $0,33$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Dans un aéroport, les portiques de sécurité servent à détecter les objets métalliques que peuvent emporter les voyageurs.

On choisit au hasard un voyageur franchissant un portique.

On note:

  • $S$ l’événement « le voyageur fait sonner le portique »;
  • $M$ l’événement «le voyageur porte un objet métallique».

On note $\conj{S}$ et $\conj{M}$ les événements contraires des événements $S$ et $M$.

On considère qu’un voyageur sur $500$ porte sur lui un objet métallique.

On admet que :

  • Lorsqu’un voyageur franchit le portique avec un objet métallique, la probabilité que le portique sonne est égale à $0,95$.
  • Lorsqu’un voyageur franchit le portique sans objet métallique, la probabilité que le portique ne sonne pas est de $0,96$.
  1. À l’aide des données de l’énoncé, préciser les valeurs de $P(M)$, $P_M(S)$ et $P_{\conj{M}}\left(\conj{S}\right)$.
    $\quad$
  2. Recopier et compléter l’arbre pondéré ci-dessous, modélisant cette situation :

    $\quad$
  3. Montrer que $P(S)=0,041~82$.
    $\quad$
  4. En déduire la probabilité qu’un voyageur porte un objet métallique sachant qu’il a fait sonner le portique en passant. On arrondira le résultat à $10^{-3}$.
    $\quad$
  5. Les événements $M$ et $S$ sont-ils indépendants?
    $\quad$

$\quad$

Correction Exercice

  1. On a $P(M)=\dfrac{1}{500}$, $P_M(S)=0,95$ et $P_{\conj{M}}\left(\conj{S}\right)=0,96$.
    $\quad$
  2. On obtient l’arbre pondéré suivant :

    $\quad$
  3. $M$ et $\conj{M}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(S)&=P(M\cap S)+P\left(\conj{M}\cap S\right)\\
    &=\dfrac{1}{500}\times 0,95+\dfrac{499}{500}\times 0,04\\
    &=0,041~82\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_S(M)&=\dfrac{P(M\cap S)}{P(S)} \\
    &=\dfrac{\dfrac{1}{500}\times 0,95}{0,041~82} \\
    &\approx 0,045\end{align*}$
    La probabilité qu’un voyageur porte un objet métallique sachant qu’il a fait sonner le portique en passant est environ égale à $0,045$.
    $\quad$
  5. On a $P(S)=0,041~82$ et $P_M(S)=0,95$.
    Ces deux probabilités sont différentes. Les événements $M$ et $S$ sont donc indépendants.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

On dispose d’un dé équilibré à six faces et de deux urnes U et V contenant des boules blanches ou rouges, indiscernables au toucher.
L’urne U contient $40$ boules blanches et $60$ boules rouges.
L’urne V contient $70$ boules blanches et $30$ boules rouges.

Un jeu consiste à lancer le dé puis tirer une boule dans l’une des urnes. Si on obtient $1$ ou $6$ sur le dé, le tirage s’effectue dans l’urne U. Si on obtient $2$, $3$, $4$ ou $5$ sur le dé, le tirage s’effectue dans l’urne V.
On considère les événements :
$\hspace{1cm}U$ : « le tirage s’effectue dans l’urne U »
$\hspace{1cm}V$ : « le tirage s’effectue dans l’urne V »
$\hspace{1cm}B$ : « la boule tirée est blanche »
$\hspace{1cm}R$ : « la boule tirée est rouge ».
Sauf indication contraire, les probabilités seront arrondies au millième.

    1. Représenter la situation à l’aide d’un arbre pondéré.
      $\quad$
    2. Déterminer la probabilité de l’évènement « la boule tirée est rouge ».
      $\quad$
    3. On tire une boule rouge. Quelle est la probabilité qu’elle ait été tirée dans l’urne U ?
      $\quad$
    4. Pour jouer, il faut miser $1$ €. Le joueur gagne $3$ € s’il tire une boule rouge et il ne gagne rien s’il tire une boule blanche. On note $G$ la variable aléatoire donnant le gain du joueur.
      a. Déterminer la loi de probabilité de la variable aléatoire $G$.
      On donnera le tableau de la loi de probabilité, mais aucune justification n’est demandée.
      $\quad$
      b. Calculer l’espérance mathématique de $G$. Interpréter ce résultat.
      $\quad$

$\quad$

Correction Exercice

  1. On obtient l’arbre pondéré suivant :

    $\quad$
  2. $U$ et $V$ forment un système complet d”événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(R)&=P(U\cap R)+P(V\cap R)\\
    &=\dfrac{1}{3}\times 0,6+\dfrac{2}{3}\times 0,3\\
    &=0,4\end{align*}$
    La probabilité de l’évènement « la boule tirée est rouge » est égale à $0,4$.
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_R(U)&=\dfrac{P(U\cap R)}{P(R)}\\
    &=\dfrac{0,6\times \dfrac{1}{3}}{0,4}\\
    &=0,5\end{align*}$
    La probabilité que la boule ait été tirée dans l’urne U sachant qu’elle est rouge est égale à $0,5$.
    $\quad$
  4. a. On obtient la loi de probabilité suivante:
    $$\begin{array}{|c|c|c|}
    \hline
    g_i&2&-1\\
    \hline
    P\left(G=g_i\right)&0,4&0,6\\
    \hline
    \end{array}$$
    $\quad$
    b. L’espérance mathématique de $G$ est :
    $\begin{align*} E(G)&=2\times 0,4+(-1)\times 0,6\\
    &=0,2\end{align*}$
    En moyenne, un joueur gagne $0,2$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Maxime participe à un jeu qui se déroule en deux parties :

  • La probabilité qu’il gagne la première partie est de $0,2$.
  • S’il gagne la première partie, il gagne la deuxième avec une probabilité de $0,9$.
  • S’il perd la première partie, il perd la suivante avec une probabilité de $0,6$.

On note :

  • $G_1$ l’événement « Maxime gagne la première partie »
  • $G_2$ l’événement « Maxime gagne la seconde partie »

Partie A

  1. Construire un arbre pondéré illustrant la situation.
    $\quad$
  2. Calculer la probabilité que Maxime gagne les deux parties du jeu.
    $\quad$
  3. Montrer que la probabilité que Maxime gagne la deuxième partie du jeu est $0,5$.
    $\quad$

Partie B

On sait de plus que :

  • -à chaque partie gagnée, le joueur gagne $1,5$ €.
  • à chaque partie perdue, il perd $1$ €.

On note $X$ la variable aléatoire qui correspond au gain algébrique en euros de Maxime à l’issue des deux parties.

  1. Recopier sur la copie et compléter le tableau ci-dessous donnant la loi de probabilité de la variable aléatoire $X$.
    $\begin{array}{|c|c|c|c|c|}
    \hline
    \text{Valeurs de $X$}&&&3&\text{Total}\\
    \hline
    \text{Probabilité}&\phantom{0,18}&\phantom{0,18}&0,18&\\
    \hline
    \end{array}$
    $\quad$
  2. Déterminer si ce jeu est équitable. Justifier.
    $\quad$

$\quad$

Correction Exercice

Partie A

  1. On obtient l’arbre pondéré suivant :

    $\quad$
  2. La probabilité que Maxime gagne les deux parties du jeu est :
    $\begin{align*} P\left(G_1\cap G_2\right)&=P\left(G_1\right)\times P_{G_1}\left(G_2\right) \\
    &=0,2\times 0,9\\
    &=0,18\end{align*}$
    $\quad$
  3. $G_1$ et $\conj{G_1}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P\left(G_2\right)&=P\left(G_1\cap G_2\right)+P\left(\conj{G_1}\cap G_2\right) \\
    &=0,18+0,8\times 0,4\\
    &=0,5\end{align*}$
    La probabilité que Maxime gagne la deuxième partie du jeu est $0,5$.
    $\quad$

Partie B

  1. On obtient :
    $\begin{array}{|c|c|c|c|c|}
    \hline
    \text{Valeurs de $X$}&-2&0,5&3&\text{Total}\\
    \hline
    \text{Probabilité}&0,48&0,34&0,18&1\\
    \hline
    \end{array}$
    En effet :
    – $P(X=-2)=0,8\times 0,6=0,48$
    – $P(X=0,5)=1-(0,48+0,18)=0,34$
    $\quad$
  2. L’espérance de la variable $X$ est :
    $\begin{align*} E(X)&=-2\times 0,48+0,5\times 0,34+3\times 0,18 \\
    &=-0,25\end{align*}$
    Par conséquent $E(X)\neq 0$. Le jeu n’est donc pas équitable.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Au cours de l’hiver, on observe dans une population, $12 \%$ de personnes malades.
Parmi les personnes malades, $36 \%$ d’entre elles pratiquent une activité sportive régulièrement.
Parmi les personnes non malades, $54 \%$ d’entre elles pratiquent une activité sportive régulièrement.
Une personne est choisie au hasard dans la population.
On note $M$ l’événement « la personne est malade » et $S$ l’événement « la personne a une activité sportive régulière ».
Dans cet exercice, les résultats approchés seront donnés à $10 ^{-3}$ près.

  1. Recopier et compléter l’arbre pondéré.

    $\quad$
  2. a. Quelle est la probabilité que la personne soit malade et qu’elle pratique une activité sportive régulièrement ?
    $\quad$
    b. Montrer que la probabilité que la personne pratique une activité sportive régulièrement est égale à $0,518~4$.
    $\quad$
  3. La personne choisie n’a pas d’activité sportive régulière. Quelle est la probabilité pour qu’elle soit malade ?
    $\quad$
  4. Un journaliste annonce qu’une pratique régulière d’une activité sportive diminue par deux le risque de tomber malade. Que peut-on conclure sur la pertinence de cette annonce ? Justifier.

$\quad$

Correction Exercice

  1. On obtient l’arbre pondéré suivant :

    $\quad$
  2. a. On a :
    $\begin{align*} P(S\cap M)&=P(M)\times P_M(S) \\
    &=0,12\times 0,36\\
    &=0,043~2\end{align*}$
    La probabilité que la personne soit malade et qu’elle pratique une activité sportive régulièrement est égale à $0,043~2$.
    $\quad$
    b.
     $M$ et $\conj{M}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(S)&=P(M\cap S)+P\left(\conj{M}\cap S\right)\\
    &=0,12\times 0,36+0,88\times 0,54\\
    &=0,518~4\end{align*}$
    La probabilité que la personne pratique une activité sportive régulièrement est égale à $0,518~4$.
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_{\conj{S}}(M)&=\dfrac{P\left(\conj{S}\cap M\right)}{P\left(\conj{S}\right)} \\
    &=\dfrac{0,12\times 0,64}{1-0,518~4} \\
    &\approx 0,159\end{align*}$
    $\quad$
  4. On calcule :
    $\begin{align*} P_S(M)&=\dfrac{P(S\cap M)}{P(S)} \\
    &=\dfrac{0,12 \times 0,36}{0,518~4} \\
    &\approx 0,083\end{align*}$
    Or $\dfrac{0,159}{2} \neq 0,083$.
    L’affirmation est donc fausse.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Un fromager fait l’inventaire des produits qu’il a en cave.
Le graphique ci-dessous indique la répartition de ses $3$ types de fromages : au lait de chèvre, au lait de vache ou au lait de brebis.

Chacun de ses $3$ types de fromages se partage en deux catégories : frais ou affiné.
Le tableau suivant donne la répartition des fromages de chaque catégorie suivant leur affinage :

$$\begin{array}{|l|c|c|}
\hline
&\text{frais}& \text{affiné}\\
\hline
\text{Lait de vache}& 20 \%& 80 \%\\
\hline
\text{Lait de chèvre}& 40 \%& 60 \%\\
\hline
\text{Lait de brebis}& 70 \% &30 \%\\
\hline
\end{array}$$

Le fromager prend un fromage au hasard. On note les événements suivants :

  • $V$ : « le fromage est fait avec du lait de vache » ;
  • $C$ : « le fromage est fait avec du lait de chèvre » ;
  • $B$ : « le fromage est fait avec du lait de brebis » ;
  • $F$ : « le fromage est frais » ;
  • $A$ : « le fromage est affiné ».
  1. Donner les probabilités $P_C(A)$ et $P(B)$.
    $\quad$
  2. Démontrer que $P(A) = 0,675$.
    $\quad$
  3. Le fromager prend au hasard un fromage affiné. Quelle est la probabilité qu’il s’agisse d’un fromage au lait de vache ? On donnera le résultat à $10^{-3}$ près.
    $\quad$

$\quad$

Correction Exercice

  1. On a $P_C(A)=0,6$ et $P(B)=0,15$
    $\quad$
  2. $V$, $C$ et $B$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(A)&=P(A\cap V)+P(A\cap C)+P(A\cap B)\\
    &=0,6\times 0,8+0,25\times 0,6+0,15\times 0,3\\
    &=0,675\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_A(V)&=\dfrac{P(A\cap V)}{P(A)}\\
    &=\dfrac{0,6\times 0,8}{0,675} \\
    &\approx 0,711\end{align*}$
    La probabilité que le fromage pris au hasard soit au lait de vache sachant qu’il est affiné est environ égale à $0,711$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence