Bac – Spécialité mathématiques – Métropole – sujet 2 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(S\cap I)&=p(S)\times p_S(I) \\
    &=0,08\times 0,9\\
    &=0,072\end{align*}$
    La probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. $\left(S,\conj{S}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(I)&=p(S)p_S(I)+p\left(\conj{S}\right)p_{\conj{S}}(I) \\
    &=0,08\times 0,9+0,92\times 0,01 \\
    &=0,0812\end{align*}$
    La probabilité que le message soit classé indésirable est $0,0812$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} p_I(S)&=\dfrac{p(S)\times p_S(I)}{p(I)} \\
    &=\dfrac{0,08\times 0,9}{0,0812} \\
    &\approx 0,89\end{align*}$
    La probabilité que le message soit du spam sachant qu’il est classé comme indésirable est environ égale à $0,89$.
    $\quad$
  3. a. On effectue $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $S$ et $\conj{S}$.
    Ainsi $Z$ suit la loi binomiale de paramètres $n=50$ et $p=0,08$.
    $\quad$
    b. On a :
    $\begin{align*} p(Z\pg 2)&=1-p(Z=0)-p(Z=1) \\
    &=1-0,92^{50}-\dbinom{50}{1}0,08\times 0,92^{49} \\
    &=1-0,92^{50}-50\times 0,08\times 0,92^{49} \\
    &\approx 0,92\end{align*}$
    La probabilité qu’au moins deux courriels choisis soient du spam est environ égale à $0,92$.
    $\quad$

 

Ex 2

Exercice 2 (5 points)

  1. Si $t=-2$ on obtient alors $\begin{cases} x=-3\\y=-4\\z=6\end{cases}$
    Le point $N(-3;-4;6)$ appartient donc à la droite $\Delta$.
    Réponse B
    $\quad$
  2. $\vect{AB}$ a pour coordonnées $\begin{pmatrix} 2-1\\1-0\\0-2\end{pmatrix}$ soit $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse C
    $\quad$
  3. La droite $(AB)$ passe par le point $B(2;1;0)$ et a pour vecteur directeur $\vect{AB}\begin{pmatrix} 1\\1\\-2\end{pmatrix}$ mais également le vecteur $-\vect{AB}\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Ainsi, une représentation paramétrique de $(AB)$ est $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases}\quad, t\in \R$.
    Réponse B
    $\quad$
  4. Un vecteur directeur de $\Delta$ est $\vec{n}\begin{pmatrix}2\\1\\-1\end{pmatrix}$
    Ainsi une équation cartésienne de ce plan est de la forme $2x+y-z+d=0$.
    Le point $C(0;1;2)$ appartient à ce plan.
    Donc $0+1-2+d=0 \ssi d=1$.
    Une équation cartésienne du plan est $2x+y-z+1=0$.
    Réponse B
    $\quad$
  5. On a
    $\begin{align*} \vect{AD}&=\vect{AO}+\vect{OD} \\
    &=\vect{AO}+3\vect{OA}-\vect{OB}-\vect{OC} \\
    &=2\vect{OA}-\vect{OB}-\vect{OC} \\
    &=\vect{BO}+\vect{OA}+\vect{CO}+\vect{OA} \\
    &=\vect{BA}+\vect{CA}\end{align*}$
    Ainsi les vecteurs $\vect{AD}$, $\vect{AB}$ et $\vect{AC}$ sont coplanaires.
    Réponse A
    $\quad$

 

 

Ex 3

Exercice 3 (6 points)

Partie 1

  1. $\lim\limits_{x\to -\infty} -2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to -\infty} -\e^{-2x}=-\infty$
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$
    $\lim\limits_{x\to +\infty} -2x=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to +\infty} -\e^{-2x}=0$
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. La fonction $f$ est dérivable sur $\R$ en tant que somme et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1-(-2)\e^{-2x} \\
    &=1+2\e^{-2x}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $\R$.
    On obtient le tableau de variation suivant :
    $\quad$

    $\quad$
  3. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\R$.
    De plus $\lim\limits_{x\to -\infty} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $\R$.
    D’après la calculatrice $\alpha \approx 0,43$.
    $\quad$
  4. La fonction $f$ est strictement croissante sur $\R$ et s’annule en $\alpha$.
    Donc :
    – $f(x)<0$ sur $]-\infty;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. a. La fonction $t\mapsto t^2+\e^{-2t}$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$. Cette fonction est de plus positive en tant que somme de fonctions positives.
    La fonction $h$ est donc dérivable sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} h'(t)&=\dfrac{2t-2\e^{-2t}}{2\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{t-\e^{-t}}{\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{h(t)}{\sqrt{t^2+\e^{-2t}}}\end{align*}$
    $\quad$
    b. $h'(x)$ a donc le même signe que $f(x)$ pour tout réel $x$.
    D’après la question I.4. on a donc :
    – $h'(x)<0$ sur $]-\infty;\alpha[$;
    – $h'(\alpha)=0$;
    – $h(x)>0$ sur $]\alpha;+\infty[$.
    Ainsi $h$ admet un minimum en $\alpha$.
    Le point $A\left(\alpha,g(\alpha)\right)$, c’est-à-dire $A\left(\alpha,\e^{-\alpha}\right)$, est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    $\quad$
  2. a. Le coefficient directeur de la tangente $T$ est $g'(\alpha)=-\e^{-\alpha}$.
    $\quad$
    b. Le produit des deux coefficients directeurs est :
    $\begin{align*} -\e^{-\alpha}\times \dfrac{\e^{-\alpha}}{\alpha}&=-\dfrac{\e^{-2\alpha}}{\alpha} \\
    &=-\dfrac{\alpha}{\alpha} \quad \text{car }f(\alpha)=0 \ssi \e^{-2\alpha}=\alpha  \\
    &=-1\end{align*}$
    Les droites $(OA)$ et $T$ sont donc perpendiculaires.
    $\quad$

$\quad$

Ex A

Exercice A (5 points)

  1. On a $u_1=\dfrac{3\times 16+2\times 5}{5}=11,6$.
    et $v_1=\dfrac{16+5}{2}=10,5$
    $\quad$
  2. a. Soit $n\in \N$.
    $\begin{align*} w_{n+1}&=u_{n+1}-v_{n+1} \\
    &=\dfrac{3u_n+2v_n}{5}-\dfrac{u_n+v_n}{2} \\
    &=\dfrac{6u_n+4v_n-5u_n-5v_n}{10} \\
    &=\dfrac{u_n-v_n}{10} \\
    &=0,1 w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $0,1$ et de premier terme $w_0=u_0-v_0=11$.
    Ainsi, pour tout $n\in \N$ on a $w_n=11\times 0,1^n$.
    $\quad$
    b. Pour tout $n\in \N$ on a $w_n\pg 0$ en tant que produit de facteurs positifs.
    De plus $-1<0,1<1$ donc $\lim\limits_{n\to +\infty} w_n=0$.
    $\quad$
  3. a. Soit $n\in \N$. On a
    $\begin{align*} u_{n+1}-u_n&=\dfrac{3u_n+2v_n}{5}-u_n \\
    &=\dfrac{3u_n+2v_n-5u_n}{5} \\
    &=\dfrac{-2u_n+2v_n}{5} \\
    &=-\dfrac{2}{5} \times \left(u_n-v_n\right) \\
    &=-0,4w_n\end{align*}$
    $\quad$
    b. $w_n\pg 0$ et $u_{n+1}-u_n=-0,4w_n$ pour tout $n\in \N$.
    Ainsi $u_{n+1}-u_n \pp 0$ pour tout $n\in \N$.
    La suite $\left(u_n\right)$ est donc décroissante.
    On admet que la suite $\left(v_n\right)$ est croissante et on sait que $v_0=5$.
    Ainsi, pour tout $n\in \N$ on a $v_n\pg v_0$ soit $v_n\pg 5$.
    $\quad$
    c. Initialisation : On a $u_0=16$ donc $u_0\pg 5$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$.
    $\begin{align*} u_{n+1}&=\dfrac{3u_n+2v_n}{5} \\
    &\pg \dfrac{3\times 5+2\times 5}{5} \\
    &\pg 5\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout $n\in \N$ on a $u_n \pg 5$.
    $\quad$
    La suite $\left(u_n\right)$ est donc décroissante et minorée par $5$. Elle est par conséquent convergente.
    $\quad$
  4. a. Pour tout $n\in \N$ on a $w_n=u_n-v_n$ et $\lim\limits_{n\to +\infty} w_n=0$.
    Or $\lim\limits_{n\to +\infty} u_n-v_n=\ell-\ell’$
    Ainsi $\ell-\ell’=0 \ssi \ell=\ell’$.
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} c_{n+1}&=5u_{n+1}+4v_{n+1} \\
    &=3u_n+2v_n+2\left(u_n+v_n\right) \\
    &=3u_n+2v_n+2u_n+2v_n\\
    &=5u_n+4v_n\\
    &=w_n\end{align*}$
    La suite $\left(c_n\right)$ est donc constante.
    Or $c_0=5u_0+4v_0=100$.
    Ainsi, pour tout $n\in \N$ on a $c_n=100$.
    $\quad$
    c. Or $\lim\limits_{n\to +\infty} c_n=5\ell+4\ell’$ soit $\lim\limits_{n\to +\infty} c_n=9\ell$ puisque $\ell=\ell’$.
    Par conséquent $9\ell=100 \ssi \ell=\dfrac{100}{9}$.
    $\quad$

Remarque : On dit que les suites $\left(u_n\right)$ et $\left(v_n\right)$ sont adjacentes.

Ex B

Exercice B (5 points)

Partie 1

  1. $f(x)=0\ssi 2\ln(x)-1=0 \ssi \ln(x)=\dfrac{1}{2}\ssi x=\e^{1/2}$.
    Ainsi l’équation $f(x)=0$ possède une unique solution $\alpha=\e^{1/2}\approx 1,65$.
    $\quad$
  2. Graphiquement :
    – $f(x)<0$ sur $]0;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$
    $\quad$

Partie II

  1. a. Pour tout $x>0$ on a $g(x)=\ln(x)\left(\ln(x)-1\right)$
    Or $\lim\limits_{x\to 0^-} \ln(x)=-\infty$ donc $\lim\limits_{x\to 0^-} \ln(x)-1=-\infty$.
    Ainsi $\lim\limits_{x\to 0^-} g(x)=+\infty$.
    $\quad$
    b. $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} \ln(x)-1=+\infty$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    $\quad$
  2. La fonction $g$ est dérivable sur $]0;+\infty[$ comme produit et somme de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} g'(x)&=2\dfrac{1}{x}\times \ln(x)-\dfrac{1}{x} \\
    &=\dfrac{2\ln(x)-1}{x} \\
    &=f(x)\end{align*}$
    $\quad$
  3. On obtient le tableau de variations suivant :
    $\quad$

    On a en effet $\alpha=\e^{1/2}$ donc $g(\alpha)=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}$
    $\quad$
  4. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $]0;\alpha[$.
    De plus $\lim\limits_{x\to 0^+} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]0;\alpha[$.
    $\quad$
    La fonction $g$ est continue (car dérivable) et strictement croissante sur $]\alpha;+\infty[$.
    De plus $\lim\limits_{x\to +\infty} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]\alpha;+\infty[$.
    $\quad$
    De plus $g(\alpha)\neq m$.
    L’équation $g(x)=m$ possède donc exactement deux solutions sur $\R$ pour tout $m>-0,25$.
    $\quad$
  5. $g(x)=0 \ssi \ln(x)\left(\ln(x)-1\right)=0 \ssi \ln(x)=0$ ou $\ln(x)=1$
    Ainsi $g(x)=0 \ssi x=1$ ou $x=\e$
    Les solutions de l’équation $g(x)=0$ sont donc $1$ et $\e$.
    $\quad$

 

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Une entreprise reçoit quotidiennement de nombreux courriels (courriers électroniques).
Parmi ces courriels, $8 \%$ sont du « spam », c’est-à-dire des courriers à intention publicitaire, voire malveillante, qu’il est souhaitable de ne pas ouvrir.
On choisit au hasard un courriel reçu par l’entreprise.
Les propriétés du logiciel de messagerie utilisé dans l’entreprise permettent d’affirmer que :

  • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que c’est un spam est égale à $0,9$.
    • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que ce n’est pas un spam est égale à $0,01$.

On note :

  • $S$ l’évènement « le courriel choisi est un spam »;
  • $I$ l’évènement « le courriel choisi est classé comme indésirable par le logiciel de messagerie ».
  • $\conj{S}$ et $\conj{I}$ les évènements contraires de $S$ et $I$ respectivement.
  1. Modéliser la situation étudiée par un arbre pondéré, sur lequel on fera apparaître les probabilités associées à chaque branche.
    $\quad$
  2. a. Démontrer que la probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. Calculer la probabilité que le message choisi soit classé indésirable.
    $\quad$
    c. Le message choisi est classé comme indésirable. Quelle est la probabilité que ce soit effectivement un message de spam ? On donnera un résultat arrondi au centième.
    $\quad$
  3. On choisit au hasard $50$ courriels parmi ceux reçus par l’entreprise. On admet que ce choix se ramène à un tirage au hasard avec remise de $50$ courriels parmi l’ensemble des courriels reçus par l’entreprise.
    On appelle $Z$ la variable aléatoire dénombrant les courriels de spam parmi les $50$ choisis.
    a. Quelle est la loi de probabilité suivie par la variable aléatoire $Z$, et quels sont ses paramètres ?
    $\quad$
    b. Quelle est la probabilité que, parmi les $50$ courriels choisis, deux au moins soient du spam ? On donnera un résultat arrondi au centième.
    $\quad$

$\quad$

Exercice 2     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points $A(1; 0; 2)$, $B(2; 1; 0)$, $C(0; 1; 2)$ et la droite $\Delta$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=-2+t\\z=4-t\end{cases} \quad,t\in \R$.

  1. Parmi les points suivants, lequel appartient à la droite $\Delta$?
    Réponse A : $M(2 ; 1 ; -1)$;
    Réponse B : $N(-3 ; -4 ; 6)$;
    Réponse C : $P(-3 ; -4 ; 2)$;
    Réponse D : $Q(-5 ; -5 ; 1)$.
    $\quad$
  2. Le vecteur $\vect{AB}$ admet pour coordonnées :
    Réponse A : $\begin{pmatrix} 1,5\\0,5\\1\end{pmatrix}$
    Réponse B : $\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Réponse C : $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse D : $\begin{pmatrix} 3\\1\\2\end{pmatrix}$
    $\quad$
  3. Une représentation paramétrique de la droite $(AB)$ est :
    Réponse A : $\begin{cases} x=1+2t\\y=t\\z=2\end{cases} \quad,t\in\R$
    Réponse B : $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases} \quad,t\in\R$
    Réponse C : $\begin{cases} x=2+t\\y=1+t\\z=2t\end{cases} \quad,t\in\R$
    Réponse D : $\begin{cases} x=1+t\\y=1+t\\z=2-2t\end{cases} \quad,t\in\R$
    $\quad$
  4. Une équation cartésienne du plan passant par le point $C$ et orthogonal à la droite $\Delta$ est :
    Réponse A : $x-2y +4z -6 = 0$;
    Réponse B : $2x + y – z +1 = 0$;
    Réponse C : $2x + y – z -1 = 0$;
    Réponse D : $y +2z -5 = 0$.
    $\quad$
  5. On considère le point $D$ défini par la relation vectorielle $\vect{OD}=3\vect{OA}-\vect{OB}-\vect{OC}$.
    Réponse A : $\vect{AD}$, $\vect{AB}$, $\vect{AC}$ sont coplanaires;
    Réponse B : $\vect{AD} =\vect{BC}$;
    Réponse C : $D$ a pour coordonnées $(3 ; -1 ; -1)$;
    Réponse D : les points $A$, $B$, $C$ et $D$ sont alignés.
    $\quad$

$\quad$

Exercice 3     6 points

Partie I

On considère la fonction $f$ définie sur $\R$ par $$f (x) = x -\e^{-2x}$$
On appelle $\Gamma$ la courbe représentative de la fonction $f$ dans un repère orthonormé $\Oij$.

  1. Déterminer les limites de la fonction $f$ en $-\infty$ et en $+\infty$.
    $\quad$
  2. Étudier le sens de variation de la fonction $f$ sur $\R$ et dresser son tableau de variation.
    $\quad$
  3. Montrer que l’équation $f (x) = 0$ admet une unique solution $\alpha$ sur $\R$, dont on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
  4. Déduire des questions précédentes le signe de $f(x)$ suivant les valeurs de $x$.
    $\quad$

 

Partie II

Dans le repère orthonormé $\Oij$, on appelle $\mathscr{C}$ la courbe représentative de la fonction $g$ définie sur $\R$ par : $$g(x) = \e^{-x}$$
La courbe $\mathscr{C}$ et la courbe $\Gamma$ (qui représente la fonction $f$ de la Partie I) sont tracées sur le graphique donné en annexe qui est à compléter et à rendre avec la copie.
Le but de cette partie est de déterminer le point de la courbe $\mathscr{C}$ le plus proche de l’origine $O$ du repère et d’étudier la tangente à $\mathscr{C}$ en ce point.

  1. Pour tout nombre réel $t$, on note $M$ le point de coordonnées $\left(t,\e^{-t}\right)$ de la courbe $\mathscr{C}$.
    On considère la fonction $h$ qui, au nombre réel $t$, associe la distance $OM$.
    On a donc : $h(t) = OM$, c’est-à-dire : $$h(t) =\sqrt{t^2+\e^{-2t}}$$
    a. Montrer que, pour tout nombre réel $t$, $$h'(t) =\dfrac{f(t)}{\sqrt{t^2+\e^{-2t}}}$$
    où $f$ désigne la fonction étudiée dans la Partie I.
    $\quad$
    b. Démontrer que le point $A$ de coordonnées $\left(\alpha ; \e^{-\alpha}\right)$ est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    Placer ce point sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$
  2. On appelle $T$ la tangente en $A$ à la courbe $\mathscr{C}$.
    a. Exprimer en fonction de $\alpha$ le coefficient directeur de la tangente $T$.
    On rappelle que le coefficient directeur de la droite $(OA)$ est égal à $\dfrac{\e^{-\alpha}}{\alpha}$.
    On rappelle également le résultat suivant qui pourra être utilisé sans démonstration :
    Dans un repère orthonormé du plan, deux droites $D$ et $D’$ de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si, et seulement si le produit $mm’$ est égal à $-1$.
    $\quad$
    b. Démontrer que la droite $(OA)$ et la tangente $T$ sont perpendiculaires.
    Tracer ces droites sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$

ANNNEXE

$\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.

Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Suites numériques; raisonnement par récurrence.

On considère les suites $\left(u_n\right)$ et $\left(u_n\right)$ définies par : $$u_0 = 16 ; v_0 = 5 ;$$
et pour tout entier naturel $n$ : $$\begin{cases} u_{n+1}=\dfrac{3u_n+2v_n}{5}\\v_{n+1}=\dfrac{u_n+v_n}{2}\end{cases}$$

  1. Calculer $u_1$ et $v_1$.
    $\quad$
  2. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par : $w_n = u_n-v_n$.
    a. Démontrer que la suite $\left(w_n\right)$ est géométrique de raison $0,1$.
    En déduire, pour tout entier naturel $n$, l’expression de $w_n$ en fonction de $n$.
    $\quad$
    b. Préciser le signe de la suite $\left(w_n\right)$ et la limite de cette suite.
    $\quad$
  3. a. Démontrer que, pour tout entier naturel $n$, on a : $u_{n+1}-u_n = -0,4w_n$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est croissante. On admet ce
    résultat, et on remarque qu’on a alors : pour tout entier naturel $n$, $vn \pg v_0 = 5$.
    $\quad$
    c. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pg 5$.
    En déduire que la suite $\left(u_n\right)$ est convergente. On appelle $\ell$ la limite de $\left(u_n\right)$.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est convergente. On admet ce
    résultat, et on appelle $\ell’$ la limite de $\left(v_n\right)$.
    $\quad$
  4. a. Démontrer que $\ell=\ell’$.
    $\quad$
    b. On considère la suite $\left(c_n\right)$ définie pour tout entier naturel $n$ par : $c_n = 5u_n +4v_n$.
    Démontrer que la suite $\left(c_n\right)$ est constante, c’est-à-dire que pour tout entier naturel $n$, on a : $c_{n+1} = c_n$.
    En déduire que, pour tout entier naturel $n$ , $c_n = 100$.
    $\quad$
    c. Déterminer la valeur commune des limites $\ell$ et $\ell’$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme, limites, dérivation.

Partie 1

Le graphique ci-dessous donne la représentation graphique dans un repère orthonormé de la fonction $f$ définie sur l’intervalle $]0 ; +\infty[$ par : $$f (x) =\dfrac{2\ln(x)-1}{x}$$

 

  1. Déterminer par le calcul l’unique solution $\alpha$ de l’équation $f(x) = 0$.
    On donnera la valeur exacte de $\alpha$ ainsi que la valeur arrondie au centième.
    $\quad$
  2. Préciser, par lecture graphique, le signe de $f(x)$ lorsque $x$ varie dans l’intervalle $]0 ; +\infty[$.
    $\quad$

Partie II

On considère la fonction $g$ définie sur l’intervalle $]0 ; +\infty[$ par : $$g(x) = \left[\ln(x)\right]^2-\ln(x)$$

  1. a. Déterminer la limite de la fonction $g$ en $0$.
    $\quad$
    b. Déterminer la limite de la fonction $g$ en $+\infty$.
    $\quad$
  2. On note $g’$ la fonction dérivée de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $g'(x)=f(x)$, où $f$ désigne la fonction définie dans la partie I.
    $\quad$
  3. Dresser le tableau de variations de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    On fera figurer dans ce tableau les limites de la fonction $g$ en $0$ et en $+\infty$, ainsi que la valeur du minimum de $g$ sur $]0 ; +\infty[$.
    $\quad$
  4. Démontrer que, pour tout nombre réel $m > -0,25$, l’équation $g(x) = m$ admet exactement deux solutions.
    $\quad$
  5. Déterminer par le calcul les deux solutions de l’équation $g(x) = 0$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. $f'(0)$ est le coefficient directeur de la droite $(AB)$ tangente à $\mathscr{C}_f$ en $A$.
    Ainsi,
    $\begin{align*} f'(0)&=\dfrac{20-5}{1-0} \\
    &=15\end{align*}$
    Réponse c
    $\quad$
  2. $A(0;5)$ appartient à $\mathscr{C}_f$. Donc $f(0)=5 \ssi b=5$.
    Donc $f(x)=(ax+5)\e^x$.
    Le point de coordonnées $(-0,5;0)$ appartient à $\mathscr{C}_f$.
    Donc $f(-0,5)=0 \ssi (-0,5a+5)\e^{-0,5}=0 \ssi -0,5a+5=0 \ssi a=10$
    (La fonction exponentielle est, en effet, strictement positive.)
    Réponse a
    $\quad$
  3. La fonction exponentielle est, en effet, strictement positive. Le signe de $f\dsec(x)$ ne dépend donc que de celui de $10x+25$.
    Or $10x+25>0 \ssi 10x>-25 \ssi x>-2,5$
    Et $10x+25=0 \ssi 10x=-25\ssi x=-2,5$
    Ainsi $f\dsec(x)$ change de signe en s’annulant en $-2,5$.
    Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$.
    Réponse c
    $\quad$
  4. Si on prend $U_n=-n$ et $V_n=2$ pour tout $n\in \N$ alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$. Mais $\lim\limits_{n\to +\infty} U_n=-\infty$. La réponse a est donc fausse.
    Si on prend $V_n=2+\dfrac{1}{n}$ et $U_n=V_n-1$ pour tout $n\in \N$. alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$ mais $V_n >2$ pour tout $n\in \N$ et $\lim\limits_{n\to +\infty} U_n=1$. Les reponses b et c sont fausses.
    Réponse d
    $\quad$
    Remarque : On pouvait également montrer que la réponse c était la bonne directement de la façon suivante :
    $\lim\limits_{n\to +\infty} V_n=2$. Il existe donc un entier naturel $n_0$ tel que, pour tout $n\pg n_0$, $\abs{V_n-2}<1$ (On peut remplacer $1$ par n’importe quel réel strictement positif).
    Ainsi, pour tout $n\pg n_0$ on a $-1< V_n-2<1$ soit $1<V_n<3$.
    Or, pour tout $n\in N$, on a $U_n\pp V_n$ donc, pour tout $n\pg n_0$, $U_n<3$.
    Ainsi, pour tout $n\in \N$, $U_n \pp \max\left(U_0,U_1,\ldots, U_{n_0},3\right)$ et la suite $\left(U_n\right)$ est majorée (mais on ne connaît pas le majorant).
    $\quad$

 

 

 

Ex 2

Exercice 2 (5 points)

  1. On a
    $\begin{align*} u_1&=f\left(u_0\right) \\
    &=f\left(\dfrac{1}{2}\right) \\
    &=\dfrac{2}{1+\dfrac{3}{2}} \\
    &=\dfrac{4}{5}\end{align*}$
    $\quad$
  2. a. Initialisation : On a $u_0=\dfrac{1}{2}$ et $u_1=\dfrac{4}{5}$ donc $\dfrac{1}{2} \pp u_0 \pp u_1 \pp 2$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$, c’est-à-dire $\dfrac{1}{2} \pp u_n\pp u_{n+1} \pp 2$.
    La fonction $f$ est croissante sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$.
    Ainsi $f\left(\dfrac{1}{2}\right) \pp f\left(u_n\right)\pp f\left(u_{n+1}\right) \pp f(2)$
    Soit $\dfrac{4}{5} \pp u_{n+1} \pp u_{n+2} \pp \dfrac{8}{7}$
    Donc $\dfrac{1}{2} \pp u_{n+1} \pp u_{n+2} \pp 2$.
    La propriété est, par conséquent, vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout $n\in \N$, on a $\dfrac{1}{2} \pp u_n \pp u_{n+1} \pp 2$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $2$. Elle est donc convergente.
    $\quad$
    c. La fonction $f$ est continue sur $\left[\dfrac{1}{2};2\right]$ comme quotient de fonctions continues dont le dénominateur ne s’annule pas.
    Ainsi $\ell$ est solution de l’équation, définie sur $\left[\dfrac{1}{2};2\right]$ :
    $\begin{align*} f(x)=x&\ssi \dfrac{4x}{1+3x}=x \\
    &\ssi 4x=x+3x^2\\
    &\ssi 3x^2-3x=0\\
    &\ssi 3x(x-1)=0\end{align*}$
    Les solutions de cette équation sont $0$ et $1$.
    $1$ est la seule valeur appartenant à $\left[\dfrac{1}{2};2\right]$.
    Par conséquent $\ell=1$.
    $\quad
  3. a. On peut écrire
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E):} \\
    \quad \text{u = 0.5} \\
    \quad \text{n = 0} \\
    \quad \text{while 1 – u >= E :} \\
    \qquad \text{u = 4 * u / (1 + 3 * u)} \\
    \qquad \text{n = n + 1} \\
    \quad \text{return n} \\
    \hline
    \end{array}$$
    $\quad$
    b. Si $E = 10^{-4}$
    Voici les premières valeurs (approchées pour certaines) de $u_n$ et de $1-u_n$
    $\begin{array}{|c|c|c|}
    \hline
    n& u_n &1-u_n \\ \hline
    0& 0,5& 0,5\\ \hline
    1& 0,8& 0,2\\ \hline
    2& 0,9411764706& 0,05882352941\\ \hline
    3& 0,9846153846& 0,01538461538\\ \hline
    4& 0,9961089494& 0,003891050584\\ \hline
    5& 0,9990243902& 0,0009756097561\\ \hline
    6& 0,999755919& 0,0002440810349\\ \hline
    7& 0,9999389686& 0,00006103143119\\ \hline
    \end{array}$
    Le programme renvoie donc $7$.
    $\quad$
  4. a. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\dfrac{u_{n+1}}{1-u_{n+1}} \\
    &=\dfrac{\dfrac{4u_n}{1+3u_n}}{1-\dfrac{4u_n}{1+3u_n}} \\
    &=\dfrac{4u_n}{1+3u_n-4u_n} \\
    &=\dfrac{4u_n}{1-u_n} \\
    &=4v_n\end{align*}$.
    La suite $\left(v_n\right)$ est donc géométrique de raison $4$ et de premier terme $v_0=\dfrac{u_0}{1-u_0}=1$.
    Ainsi, pour tout $n\in \N$, on a $v_n=4^n$.
    $\quad$
    b. Soit $n\in \N$.
    \begin{align*} v_n=\dfrac{u_n}{1-u_n} &\ssi v_n\left(1-u_n\right)=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n-u_nv_n=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n+u_nv_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n\left(1+v_n\right) \text{  et } u_n\neq 1\end{align*}$
    Ainsi $u_n=\dfrac{v_n}{1+v_n}$.
    $\quad$
    c. Soit $n\in \N$ on a
    $\begin{align*} u_n&=\dfrac{v_n}{1+v_n} \\
    &=\dfrac{4^n}{1+4^n} \\
    &=\dfrac{4^n}{4^n\left(0,25^n+1\right)} \\
    &=\dfrac{1}{1+0,25^n}\end{align*}$
    On a $-1<0,25<1$ donc $\lim\limits_{n\to +\infty} 0,25^n=0$ et $\lim\limits_{n\to +\infty} u_n=1$.

 

 

Ex 3

Exercice 3 (6 points)

Partie I : Effet de l’introduction d’une nouvelle espèce

  1. On a $f(0)=440$.
    Il y avait donc $440$ crapauds dans le lac lors de l’introduction des truites.
    $\quad$
  2. Pour tout $t\in [0;120]$ on a
    $\begin{align*} f'(t)&=(0,08t-8)\e^{\frac{t}{50}}+\left(0,04t^2-8t+400\right)\times \dfrac{1}{50}\e^{\frac{t}{50}} \\
    &=\left(0,08t-8+0,0008t^2-0,16t+8\right)\e^{\frac{t}{50}} \\
    &=\left(0,0008t^2-0,08t\right)\e^{\frac{t}{50}} \\
    &=0,0008t(t-100)\e^{\frac{t}{50}} \\
    &=8\times 10^{-4}t(t-100)\e^{\frac{t}{50}} \end{align*}$
    $\quad$
  3. La fonction exponentielle est strictement positive sur $\R$.
    Sur $[0;120]$ on a $t\pg 0$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $t-100$.
    Or $t-100=0 \ssi t=100$ et $t-100>0 \ssi t>100$.
    On obtient donc le tableau de variations suivant :
    $\quad$
  4. a. D’après le tableau de variations, la fonction $f$ atteint son minimum pour $t=100$.
    Ainsi, le nombre de crapauds atteint son minimum au bout de $100$ jours. Il y a alors $40$ crapauds dans le lac.
    $\quad$
    b. La fonction $f$ est strictement croissante sur l’intervalle $[100;120]$ et $f(120)\approx 216,37 > 140$.
    Ainsi, le nombre de crapauds dépassera un jour $140$ individus après avoir atteint son minimum.
    $\quad$
    c. D’après la calculatrice, $f(t)=140$ pour $t\approx 115,72$.
    C’est donc à partir du $116$ ième jour que le nombre de crapauds dépassera $140$ individus.
    $\quad$

 

Partie II : Effet de la Chytridiomycose sur une population de têtards

  1. On obtient l’arbre de probabilité suivant :
    $\quad$$\quad$
  2. $\left(L,\conj{L}\right)$ est un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(T)&=P(L)\times P_L(T)+P\left(\conj{L}\right)P_{\conj{L}}(T) \\
    &=0,25 \times 0,74+0\\
    &=0,185\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_{\conj{T}}(L)&=\dfrac{P(L)\times P_L\left(\conj{T}\right)}{1-P(T)} \\
    &=\dfrac{0,25 \times 0,26}{1-0,185} \\
    &\approx 0,080\end{align*}$
    La probabilité que le lac soit infecté sachant que le tétard n’est pas contaminé est environ égale à $0,08$.
    $\quad$

 

Ex A

Exercice A (5 points)

  1. On a $I\left(\dfrac{1}{4};0;1\right)$, $J\left(0;\dfrac{1}{4};1\right)$ et $K\left(1;0;\dfrac{1}{4}\right)$.
    $\quad$
  2. On a $\vect{AG}\begin{pmatrix}1\\1\\1\end{pmatrix}$, $\vect{IJ}\begin{pmatrix} -\dfrac{1}{4}\\[2mm] \dfrac{1}{4}\\[2mm]\\0\end{pmatrix}$ et $\vect{IK}\begin{pmatrix} \dfrac{3}{4} \\[2mm]0\\-\dfrac{3}{4}\end{pmatrix}$
    Ainsi $\vect{AG}.\vect{IJ}=-\dfrac{1}{4}+0+\dfrac{1}{4}=0$ et $\vect{AG}.\vect{IK}=\dfrac{3}{4}+0-\dfrac{3}{4}=0$
    Le vecteur $\vect{AG}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(IJK)$. Il est par conséquent normal à celui-ci.
    $\quad$
  3. Une équation cartésienne du plan $(IJK)$ est donc de la forme $x+y+z+d=0$.
    Le point $I\left(\dfrac{1}{4};0;1\right)$ appartient à ce plan.
    Ainsi $\dfrac{1}{4}+0+1+d=0 \ssi d=-\dfrac{5}{4}$
    Une équation cartésienne du plan $(IJK)$ est donc $x+y+z-\dfrac{5}{4}=0$ soit $4x+4y+4z-5=0$.
    $\quad$
  4. On a $\vect{BC}\begin{pmatrix} 0\\1\\0\end{pmatrix}$
    Une représentation paramétrique de $(BC)$ est donc $\begin{cases} x=1\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  5. On résout le système
    $\begin{align*} \begin{cases} x=1\\y=t\\z=0\\4x+4y+4z-5=0 \end{cases} &\ssi \begin{cases} x=1\\y=t\\z=0\\4+4t-5=0 \end{cases} \\
    &\ssi \begin{cases}x=1\\y=t\\z=0\\t=\dfrac{1}{4}\end{cases}\end{align*}$
    Ainsi les coordonnées du point $L$ sont $\left(1;\dfrac{1}{4};0\right)$.
    $\quad$
  6. On obtient la figure suivante :
    $\quad$

    $\quad$
  7. On a $\vect{LM}\begin{pmatrix} -\dfrac{3}{4} \\[2mm]\dfrac{3}{4}\\[2mm]0\end{pmatrix}$
    Ainsi $\vect{LM}=3\vect{IJ}$
    Les vecteurs $\vect{LM}$ et $\vect{IJ}$ sont colinéaires. Les points $I,J,L$ et $M$ sont donc coplanaires.
    $\quad$

 

 

 

Ex B

Exercice B (5 points)

Partie I

  1. On a $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{x\to 0^+} h(x)=-\infty$.
    $\quad$
  2. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\quad$
  3. La fonction $h$ est dérivable sur $]0;+\infty[$ en tant que somme et quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]0;+\infty[$.
    Ainsi, pour tout $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)\times 1}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
  4. Le signe de $h'(x)$ ne dépend que de celui de $1-\ln(x)$.
    Or $1-\ln(x)=0 \ssi \ln(x)=1 \ssi x=\e$ et $1-\ln(x)>0 \ssi -\ln(x)>-1 \ssi \ln(x)<1 \ssi x< \e$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$
  5. Sur l’intervalle $[\e;+\infty[$ on a $h(x)>1$. L’équation $h(x)=0$ ne possède donc pas de solution sur cet intervalle.
    Sur l’intervalle $]0;\e[$, la fonction $h$ est continue (car dérivable) et strictement croissante.
    De plus, $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h(\e)=\dfrac{1+\e}{\e}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une unique solution sur $]0;+\e[$.
    Ainsi, l’équation $h(x)=0$ possède une unique solution sur $]0;+\infty[$.
    De plus $h(0,5) \approx -0,39<0$ et $h(0,6)\approx 0,15>0$
    La fonction $h$ est strictement croissante sur $]0;\e[$ donc $0,5<\alpha<0,6$.
    $\quad$

Partie II

  1. Le coefficient directeur de $D_a$ au point d’abscisse $a$ est $g'(a)=\dfrac{1}{a}$.
    $\quad$
  2. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=x\times \dfrac{1}{x}+1\times \ln(x)-1 \\
    &=1+\ln(x)-1\\
    &=\ln(x)\end{align*}$
    Ainsi, le coefficient directeur de $T_a$ est $f'(a)=\ln(a)$.
    $\quad$
  3. $T_a$ et $D_a$ sont perpendiculaires
    $\ssi \dfrac{1}{a}\ln(a)=-1 $
    $\ssi 1+\dfrac{\ln(a)}{a}=0$
    $\ssi h(a)=0$
    $\ssi a=\alpha$
    Il existe donc une unique valeur de $a$ pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires. Il s’agit de $a=\alpha$.
    $\quad$

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Le graphique ci-dessous donne la représentation graphique $\mathscr{C}_f$ dans un repère orthogonal d’une fonction $f$ définie et dérivable sur $\R$.
On notera $f’$ la fonction dérivée de $f$ .
On donne les points $A$ de coordonnées $(0; 5)$ et $B$ de coordonnées $(1; 20)$. Le point $C$ est le point de la courbe $\mathscr{C}_f$ ayant pour abscisse $-2,5$. La droite $(AB)$ est la
tangente à la courbe $\mathscr{C}_f$ au point $A$.
Les questions 1 à 3 se rapportent à cette même fonction $f$.

  1. On peut affirmer que :
    a. $f'(-0,5)=0$
    b. si $x\in]-\infty ; -0,5[$, alors $f'(x)< 0$
    c. $f'(0) = 15$
    d. la fonction dérivée $f’$ ne change pas de signe sur $\R$.
    $\quad$
  2. On admet que la fonction $f$ représentée ci-dessus est définie sur $\R$ par $f(x) = (ax +b)\e^x$, où $a$ et $b$ sont deux nombres réels et que sa courbe coupe l’axe des abscisses en son point de coordonnées $(-0,5 ; 0)$.
    On peut affirmer que :
    a. $a = 10$ et $b = 5$
    b. $a = 2,5$ et $b = -0,5$
    c. $a = -1,5$ et $b = 5$
    d. $a=0$ et $b=5$
    $\quad$
  3. . On admet que la dérivée seconde de la fonction $f$ est définie sur $\R$ par : $f\dsec(x)= (10x +25)\e^x$.
    On peut affirmer que :
    a. La fonction $f$ est convexe sur $\R$
    b. La fonction $f$ est concave sur $\R$
    c. Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$
    d. $\mathscr{C}_f$ n’admet pas de point d’inflexion
    $\quad$
  4. On considère deux suites $\left(U_n\right)$ et $\left(V_n\right)$ définies sur $\N$ telles que :
    $\bullet$ pour tout entier naturel $n$, $U_n \pp V_n$ ;
    $\bullet$  $\lim\limits_{n\to +\infty} V_n=2$.
    On peut affirmer que :
    a. la suite $\left(U_n\right)$ converge
    b. pour tout entier naturel $n$, $V_n \pp 2$
    c. la suite $\left(U_n\right)$ diverge
    d. la suite $\left(U_n\right)$ est majorée
    $\quad$

$\quad$

Exercice 2     5 points

Soit $f$ la fonction définie sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$ par $$f(x)

On considère la suite $\left(u_n\right)$ définie par : $u_0=\dfrac{1}{2}$ et, pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$.

  1. Calculer $u_1$.
    $\quad$
  2. On admet que la fonction f est croissante sur l’intervalle ¸$\left]-\dfrac{1}{3};+\infty\right[$.
    a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $\dfrac{1}{2} \pp u_n \pp u_{n+1}\pp 2$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    c. On appelle $\ell$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $\ell$.
    $\quad$
  3. a. Recopier et compléter la fonction Python ci-dessous qui, pour tout réel positif $E$, détermine la plus petite valeur $P$ tel que : $1-u_P < E$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E) :}\\
    \quad \text{u = 0.5}\\
    \quad \text{n = 0}\\
    \quad \text{while . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{u = . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. Donner la valeur renvoyée par ce programme dans le cas où $E = 10^{-4}$.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par : $$v_n =\dfrac{u_n}{1-u_n}$$
    a. Montrer que la suite $\left(v_n\right)$ est géométrique de raison $4$.
    En déduire, pour tout entier naturel $n$, l’expression de $v_n$ en fonction de $n$.
    $\quad$
    b. Démontrer que, pour tout entier naturel $n$, on a : $u_n = \dfrac{v_n}{v_n+1}$.
    $\quad$
    c. Montrer alors que, pour tout entier naturel $n$ , on a :
    $$u_n =\dfrac{1}{1+0,25^n}$$
    Retrouver par le calcul la limite de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 3     5 points

Dans le parc national des Pyrénées, un chercheur travaille sur le déclin d’une espèce protégée dans les lacs de haute-montagne : le «crapaud accoucheur».
Les parties I et II peuvent être abordées de façon indépendante.

Partie I : Effet de l’introduction d’une nouvelle espèce.

Dans certains lacs des Pyrénées, des truites ont été introduites par l’homme afin de permettre des activités de pêche en montagne. Le chercheur a étudié l’impact de cette introduction sur la population de crapauds accoucheurs d’un lac.
Ses études précédentes l’amènent à modéliser l’évolution de cette population en fonction du temps par la fonction f suivante : $$f(t)=\left(0,04t^2-8t+400\right)\e^{\frac{t}{50}}+40 \text{ pour } t\in [0;120]$$

La variable $t$ représente le temps écoulé, en jour, à partir de l’introduction à l’instant $t = 0$ des truites dans le lac, et $f(t)$ modélise le nombre de crapauds à l’instant $t$.

  1. Déterminer le nombre de crapauds présents dans le lac lors de l’introduction des truites.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 120]$ et on note $f′$ sa fonction dérivée.
    Montrer, en faisant apparaitre les étapes du calcul, que pour tout nombre réel $t$ appartenant à l’intervalle $[0; 120]$ on a : $$f'(t)=t(t-100)\e^{\frac{t}{50}}\times 8\times 10^{-4}$$
    $\quad$
  3. Étudier les variations de la fonction $f$ sur l’intervalle $[0; 120]$, puis dresser le tableau de variations de $f$ sur cet intervalle (on donnera des valeurs approchées au centième).
    $\quad$
  4. Selon cette modélisation :
    a. Déterminer le nombre de jours $J$ nécessaires afin que le nombre de crapauds atteigne son minimum. Quel est ce nombre minimum ?
    $\quad$
    b. Justifier que, après avoir atteint son minimum, le nombre de crapauds dépassera un jour $140$ individus.
    $\quad$
    c. À l’aide de la calculatrice, déterminer la durée en jour à partir de laquelle le nombre de crapauds dépassera $140$ individus.
    $\quad$

Partie II : Effet de la Chytridiomycose sur une population de têtards

Une des principales causes du déclin de cette espèce de crapaud en haute montagne est une maladie, la « Chytridiomycose », provoquée par un champignon.
Le chercheur considère que :

  • Les trois quarts des lacs de montagne des Pyrénées ne sont pas infectés par le champignon, c’est-à-dire qu’ils ne contiennent aucun têtard (larve du crapaud) contaminé.
  • Dans les lacs restants, la probabilité qu’un têtard soit contaminé est de $0,74$.

Le chercheur choisit au hasard un lac des Pyrénées, et y procède à des prélèvements.
Pour la suite de l’exercice, les résultats seront arrondis au millième lorsque cela est nécessaire.
Le chercheur prélève au hasard un têtard du lac choisi afin d’effectuer un test avant de le relâcher.
On notera $T$ l’évènement « Le têtard est contaminé par la maladie » et $L$ l’évènement « Le lac est infecté par le champignon ».
On notera $\conj{L}$ l’évènement contraire de $L$ et $\conj{T}$ l’évènement contraire de $T$.

  1. Recopier et compléter l’arbre de probabilité suivant en utilisant les données de l’énoncé :$\quad$
  2. Montrer que la probabilité $P(T )$ que le têtard prélevé soit contaminé est de $0,185$.
    $\quad$
  3. Le têtard n’est pas contaminé. Quelle est la probabilité que le lac soit infecté ?
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Géométrie de l’espace rapporté à un repère orthonormé.

On considère le cube $ABCDEFGH$ donné en annexe.
On donne trois points $I$, $J$ et $K$ vérifiant : $$\vect{EI}=\dfrac{1}{4}\vect{EH}, \quad \vect{EJ}=\dfrac{1}{4}\vect{EF},\quad \vect{BK}=\dfrac{1}{4}\vect{BF}$$
Les points $I$, $J$ et $K$ sont représentés sur la figure donnée en annexe, à compléter et à rendre avec la copie.
On se place dans le repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. Donner sans justification les coordonnées des points $I$, $J$ et $K$.
    $\quad$
  2. Démontrer que le vecteur $\vect{AG}$ est normal au plan $(IJK)$.
    $\quad$
  3. Montrer qu’une équation cartésienne du plan $(IJK)$ est $4x +4y +4z -5 = 0$.
    $\quad$
  4. Déterminer une représentation paramétrique de la droite $(BC)$.
    $\quad$
  5. En déduire les coordonnées du point $L$, point d’intersection de la droite $(BC)$ avec le plan $(IJK)$.
    $\quad$
  6. Sur la figure en annexe, placer le point $L$ et construire  l’intersection du plan $(IJK)$ avec la face $(BCGF)$.
    $\quad$
  7. Soit $M\left(\dfrac{1}{4};1;0\right)$. Montrer que les points $I$, $J$, $L$ et $M$ sont coplanaires.
    $\quad$

ANNEXE

$\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme.

Partie I

On considère la fonction h définie sur l’intervalle $]0 ; +\infty[$ par : $$h(x) = 1+\dfrac{\ln(x)}{x}$$

  1. Déterminer la limite de la fonction $h$ en $0$.
    $\quad$
  2. Déterminer la limite de la fonction $h$ en $+\infty$.
    $\quad$
  3. On note $h’$ la fonction dérivée de $h$. Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $$h'(x) =\dfrac{1-\ln(x)}{x^2}$$
    $\quad$
  4. Dresser le tableau de variations de la fonction $h$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  5. Démontrer que l’équation $h(x) = 0$ admet une unique solution $\alpha$ dans $]0 ; +\infty[$.
    Justifier que l’on a : $0,5 < \alpha < 0,6$.$\quad$

Partie II

Dans cette partie, on considère les fonctions $f$ et $g$ définies sur $]0 ; +\infty[$ par : $$f (x) = x \ln(x)− x;\quad g(x) = \ln(x)$$
On note $\mathscr{C}_f$ et $\mathscr{C_g}$ les courbes représentant respectivement les fonctions $f$ et $g$ dans un repère orthonormé $\Oij$.
Pout tout nombre réel $a$ strictement positif, on appelle :

  • $T_a$ la tangente à $\mathscr{C}_f$ en son point d’abscisse $a$ ;
  • $D_a$ la tangente à $\mathscr{C}_g$ en son point d’abscisse $a$.

Les courbes $\mathscr{C}_f$ et $\mathscr{C}g$ ainsi que deux tangentes $T_a$ et $D_a$ sont représentées ci-dessous.

On recherche d’éventuelles valeurs de $a$ pour lesquelles les droites $T_a$ et $D_a$ sont perpendiculaires.
Soit $a$ un nombre réel appartenant à l’intervalle $]0 ; +\infty[$.

  1. Justifier que la droite $D_a$ a pour coefficient directeur $\dfrac{1}{a}$.
    $\quad$
  2. Justifier que la droite $T_a$ a pour coefficient directeur $\ln(a)$.

On rappelle que dans un repère orthonormé, deux droites de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si et seulement si $mm’ = -1$.

  1. Démontrer qu’il existe une unique valeur de $a$, que l’on identifiera, pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Asie – sujet 2 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    f'(x)&=(2x-2)\e^x+\left(x^2-2x-1\right)\e^x \\
    &=\left(2x-2+x^2-2x-1\right)\e^x \\
    &=\left(x^2-3\right)\e^x\end{align*}$
    L’affirmation A est donc fausse.
    $f'(2)>0$ et $f(0)<0$ : l’affirmation B est donc fausse
    Réponse C
    $\quad$
  2. $\lim\limits_{x\to +\infty} \e^x=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=0$
    La droite d’équation $y=0$ est donc asymptote à la courbe représentant la fonction $f$.
    $\lim\limits_{x\to -\infty} \e^x=-\infty$ donc $\lim\limits_{x\to -\infty} f(x)=\dfrac{3}{5}$
    La droite d’équation $y=\dfrac{3}{5}$ est donc asymptote à la courbe représentant la fonction $f$.
    Réponse C
    $\quad$
  3. La fonction $f\dsec$ s’annule en changeant de signe à trois reprise.
    La courbe représentant la fonction $f$ possède donc trois points d’inflexion.
    Réponse B
    $\quad$
  4. $\left(u_n\right)$ est une suite définie de manière explicite par un polynôme du second degré dont le coefficient principal est $a=1>0$.
    La fonction du second degré associée possède un minimum, d’abscisse $\dfrac{17}{2}$.
    $\left(u_n\right)$ est donc minorée.
    Réponse A
    $\quad$
  5. Cette fonction renvoie le plus entier naturel $n$ tel que $u_n\pg 45$.
    Réponse ARemarque :dans les faits cette fonction ne renvoie aucun résultat car la suite $\left(u_n\right)$ est croissante et majorée par $20$. Il est donc impossible que $u_n\pg 45$ !
    $\quad$

Ex 2

Exercice 2 (5 points)

  1. On a $A(0;0;0)$, $C(1;1;0)$ et $D(0;1;0)$
    Par conséquent $K\left(\dfrac{1}{2};1;0\right)$
    Donc $\vect{AK}\left(\dfrac{1}{2};1;0\right)$ et $\vect{AL}\left(0;1;\dfrac{3}{2}\right)$.
    $\quad$
  2. a. On a $\vec{n}.\vect{AK}=3-3+0=0$ et $\vec{n}.\vect{AL}=0-3+3=0$.
    $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AKL)$.
    C’est par conséquent un vecteur normal au plan $(AKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(AKL)$ est donc de la forme $6x-3y+2z+d=0$.
    Le point $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Une équation cartésienne du plan $(AKL)$ est alors $6x-3y+2z=0$.
    $\quad$
    c. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Ainsi une représentation paramétrique de la droite $\Delta$ est $$\begin{cases} x=6t\\y=1-3t\\z=2t\end{cases} \quad,t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{3}{49}$, on constate que le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient à la droite $\Delta$.
    De plus
    $\begin{align*} 6\times \dfrac{18}{49}-3\dfrac{40}{49}+2\dfrac{6}{49}&=\dfrac{108}{49}-\dfrac{120}{49}+\dfrac{12}{49} \\
    &=0\end{align*}$
    Le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient donc également au plan $(AKL)$.
    Par conséquent $N$ a pour coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$.
    $\quad$
  3. a. L’aire de la base $ADK$ est
    $\begin{align*} \mathcal{A}&=\dfrac{AD\times DK}{2} \\
    &=\dfrac{1\times \dfrac{1}{2}}{2} \\
    &=\dfrac{1}{4}\end{align*}$
    Ainsi
    $\begin{align*} \mathcal{V}&=\dfrac{\mathcal{A}\times DL}{3} \\
    &=\dfrac{\dfrac{1}{4}\times \dfrac{3}{2}}{3} \\
    &=\dfrac{1}{8}\end{align*}$
    $\quad$
    b. La distance du point $D$ au plan $(AKL)$ est
    $\begin{align*} DN&=\sqrt{\left(\dfrac{18}{49}\right)^2+\left(\dfrac{40}{49}-1\right)^2+\left(\dfrac{6}{49}\right)^2} \\
    &=\sqrt{\dfrac{9}{49}} \\
    &=\dfrac{3}{7}\end{align*}$
    $\quad$
    c. On a
    $\begin{align*} \mathcal{V}=\dfrac{1}{8}&\ssi \dfrac{\mathcal{A}_{AKL}\times DN}{3}=\dfrac{1}{8} \\
    &\ssi \dfrac{3}{7}\mathcal{A}_{AKL}=\dfrac{3}{8} \\
    &\ssi \mathcal{A}_{AKL}=\dfrac{7}{8}\end{align*}$
    L’aire du triangle $AKL$ est donc $\dfrac{7}{8}$.
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. Il y a $\dbinom{9}{3}=84$ façons différentes de positionner les trois cœurs.
    $\quad$
  2. Il y a $3$ façons de placer les cœurs sur une ligne pour gagner.
    Il y a $3$ façons de placer les cœurs sur une colonne pour gagner.
    Il y a $2$ façons de placer les cœurs sur une diagonale pour gagner.
    La probabilité qu’un ticket soit gagnant est donc $\dfrac{3+3+2}{84}=\dfrac{2}{21}$.
    $\quad$
  3. On appelle $G$ la variable aléatoire égale au gain algébrique du joeur.
    $G$ ne prend donc que $2$ valeurs $4$ et $-1$.
    $p(G=4)=\dfrac{2}{21}$ et $p(G=-1)=\dfrac{19}{21}$.
    L’espérance de $G$ est :
    $\begin{align*} E(G)&=4\times \dfrac{2}{21}+(-1)\times \dfrac{19}{21} \\
    &=-\dfrac{11}{21}\\
    &<0\end{align*}$
    Le jeu est donc défavorable au joueur.
    $\quad$
  4. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : le joueur gagne ou le joueur perd.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{21}$.
    $\quad$
    b. $p(X=5)=\dbinom{20}{5}\left(\dfrac{2}{21}\right)^5\left(\dfrac{19}{21}\right)^{15} \approx 0,027$.
    $\quad$
    c. On a
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-\left(\dfrac{19}{21}\right)^{20} \\
    & \approx 0,865\end{align*}$
    La probabilité qu’il y ait au moins un gagnant est environ égale à $0,865$.
    $\quad$

 

 

Ex A

Exercice A (5 points)

Partie I : modèle discret

  1. On a
    $\begin{align*} u_1&=u_0+0,05\left(20-u_0\right) \\
    &=1+0,05\times 19\\
    &=1,95\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}&=u_n+0,05\left(20-u_n\right) \\
    &=u_n+1-0,05u_n \\
    &=0,95u_n+1\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ on a $v_n=20-u_n$ soit $u_n=20-v_n$.
    $\begin{align*} v_{n+1}&=20-u_{n+1} \\
    &=20-0,95u_n-1 \\
    &=19-0,95u_n \\
    &=19-0,95\left(20-v_n\right) \\
    &=19-19+0,95v_n\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=20-1=19$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $v_n=19\times 0,95^n$.
    Par conséquent $u_n=20-19\times 0,95^n$.
    $\quad$
  3. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 0,95^n=0$ et $\lim\limits_{n\to +\infty}u_n=20$.
    $\quad$

Partie II : modèle continu

  1. La fonction $L$ est dérivable sur $[0;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $t\pg 0$ on a d’une part :
    $\begin{align*} L'(t)&=-19\times (-0,05)\e^{-0,05t}\\
    &=0,95\e^{-0,05t}\end{align*}$
    D’autre part :
    $\begin{align*} 0,05\left(20-L(t)\right)&=0,05\left(20-20+19\e^{-0,05t}\right) \\
    &=0,05 \times 19\e^{-0,05t} \\
    &=0,95\e^{-0,05t}\end{align*}$
    Ainsi $L$ est solution de $(E)$.
    De plus $L(0)=20-19=1$.
    $\quad$
  2. a. On a $L'(0)=0,95$ et $L'(5)=0,95\e^{-0,25} \approx 0,74$.
    Ainsi $L'(0)>L'(5)$
    $\quad$
    b. $\lim\limits_{t\to +\infty} -0,05t=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{t\to +\infty} L'(t)=0$.
    Ce résultat est cohérent avec la description du modèle de croissance exposé au début de l’exercice : le bambou croît de moins en moins rapidement et atteint finalement une taille de $20$ mètres. Au début de l’observation il mesure bien $1$ mètre.
    $\quad$

Ex B

Exercice B (5 points)

Partie I

  1. On a pu saisir la formule $=B2-\ln(B2-1)$.
    $\quad$
  2. Il semblerait que la suite $\left(u_n\right)$ soit décroissante et converge vers $2$.
    $\quad$

Partie II

  1. $\lim\limits_{x\to 1} x-1=0$ et $\lim\limits_{X\to 0} \ln(X)=-\infty$
    Donc $\lim\limits_{x\to 1} f(x)=+\infty$.
    $\quad$
  2. a. $f$ est dérivable sur $]1;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $x>1$ on a
    $\begin{align*} f'(x)&=1-\dfrac{1}{x-1} \\
    &=\dfrac{x-1-1}{x-1} \\
    &=\dfrac{x-2}{x-1}\end{align*}$
    $\quad$
    b. Le signe de $f'(x)$ ne dépend que de celui de $x-2$.
    Or $x-2=0 \ssi x=2$ et $x-2>0 \ssi x>2$.
    On obtient donc le tableau de signes suivant :
    $\quad$$\quad$
    c. D’après la question précédente, la fonction $f$ admet $2$ pour minimum atteint pour $x=2$.
    Ainsi, pour tout réel $x\pg 2, ~f(x)\pg 2$.
    $\quad$

Partie III

  1. Initialisation : Si $n=0$ alors $u_0=10\pg 2$. La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n\in \N$.
    Donc $u_n\pg 2$.
    D’après la question précédente $u_{n+1}=f\left(u_n\right) \pg 2$.
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n\pg 2$.
    $\quad$
  2. Soit $n\in \N$
    $\begin{align*} u_{n+1}-u_n&= u_n-\ln\left(u_n-1\right)-u_n \\
    &=-\ln\left(u_n-1\right)\end{align*}$
    Or $u_n\pg 2$ donc $u_n-1\pg 1$ et $\ln\left(u_n-1\right)\pg 0$.
    Donc $u_{n+1}-u_n \pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $2$. Elle converge donc.
    $\quad$
  4. $\ell$ est donc solution de l’équation $f(x)=x$.
    Or
    $\begin{align*} f(x)=x&\ssi x-\ln(x-1)=x\\
    &\ssi -\ln(x-1)=0\\
    &\ssi x-1=1 \\
    &\ssi x=2\end{align*}$
    Par conséquent $\ell=2$.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

Cet exercice est un questionnaire à choix multiples (QCM)

Pour chaque question, trois affirmations sont proposées, une seule de ces affirmations est exacte.
Le candidat recopiera sur sa copie le numéro de chaque question et la lettre de la réponse choisie pour celle-ci.
AUCUNE JUSTIFICATION n’est demandée. Une réponse fausse ou l’absence de réponse n’enlève aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par $$f(x) = \left(x^2-2x-1\right)\e^x$$
    A. La fonction dérivée de $f$ est la fonction définie par $f'(x) = (2x-2)\e^x$.
    B. La fonction $f$ est décroissante sur l’intervalle $]-\infty;2]$.
    C. $\ds\lim\limits_{x \to -\infty} f(x) = 0$.
    $\quad$
  2. On considère la fonction $f$ définie sur $\R$ par $f(x) = \dfrac{3}{5 + \e^x}$.
    Sa courbe représentative dans un repère admet :
    A. une seule asymptote horizontale;
    B. une asymptote horizontale et une asymptote verticale;
    C. deux asymptotes horizontales.
    $\quad$
  3. On donne ci-dessous la courbe $\mathcal{C}_{f”}$ représentant la fonction dérivée seconde $f”$ d’une fonction $f$ définie et deux fois dérivable sur l’intervalle $[-3,5;6]$.
    $\quad$

    A. La fonction $f$ est convexe sur l’intervalle $[-3;3]$.
    B. La fonction $f$ admet trois points d’inflexion.
    C. La fonction dérivée $f’$ de $f$ est décroissante sur l’intervalle $[0;2]$.
    $\quad$

  4. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n = n^2-17n+20$.
    A. La suite $\left(u_n\right)$ est minorée.
    B. La suite $\left(u_n\right)$ est décroissante.
    C. L’un des termes de la suite $\left(u_n\right)$ est égal à $2~021$.
    $\quad$
  5. On considère la suite $\left(u_n\right)$ définie par $u_0 = 2$ et, pour tout entier naturel $n$, $u_{n+1} = 0,75u_n +5$.
    On considère la fonction « seuil » suivante écrite en Python :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() }:\\
    \quad \text{u} = 2\\
    \quad \text{n} = 0\\
    \quad \text{while u} < 45 :\\
    \qquad \text{u} = 0.75*u + 5\\
    \qquad \text{n} = \text{n} + 1\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Cette fonction renvoie :
    A. la plus petite valeur de $n$ telle que $u_n \pg 45$ ;
    B. la plus petite valeur de $n$ telle que $u_n < 45$ ;
    C. la plus grande valeur de $n$ telle que $u_n \pg 45$.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un pavé droit $ABCDEFGH$ tel que $AB = AD = 1$ et $AE = 2$, représenté ci- dessous.
Le point $I$ est le milieu du segment $[AE]$. Le point $K$ est le milieu du segment $[DC]$.
Le point $L$ est défini par: $\vect{DL} = \dfrac{3}{2}\vect{AI}$. $N$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.

 

 

On se place dans le repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AI}\right)$.
On admet que le point $L$ a pour coordonnées $\left(0;1;\dfrac{3}{2}\right)$.

  1. Déterminer les coordonnées des vecteurs $\vect{AK}$ et $\vect{AL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vect{n}$ de coordonnées $(6;-3;2)$ est un vecteur normal au plan $(AKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(AKL)$.
    $\quad$
    c. Déterminer un système d’équations paramétriques de la droite $\Delta$ passant par $D$ et perpendiculaire au plan $(AKL)$.
    $\quad$
    d. En déduire que le point $N$ de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.
    $\quad$

On rappelle que le volume $\mathcal{V}$ d’un tétraèdre est donné par la formule : $$\mathcal{V} = \dfrac{1}{3}\times (\text{aire de la base}) \times \text{hauteur}$$

  1. a. Calculer le volume du tétraèdre $ADKL$ en utilisant le triangle $ADK$ comme base.
    $\quad$
    b. Calculer la distance du point $D$ au plan $(AKL)$.
    $\quad$
    c. Déduire des questions précédentes l’aire du triangle $AKL$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Une société de jeu en ligne propose une nouvelle application pour smartphone nommée « Tickets coeurs! ».
Chaque participant génère sur son smartphone un ticket comportant une grille de taille $3 \times 3$ sur laquelle sont placés trois cœurs répartis au hasard, comme par exemple ci-dessous.

 

 

Le ticket est gagnant si les trois cœurs sont positionnés côte à côte sur une même ligne, sur une même colonne ou sur une même diagonale.

  1. Justifier qu’il y a exactement $84$ façons différentes de positionner les trois cœurs sur une grille.
    $\quad$
  2. Montrer que la probabilité qu’un ticket soit gagnant est égale à $\dfrac{2}{21}$.
    $\quad$
  3. Lorsqu’un joueur génère un ticket, la société prélève $1$ € sur son compte en banque. Si le ticket est gagnant, la société verse alors au joueur $5$ €. Le jeu est-il favorable au joueur?
    $\quad$
  4. Un joueur décide de générer $20$ tickets sur cette application. On suppose que les générations des tickets sont indépendantes entre elles.
    a. Donner la loi de probabilité de la variable aléatoire $X$ qui compte le nombre de tickets gagnants parmi les $20$ tickets générés.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X = 5)$.
    $\quad$
    c. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X \pg 1)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • Suites
  • Équations différentielles

Dans cet exercice, on s’intéresse à la croissance du bambou Moso de taille maximale $20$ mètres.
Le modèle de croissance de Ludwig von Bertalanffy suppose que la vitesse de croissance pour un tel bambou est proportionnelle à l’écart entre sa taille et la taille maximale.

Partie I : modèle discret

Dans cette partie, on observe un bambou de taille initiale $1$ mètre.
Pour tout entier naturel $n$, on note $u_n$ la taille, en mètre, du bambou $n$ jours après le début de l’observation. On a ainsi $u_0 = 1$.
Le modèle de von Bertalanffy pour la croissance du bambou entre deux jours consécutifs se traduit par l’égalité : $$u_{n+1} = u_n + 0,05\left(20-u_n\right)~~ \text{pour tout entier naturel } n$$

  1. Vérifier que $u_1 = 1,95$.
    $\quad$
  2. a. Montrer que pour tout entier naturel $n$, $u_{n+1} = 0,95u_n + 1$.
    $\quad$
    b. On pose pour tout entier naturel $n$, $v_n = 20-u_n$.
    Démontrer que la suite $\left(v_n\right)$ est une suite géométrique dont on précisera le terme initial $v_0$ et la raison.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $u_n = 20-19 \times 0,95^n$.
    $\quad$
  3. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II : modèle continu

Dans cette partie, on souhaite modéliser la taille du même bambou Moso par une fonction donnant sa taille, en mètre, en fonction du temps $t$ exprimé en jour.
D’après le modèle de von Bertalanffy, cette fonction est solution de l’équation différentielle $$(E) \qquad y’ = 0,05(20-y)$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0;+\infty[$ et $y’$ désigne sa fonction dérivée.
Soit la fonction $L$ définie sur l’intervalle $[0;+\infty[$ par $$L(t) = 20-19\e^{-0,05t}$$

  1. Vérifier que la fonction $L$ est une solution de $(E)$ et qu’on a également $L(0) = 1$.
    $\quad$
  2. On prend cette fonction $L$ comme modèle et on admet que, si on note $L’$ sa fonction dérivée, $L'(t)$ représente la vitesse de croissance du bambou à l’instant $t$.
    a. Comparer $L'(0)$ et $L'(5)$.
    $\quad$
    b. Calculer la limite de la fonction dérivée $L’$ en $+\infty$.
    Ce résultat est-il en cohérence avec la description du modèle de croissance exposé au début de l’exercice ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Suites, étude de fonction
  • Fonction logarithme

Soit la fonction $f$ définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$
On considère la suite $\left(u_n\right)$ de terme initial $u_0 = 10$ et telle que $u_{n+1} = f\left(u_n\right)$ pour tout entier naturel $n$.

Partie I :

La feuille de calcul ci-dessous a permis d’obtenir des valeurs approchées des premiers termes de la suite $\left(u_n\right)$.

$$\begin{array}{|c|c|c|}
\hline
&\phantom{12345}A\phantom{12345} &B\\
\hline
1 &n&u_n\\
\hline
2 &0&10\\
\hline
3& 1&7,802~775~42\\
\hline
4& 2&5,885~444~74\\
\hline
5& 3&4,299~184~42\\
\hline
6& 4&3,105~509~13\\
\hline
7& 5&2,360~951~82\\
\hline
8& 6&2,052~767~5\\
\hline
9& 7&2,001~345~09\\
\hline
10& 8&2,000~000~9\\
\hline
\end{array}$$

  1. Quelle formule a été saisie dans la cellule B3 pour permettre le calcul des valeurs approchées de $\left(u_n\right)$ par recopie vers le bas ?
    $\quad$
  2. À l’aide de ces valeurs, conjecturer le sens de variation et la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II :

On rappelle que la fonction $f$ est définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$

  1. Calculer $\lim\limits_{x \to 1} f(x)$. On admettra que $\lim\limits_{x \to + \infty} f(x) = +\infty$.
    $\quad$
  2. a. Soit $f’$ la fonction dérivée de $f$. Montrer que pour tout $x \in ]1; +\infty[$, $f'(x) = \dfrac{x-2}{x-1}$.
    $\quad$
    b. En déduire le tableau des variations de $f$ sur l’intervalle $]1;+\infty[$, complété par les limites.
    $\quad$
    c. Justifier que pour tout $x\pg 2$, $f(x) \pg 2$.
    $\quad$

Partie III :

  1. En utilisant les résultats de la partie II, démontrer par récurrence que $u_n \pg 2$ pour tout entier naturel $n$.
    $\quad$
  2. Montrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
  4. On admet que $\ell$ vérifie $f(\ell) = \ell$. Donner la valeur de $\ell$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 1 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $f$ est dérivable sur $]0;+\infty [$ puisque $f\dsec$ existe.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=\dfrac{2\e^{2x}\times x-\e^{2x}}{x^2} \\
    &=\dfrac{(2x-1)\e^{2x}}{x^2}\end{align*}$
    Réponse c
    $\quad$
  2. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $2x-1$.
    Or $2x-1>0 \ssi x>\dfrac{1}{2}$
    Par conséquent $f$ est strictement décroissante sur $\left]0;\dfrac{1}{2}\right]$ et strictement croissante sur $\left[\dfrac{1}{2};+\infty\right[$.
    Elle admet donc un minimum en $\dfrac{1}{2}$.
    $\quad$
    Remarque : On pouvait répondre à cette question en traçant la courbe représentant la fonction sur la calculatrice.
    $\quad$
    Réponse c
    $\quad$
  3. Pour tout réel $x\neq 0$ on a $\dfrac{\e^{2x}}{x}=2\times \dfrac{\e^{2x}}{2x}$.
    Or $\lim\limits_{x\to +2\infty} 2x=+\infty$ et, par croissances comparées, $\lim\limits_{X\to +\infty} \dfrac{\e^X}{X}=+\infty$.

    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^{2x}}{x}=+\infty$
    Réponse a
    $\quad$

  4. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $2x^2-2x+1$.
    Son discriminant est :
    $\Delta=(-2)^2-2\times 4\times 1=-4<0$.
    Le coefficient principal est $a=2>0$.
    Par conséquent $f\dsec(x)>0$ sur $]0;+\infty[$ et $f$ est convexe sur $]0;+\infty[$.
    Réponse b
    $\quad$

Ex 2

Exercice 2

PARTIE I

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(D\cap T)&=p(D)\times p_D(T)\\
    &=0,05\times 0,98\\
    &=0,049\end{align*}$
    La probabilité qu’une pièce choisie au hasard dans la production de la
    chaîne soit défectueuse et présente un test positif est égale à $0,049$.
    $\quad$
    b. $D$ et $\conj{D}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(D)\times p_D(T)+p\left(\conj{D}\right)\times p_{\conj{D}}(T)\\
    &=0,05\times 0,98+0,95\times 0,03\\
    &=0,077~5\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} p_T(D)&=\dfrac{p(T\cap D)}{p(T)} \\
    &=\dfrac{0,049}{0,077~5}\\
    &\approx 0,63\end{align*}$
    La valeur prédictive positive de ce test est environ égale à $0,63<0,95$.
    Ce test n’est donc pas efficace.
    $\quad$

PARTIE II

  1. On effectue $20$ tirages aléatoires, indépendants et identiques. À chaque tirage il n’y a que deux issues : $D$ et $\conj{D}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,05$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-0,95^{20} \\
    &\approx 0,64\end{align*}$
    La probabilité pour que cet échantillon contienne au moins une pièce défectueuse est environ égale à $0,64$.
    $\quad$
  3. L’espérance est $E(X)=20 \times 0,05=1$.
    Cela signifie qu’en moyenne il y a une pièce défectueuse par échantillon de $20$ pièces.
    $\quad$

Ex 3

Exercice 3

I – Premier modèle

$1,3-(-19)=20,3$. Cela signifie qu’à chaque minute la température augmente de $2,03$ °C.
Au bout de $25$ minutes, selon ce modèle, la température des gâteaux serait donc de $-19+25\times 2,03=31,75$ °C.
La température ambiante est de $25$ °C. Les gâteaux ne peuvent pas avoir une température supérieure à la température ambiante.
Ce modèle n’est donc pas pertinent.
$\quad$

II – Second modèle 

  1. Pour tout entier naturel $n$ on a :
    $\begin{align*} T_{n+1}&=T_n-0,06\left(T_n-25\right) \\
    &=T_n-0,06T_n+1,5\\
    &=0,94T_n+1,5\end{align*}$
    $\quad$
  2. On a donc $T_1=0,94\times (-19)+1,5\approx -16,4$
    $T_2=0,94 \times T_1+1,5 \approx -13,9$
    $\quad$
  3. Initialisation : Si $n=0$ alors $T_0=-19 \pp 25$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} T_{n+1}&=0,94T_n+1,5\\
    &\pp 0,94 \times 25+1,5 \\
    &\pp 25\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, on a $T_n\pp 25$.
    $\quad$
    Ce résultat était prévisible dans la mesure où, en se réchauffant à température ambiante, les gâteaux ne peuvent pas avoir une température supérieure à celle de la pièce.
    $\quad$
  4. Pour tout entier naturel $n$, $T_{n+1}-T_n=-0,06\times \left(T_n-25\right)$
    Or $T_n-25 \pp 0$. Donc $T_{n+1}-T_n\pg 0$.
    La suite $\left(T_n\right)$ est par conséquent croissante.
    $\quad$
  5. La suite $\left(T_n\right)$ est croissante et majorée par $25$. Elle est donc convergente.
    $\quad$
  6. a. Pour tout entier naturel $n$ on a
    $\begin{align*} U_{n+1}&=T_{n+1}-25 \\
    &=0,94T_n+1,5-25 \\
    &=0,94T_n-23,5 \\
    &=0,94\left(U_n+25\right)-23,5 \\
    &=0,94U_n+23,5-23,5\\
    &=0,94U_n\end{align*}$
    La suite $\left(U_n\right)$ est donc géométrique de raison $0,94$ et de premier terme $U_0=T_0-25=-44$.
    $\quad$
    b. Pour tout entier naturel $n$ on a donc $U_n=-44 \times 0,94^n$.
    Donc $T_n=U_n+25=-44\times 0,94^n+25$.
    $\quad$
    c. $-1<0,94<1$ donc $\lim\limits_{n\to +\infty} 0,94^n =0$
    Par conséquent $\lim\limits_{n\to +\infty} T_n=25$.
    Sur le long terme la température des gâteaux sera donc de $25$°C.
    $\quad$
  7. a. On a $T_{30}\approx 18$.
    La température des gâteaux est donc environ égale à $18$ °C au bout d’une demi-heure.
    $\quad$
    b. À l’aide de la calculatrice on trouve que $T_{17} \approx 9,6$ et $T_{18} \approx 10,6$. De plus la suite $\left(T_n\right)$ est croissante.
    Cécile doit donc attendre entre $17$ et $18$ minutes pour déguster son gâteau.
    $\quad$
    Remarque : Si on veut retrouver ce résultat par le calcul.
    $\begin{align*} T_n=10&\ssi -44\times 0,94^n+25=10 \\
    &\ssi -44\times 0,94^n=-15 \\
    &\ssi 0,94^n =\dfrac{15}{44} \\
    &\ssi n\ln(0,94)=\ln\left(\dfrac{15}{44}\right) \\
    &\ssi n=\dfrac{\ln\left(\dfrac{15}{44}\right) }{\ln(0,94)}\end{align*}$
    Or $\dfrac{\ln\left(\dfrac{15}{44}\right) }{\ln(0,94)}\approx 17,4$.
    $\quad$
    c. On obtient le programme suivant :
    $$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = -19} \\
    \hspace{1.5cm} \textbf{while } \text{T < 10} : \hspace{1cm} \\
    \hspace{2cm} \text{T = 0.94 * T + 1.5}  \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$
    $\quad$

 

 

Ex A

Exercice A

  1. La droite $d$ a pour vecteur directeur le vecteur $\vec{u}$ et passe par le point $0$.
    Une représentation paramétrique de la droite $d$ est donc $\begin{cases} x=t\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  2. a. On a
    $\begin{align*} AM^2&=(t-1)^2+(t-3)^2+2^2 \\
    &=t^2-2t+1+t^2-6t+9+4\\
    &=2t^2-8t+14\end{align*}$
    $\quad$
    b. Le coefficient principal de l’expression du second degré $2t^2-8t+14$ est $2>0$.
    Elle admet donc un minimum atteint pour $t=\dfrac{8}{2\times 2}=2$.
    Ainsi le point $M_0(2;2;0)$ est le point de la droite $d$ pour lequel $AM^2$ est minimal et donc pour lequel la distance $AM$ est minimale.
    $\quad$
  3. $\vect{AM_0}\begin{pmatrix} 1\\-1\\2\end{pmatrix}$
    Donc $\vect{AM_0}.\vec{u}=1-1+0=0$
    Ces deux vecteurs sont donc orthogonaux et les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. Le vecteur $\vec{u}$ est orthogonal au plan d’équation $z=0$. Les points $A’$ et $M_0$ appartiennent à ce plan. Par conséquent $\vec{u}.\vect{A’M_0}=0$.
    Le vecteur $\vec{u}$ est donc orthogonal aux vecteurs (non colinéaires) $\vect{A’M_0}$ et $\vect{AM_0}$.
    La droite $d$ est par conséquent orthogonale au plan $\left(AA’M_0\right)$.
    $M_0$ appartient à la droite $d$, droite qui passe par le point $O$..
    Le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$.
    $\quad$
  5. On a $AA’=2$ et $M_0A’=\sqrt{(2-1)^2+(2-3)^2+0^2}=\sqrt{2}$.
    De plus $OM_0=\sqrt{2^2+2^2}=\sqrt{8}$
    Ainsi le volume de la pyramide $OM_0A’A$ est :
    $\begin{align*} V&=\dfrac{1}{3}\times \dfrac{2\times \sqrt{2}}{2}\times \sqrt{8} \\
    &=\dfrac{4}{3}\end{align*}$
    $\quad$

Ex B

Exercice B

  1. Pour tout réel $x$ on a :
    $\begin{align*} u'(x)&=2x\e^x+x^2\times \e^x \\
    &=2x\e^x+u(x)\end{align*}$
    Par conséquent $u$ est une solution particulière de $(E)$.
    $\quad$
  2. a. Si $f $est solution de l’équation différentielle $(E)$ alors $g$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$ et
    $\begin{align*} g'(x)&=f'(x)-u'(x) \\
    &=f(x)+2x\e^x-\left(u(x)+2x\e^x\right) \\
    &=f(x)+2x\e^x-u(x)-2x\e^x\\
    &=f(x)-u(x)\\
    &=g(x) \end{align*}$
    $g$ est donc solution de l’équation différentielle $y’=y$.
    $\quad$
    b. Une solution de l’équation $y’=y$ est la fonction $g$ définie sur $\R$ par $g(x)=\e^x$.
    Ainsi, pour tout réel $x$,
    $\begin{align*} f(x)&=g(x)+u(x) \\
    &=\e^x+x^2\e^x\end{align*}$
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. et b. Pour tout réel $x$, on a d’après les calculs faits à la question 1.,  $u'(x)=(2+x)x\e^x$.
    Or $2+x=0 \ssi x=-2$ et $2+x>0 \ssi x>-2$.
    La fonction exponentielle est strictement positive sur $\R$.
    On obtient donc le tableau de signes et de variations suivant :
    $\quad$
    c. $u’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $u'(x)=2x\e^x+x^2\e^x$ donc
    $\begin{align*} u\dsec(x)&=2\e^x+2x\e^x+2x\e^x +x^2\e^x \\
    &=\left(2+4x+x^2\right)\e^x \end{align*}$
    Le signe de $u\dsec(x)$ ne dépend que de celui de $x^2+4x+2$.
    Son discriminant est $\Delta=4^2-2\times 4=8>0$.
    Ses racines sont donc $x_1=\dfrac{-4-\sqrt{8}}{2}=-2-\sqrt{2}$ et $x_2=-2+\sqrt{2}$.
    Le coefficient principal est $a=1>0$.
    Par conséquent $u\dsec(x)<0$ sur $\left]-2-\sqrt{2};-2+\sqrt{2}\right[$.
    Le plus grand intervalle sur lequel la fonction $u$ est concave est $\left[-2-\sqrt{2};-2+\sqrt{2}\right]$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

Soit $f$ la fonction définie pour tout nombre réel $x$ de l’intervalle $]0 ;+\infty[$ par:
$$f(x)=\dfrac{\e^{2 x}}{x}$$
On donne l’expression de la dérivée seconde $f\dsec$ de $f$, définie sur l’intervalle $] 0 ;+\infty[$ par:
$$f\dsec(x)=\dfrac{2 \e^{2 x}\left(2 x^{2}-2 x+1\right)}{x^{3}}$$

  1. La fonction $f’$, dérivée de $f$, est définie sur l’intervalle $] 0 ;+\infty[$ par ;
    a. $f'(x)=2 e^{2 x}$
    b. $f'(x)=\dfrac{\e^{2 x}(x-1)}{x^{2}}$
    c. $f'(x)=\dfrac{\e^{2 x}(2 x-1)}{x^{2}}$
    d. $f'(x)=\dfrac{\e^{2 x}(1+2 x)}{x^{2}}$
    $\quad$
  2. La fonction $f$ :
    a. est décroissante sur $] 0 ;+\infty[$
    b. est monotone sur $] 0 ;+\infty[$
    c. admet un minimum en $\dfrac{1}{2}$
    d. admet un maximum en $\dfrac{1}{2}$
    $\quad$
  3. La fonction $f$ admet pour limite en $+\infty$ :
    a. $+\infty$
    b. $0$
    c. $1$
    d. $\e^{2 x}$
    $\quad$
  4. La fonction $f$ :
    a. est concave sur $] 0$; $+\infty[$
    b. est convexe sur $] 0 ;+\infty[$
    c. est concave sur $\left] 0 ; \dfrac{1}{2}\right]$
    d. est représentée par une courbe admettant un point d’inflexion
    $\quad$

$\quad$

Exercice 2     5 points

Une chaîne de fabrication produit des pièces mécaniques. On estime que $5\%$ des pièces produites par cette chaîne sont défectueuses.

Un ingénieur a mis au point un test à appliquer aux pièces. Ce test a deux résultats possibles: « positif » ou bien « négatif ».

On applique ce test à une pièce choisie au hasard dans la production de la chaîne.

On note $p(E)$ la probabilité d’un événement $E$.

On considère les événements suivants:

  •  $D$ : « la pièce est défectueuse »;
  •  $T$ : « la pièce présente un test positif »;
  •  $\conj{D}$ et $\conj{T}$ désignent respectivement les évènements contraires de $D$ et $T$.

Compte tenu des caractéristiques du test, on sait que :

  • La probabilité qu’une pièce présente un test positif sachant qu’elle défectueuse est égale à $0,98$ ;
  • La probabilité qu’une pièce présente un test négatif sachant qu’elle n’est pas défectueuse est égale à $0,97$ .

Les parties I et II peuvent être traitées de façon indépendante.

PARTIE I

  1. Traduire la situation à l’aide d’un arbre pondéré.
    $\quad$
  2. a. Déterminer la probabilité qu’une pièce choisie au hasard dans la production de la chaîne soit défectueuse et présente un test positif.
    $\quad$
    b. Démontrer que : $p(T)=0,077~5$.
    $\quad$
  3. On appelle valeur prédictive positive du test la probabilité qu’une pièce soit défectueuse sachant que le test est positif. On considère que pour être efficace, un test doit avoir une valeur prédictive positive supérieure à $0,95$ . Calculer la valeur prédictive positive de ce test et préciser s’il est efficace.
    $\quad$

PARTIE II

On choisit un échantillon de $20$ pièces dans la production de la chaîne, en assimilant ce choix à un tirage avec remise. On note $X$ la variable aléatoire qui donne le nombre de pièces défectueuses dans cet échantillon. On rappelle que: $p(D)=0,05$.

  1. Justifier que $X$ suit une loi binomiale et déterminer les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité que cet échantillon contienne au moins une pièce défectueuse. On donnera un résultat arrondi au centième.
    $\quad$
  3. Calculer l’espérance de la variable aléatoire $X$ et interpréter le résultat obtenu.
    $\quad$

$\quad$

Exercice 3     6 points

Cécile a invite des amis à déjeuner sur sa terrasse. Elle a prévu en dessert un assortiment de gâteaux individuels qu’elle a achetés surgelés.

Elle sort les gâteaux du congélateur à $-19$ °C et les apporte sur la terrasse où la température ambiante est de $25$ °C.

Au bout de $10$ minutes la température des gâteaux est de $1,3$ °C.

I – Premier modèle

On suppose que la vitesse de décongélation est constante, c’est-à-dire que l’augmentation de la température des gâteaux est la même minute après minute.

Selon ce modèle, déterminer quelle serait la température des gâteaux $25$ minutes après leur sortie du congélateur.

Ce modèle semble-t-il pertinent?
$\quad$

II – Second modèle

On note $T_{n}$ la température des gâteaux, en degré Celsius, au bout de $n$ minutes après leur sortie du congélateur; ainsi $T_{0}=-19$.

On admet que pour modéliser L’évolution de la température, on doit avoir la relation suivante:
pour tout entier naturel $n$, $T_{n+1}-T_{n}=-0,06 \times\left(T_{n}-25\right)$.

  1. Justifier que, pour tout entier naturel $n$, on a: $T_{n+1}=0,94 T_{n}+1,5$.
    $\quad$
  2. Calculer $T_{1}$ et $T_{2}$. On donnera des valeurs arrondies au dixième.
    $\quad$
  3. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $T_{n} \pp 25$. En revenant a la situation étudiée, ce résultat était-il prévisible?
    $\quad$
  4. Etudier le sens de variation de la suite $\left(T_{n}\right)$.
    $\quad$
  5. Démontrer que la suite $\left(T_{n}\right)$ est convergente.
    $\quad$
  6. On pose, pour tout entier naturel $n, U_{n}=T_{n}-25$.
    a. Montrer que la suite $\left(U_{n}\right)$ est une suite géométrique dont on précisera la raison et le premier terme $U_{0}$.
    $\quad$
    b. En déduire que pour tout entier naturel $n, T_{n}=-44 \times 0,94^{n}+25$.
    $\quad$
    c. En déduire la limite de la suite $\left(T_{n}\right)$. Interpréter ce résultat dans le contexte de la situation étudiée.
    $\quad$
  7. a. Le fabricant conseille de consommer les gâteaux au bout d’une demi-heure a température ambiante après leur sortie du congélateur. Quelle est alors la température atteinte par les gâteaux? On donnera une valeur arrondie à l’entier le plus proche.
    $\quad$
    b. Cécile est une habituée de ces gâteaux, qu’elle aime déguster lorsqu’ils sont encore frais, à la température de $10$ °C. Donner un encadrement entre deux entiers consécutifs du temps en minutes après lequel Cécile doit déguster son gâteau.
    $\quad$
    c. Le programme suivant, écrit en langage Python, doit renvoyer après son exécution la plus petite valeur de l’entier $n$ pour laquelle $T_{n} \pg  10$.$$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = } \ldots\ldots \\
    \hspace{1.5cm} \textbf{while } \text{T }\ldots\ldots : \hspace{1cm} \\
    \hspace{2cm} \text{T = } \ldots\ldots \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$Recopier ce programme sur la copie et compléter les lignes incomplètes afin que le programme renvoie la valeur attendue.
    $\quad$

$\quad$

Exercice au chois du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
II indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer le choix, les principaux domaines abordés sont indiqués en début de chaque exercice.

Exercice A

Principaux domaines abordés:

  • Géométrie de l’espace rapporté à un repère orthonormé;
  • orthogonalité dans l’espace.

Dans un repère orthonormé $\Oijk$ on considère :

  • le point $A$ de coordonnées $(1 ; 3 ; 2)$,
  • le vecteur $\vec{u}$ de coordonnées $\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}$,
  • la droite $d$ passant par l’origine $O$ du repère et admettant pour vecteur directeur $\vec{u}$.

 

Le but de cet exercice est de déterminer le point de $d$ le plus proche du point $A$ et d’étudier quelques propriétés de ce point.

On pourra s’appuyer sur la figure ci-contre pour raisonner au fur et à mesure des questions.

  1. Déterminer une représentation paramétrique de la droite $d$.
    $\quad$
  2. Soit $t$ un nombre réel quelconque, et $M$ un point de la droite $d$, le point $M$ ayant pour coordonnées $(t ; t ; 0)$.
    a. On note $AM$ la distance entre les points $A$ et $M$. Démontrer que :$$AM^2=2 t^{2}-8 t+14$$
    $\quad$
    b. Démontrer que le point $M_0$ de coordonnées $(2 ; 2 ; 0)$ est le point de la droite $d$ pour lequel la distance $AM$ est minimale. On admettra que la distance $AM$ est minimale lorsque son carré $AM^2$ est minimal.
    $\quad$
  3. Démontrer que les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. On appelle $A’$ le projeté orthogonal du point $A$ sur le plan d’équation cartésienne $z=0$. Le point $A’$ admet donc pour coordonnées $(1 ; 3 ; 0)$.
    Démontrer que le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$, origine du repère.
    $\quad$
  5. Calculer le volume de la pyramide $OM_0A’A$.
    On rappelle que le volume d’une pyramide est donné par: $V=\dfrac{1}{3} \mathcal{B} h$, où $\mathcal{B}$ est l’aire d’une base et $h$ est la hauteur de la pyramide correspondant à cette base.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés:

  • Équations différentielles;
  • fonction exponentielle.

On considère l’équation différentielle $(E): y’=y+2 x \e^{x}$.

On cherche l’ensemble des fonctions définies et dérivables sur l’ensemble $\R$ des nombres réels qui sont solutions de cette équation.

  1. Soit $u$ la fonction définie sur $\R$ par $u(x)=x^{2} \e^{x}$. On admet que $u$ est dérivable et on note $u’$ sa fonction dérivée. Démontrer que $u$ est une solution particulière de $(E)$.
    $\quad$
  2. Soit $f$ une fonction définie et dérivable sur $\R$. On note $g$ la fonction définie sur $\R$ par :$$g(x)=f(x)-u(x)$$
    a. Démontrer que si la fonction $f$ est solution de l’équation différentielle $(E)$ alors la fonction $g$ est solution de l’équation différentielle : $y’=y$. On admet que la réciproque de cette propriété est également vraie.
    $\quad$
    b. À l’aide de la résolution de l’équation différentielle $y’=y$, résoudre l’équation différentielle $(E)$.
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. Étudier le signe de $u'(x)$ pour $x$ variant dans $\R$.
    $\quad$
    b. Dresser le tableau de variations de la fonction $u$ sur $\R$ (les limites ne sont pas demandées).
    $\quad$
    c. Déterminer le plus grand intervalle sur lequel la fonction $u$ est concave.
    $\quad$

$\quad$