E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

L’annexe est à rendre avec la copie

Soit la fonction $f$ définie pour tout réel $x$ par : $f(x)=0,1+0,9x^2-x^3$.

  1. Justifier que pour tout réel $x$, $f'(x)=x(1,8-3x)$.
    $\quad$
  2. a. Calculer $f(1)$ et $f'(1)$.
    $\quad$
    b. En déduire une équation de la tangente à la courbe de $f$ au point d’abscisse $1$.
    $\quad$
  3. La représentation graphique de la fonction $f$ est donnée en annexe.
    a. Donner les variations de la fonction $f$ par lecture graphique.
    $\quad$
    b. En utilisant les résultats de la question 2., construire sur ce graphique la tangente à la courbe de la fonction $f$ au point d’abscisse $1$.
    $\quad$

Annexe

$\quad$

$\quad$

Correction Exercice

  1. Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=0,9\times 2x-3x^2 \\
    &=1,8x-3x^2\\
    &=x(1,8-3x)\end{align*}$
    $\quad$
  2. a. On a $f(1)=0,1+0,9-1=0$
    $f'(1)=1\times (1,8-3)=-1,2$
    $\quad$
    b. Une équation de la tangente à la courbe représentant la fonction $f$ au point d’abscisse $1$ est de la forme $y=f'(1)(x-1)+f(1)$
    C’est-à-dire $y=-1,2(x-1)$ ou $y=-1,2x+1,2$.
    $\quad$
  3. a. Graphiquement, il semblerait que la fonction $f$ soit :
    – strictement décroissante sur $]-\infty;0]$;
    – strictement croissante sur $[0;0;6]$
    – strictement décroissante sur $[0,6;+\infty[$.
    $\quad$
    b. Une équation de cette tangente est $y=-1,2x+1,2$
    Si $x=0$ alors $y=1,2$
    Si $x=1$ alors $y=0$
    Cette droite passe donc par les points de coordonnées $(0;1,2)$ et $(1;0)$.

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Une baisse de $10\%$ suivie d’une baisse de $20\%$ correspond à une baisse globale de $\ldots$
    $\quad$
    Correction Question 2

    Le coefficient multiplicateur associé à cette évolution est :
    $\begin{align*} m&=\left(1-\dfrac{10}{100}\right)\times \left(1-\dfrac{20}{100}\right)\\
    &=0,9\times 0,8\\
    &=0,72\\
    &=1-0,28\end{align*}$
    Il s’agit donc d’une baisse globale de $28\%$.
    $\quad$

    [collapse]

    $\quad$
  2. La forme décimale de $\frac{7}{4}\times 10^{-3}$ est
    $\quad$
    Correction Question 2

    $\begin{align*} \dfrac{7}{4}\times 10^{-3}&=1,75\times 10^{-3} \\
    &=0,001~75\\
    \end{align*}$
    $\quad$

    [collapse]

    $\quad$
  3. La fraction irréductible égale à $1-\left(\dfrac{2}{3}\right)^2$ est :
    $\quad$
    Correction Question 3

    $\begin{align*} 1-\left(\dfrac{2}{3}\right)^2&=1-\dfrac{4}{9} \\
    &=\dfrac{5}{9}\end{align*}$
    $\quad$

    [collapse]

    $\quad$

Une série statistique est résumée à l’aide du diagramme en boîtes ci-dessous, utilisez-le pour répondre aux questions 4 et 5.

  1. L’écart interquartile de cette série vaut
    $\quad$
    Correction Question 4

    D’après le graphique, l’écart interquartile vaut $55-30=25$.
    $\quad$

    [collapse]

    $\quad$
  2. Le pourcentage des valeurs de cette série comprises entre $30$ et $60$ est de :
    $\quad$
    Correction Question 5

    D’après le graphique, le premier quartile est $Q_1=30$ et le maximum vaut $60$.
    Ainsi $75\%$ des valeurs de cette série sont comprises entre $30$ et $60$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$
  3. Résoudre l’équation $3x-10=x+2$.
    $\quad$
    Correction Question 6

    $\begin{align*} 3x-10=x+2 &\ssi 3x-x=2+10\\
    &\ssi 2x=12\\
    &\ssi x=6\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  4. Développer l’expression $(3x-2)^2$.
    $\quad$
    Correction Question 7

    $\begin{align*} (3x-2)^2&=(3x)^2-2\times 3x\times 2+2^2 \\
    &=9x^2-12x+4\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  5. Factoriser l’expression $x^3+5x$.
    $\quad$
    Correction Question 8

    $x^3+5x=x\left(x^2+5\right)$
    $\quad$

    [collapse]

    $\quad$
  6. Tracer la droite d’équation $y=-2x+3$ dans le repère ci-dessous

    $\quad$
    Correction Question 9

    Si $x=0$ alors $y=-2\times 0+3=3$. Le point $A$ de coordonnées $(0;3)$ appartient donc à la droite $\Delta$.
    Si $x=2,5$ alors $y=-2\times 2,5+3=-2$. Le point $B$ de coordonnées $(2,5;-2)$ appartient à la droite $\Delta$.
    $\quad$

    [collapse]

    $\quad$
  7. Dans un repère, on donne $A (5 ; 8)$ et $B (1 ; 0)$, le coefficient directeur de la droite $(AB)$ est :
    $\quad$
    Correction Question 10

    $A$ et $B$ ont des abscisses différentes.
    Le coefficient directeur de la droite $(AB)$ est donc :
    $\begin{align*} m&=\dfrac{8-0}{5-1} \\
    &=\dfrac{8}{4}\\
    &=2\end{align*}$
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Le but de cet exercice est d’étudier et de tracer la fonction $f$ définie, pour tout $x$ de l’intervalle $[-1 ; 10]$, par $f(x) = -0,1x^2+1,05x+1,15$.

  1. Compléter le tableau de valeurs fourni en annexe.
    $\quad$
  2. On note $f’$ la fonction dérivée de $f$. Pour tout $x$ de l’intervalle $[-1 ; 10]$, justifier que l’expression de $f'(x)$ est donnée par : $f'(x)=-0,2x+1,05$.
    $\quad$
  3. Etudier le signe de $f'(x)$ sur l’intervalle $[-1 ; 10]$.
    En déduire le tableau de variations de la fonction $f$ sur $[-1 ; 10]$.
    $\quad$
  4. Déterminer la valeur de $f'(-1)$ puis en déduire une équation de la tangente $T$ à la courbe représentative de $f$ au point d’abscisse $-1$.
    $\quad$
  5. Dans le repère fourni en annexe, tracer $T$ puis la courbe représentative de la fonction $f$ en utilisant les résultats des questions précédentes.
    $\quad$

Annexes

$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
x&-1&0&1&2&3&4&6&8&10\\
\hline
f(x)&0&&2,1&2,85&&3,75&&&1,65\\
\hline
\end{array}$$

$\quad$


$\quad$

Correction Exercice

  1. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
    \hline
    x&-1&0&1&2&3&4&6&8&10\\
    \hline
    f(x)&0&1,15&2,1&2,85&3,4&3,75&3,85&3,15&1,65\\
    \hline
    \end{array}$$
    $\quad$
  2. Pour tout $x$ de l’intervalle $[-1;10]$ on a
    $\begin{align*} f'(x)&=-0,1\times 2x+1,05 \\
    &=-0,2x+1,05\end{align*}$
    $\quad$
  3. $f'(x)=0 \ssi -0,2x+1,05=0 \ssi -0,2x=-1,05 \ssi x=5,25$
    $f'(x)>0 \ssi -0,2x+1,05>0 \ssi -0,2x>-1,05 \ssi x<5,25$
    On obtient alors le tableau de variations suivant :
    $\quad$
  4. On a $f'(-1)=1,25$
    Une équation de la tangente $T$ est donc $y=1,25\left(x-(-1)\right)+0$ soit $y=1,25(x+1)$.
    $\quad$
  5. On obtient donc le graphique suivant :

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence