E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

On considère la fonction définie sur $\R$ par $f(x)=-x^2-x+6$. On admet que l’une des quatre courbes ci-dessous représente la fonction $f$. Laquelle?

$\quad$

Correction Question 1

Le coefficient principal de cette fonction du second degré est $a=-1<0$.
On exclut donc les propositions a. et b.
L’abscisse du sommet de la parabole est :
$\begin{align*} x_S&=-\dfrac{b}{2a} \\
&=-\dfrac{-1}{-2}\\
&=-\dfrac{1}{2}\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On pose pour tout réel $x$ : $A(x)=\e^{2x}$. On a alors, pour tout $x\in \R$ :

a. $A(x)=2\e^x$
b. $A(x)=\e^{x^2}$
c. $A(x)=\e^x+\e^2$
d. $A(x)=\left(\e^x\right)^2$

$\quad$

Correction Question 2

Pour tout réel $x$ on a $\left(\e^x\right)^2=\e^{2x}$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Le plan est muni d’un repère orthonormé.
Les droites d’équations $2x+y+1=0$ et $3x-2y+5=0$

a. sont sécantes en $A(1 ; 1)$.
b. sont sécantes en $B(1 ; -1)$.
c. sont sécantes en $C(-1 ; 1)$.
d. ne sont pas sécantes.

$\quad$

Correction Question 3

Un vecteur directeur de la droite d’équation $2x+y+1=0$ est $\vec{u}\begin{pmatrix}-1\\2\end{pmatrix}$.
Un vecteur directeur de la droite d’équation $3x-2y+5=0$ est $\vec{v}\begin{pmatrix}2\\3\end{pmatrix}$.
Ces deux vecteurs ne sont clairement pas colinéaires. Les droites sont donc sécantes.

On a $2\times (-1)+1+1=0$ et $3\times (-1)-2\times 1+5=0$
Le point $C(-1;1)$ appartient donc aux deux droites.

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Le plan est muni d’un repère orthonormé.
Les droites d’équations $x+3y-5=0$ et $3x-y+6=0$ sont :

a. pependiculaires.
b. sécantes non perpendiculaires.
c. parallèles.
d. confondues.

$\quad$

Correction Question 4

Un vecteur directeur de la droite d’équation $x+3y-5=0$ est $\vec{u}\begin{pmatrix}-3\\1\end{pmatrix}$.
Un vecteur directeur de la droite d’équation $3x-y+6=0$ est $\vec{v}\begin{pmatrix}1\\3\end{pmatrix}$.

Or :
$\begin{align*} \vec{u}.\vec{v}&=-3\times 1+1\times 3\\
&=0\end{align*}$
Les deux vecteurs sont orthogonaux.
Par conséquent les droites sont perpendiculaires.

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction Python ci-dessous :
$$\begin{array}{|l|}
\hline
\text{def suite(n) :}\\
\hspace{0.5cm}\text{u=2}\\
\hspace{0.5cm}\text{k=0}\\
\hspace{0.5cm}\text{while k<n :}\\
\hspace{1cm}\text{u=u+k}\\
\hspace{1cm}\text{k=k+1}\\
\hspace{0.5cm}\text{return u}\\
\hline
\end{array}$$
Quelle valeur renvoie l’appel $\text{suite(5)}$?

a. $5$
b. $8$
c. $12$
d. $17$

$\quad$

Correction Question 5

Voici les différentes valeurs prises par les variables $u$ et $k$.
$\begin{array}{|c|c|c|c|c|c|c|}
\hline
u&2&2&3&5&8&12\\
\hline
k&0&1&2&3&4&5\\
\hline
\end{array}$

L’appel $\text{suite(5)}$ renvoie donc la valeur $12$.

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend cinq questions indépendantes.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Sur la figure ci-dessous, nous avons tracé dans un repère orthonormé la courbe représentative $\mathcal{C}$ d’une fonction $f$ dérivable sur $\R$ et la tangente à $\mathcal{C}$ au point d’abscisse $4$.
Cette tangente est représentée par la droite $\mathcal{D}$ . On note $f’$ la fonction dérivée de la fonction $f$.

Le réel $f'(4)$ est égal à :

a. $-1$
b. $-2$
c. $7$
d. $1$

$\quad$

Correction Question 1

Le réel $f'(4)$ est le coefficient directeur de la droite $\mathcal{D}$. Cette droite passe par les points $A(4;-1)$ et $B(3;1)$
Donc :
$\begin{align*} f'(4)&=\dfrac{1-(-1)}{3-4} \\
&=-2\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

Soit $f$ la fonction définie sur $\R$ par $f(x)=x^3-2x^2+1$. On admet que $f$ est une fonction dérivable sur $\R$. Dans un repère, une équation de la tangente à la courbe représentative de la fonction $f$ au point d’abscisse $1$ est :

a. $y=-1$
b. $y=-x$
c. $y=-x+1$
d. $y=x$

$\quad$

Correction Question 2

Une équation de cette tangente est de la forme $y=f'(1)(x-1)+f(1)$
Pour tout réel $x$ on a
$\begin{align*} f'(x)&=3x^2-2\times 2x \\
&=3x^2-4x\end{align*}$
Ainsi $f(1)=0$ et $f'(1)=-1$
Une équation de la tangente est donc $y=-(x-1)$ soit $y=-x+1$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

Pour tout réel $x$, $\dfrac{\e^x\times \e^{-3x}}{\e^{-x}}$ est égal à :

a. $\e^{-x}$
b. $\e^{3x}$
c. $\e^{-3x}$
d. $\e^x$

$\quad$

Correction Question 3

Pour tout réel $x$ on a
$\begin{align*} \dfrac{\e^x\times \e^{-3x}}{\e^{-x}}&=\dfrac{\e^{x-3x}}{\e^{-x}} \\
&=\dfrac{\e^{-2x}}{\e^{-x}} \\
&=\e^{-2x-(-x)}\\
&=\e^{-2x+x}\\
&=\e^{-x}\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $f$ une fonction polynôme du second degré dont la courbe représentative dans un repère orthonormé est donnée ci-dessous.

Pour tout réel $x$, une expression de $f(x)$ est :

a. $f(x)=x^2+x-2$
b. $f(x)=-x^2-4$
c. $f(x)=2x^2+2x-4$
d. $f(x)=-3x^2-3x+6$

$\quad$

Correction Question 4

$\quad$

Question 5

La fonction est donc d’abord décroissante. Son coefficient principal est donc positif. On élimine donc les propositions b. et d. .
On lit que $f(0)=-4$
Par conséquent $f(x)=2x^2+2x-4$

Réponse c

$\quad$

[collapse]

L’ensemble $S$ des solutions de l’inéquation d’inconnue $x\in \R$ : $-x^2-2x+8>0$ est :

a. $S=[-4;2]$
b. $S=]-4;2[$
c. $S=]-\infty;-4[\cup]2;+\infty[$
d. $\lbrace -4;2\rbrace $

$\quad$

Correction Question 5

Les racines du polynômes $-x^2-2x+8$ sont $-4$ et $2$.
Le coefficient principal de ce polynôme du second degré est $a=-1<0$.
L’ensemble $S$ des solutions de l’inéquation $-x^2-2x+8>0$ est donc $]-4;2[$.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiples (QCM). Les cinq questions sont indépendantes. Pour chacune des questions, une seule des quatre réponses est exacte.
Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse exacte. Aucune justification n’est demandée. Une réponse exacte rapporte un point, une réponse fausse ou une absence de réponse ne rapporte ni n’enlève aucun point.

Question 1

$\left(u_n\right)$ est une suite arithmétique telle que $u_4=3$ et $u_{10}=18$. On peut affirmer que :

a. $u_0=7$
b. $u_7=20,5$
c. $u_{12}=23$
d. $u_{14}=-28$

$\quad$

Correction Question 1

$\left(u_n\right)$ est une suite arithmétique de raison $r$.
On a
$\begin{align*} u_{10}=u_4+6r &\ssi 18=3+6r \\
&\ssi 6r=15\\
&\ssi r=2,5\end{align*}$
Donc
$\begin{align*} u_{12}&=u_{10}+2r\\
&=18+2\times 2,5\\
&=23\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

$2+3+4+\ldots+999+1~000$ est égal à :

a. $500~500$
b. $498~999$
c. $499~000$
d. $500~499$

$\quad$

Correction Question 2

On a
$\begin{align*} S&=2+3+4+\ldots +999+1~000 \\
&=1+2+3+\ldots + 1~000-1\\
&=\dfrac{1~000\times 1~001}{2}-1\\
&=500~499\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

$\left(v_n\right)$ est la suite géométrique de raison $0,3$ telle que $v_0=-3$. On conjecture que la suite $\left(v_n\right)$ a pour limite :

a. $0$
b. $+\infty$
c. $-\infty$
d. $-3$

$\quad$

Correction Question 3

On a $v_0=-3$, $v_1=-0,9$, $v_2=-0,27$ et $v_3=-0,081$
On peut donc conjecturer que $\lim\limits_{n\to +\infty} v_n=0$.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

$f$ est ka fonction définie sur $\R$ par $f(x)=-2(x+2)^2-3$. On peut affirmer qu’elle est :

a. décroissante sur $]-\infty;+\infty[$
b. décroissante sur $]-2;+\infty[$
c. croissante sur $]-\infty;2[$
d. décroissante sur $]-3;+\infty[$

$\quad$

Correction Question 4

$f$ est une fonction du second degré dont le sommet a pour abscisse $-2$.
Le coefficient principal est $a=-2<0$.
La fonction $f$ est donc strictement décroissante sur l’intervalle $]-2;+\infty[$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

L’ensemble des solutions de l’inéquation $x^2-5x+6<0$ est

a. $]-\infty;2[\cup]3;+\infty[$
b. $]-\infty;-1[\cup]6;+\infty[$
c. $]2;3[$
c. $]-1;6[$

$\quad$

Correction Question 5

Le discriminant du polynôme du second degré est :
$\begin{align*}\Delta&=(-5)^2-4\times \times 6\\
&=1\\
&>0\end{align*}$
Les racines du polynômes sont :
$\begin{align*} x_1&=\dfrac{5-\sqrt{1}}{2}\\
&=2\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{5+\sqrt{1}}{2}\\
&=3\end{align*}$
Le coefficient principal du polynôme est $a=1>0$.
Ainsi les solutions de l’inéquation $x^2-5x+6<0$ est $]2;3[$.

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Une entreprise fabrique $q$ milliers d’objets, $q\in [1; 20]$. Le coût total de fabrication, exprimé en euros en fonction de $q$, est donné par l’expression : $$C(q)=q^3-18q^2+750q+200$$

  1. a. Calculer le coût total de fabrication de $5~000$ objets.
    $\quad$
    b. Déterminer le coût moyen de fabrication d’un millier d’objets lorsqu’on fabrique $5~000$ objets.
    $\quad$
  2. Le coût moyen $C_M(q)$ de fabrication de $q$ milliers d’objets, exprimé en euros, est donné par l’expression : $$C_M(q)=\dfrac{C(q)}{q}=q^2-18q+750+\dfrac{200}{q}$$
    a. On note $C_M’$ la fonction dérivée, sur l’intervalle $[1; 20]$, de la fonction $C_M$.
    Montrer que, pour tout $q\in [1; 20]$, $$C_M'(q)=\dfrac{2(q-10)\left(q^2+q+10\right)}{q^2}$$
    $\quad$
    b. Étudier le signe de $C_M’$ et dresser le tableau de variation de la fonction $C_M$ sur l’intervalle $[1; 20]$.
    $\quad$
    c. Quel est le coût moyen minimal et pour quelle quantité d’objets est-il obtenu ?
    $\quad$

$\quad$

Correction Exercice

  1. a. On a :
    $\begin{align*} C(5)&=5^3-18\times 5^2+750\times 5+200\\
    &=3~625\end{align*}$
    Le coût total de fabrication de $5~000$ objets est de $3~625$ euris.
    $\quad$
    b. $\dfrac{C(5)}{5}=725$.
    Le coût moyen de fabrication d’un millier d’objets lorsqu’on fabrique $5~000$ objets est de $725$ euros.
    $\quad$
  2. a. La fonction $C_M$ est dérivable sur l’intervalle $[1;20]$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $q\in[1;20]$ on a :
    $\begin{align*} C_M'(q)&=2q-18+200\times \left(-\dfrac{1}{q^2}\right) \\
    &=\dfrac{2q^3-18q^2-200}{q^2}\end{align*}$
    Or :
    $\begin{align*} &2(q-10)\left(q^2+q+10\right)\\
    =~&(2q-20)\left(q^2+q+10\right)\\
    =~&2q^3+2q^2+20q-20q^2-20q-200\\
    =~&2q^3-18q^2-200\end{align*}$
    Ainsi $C_M'(q)=\dfrac{2(q-10)\left(q^2+q+10\right)}{q^2}$.
    $\quad$
    b. Un carré étant positif, le signe de $C_M'(q)$ ne dépend que de celui de $(q-10)\left(q^2+q+10\right)$.
    $q-10=0 \ssi q=10$ et $q-10>0 \ssi q>10$
    Le discriminant de $q^2+q+10$ est :
    $\begin{align*} \Delta&=1^2-4\times 1\times 10\\
    &=-39\\
    &<10\end{align*}$
    Le coefficient principal du polynôme du second degré est $a=1>0$.
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. Le coût moyen est minimal lorsque l’entreprise fabrique $10~000$ objets et vaut alors $690$ euros.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend cinq questions. Pour chacune des questions, une seule des quatre
réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans
réponse n’apporte, ni ne retire aucun point.

Question 1

On considère la fonction $f$ définie sur $\R$ par $f(x)=2x^2+6x-8$.
Parmi les propositions suivantes, laquelle est juste?

a. $f(x)=2(x-4)(x+1)$
b. $f(x)=(2x+8)(2x-2)$
c. $f(x)=2(x+4)(x-1)$
d. $f(x)=2(x+3)(x-2)$

$\quad$

Correction Question 1

On a $f(x)=2\left(x^2+3x-4\right)$.
La somme des racines du polynômes du second degré vaut $-3$ et leur produit vaut $-4$.
On peut donc exclure les propositions a. et d.
Or :
$\begin{align*} 2(x+4)(x-1)&=2\left(x^2-x+4x-4\right)\\
&=2\left(x^2+3x-4\right) \\
&=f(x)\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Pour tout réel $x$, $\dfrac{\left(\e^x\right)^2}{\e^{-x}}$ est égal à :

a. $\e^{x^2+x}$
b. $\e^{3x}$
c. $\e^2$
d. $\e^{-2}$

$\quad$

Correction Question 2

$\begin{align*} \dfrac{\left(\e^x\right)^2}{\e^{-x}}&=\dfrac{\e^{2x}}{\e^{-x}} \\
&=\e^{2x-(-x)}\\
&=\e^{3x}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans le plan muni d’un repère, soit $\mathcal{C}$ la courbe représentative de la fonction $g$ définie sur $\R$ par $g(x)=\e^x$. L’équation de la tangente à la courbe $\mathcal{C}$ au point d’abscisse $0$ est :

a. $y=-x-1$
b. $y=-x+1$
c. $y=x+1$
d. $y=x$

$\quad$

Correction Question 3

La fonction $g$ est dérivable sur $\R$ et, pour tout réel $x$, on a $g'(x)=\e^x$.
Une équation de cette tangente est de la forme $y=g'(0)(x-0)+g(0)$.
$g'(0)=1$ et $g(0)=1$
Ainsi une équation de la tangente est $y=x+1$.

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie sur $\R$ par $f(x)=(-x+1)\e^x$
On note $f’$ la fonction dérivée de la fonction $f$. Parmi les propositions suivantes, laquelle est juste ?

a. $f'(x)=-x\e^x$
b. $f'(x)=(x-2)\e^x$
c. $f'(x)=(-x+2)\e^x$
d. $f'(x)=x\e^{-x}$

$\quad$

Correction Question 4

La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=-1\times \e^x+(-x+1)\times \e^x \\
&=(-1-x+1)\e^x\\
&=-x\e^x
\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

Dans le plan muni d’un repère orthonormal, on considère la courbe représentative d’une fonction $f$ définie et dérivable sur $\R$.

Parmi les propositions suivantes, laquelle n’est pas juste ?

a. $f'(-2)=0$
b. $f'(3)=-2$
c. $f(0)=3$
d. $f'(0)=-2$

$\quad$

Correction Question 5

La tangente à la courbe au point d’abscisse $2$ est parallèle à l’axe des abscisses. Donc $f'(-2)=0$.
Le coefficient directeur de la tangente à la courbe au point d’abscisse $0$ est $-2$ donc $f'(0)=-2$.
On lit sur la courbe que $f(0)=3$.
Donc, par élimination, $f'(3)\neq -2$.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On considère la fonction $f$ définie sur l’intervalle $[-2 ; 2]$ par $f(x)=2x^3+2x^2-2x+3$ et $C$ sa représentation graphique dans le repère suivant.

  1. On considère la droite $d$ d’équation $y=2x+3$.
    a. Montrer que déterminer les abscisses des points d’intersection entre la droite $d$ et la courbe $C$ revient à résoudre l’équation $2x\left(x^2+x-2\right)$ sur l’intervalle $[-2 ; 2]$.
    $\quad$
    b. Déterminer les coordonnées des points d’intersection entre $d$ et $C$.
    $\quad$
  2. On considère la droite $d’$ d’équation $y=2x+a$ où $a$ est un nombre réel.
    À l’aide du graphique, donner une valeur de $a$ pour laquelle la droite $d’$ et la courbe $C$ ont un seul point d’intersection.
    $\quad$
  3. On note $f’$ la fonction dérivée de $f$.
    a. Démontrer que, pour tout nombre réel $x$ appartenant à l’intervalle $[-2 ; 2]$ , $f'(x)=6(x+1)\left(x-\dfrac{1}{3}\right)$.
    $\quad$
    b. Étudier les variations de $f$ sur l’intervalle $[-2 ; 2]$.
    $\quad$

$\quad$

Correction Exercice

  1. a. On veut résoudre l’équation :
    $\begin{align*} f(x)=2x+3&\ssi 2x^3+2x^2-2x+3=2x+3 \\
    &\ssi 2x^3+2x^2-4x=0 \\
    &\ssi 2x\left(x^2+x-2\right)=0\end{align*}$
    $\quad$
    b. On a $2x\left(x^2+x-2\right)=0$
    Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    Ainsi $2x=0$ ou $x^2+x-2=0$
    $2x=0 \ssi x=0$
    $\quad$
    Résolution de $x^2+x-2=0$
    $\begin{align*} \Delta &=1^2-4\times 1\times (-2) \\
    &=9\\
    &>0\end{align*}$
    L’équation possède alors deux solutions réelles :
    $\begin{align*} x_1&=\dfrac{-1-\sqrt{9}}{2}\\
    &=-2\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{-1+\sqrt{9}}{2}\\
    &=1\end{align*}$
    $\quad$
    Par conséquent l’équation $2x\left(x^2+x-2\right)=0$ possède trois solutions : $-2$, $0$ et $1$.
    Si $x=-2$ alors $y=2\times (-2)+3=-1$
    Si $x=0$ alors $y=3$
    Si $x=1$ alors $y=2\times 1+3=5$
    Ainsi les points d’intersection entre $d$ et $C$ ont pour coordonnées $(-2;-1)$, $(0;3)$ et $(1;5)$.
    $\quad$
  2. On peut par exemple prendre $a=8$.
    La droite d’équation $y=2x+8$ passe par les points de coordonnées $(-2;6)$ et $(0;8)$ et ne coupe la courbe $C$ qu’en un seul point (d’abscisse strictement positive).
    $\quad$
  3. a. La fonction $f$ est dérivable sur $[-2;2]$ en tant que fonction polynôme.
    Pour tout réel $x$ appartenant à $[-2;2]$ on a :
    $\begin{align*} f'(x)&=2\times 3x^2+2\times 2x-2\\
    &=6x^2+4x-2\end{align*}$
    On a également :
    $\begin{align*} 6(x+1)\left(x-\dfrac{1}{3}\right)&=(x+1)(6x-2) \\
    &=6x^2-2x+6x-2\\
    &=6x^2+4x-2\\
    &=f'(x)\end{align*}$
    $\quad$
    b. $f'(x)$ est un polynôme du second degré possédant donc deux racines $-1$ et $\dfrac{1}{3}$ et dont le coefficient principal est $a=6$.
    Ainsi :
    $f'(x)>0$ sur $[-2;-1[\cup\left]\dfrac{1}{3};2\right]$
    $f'(x)<0$ sur $\left]-1;\dfrac{1}{3}\right[$
    $f(-1)=f\left(\dfrac{1}{3}\right)=0$
    Par conséquent $f$ est strictement croissante sur l’intervalle $[-2;-1]$ et sur $\left[\dfrac{1}{3};2\right]$ et strictement décroissante sur l’intervalle $\left[-1;\dfrac{1}{3}\right]$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On donne ci-dessous les représentations graphiques respectives $C_f$ et $C_g$ de deux fonctions $f$ et $g$ définies sur $\R$ l’ensemble des nombres réels.

  1. La fonction $f$ est définie sur $\R$ par $f(x)=x^3+3x^2-9x-1$.
    On admet qu’elle est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. Calculer $f'(x)$.
    $\quad$
    b. Déterminer le signe de $f'(x)$ en fonction du réel $x$ . En déduire le tableau de variation de la fonction $f$.
    $\quad$
    c. Déterminer une équation de la droite $T$ tangente à $C_f$ au point d’abscisse $-1$.
    $\quad$
  2. La fonction $g$ est une fonction polynôme du second degré, il existe donc trois réels $a$, $b$ et $c$ tels que : $g(x)=ax^2+bx+c$ pour tout réel $x$ . On note $\Delta$ son discriminant.
    a. Déterminer, à l’aide du graphique, le signe de $a$ et le signe de $\Delta$.
    $\quad$
    b. La fonction $g$ est définie, pour tout réel $x$, par $g(x)=10x^2+8x+8$.
    Démontrer que les courbes $C_f$ et $C_g$ ont un point commun d’abscisse $-1$ et qu’en ce point elles ont la même tangente.
    $\quad$

$\quad$

Correction Exercice

  1. a. Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=3x^2+3\times 2x-9 \\
    &=3x^2+6x-9\end{align*}$
    $\quad$
    b. Le discriminant de $3x^2+6x-9$ est :
    $\begin{align*} \Delta&=6^2-4\times 3\times (-9) \\
    &=144\\
    &>0\end{align*}$
    Le polynôme du second degré possède donc deux racines réelles :
    $\begin{align*} x_1&=\dfrac{-6-\sqrt{144}}{6} \\
    &=-3\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{-6+\sqrt{144}}{6} \\
    &=1\end{align*}$
    Le coefficient principal est $a=3>0$.
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. Une équation de $T$ est de la forme $y=f'(-1)\left(x-(-1)\right)+f(1)$
    Or $f'(-1)=-12$ et $f(-1)=10$
    Une équation de $T$ est donc $y=-12(x+1)+10$ soit $y=-12x-2$
    $\quad$
  2. a. La parabole est strictement au-dessus de l’axe des abscisses donc $a>0$ et $\Delta<0$.
    $\quad$
    b. On a $g(-1)=10$ donc $g(-1)=f(-1)$.
    Les courbes $C_f$ et $C_g$ ont un point en commun.
    La fonction $g$ est dérivable sur $\R$ en tant que fonction polynôme.
    Pour tout réel $x$ on a $g'(x)=20x+8$.
    $g'(-1)=-12$.
    La tangente à $C_g$ au point d’abscisse $-1$ a donc le même coefficient directeur que la droite $T$.
    Par conséquent les courbes $C_f$ et $C_g$ ont un point commun d’abscisse $-1$ et qu’en ce point elles ont la même tangente.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la
lettre correspondante à la réponse choisie.

Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des
recherches au brouillon pour aider à déterminer votre réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question
sans réponse n’apporte ni ne retire de point.

Question 1

On considère la loi de probabilité de la variable aléatoire $X$ donnée par le tableau ci-dessous :

$$\begin{array}{|c|c|c|c|c|c|}
\hline
k&-5&0&10&20&50\\
\hline
P(X=k)&0,71&0,03&0,01&0,05&0,2\\
\hline
\end{array}$$
L’espérance de $X$ est :

a. $15$
b. $0,2$
c. $7,55$
d. $17$

$\quad$

Correction Question 1

L’espérance de $X$ est :

$\begin{align*} E(X)&=\small{-5\times 0,71+0\times 0,03+10\times 0,01+20\times 0,05+50\times 0,2} \\
&=7,55\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On se place dans un repère orthonormé.
Le cercle de centre A( -2 ; 4) et de rayon 9 a pour équation :

a. $(x+2)^2+(y-4)^2=81$
b. $(x-2)^2+(y+4)^2=81$
c. $(x+2)^2+(y-4)^2=9$
d. $(x-2)^2+(y+4)^2=9$

$\quad$

Correction Question 2

Une équation du cercle est $\left(x-(-2)\right)^2+(y-4)^2=9^2$ soit $(x+2)^2+(y-4)^2=81$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

Soit $f$ la fonction définie par $f(x)=ax^2+bx+c$ où $a$, $b$ et $c$ sont des réels.

On considère dans un repère la courbe représentative de $f$ tracée ci-dessous.

On appelle $\Delta$ son discriminant.

On peut affirmer que :

a. $a>0$ ou $c<0$
b. $c$ et $\Delta$ sont du même signe
c. $a<0$ et $c<0$
d. $a<0$ et $\Delta<0$

$\quad$

Correction Question 3

D’après le graphique $a<0$ (la fonction $f$ admet un maximum) et $\Delta>0$ (il y a deux racines)
Les deux racines $x_1$ et $x_2$ sont de signes différents.
Or $ax_1x_2=c$ donc $c>0$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la suite $\left(U_n\right)$ définie par $U_0=-2$ et $U_{n+1}=2U_n-5$.
Un algorithme permettant de calculer la somme $S=U_0+U_1+\ldots+U_{36}$ est :

$\begin{array}{llll}
\textbf{a.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=0}\\
\text{Pour i de 1 à 37}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}&\textbf{b.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=0}\\
\text{Pour i de 1 à 36}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}\\\\
\textbf{c.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=-2}\\
\text{Pour i de 1 à 37}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\text{Fin Pour}\\
\hline\end{array}&\textbf{d.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=-2}\\
\text{Pour i de 1 à 36}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}\end{array}$

$\quad$

Correction Question 4

Si la variable $\text{U}$ est transformée avant la variable $\text{S}$ alors $\text{S}$ doit être initialisée à $-2$.
Dans l’algorithme c., quand $\text{i}=1$, la variable $S$ prend la valeur $u_0+u_0$ au lieu de $u_0+u_1$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

La suite $\left(U_n\right)$ définie par $U_0=-2$ et $U_{n+1}=2U_n-5$ est :

a. arithmétique mais pas géométrique
b. géométrique mais pas arithmétique
c. ni arithmétique, ni géométrique
d. à la fois arithmétique et géométrique

$\quad$

Correction Question 5

On $U_0=-2$
$\begin{align*} U_1&=2U_0-5\\
&=2\times (-2)-5 \\
&=-9\end{align*}$
$\begin{align*} U_2&=2U_1-5\\
&=2\times (-9)-5\\
&=-23\end{align*}$

Ainsi :

  • $U_1-U_0=-7$ et $U_2-U_1=-14$
    Ces différences ne sont pas égales : la suite n’est pas arithmétique
  • $\dfrac{U_1}{U_0}=\dfrac{9}{2}$ et $\dfrac{U_2}{U_1}=\dfrac{23}{9}$
    Ces quotients ne sont pas égaux : la suite n’est pas géométrique

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

La fonction f est définie sur $]-1; +\infty[$ par : $$f(x)=\dfrac{x^2+1}{x+1}$$
On se place dans un repère orthonormé du plan.

  1. Démontrer que pour tout 𝑥 appartenant à l’intervalle $]-1; +\infty[$: $$f'(x)=\dfrac{x^2+2x-1}{(x+1)^2}$$
    $\quad$
  2. Déterminer le sens de variation de la fonction $f$ sur $]-1; +\infty[$.
    $\quad$
  3. Déterminer une équation de la tangente $T$ à la courbe représentative de $f$ au point d’abscisse $0$.
    $\quad$
  4. Etudier la position relative de la courbe représentative de $f$ et de la droite d’équation $y=x$.
    $\quad$

$\quad$

Correction Exercice

  1. La fonction $f$ est dérivable sur $]-1;+\infty[$ en tant que que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]-1;+\infty[$.
    Pour tout réel $x>-1$ on a :
    $\begin{align*} f'(x)&=\dfrac{2x(x+1)-\left(x^2+1\right)\times 1}{(x+1)^2} \\
    &=\dfrac{2x^2+2x-x^2-1}{(x+1)^2} \\
    &=\dfrac{x^2+2x-1}{(x+1)^2}\end{align*}$
    $\quad$
  2. Un carré étant toujours positif, le signe de $f'(x)$ ne dépend que de celui de $x^2+2x-1$.
    Le discriminant de ce polynôme du second degré est :
    $\begin{align*} \Delta&=2^2-4\times 1\times (-1) \\
    &=8\\
    &>0\end{align*}$
    Il possède donc deux racines réelles :
    $\begin{align*} x_1&=\dfrac{-2-\sqrt{8}}{2} \\
    &=-1-\sqrt{2}\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{-2+\sqrt{8}}{2} \\
    &=-1+\sqrt{2}\end{align*}$
    Son coefficient principal est $a=1>0$.
    Ainsi $x^2+2x-1$ est :
    – positif sur $\left]-\infty;-1-\sqrt{2}\right[\cup\left]-1+\sqrt{2};+\infty\right[$;
    – nul si $x\in \lbrace -1-\sqrt{2};-1+\sqrt{2}\rbrace$
    – négatif sur $\left]-1-\sqrt{2};-1+\sqrt{2}\right[$
    Or $-1-\sqrt{2}<-1$.
    Ainsi $f$ est strictement décroissante sur $\left]-1;-1+\sqrt{2}\right]$ et strictement croissante sur $\left[-1+\sqrt{2};+\infty\right[$.
    $\quad$
  3. Une équation de la droite $T$ est de la forme $y=f'(0)(x-0)+f(0)$
    Or $f'(0)=-1$ et $f(0)=1$.
    Une équation de $T$ est donc $y=-x+1$.
    $\quad$
  4. On doit étudier le signe de
    $\begin{align*} f(x)-x&=\dfrac{x^2+1}{x+1}-x\\
    &=\dfrac{x^2+1-\left(x^2+x\right)}{x+1}\\
    &=\dfrac{1-x}{x+1}\end{align*}$
    Sur $]-1;+\infty[$ on a $x+1>0$
    Donc $f(x)-x$ est du signe de $1-x$.
    Or $1-x=0 \ssi x=1$ et $1-x>0 \ssi x<1$
    Ainsi la courbe représentative de la fonction $f$ est au-dessus de la droite d’équation $y=x$ sur l’intervalle $]-1;1[$ et au-dessous sur l’intervalle $]1;+\infty[$.
    Si $x=1$ alors la courbe et la droite sont confondues.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Partie A

On considère la fonction polynôme du second degré $P$ définie sur $\R$ par : $$P(x)=x^2-7x+6$$

  1. Résoudre l’équation $P(x)=0$
    $\quad$
  2. Étudier le signe de $P$ sur $\R$.
    $\quad$

Partie B
On considère la fonction polynôme du troisième degré $f$ définie sur $\R$ par : $$f(x)=2x^3-21x^2+36x$$

  1. Calculer la dérivée $f’$ de $f$ et vérifier que $f'(x)=6P(x)$
    $\quad$
  2. Etudier les variations de la fonction $f$.
    $\quad$
  3. On se place dans un repère du plan. Déterminer une équation de la tangente $T$ à la courbe représentative de $f$ au point $B$ d’abscisse $3$.
    $\quad$

$\quad$

Correction Exercice

Partie A

  1. Il s’agit d’une équation du second degré.
    $\begin{align*} \Delta&=(-7)^2-4\times 1\times 6 \\
    &=25\\
    &>0\end{align*}$
    L’équation possède donc deux racines réelles :
    $\begin{align*} x_1&=\dfrac{7-\sqrt{25}}{2}\\
    &=1\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{7+\sqrt{25}}{2}\\
    &=6\end{align*}$
    $\quad$
  2. Le coefficient principal du polynôme du second degré $P$ est $a=1>0$.
    Par conséquent :
    – $P(x)<0$ sur $]1;6[$;
    – $P(1)=P(6)=0$
    – $P(x)>0$ sur $]-\infty;1[\cup]6;+\infty[$.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $\R$ en tant que fonction polynôme.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=2\times 3x^2-21\times 2x+36\\
    &=6x^2-42x+36\\
    &=6\left(x^2-7x+6\right)\\
    &=6P(x)\end{align*}$
    $\quad$
  2. Ainsi, pour tout réel $x$, $f'(x)$ est du signe de $P(x)$.
    – la fonction $f$ est donc strictement décroissante sur l’intervalle $[1;6]$ et strictement croissante sur $]-\infty;1]\cup[6;+\infty[$.
    $\quad$
  3. Une équation de la droite $T$ est de la forme $y=f'(3)(x-3)+f(3)$
    Or $f'(3)=-36$ et $f(3)=-27$
    Une équation de $T$ est donc $y=-36(x-3)-27$ soit $y=-36x+81$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence