E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse
choisie. Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1.

a. Si le discriminant d’un polynôme du second degré est strictement positif, alors ce polynôme admet $2$ racines positives.
b. Si le discriminant d’un polynôme du second degré est strictement négatif, alors ce polynôme admet $2$ racines négatives.
c. Si un polynôme du second degré est toujours strictement positif, alors ce
polynôme n’admet pas de racine.
d. Si le discriminant d’un polynôme du second degré est nul, alors ce polynôme admet le nombre $0$ pour racine.

$\quad$

Correction Question 1

Si le discriminant est strictement positif alors le polynôme possède $2$ racines (mais pas nécessairement positives).
Si le discriminant est strictement négatif alors le polynôme n’admet pas de racines réelles.
Si le discriminant est nul alors le polynôme ne possède qu’une seule racine (qui n’est pas nécessairement $0$).

Si un polynôme du second degré est toujours strictement positif, alors ce
polynôme n’admet pas de racine.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

a. L’équation $\cos x = -\dfrac{1}{2}$ admet $2$ solutions dans
l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$.
b. L’équation $\cos x = -\dfrac{1}{2}$ admet $1$ solutions dans
l’intervalle $[0;\pi[$.
c. L’équation $\sin x = -\dfrac{1}{2}$ admet $1$ solutions dans
l’intervalle $[0;\pi[$.
d. L’équation $\sin x = -\dfrac{1}{2}$ admet $2$ solutions dans
l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$.

$\quad$

Correction Question 2

Sur l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$ on a $\cos x\pg 0$.
Sur l’intervalle $[0;\pi[$ on a $\sin x\pg 0$

$\cos \dfrac{2\pi}{3}=-\dfrac{1}{2}$ et $\dfrac{2\pi}{3}$ appartient à l’intervalle $[0;\pi[$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

La courbe représentative d’une fonction $f$, définie et dérivable sur l’ensemble des nombres réels, est donnée ci-dessous avec ses tangentes, aux points $A$
et $B$ d’abscisses respectives $2$ et $4$. On note $f’$ la fonction dérivée de $f$.

a. $f(0)=1$
b. $f'(2)=1$
c. $f'(2)=-2$
d. $f'(4)=0,5$

$\quad$

Correction Question 3

$f(0) \approx -3$.
$f'(2)$ est le coefficient directeur de la tangente à la courbe au point $A$. Donc $f'(2)=1$ (graphiquement).
$f'(4)$ est le coefficient directeur de la tangente à la courbe au point $B$. Donc $f'(4)<0$.

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $g$ définie sur l’ensemble des nombres réels $\R$ par :
$g(x)=x^3-0,0012x+1$

a. $g$ est strictement croissante sur $\R$.
b. $g$ est croissante sur $\R$.
c. $g$ est constante sur l’intervalle $[-0,02 ; 0,02]$.
d. $g$ est décroissante sur l’intervalle $[-0,02 ; 0,02]$.

$\quad$

Correction Question 4

La fonction $g$ est dérivable sur $\R$ en tant que fonction polynôme.
Pour tout réel $x$ on a $g'(x)=3x^2-0,0012$.
$g'(x)\pp 0 \ssi 3x^2-0,0012\pp 0 \ssi x^2\pp 0,0004 \ssi x\in[-0,02;0,02]$

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

a. L’équation $\left(\e^x\right)^2=1$ admet deux solutions dans $\R$.
b. L’ensemble de définition de la fonction exponentielle est $]0;+\infty[$.
c. La fonction dérivée de la fonction $x\mapsto \e^{-x}$ est la fonction $x\mapsto \e^{-x}$.
d. L’ensemble de définition de la fonction exponentielle est $\R$.

$\quad$

Correction Question 5

La fonction exponentielle est définie sur $\R$.

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Un fermier souhaite réaliser un enclos rectangulaire pour des poules et des poussins, adossé à un mur de sa ferme afin d’économiser du grillage. Ainsi, il ne grillagera que $3$ côtés de son enclos.
Il possède $28$ mètres de grillage. Il souhaite construire un enclos d’aire maximale.
On appelle $x$ la longueur du côté de l’enclos perpendiculaire au mur.

 

On appelle $A$ la fonction qui à un nombre $x$ associe $A(x)$ l’aire de l’enclos. La fonction $A$ est ainsi définie sur l’intervalle $[0 ; 14]$.

  1. a. Vérifier que l’aire $A(x)=-2x^2+28x$.
    $\quad$
    b. Montrer que la forme canonique de $A(x)$ est $-2(x-7)^2+98$.
    $\quad$
  2. Quatre courbes ont été tracées sur le graphique ci-dessous. Identifier celle qui représente la fonction $A$

    $\quad$
  3. Dresser le tableau de variation de la fonction $A$.
    $\quad$
  4. Pour quelle valeur de $x$ l’aire de l’enclos est-elle maximale ? Donner la valeur de cette aire.
    $\quad$

$\quad$

Correction Exercice

  1. a. L’enclos est un rectangle dont les côtés mesurent $x$ mètres et $28-2x$ mètres.
    Ainsi :
    $\begin{align*}A(x)&=(28-2x)x\\
    &=28x-2x^2\end{align*}$
    $\quad$
    b. Pour tout réel $x$ on a :
    $\begin{align*} -2(x-7)^2+98&=-2\left(x^2-14x+49\right)+98\\
    &=-2x^2+28x-98+98\\
    &=-2x^2+28x\\
    &=A(x)\end{align*}$
    La forme canonique de $A(x)$ est donc $-2(x-7)^2+98$.
    $\quad$
  2. Le coefficient principal de $A(x)$ est $a=-2<0$. La fonction est donc d’abord croissante puis décroissante.
    Le maximum est $S(7;98)$.
    La courbe $\mathcal{C}_2$ représente donc la fonction $A$.
    $\quad$
  3. On obtient donc le tableau de variations suivant :

    $\quad$
  4. L’aire est donc maximale quand $x$ prend la valeur $7$ et vaut $98$ m$^2$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Si $\sin x=\dfrac{1}{3}$ alors

a. $\sin(x+\pi)=-\dfrac{1}{3}$
b. $\sin(x-\pi)=\dfrac{1}{3}$
c. $\cos(x)=\dfrac{2}{3}$
d. $\sin(x+15\pi)=\dfrac{1}{3}$

$\quad$

Correction Question 1

Pour tout réel $x$ on a $\sin(x+\pi)=-\sin(x)$
Donc $\sin(x+\pi)=-\dfrac{1}{3}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Parmi les paraboles ci-dessous laquelle représente une fonction qui n’admet aucune racine ?

$\quad$

Correction Question 2

Seule la courbe d. ne touche ou ne traverse l’axe des abscisses.

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Soit la fonction $f$ définie sur l’intervalle $]0; +\infty[$ par $f(x)=2x-\dfrac{1}{x}$.
Le coefficient directeur de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est :

a. $1$
b. $3$
c. $-1$
d. $0$

$\quad$

Correction Question 3

La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
Pour tout réel $x>0$, on a $f'(x)=2+\dfrac{1}{x^2}$.
Par conséquent $f'(1)=3$.

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Dans le plan muni d’un repère orthonormé, l’ensemble des points $M(x;y)$ tels que $x^2-2x+y^2+6y+2=0$ est :

a. une parabole
b. le cercle de centre $\Omega$ de coordonnées $(-1; 3)$ et de
rayon $8$.
c. le cercle de centre $\Omega$ de coordonnées $(1; -3)$ et
de rayon $2\sqrt{2}$.
d. une droite

$\quad$

Correction Question 4

$\begin{align*} &x^2-2x+y^2+6y+2=0 \\
\ssi~& x^2-2x+1-1+y^2+6y+9-9+2=0\\
\ssi~& (x-1)^2+(y+3)^2=8\\
\ssi~& (x-1)^2+\left(y-(-3)\right)^2=\left(2\sqrt{2}\right)^2\end{align*}$

Il s’agit du cercle de centre $\Omega$ de coordonnées $(1; -3)$ et
de rayon $2\sqrt{2}$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

La loi de probabilité d’une variable aléatoire $X$ donnant le gain en euros, d’un joueur, à un jeu, est donnée par le tableau suivant :

$$\begin{array}{|c|c|c|c|}
\hline
x_i&-10&6&10\\
\hline
P\left(X=x_i\right)&~~\dfrac{1}{4}~~&~~\dfrac{3}{8}~~&~~\dfrac{3}{8}~~\\
\hline
\end{array}$$
Sur un grand nombre de parties, le gain moyen que peut espérer le joueur est :

a. $3,5$ euros
b. $4$ euros
c. $2$ euros
d. $6$ euros

$\quad$

Correction Question 5

L’espérance mathématiques de la variable aléatoire $X$ est :
$\begin{align*} E(X)&=-10\times \dfrac{1}{4}+6\times \dfrac{3}{8}+10\times \dfrac{3}{8}\\
&=3,5\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

L’équation $2x^2-8x+6=0$ admet deux solutions. Leur somme $S$ et leur produit $P$ sont :

a. $S=-8$ et $P=6$
b. $S=-4$ et $P=3$
c. $S=4$ et $P=3$
d. $S=3$ et $P=-4$

$\quad$

Correction Question 1

$2x^2-8x+6=0 \ssi x^2-4x+3=0$
Donc $P=3$ et $S=4$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

$\alpha$ est un nombre réel tel que $\sin(\alpha)=0,5$. On a alors :

a. $\sin(\pi-\alpha)=0,5$
b. $\sin(\pi-\alpha)=-0,5$
c. $\sin(\pi-\alpha)=-\dfrac{\sqrt{3}}{2}$
d. $\sin(\pi-\alpha)=\dfrac{\pi}{6}$

$\quad$

Correction Question 2

Pour tout réel $x$ on a $\sin(\pi-x)=\sin(x)$
Donc $\sin(\pi-\alpha)=0,5$.

Réponse a

[collapse]

$\quad$

Question 3

Dans un repère orthonormé du plan, on considère le cercle d’équation : $$(x-3)^2+(y+0,5)^2=\dfrac{25}{4}$$
On peut affirmer que :

a. ce cercle a un rayon de $6,25$.
b. ce cercle passe par le point $R(5 ; -2)$.
c. le centre de ce cercle a pour coordonnées $(-3 ; 0,5)$
d. aucune des réponses a., b. ou c. n’est correcte.

$\quad$

Correction Question 3

Le rayon du cercle est $R=\sqrt{\dfrac{25}{4}}=2,5$.
$(5-3)^2+(-2+0,5)^2=6,25$ donc $(5-3)^2+(-2+0,5)^2=\dfrac{25}{4}$

Réponse B

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Dans un repère orthonormé du plan, une équation cartésienne de la droite passant par le point $A(2 ; -4)$ et de vecteur normal $\vec{n}(5 ; 6)$ est :

a. $6x-5y-32=0$
b. $6x+5y+8=0$
c. $5x+6y+14=0$
d. $5x+6y-14=0$

$\quad$

Correction Question 4

Une équation de cette droite est de la forme $5x+6y+c=0$.
$A(2;-4)$ appartient à cette droite.
Donc $10-24+c=0\ssi c=14$

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction $f$ définie sur $\R$ par $f(x)=(2x+3)\e^x$.
La fonction dérivée de la fonction $f$ est notée $f’$. On a alors :

a. $f'(x)=2\e^x$
b. $f'(x)=(2x+3)\e^x$
c. $f'(x)=(2x+1)\e^x$
d. $f'(x)=(2x+5)\e^x$

$\quad$

Correction Question 5

La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=2\e^x+(2x+3)\e^x \\
&=(2+2x+3)\e^x\\
&=(2x+5)\e^x\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Pour tout entier naturel $n$, on définit la suite $\left(u_n\right)$ par $u_n=3\times \dfrac{10^n}{2^{n+1}}$.
La suite $\left(u_n\right)$ est une suite :

a.arithmétique de raison $3$.
b. géométrique de raison $3$.
c. arithmétique de raison $5$.
d. géométrique de raison $5$.

$\quad$

Correction Question 1

Pour tout entier naturel $n$ on a :
$\begin{align*} u_n&=3\times\dfrac{10^n}{2^{n+1}} \\
&=\dfrac{3}{2}\times\dfrac{10^n}{2^n} \\
&=\dfrac{3}{2}\times 5^n\end{align*}$
La suite $\left(u_n\right)$ est donc géométrique de raison $5$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère orthonormé$\Oij$ du plan, on considère les points $A(-2; 1)$ et $B(2; 4)$.
La droite $\Delta$ passe par le point $C(-1; 1)$ et admet le vecteur $\vect{AB}$ pour vecteur normal.
La droite $\Delta$ admet pour équation cartésienne :

a. $3x-4y+7=0$
b. $4x+3y+1=0$
c. $3x-4y-1=0$
d. $4x+3y+7=0$

$\quad$

Correction Question 2

On a $\vect{AB}\begin{pmatrix}4\\3\end{pmatrix}$. Une équation de la droite $\Delta$ est donc de la forme $4x+3y+c=0$.
Le point $C(-1;1)$ appartient à cette droite. Ainsi :
$-4+3+c=0 \ssi c=1$
Une équation de la droite $\Delta$ est donc $4x+3y+1=0$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans l’intervalle $\left[0;\dfrac{\pi}{2}\right]$, l’unique solution de l’équation $2\cos(x+\pi)+1=0$ est :

a. $\dfrac{\pi}{3}$
b. $-\dfrac{5\pi}{3}$
c. $\dfrac{\pi}{6}$
d. $\dfrac{2\pi}{3}$

$\quad$

Correction Question 3

$\begin{align*} 2\cos(x+\pi)+1=0&\ssi -2\cos(x)+1=0\\
&\ssi \cos(x)=\dfrac{1}{2}\end{align*}$

Donc, dans l’intervalle $\left[0;\dfrac{\pi}{2}\right]$, la solution est $\dfrac{\pi}{3}$.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie et dérivable sur $\R$ par $f(x)=\dfrac{\e^x}{1+\e^x}$.
La fonction dérivée $f’$ de la fonction $f$ est définie par :

a. $f'(x)=\dfrac{\e}{1+\e}$
b. $f'(x)=\dfrac{\e^x}{\left(1+\e^x\right)^2}$
c. $f'(x)=1$
d. $f'(x)=\dfrac{-\e^x}{\left(1+\e^x\right)^2}$

$\quad$

Correction Question 4

Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=\dfrac{\e^x\left(1+\e^x\right)-\e^x\times \e^x}{\left(1+\e^x\right)^2} \\
&=\dfrac{\e^x}{\left(1+\e^x\right)^2}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction $f$ définie sur $\R$ par : $f(x)=-0,5(x+2)^2+4,5$.
On peut affirmer que :

a. Le tableau de variations de la fonction $f$ est donné ci-dessous:

b.
La courbe représentative de la fonction $f$ admet un sommet de coordonnées $(4,5; -2)$.
c. Le signe de $f(x)$ est donné ci-dessous :

d. La fonction $f$ admet un minimum en $-2$ égal à $4,5$

$\quad$

Correction Question 5

On a $f(x)=-0,5\left(x-(-2)\right)^2+4,5$
Le coefficient principal est $a=-0,5<0$. La fonction $f$ admet donc un maximum dont l’abscisse est $-2$. On exclut donc les réponses a.b., et d.

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée, mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte un point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire aucun point.

Question 1

Dans un repère orthonormé, le cercle de centre $A(2 ;-1)$ et de rayon $4$ a comme équation :

a. $(x+2)^2+(y-1)^2=16$
b. $(x-2)^2+(y+1)^2=4$
c. $(x-2)^2+(y+1)^2=16$
d. $(x+2)^2+(y-1)^2=4$

$\quad$

Correction Question 1

Une équation cartésienne du cercle est :
$(x-2)^2+\left(y-(-1)\right)^2=4^2$ soit $(x-2)^2+(y+1)^2=16$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Soit la droite $(d)$ d’équation cartésienne $2x-y+1=0$.
Sachant que la droite $\left(d_1\right)$ est perpendiculaire à la droite $(d)$, une équation de $\left(d_1\right)$ peut être :

a. $x-2y+2=0$
b. $x+2y-1=0$
c. $-2x+y-1=0$
d. $x-y+2=0$

$\quad$

Correction Question 2

Un vecteur directeur de la droite $(d)$ est $\vec{u}\begin{pmatrix}1\\2\end{pmatrix}$.
La droite $\left(d_1\right)$ est perpendiculaire à la droite $(d)$ donc $\vec{u}$ est normal à la droite $(d)$.
Ainsi une équation cartésienne de $\left(d_1\right)$ est de la forme $x+2y+c=0$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

L’expression de $\sin(\pi-x)+\cos\left(x+\dfrac{\pi}{2}\right)$ est égale à :

a. $-2\sin(x)$
b. $0$
c. $2\sin(x)$
d. $\cos(x)-\sin(x)$

$\quad$

Correction Question 3

Pour tout réel $x$ on a :
$\begin{align*} \sin(\pi-x)+\cos\left(x+\dfrac{\pi}{2}\right)&=\sin(x)-\sin(x)\\
&=0\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction polynôme du second degré $f$ définie sur $\R$ par $f(x)=-3x^2+x-5$.
Le tableau de variations de cette fonction est :

$\quad$

Correction Question 4

Le coefficient principal de cette fonction du second degré est $a=-3<0$. Cette fonction est donc d’abord croissante puis décroissante.
L’abscisse de son sommet est :
$\begin{align*} x_S&=-\dfrac{b}{2a}\\
&=-\dfrac{1}{-6}\\
&=\dfrac{1}{6}\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

À un jeu, la variable aléatoire donnant le gain algébrique $G$ suit la loi de probabilité suivante (en euros) :
$$\begin{array}{|l|c|c|c|c|}
\hline
\text{Valeur de $\boldsymbol{G}$}&-25&-3&x&100\\
\hline
\text{Probabilité}&\dfrac{1}{3}&\dfrac{1}{6}&0,3&0,2\\
\hline
\end{array}$$
Sachant que l’espérance de $G$ est égale à $\dfrac{38}{3}$, la valeur de $x$ est :

a. $0$
b. $5$
c. $20$
d. $25$

$\quad$

Correction Question 5

$\begin{align*} &E(G)=\dfrac{38}{3}\\
\ssi~&-25\times \dfrac{1}{3}-3\times \dfrac{1}{6}+0,3x+100\times 0,2=\dfrac{38}{3} \\
\ssi~&-\dfrac{25}{3}-\dfrac{1}{2}+0,3x+20=\dfrac{38}{3} \\
\ssi~& 0,3x=1,5\\
\ssi~& x=5\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes. Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie. Aucune justification n’est demandée, cependant des traces de recherche au brouillon peuvent aider à trouver la bonne réponse. Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Pour tout réel $x$, l’expression $\e^x\times \e^{x+2}$ est égale à :

a. $\e^{2x+2}$
b. $\e^{x^2+2}$
c. $\e^{\frac{x}{x+2}}$
d. $\e^{x^2+2x}$

$\quad$

Correction Question 1

Pour tout réel $x$ on a :
$\begin{align*} \e^x\times \e^{x+2}&=\e^{x+x+2}\\
&=\e^{2x+2}\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Soit $g$ une fonction définie et dérivable en $1$. Dans un repère du plan, une équation de la tangente à la courbe de la fonction $g$ au point d’abscisse $1$ est :

a. $y=g(1)\times (x-1)-g'(1)$
b. $y=g'(1)\times (x-1)+g(1)$
c. $y=g'(1)\times (x+1)-g(1)$
d. $y=g(1)\times (x+1)+g'(1)$

$\quad$

Correction Question 2

Une équation de la tangente à la courbe de la fonction $g$ au point d’abscisse $1$ est $y=g'(1)\times (x-1)+g(1)$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Le plan est muni d’un repère $\Oij$. On considère la droite $(d)$ de vecteur directeur $\vec{u}(4 ; 7)$ et passant par le point $A(-2 ; 3)$. Une équation cartésienne de la droite $(d)$ est :

a. $-7x+4y-26=0$
b. $4x+7y-13=0$
c. $-7x+4y+26=0$
d. $4x-7y+29=0$

$\quad$

Correction Question 3

Un vecteur directeur de $(d)$ est $\vec{u}(4 ; 7)$.
Une équation cartésienne de $(d)$ est donc de la forme $7x-4y+c=0$.
Le point $A(-2;3)$ appartient à la droite.
Par conséquent $-14-12+c=0 \ssi c=26$
Une équation cartésienne de la droite $(d)$ est donc $7x-4y+26=0$ ou encore $-7x+4y-26=0$.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

$t$ est un réel. On sait que $\cos(t)=\dfrac{2}{3}$. Alors $\cos(t+4\pi)+\cos(-t)$ est égal à :

a. $-\dfrac{4}{3}$
b. $0$
c. $\dfrac{4}{3}$
d. $\dfrac{2}{3}$

$\quad$

Correction Question 4

$\cos(t)=\dfrac{2}{3}$ donc $\cos(-t)=\dfrac{2}{3}$
et
$\begin{align*} \cos(t+4\pi)&=\cos(t+2\times 2\pi)\\
&=\cos(t) \\
&=\dfrac{2}{3}\end{align*}$
Ainsi $\cos(t+4\pi)+\cos(-t)=\dfrac{4}{3}$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

On considère, dans un repère du plan, la parabole $(P)$ d’équation :
$y = -x^2+6x-9$. La parabole $(P)$ admet :

a. aucun point d’intersection avec l’axe des abscisses
b. un seul point d’intersection avec l’axe des abscisses
c. deux points d’intersection avec l’axe des abscisses
d. trois points d’intersection avec l’axe des abscisses

$\quad$

Correction Question 5

On veut résoudre l’équation :
$\begin{align*} -x^2+6x-9=0 &\ssi x^2-6x+9=0 \\
&\ssi (x-3)^2=0\\
&\ssi x=3\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes.Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

On considère une fonction $f$ définie et dérivable sur l’intervalle $[-1;4]$.
On a tracé ci-dessous la courbe $\mathcal{C}_f$ et la tangente à cette courbe au point $A$ de coordonnées $(2;2)$.

L’équation de la tangente à $\mathcal{C}_f$ au point $A$ est :

a. $y=\dfrac{2}{3}(x-2)+2$
b. $y=2(x-2)+\dfrac{2}{3}$
c. $y=\dfrac{2}{3}(x+2)+2$
d. $y=\dfrac{3}{2}(x-2)+2$

$\quad$

Correction Question 1

Le coefficient directeur de la tangente est :
$\begin{align*} m&=\dfrac{4-2}{5-2}\\
&=\dfrac{2}{3}\end{align*}$
De plus $f(2)=2$
Une équation de la tangente est donc $y=\dfrac{2}{3}(x-2)+2$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère orthonormal $(O;I,J)$, le point $A$, placé ci-dessous sur le cercle trigonométrique de centre $O$ d’origine $I$, est associé au nombre réel :

a. $\dfrac{11\pi}{6}$
b.
$\dfrac{2\pi}{3}$
c. $-\dfrac{2\pi}{3}$
d. $-\dfrac{3\pi}{4}$

$\quad$

Correction Question 2

L’abscisse du point $A$ semble être égale à $-0,5$ et son ordonnée est négative.
Or $\cos \left(-\dfrac{2\pi}{3}\right)=-0,5$ et $\sin \left(-\dfrac{2\pi}{3}\right)<0$

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

On considère une fonction du second degré $f$ définie sur $\R$ par $$f(x)=ax^2+bx$$ où $a$ et $b$ sont deux nombres réels strictement positifs.
Quelle est la courbe représentative de cette fonction dans un repère orthonormé?

$\quad$

Correction Question 3

Le discriminant de cette fonction du second degré est :
$\begin{align*} \Delta&=b^2-4\times a\times 0\\
&=b^2\\
&>0\end{align*}$
L’équation $f(x)=0$ possède donc deux solutions réelles.
De plus, le coefficient principal est $a>0$

Réponse d

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Dans le plan muni d’un repère orthonormé une droite $\mathcal{D}$ a pour équation $x-2y=1$.
Parmi les propositions suivantes, laquelle est correcte?

a. Le vecteur $\vec{u}\begin{pmatrix}1\\-2\end{pmatrix}$ est un vecteur directeur de la droite $\mathcal{D}$.
b. Le vecteur $\vec{u}\begin{pmatrix}1\\-2\end{pmatrix}$ est un vecteur normal de la droite $\mathcal{D}$.
c. Le point de coordonnées $A(1;-2)$ appartient à la droite $\mathcal{D}$.
d. L’ordonnée à l’origine de la droite $\mathcal{D}$ est égale à $1$.

$\quad$

Correction Question 4

Le vecteur $\vec{u}\begin{pmatrix}1\\-2\end{pmatrix}$ est un vecteur normal de la droite $\mathcal{D}$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

Un homme marche pendant $10$ jours. Le premier jour, il parcourt 12 km. Chaque jour, il parcourt $500$ m de moins que la veille. Durant ces dix jours, il aura parcouru au total :

a. $95$ km
b. $97,5$ km
c. $19$ km
d. $84$ km

$\quad$

Correction Question 5

On appelle $u_n$ la distance parcourue le $n$-ième jour, en kilomètres.
On a ainsi $u_1=12$ et pour tout entier naturel $n$ compris entre $1$ et $9$ on a $u_{n+1}=u_n-0,5$.
La suite $\left(u_n\right)$ est donc arithmétique de raison $-0,5$ et de premier terme $u_1=12$.
Pour tout entier naturel $n$ on a donc $u_n=12-0,5(n-1)$
Ainsi $u_{10}=7,5$.
La distance totale parcourue est donc :
$\begin{align*} D&=10\times \dfrac{u_1+u_{10}}{2} \\
&=10\times \dfrac{12+7,5}{2}\\
&=97,5\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Soient $\vec{u}$ et $\vec{v}$ deux vecteurs de coordonnées respectives $(-1;0)$ et $(-3;4)$ dans un repère orthonormé du plan. Alors $\norme{\vec{u}-\vec{v}}$ est égale à :

a. $4\sqrt{2}$
b. $\sqrt{32}$
c. $20$
d. $2\sqrt{5}$

$\quad$

Correction Question 1

$\vec{u}-\vec{v}$ a pour coordonnées $(2;-4)$.
Ainsi :
$\begin{align*} \norme{\vec{u}-\vec{v}}&=\sqrt{(-2)^2+4^2} \\
&=\sqrt{20}\\
&=2\sqrt{5}\end{align*}$

Réponse d

$\quad$

Remarque : $\sqrt{32}=\sqrt{16\times 2} =4\sqrt{2}$

$\quad$

[collapse]

$\quad$

Question 2

Le tableau de signes de la fonction polynôme définie sur $\R$ par $f(x)=x^2+2x+5$ est :

$\quad$

Correction Question 2

Le discriminant est :
$\begin{align*} \Delta&=2^2-4\times 1\times 5\\
&=-16\\
&<0\end{align*}$
Le coefficient principal est $a=1>0$.
Par conséquent $f(x)>0$ sur $\R$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

Sur l’intervalle $]-\pi;\pi]$, l’équation $\sin(x)=\dfrac{1}{2}$ a pour solution(s)

a. $\dfrac{\pi}{6}$
b. $\dfrac{\pi}{3}$ et $\dfrac{2\pi}{3}$
c. $-\dfrac{\pi}{6}$ et $\dfrac{\pi}{6}$
d. $\dfrac{\pi}{6}$ et $\dfrac{5\pi}{6}$

$\quad$

Correction Question 3

$\sin\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ et $\sin\left(\dfrac{5\pi}{6}\right)=\dfrac{1}{2}$ .
De plus $\dfrac{\pi}{6}$ et $\dfrac{5\pi}{6}$ appartiennent bien à l’intervalle $]-\pi;\pi]$.

Réponse d

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la suite $\left(u_n\right)$ définie par $u_0=15$ et pour tout entier naturel $n$ : $$u_{n+1}=0,8u_n+1$$
On a écrit la fonction $\text{suite()}$ ci-dessous en langage Python.
$$\begin{array}{|l|}
\hline
\text{def suite():}\\
\hspace{1cm}\text{n=0}\\
\hspace{1cm}\text{u=15}\\
\hspace{1cm}\text{while u>6:}\\
\hspace{2cm}\text{n=n+1}\\
\hspace{2cm}\text{u=0.8*u+1}\\
\hspace{1cm}\text{return n}\\
\hline
\end{array}$$
L’appel de cette fonction renvoie :

a. Le plus petit entier $n$ tel que $u_n >6$
b. Le plus petit entier $n$ tel que $u_n\pp 6$
c. Le premier terme de la suite tel que $u_n>6$
d. Le premier terme de la suite tel que $u_n\pp 6$

$\quad$

Correction Question 4

La fonction renvoie la variable $\text{n}$ qui correspond au rang d’un terme de la suite. On exclut donc les réponses c. et d.
La condition d’arrêt de la boucle $\text{while}$ est $\text{u<=6}$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

Pour tout réel $x$, $\e^{3x-5}\times \e^{4-3x}$ est égal à :

a. $\dfrac{1}{\e}$
b. $\e^{(3x-5)\times (4-3x)}$
c. $\e$
d. $\e^{-9x^2+27x-20}$

$\quad$

Correction Question 5

Pour tout réel $x$ on a :
$\begin{align*} \e^{3x-5}\times \e^{4-3x}&=\e^{3x-5+4-3x}\\
&=\e^{-1}\\
&=\dfrac{1}{\e}
\end{align*}$

Réponse a

$\quad$

Remarque : $\e^{(3x-5)\times (4-3x)} = \e^{12x-9x^2-20+15x}=\e^{-9x^2+27x-20}$

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Un artisan fabrique de la confiture qu’il vend à un grossiste. Le coût, en euros, de fabrication de $x$ kilos de confiture est :
$\hspace{3cm}C(x)=0,1x^2+0,7x+100$, pour $x\in [0; 160]$.

  1. Chaque kilo est vendu $14$ €. Exprimer la recette $R$ en fonction de $x$.
    $\quad$
  2. Soit $B$ la fonction représentant le bénéfice de l’artisan, définie sur $[0; 160]$.
    $B$ a pour expression $B(x)=-0,1x^2+13,3x-100$.
    Étudier le signe de $B(x)$. En déduire l’intervalle dans lequel doit se trouver le nombre de kilos de confiture à vendre pour que l’artisan réalise un bénéfice positif.
    $\quad$
  3. On note $B’$ la fonction dérivée de la fonction $B$.
    a. Déterminer $B'(x)$.
    $\quad$
    b. Dresser le tableau de variation de $B$ sur l’intervalle $[0; 160]$.
    $\quad$
    c. Donner le nombre de kilos à vendre pour que le bénéfice soit maximal ainsi que son montant.
    $\quad$

$\quad$

Correction Exercice

  1. Pour tout réel $x$ appartenant à $[0;160]$ on a $R(x)=14x$.
    $\quad$
  2. $B(x)$ est un polynôme du second degré.
    Son discriminant est :
    $\begin{align*} \Delta&=13,3^2-4\times (-0,1)\times (-100)\\
    &=136,89\\
    &>0\end{align*}$
    Ses deux racines réelles sont :
    $\begin{align*} x_1&=\dfrac{-13,3-\sqrt{136,89}}{-0,2}\\
    &=125\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{-13,3+\sqrt{136,89}}{-0,2}\\
    &=8\end{align*}$
    Le coefficient principal est $a=-0,1<0$.
    Ainsi le bénéfice est positif si l’artisan vend entre $8$ et $120$ kilogrammes de confiture.
    $\quad$
  3. a. La fonction $B$ est dérivable sur l’intervalle $[0;160]$ en tant que fonction polynôme.
    Pour tout réel $x \in[0;160]$ on a $B'(x)=-0,2x+13,3$.
    $\quad$
    b. $-0,2x+13,3=0 \ssi -0,2x=-13,3\ssi x=66,5$
    $-0,2x+13,3>0 \ssi -0,2x>-13,3 \ssi x<66,5$
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. D’après le tableau de variations, le bénéfice est maximal quand l’artisan vend $65,5$ kilogrammes de confiture. Ce bénéfice est alors égale à $342,225$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence