E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

Pour les question 1 et 2, on utilisera l’énoncé suivant :

On note $T_F$ la température en degrés Fahrenheit et $T_C$ la température en degrés Celsius.
On a la relation : $T_F=1,8T_C+32$.

  1. Si $T_C=30$, a valeur exacte de $T_F$ est :
    $\quad$
    Correction Question 1

    $\begin{align*} T_F&=1,8T_C+32\\
    &=1,8\times 30+32\\
    &=54+32\\
    &=86\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  2. Si $T_F=50$, alors $T_C$ est égale à :
    $\quad$
    Correction Question 2

    $\begin{align*} 50=1,8T_C+32&\ssi 18=1,8T_C\\
    &\ssi T_C=10\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  3. Un objet coûte $45$ €. Il augmente de $30 \%$. Quel est son nouveau prix ?
    $\quad$
    Correction Question 3

    $\begin{align*} 45\times \left(1+\dfrac{30}{100}\right)&=45\times 1,3\\
    &=58,5\end{align*}$
    Après l’augmentation l’article coûte $58,5$ €.
    $\quad$

    [collapse]

    $\quad$
  4. Un prix augmente de $10\%$ puis baisse de $30 \%$.
    Quelle est l’évolution globale de ce prix ?
    $\quad$
    Correction Question 4

    Le coefficient multiplicateur est :
    $\begin{align*} C_M&=\left(1+\dfrac{10}{100}\right)\left(1-\dfrac{30}{100}\right)\\
    &=1,1\times 0,7\\
    &=0,77\\
    &=1-\dfrac{23}{100}\end{align*}$
    Le prix a donc baissé de $23\%$.
    $\quad$

    [collapse]

    $\quad$
  5. Résoudre l’équation $5x+1=4(2x-3)$.
    $\quad$
    Correction Question 5

    $\begin{align*} 5x+1=4(2x-3)&\ssi 5x+1=8x-12\\
    &\ssi -3x=-13\\
    &\ssi x=\dfrac{13}{3}\end{align*}$
    La solution de l’équation est $\dfrac{13}{3}$.
    $\quad$

    [collapse]

    $\quad$$\quad$
  6. Résoudre l’inéquation $-4x+1<3-2x$.
    $\quad$
    Correction Question 6

    $\begin{align*} -4x+1<3-2x&\ssi -2<2x\\
    &\ssi -1<x\end{align*}$
    L’ensemble solution est donc $]-1;+\infty[$.
    $\quad$

    [collapse]

    $\quad$

Pour les questions 7 à 10, on utilisera l’énoncé suivant :
Sur le graphique suivant, on a représenté la courbe représentative d’une fonction $f$ définie sur $\R$

  1. Lire sur le graphique l’image de $-1$ par $f$.
    $\quad$
    Correction Question 7

    Graphiquement $f(-1)=4$
    $\quad$

    [collapse]

    $\quad$
  2. Résoudre $f(x)=-2$ avec la précision que permet le graphique.
    $\quad$
    Correction Question 7

    Graphiquement les solutions de $f(x)=-2$ sont, approximativement $-2,2$ ; $2$ et $2,2$.
    $\quad$

    [collapse]

    $\quad$
  3. Dresser le tableau de signe de la fonction $f$ sur $[-2 ; 3]$.
    $\quad$
    Correction Question 9


    $\quad$

    [collapse]
  4. Dresser le tableau de variation de la fonction $f$ sur $[-2 ; 3]$.
    Correction Question 10


    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Suite à une épidémie dans une région, le nombre de personnes malades $t$ jours après l’apparition des premiers cas est modélisé par $f(t)=45t^2-t^3$ pour tout $t$ appartenant à
$[0 ; 45]$.

  1. Déterminer le nombre de personnes malades prévu par ce modèle au bout de $20$ jours.
    $\quad$
  2. Montrer que, pour tout 𝑡 appartenant à $[0 ; 45]$, $f'(t)=3t(30-t)$.
    $\quad$
  3. Déterminer le signe de $f'(t)$ sur $[0 ; 45]$.
    $\quad$
  4. Dresser le tableau de variation de $f$ sur l’intervalle $[0 ; 45]$.
    $\quad$
  5. Déterminer le jour où le nombre de personnes malades est maximal durant cette période de $45$ jours et préciser le nombre de personnes malades ce jour-là.
    $\quad$

$\quad$

Correction Exercice

  1. $f(20)=45\times 20^2-20^3=10~000$
    Au bout de $20$ jours il y aura donc $10~000$ malades selon ce modèle.
    $\quad$
  2. Pour tout $t\in [0;45]$ on a :
    $\begin{align*} f'(t)&=45\times 2t-3t^2\\
    &=90t-3t^2\\
    &=3t(30-t)\end{align*}$
    $\quad$
  3. $3t=0 \ssi t=0$ et $3t>0 \ssi t>0$
    $30-t=0\ssi t=30$ et $30-t>0 \ssi t<30$.
    On obtient donc le tableau de signes et de variations suivant :

    $\quad$
  4. Voir tableau précédent
    $\quad$
  5. D’après le tableau de variations la fonction $f$ atteint son maximum pour $t=30$.
    Le nombre de malades est maximal au bout de $30$ jours. Il y a alors $13~500$ malades ce jour-là.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

 

On considère la fonction $f$ définie sur $\R$ par $f(x) = x^2+2x-3$.

  1. Parmi les nombres $a$, $b$ et $c$ suivants, lesquels sont des racines de $f$ ?
    $$a=1 \hspace{2cm}b=2\hspace{2cm} c=-3$$
    $\quad$
  2. Montrer que la forme factorisée de la fonction $f$ est $f(x)=(x-1)(x+3)$.
    $\quad$
  3. Etudier le signe de la fonction $f$.
    $\quad$
  4. Parmi les trois courbes A, B, et C proposées ci-dessous, déterminer celle représentant la fonction $f$.$\quad$
  5. Dresser le tableau de variations de la fonction $f$.
    $\quad$

$\quad$

Correction Exercice

  1. $1^2+2\times 1-3=0$ donc $a$ est une racine de $f$.
    $2^2+2\times 2-3=5$ donc $b$ n’est pas une racine de $f$.
    $(-3)^2+2\times (-3)-3=0$ donc $c$ est une racine de $f$.
    $\quad$
  2. On a :
    $\begin{align*} (x-1)(x+3)&=x^2+3x-x-3\\
    &=x^2+2x-3\\
    &=f(x)\end{align*}$
    $\quad$
  3. Les racines du polynôme du second degré $f(x)$ sont $1$ et $-3$.
    Son coefficient principal est $1>0$.
    Par conséquent :
    $\bullet \quad f(x)<0$ sur $]-3;1[$
    $\bullet \quad f(x)=0$ si $x=-3$ ou $x=1$
    $\bullet \quad f(x)>0$ sur $]-\infty;-3[\cup]1;+\infty[$.
    $\quad$
  4. La courbe B est exclue car les racines ne sont pas $1$ et $-3$.
    Le coefficient principal de $f(x)$ est $1>0$. La fonction admet donc un minimum.
    La courbe A représente donc la fonction $f$.
    $\quad$
  5. L’abscisse du minimum est $-\dfrac{b}{2a}=-1$ et $f(-1)=-4$.
    On a donc le tableau de variations suivant :

    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence