E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiple (QCM).
Pour chacune des cinq questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer sur la copie le numéro de la question et recopier la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer la réponse.
Chaque réponse rapporte 1 point. Une réponse incorrecte ou une question sans réponse
n’apporte, ni ne retire de point.

Question 1

Soit $P$ une probabilité sur un univers $\Omega$ et $A$ et $B$ deux évènements indépendants tels que $P(A)= 0,5$ et $P(B) = 0,2$.
Alors $P(A\cup B)$ est égal à :

a. $0,1$
b. $0,7$
c. $0,6$
d. On ne peut pas savoir

$\quad$

Correction Question 1

$A$ et $B$ sont indépendants donc $P(A\cap B)=p(A)p(B)$.
Ainsi :
$\begin{align*} P(A\cup B)&=P(A)+p(B)-P(A\cap B)\\
&=P(A)+p(B)-P(A)P(B)\\
&=0,5+0,2-0,5\times 0,2\\
&=0,6\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

La valeur arrondie au centième de $1+1,2+1,2^2+1,2^3+\ldots+1,2^{10}$ est :

a. $3,27$
b. $25,96$
c. $26,96$
d. $32,15$

$\quad$

Correction Question 2

Il s’agit de la somme de termes d’une suite géométrique.
$\begin{align*} S&=1+1,2+1,2^2+1,2^3+\ldots+1,2^{10} \\
&=\dfrac{1-1,2^{11}}{1-1,2}\\
&\approx 32,15\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Soit $f$ la fonction définie sur $\R$ par $f(x)=\dfrac{x}{\e^x}$.
Pour tout réel $x$, $f(x)$ est égal à :

a. $f(x)=\dfrac{\e^{-x}}{-x}$
b. $f(x)=x\e^{-x}$
c. $f(x)=-x\e^{-x}$
d. $f(x)=\dfrac{\e^{-x}}{x}$

$\quad$

Correction Question 3

Pour tout réel $x$ on a
$\begin{align*} f(x)&=\dfrac{x}{\e^x}\\
&=x\e^{-x}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $g$ la fonction définie sur $\R$ par $g(x)=(2x-5)\e^x$. On admet que $g$ est dérivable sur $\R$ et on note $g’$ sa fonction dérivée.
Alors pour tout réel $x$ , $g'(x)$ est égal à :

a. $(2x-3)\e^x$
b. $(-2x+7)\e^x$
c. $2\e^x$
d. $-5\e^x$

$\quad$

Correction Question 4

On utilise la formule de dérivation d’un produit avec $u(x)=2x-5$ et $v(x)=\e^x$

Pour tout réel $x$ on a :
$\begin{align*} g'(x)&=2\e^x+(2x-5)\e^x\\
&=(2+2x-5)\e^x\\
&=(2x-3)\e^x\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

Le nombre $\dfrac{\e^3\times \e^{-5}}{\e^2}$ est égal à :

a. $-1$
b. $\e^{-15/2}$
c. $\dfrac{1}{\e^4}$
d. $\dfrac{3\e^{-5}}{2}$

$\quad$

Correction Question 5

$\begin{align*} \dfrac{\e^3\times \e^{-5}}{\e^2}&=\dfrac{\e^{3+(-5)}}{\e^2} \\
&=\dfrac{\e^{-2}}{\e^2}\\
&=\e^{-2-2}\\
&=\e^{-4}\\
&=\dfrac{1}{\e^4}\end{align*}$

Réponse c

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

En 2000, la production mondiale de plastique était de $187$ millions de tonnes. On suppose que depuis 2000, cette production augmente de $3,7 \%$ chaque année.

On modélise la production mondiale de plastique, en millions de tonnes, produite en l’année (2000 $+n$) par la suite de terme général $u_n$ où $n$ désigne le nombre d’année à partir de l’an
2000.
Ainsi, $u_0 = 187$.

  1. Montrer que la suite $\left(u_n\right)$ est une suite géométrique dont on donnera la raison.
    $\quad$
  2. Pour tout $n\in \N$, exprimer $u_n$ en fonction de $n$.
    $\quad$
  3. Étudier le sens de variation de la suite $\left(u_n\right)$ .
    $\quad$
  4. Selon cette estimation, calculer la production mondiale de plastique en 2019. Arrondir au million de tonnes.
    $\quad$
  5. Des études montrent que $20 \%$ de la quantité totale de plastique se retrouve dans les océans, et que $70 \%$ de ces déchets finissent par couler.
    Montrer que la quantité totale, arrondie au million de tonnes, de déchets flottants sur l’océan dus à la production de plastique de 2000 à 2019 compris est de $324$ millions de tonnes.
    $\quad$

$\quad$

Correction Exercice

  1. Pour tout entier naturel $n$ on :
    $\begin{align*} u_{n+1}&=\left(1+\dfrac{3,7}{100}\right)u_n \\
    &=1,037u_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,037$ et de premier terme $u_0=187$
    $\quad$
  2. Pour tout entier naturel $n$ on a donc $u_n=187\times 1,037^n$.
    $\quad$
  3. On a $1<1,037$ et $u_0>0$.
    La suite $\left(u_n\right)$ est donc strictement croissante.
    $\quad$
  4. On a
    $\begin{align*} u_{19}&=187\times 1,037^{19} \\
    &\approx 373\end{align*}$
    Selon cette estimation, la production mondiale de plastique en 2019 est d’environ $373$ millions de tonnes.
    $\quad$
  5. On a :
    $\begin{align*}S_{19}&=u_0+u_1+\ldots u_{19} \\
    &=187\times \dfrac{1-1,037^{20}}{1-1,037}\end{align*}$
    Entre 2000 et 2019 la production mondiale globale de plastique était de $S_{19}\approx 5~398$ millions de tonnes.
    $30%$ des déchets se trouvant dans les océans flottent.
    $0,2\times 0,3\times S_{19}\approx 324$.
    Ma quantité totale, arrondie au million de tonnes, de déchets flottants sur l’océan dus à la production de plastique de 2000 à 2019 compris est de $324$ millions de tonnes.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Un service de vidéos à la demande réfléchit au lancement d’une nouvelle série mise en ligne chaque semaine et qui aurait comme sujet le quotidien de jeunes gens favorisés.

Le nombre de visionnages estimé la première semaine est de 120~ 000. Ce nombre augmenterait ensuite de $2\%$ chaque semaine.

Les dirigeants souhaiteraient obtenir au moins $400~000$ visionnages par semaine.

On modélise cette situation par une suite $\left(u_n\right)$ où $u_n$ représente le nombre de visionnages $n$ semaines après le début de la diffusion. On a donc $u_0 = 120~000$.

  1. Calculer le nombre $u_1$ de visionnages une semaine après le début de la diffusion.
    $\quad$
  2. Justifier que pour tout entier naturel $n$ : $u_n=120~000\times 1,02^n$
    $\quad$
  3. À partir de combien de semaines le nombre de visionnages hebdomadaire sera-t-il supérieur à $150~000$ ?
    $\quad$
  4. Voici un algorithme écrit en langage Python :
    $$\begin{array}{l}
    \textcolor{blue}{\text{def }} \textcolor{BlueGreen}{\text{seuil}}\textcolor{Mahogany}{\text{():}}\\
    \hspace{1cm}\text{u}\textcolor{Mahogany}{\text{=}}\textcolor{BlueGreen}{\text{120000}}\\
    \hspace{1cm}\text{n}\textcolor{Mahogany}{\text{=}}\textcolor{BlueGreen}{\text{0}}\\
    \hspace{1cm}\textcolor{blue}{\text{while }} \text{u}\textcolor{Mahogany}{\text{<}}\textcolor{BlueGreen}{\text{400000}}\\
    \hspace{2cm}\text{n}\textcolor{Mahogany}{\text{=}}\text{n}\textcolor{Mahogany}{\text{+}}\textcolor{BlueGreen}{\text{1}}\\
    \hspace{2cm}\text{u}\textcolor{Mahogany}{\text{=}}\textcolor{BlueGreen}{\text{1.02}}\textcolor{Mahogany}{\text{*}}\text{u}\\
    \hspace{1cm}\textcolor{blue}{\text{return }} \text{n}
    \end{array}$$
    Déterminer la valeur affichée par cet algorithme et interpréter le résultat précédent dans le contexte de l’exercice.
    $\quad$
  5. On pose pour tout entier naturel $n$ : $S_n=u_0+\ldots+u_n$. Montrer que l’on a :
    $$S_n=6~000~000\times \left(1,02^{n+1}-1\right)$$
    Puis en déduire le nombre total de visionnages au bout de $52$ semaines (arrondir à l’unité).
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} u_1&=\left(1+\dfrac{2}{100}\right)\times u_0\\
    &=1,02\times 120~000\\
    &=122~400\end{align*}$
    Il y a eu $122~400$ visionnages une semaine après le début de la diffusion.
    $\quad$
  2. Pour tout entier naturel $n$, on a $u_{n+1}=1,02u_n$.
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,02$ et de premier terme $u_0=120~000$.
    Ainsi, pour tout entier naturel $n$, on a $u_n=120~000\times 1,02^n$.
    $\quad$
  3. Voici les premières valeurs, arrondies à $10^{-2}$, prises par la suite $\left(u_n\right)$
    $$\begin{array}{|c|c|}
    \hline
    n& u_n\\
    \hline
    0 &120~000\\
    \hline
    1 &122~400\\
    \hline
    2 &124~848\\
    \hline
    3 &127~344,96\\
    \hline
    4 &129~891,86\\
    \hline
    5 &132~489,70\\
    \hline
    6 &135~139,49\\
    \hline
    7 &137~842,28\\
    \hline
    8 &140~599,13\\
    \hline
    9 &143~411,11\\
    \hline
    10 &146~279,33\\
    \hline
    11 &149~204,92\\
    \hline
    12 &152~189,02\\
    \hline
    \end{array}$$
    C’est donc après $12$ semaines que le nombre de visionnages hebdomadaire sera supérieur à $150~000$.
    $\quad$
  4. L’algorithme détermine le plus petit rang de la suite $\left(u_n\right)$ tel que $u_n\pg 400~000$.
    On a $u_{60} \approx 393~732,70$ et $u_{61}\approx 401~598,17$
    C’est donc à partir de la $61\ieme$ semaine que le nombre de visionnages hebdomadaire sera supérieur à $400~000$.
    $\quad$
  5. Pour tout entier naturel $n$ on a :
    $\begin{align*} S_n&=u_0+u_1+\ldots+u_n\\
    &=120~000\times \dfrac{1-1,02^{n+1}}{1-1,02}\\
    &=120~000\times \dfrac{1-1,02^{n+1}}{-0,02}\\
    &=6~000~000\left(1,102^{n+1}-1\right)\end{align*}$
    On a
    $\begin{align*} S_{52}&=6~000~000\left(1,02^{53}-1\right)\\
    &\approx 11~138~008\end{align*}$
    Le nombre total de visionnages au bout de $52$ semaines est environ égal à $11~138~008$.
    $\quad$

[collapse]

Les sujets proviennent de la banque nationale de sujets sous licence

Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Soit la suite $\left(u_n\right)$ de premier terme $u_0= 400$ vérifiant la relation, pour tout entier naturel $n$, $$u_{n+1} = 0,9u_n + 60$$
Soit la suite géométrique $\left(u_n\right)$ de premier terme $v_0= -200$ et de raison $0,9$.

  1. Calculer $u_2$ et $v_2$.
    $\quad$
  2. Calculer la somme des $20$ premiers termes de la suite $\left(v_n\right)$.
    $\quad$
  3. La suite $\left(u_n\right)$ est-elle arithmétique ? La suite $\left(u_n\right)$ est-elle géométrique ?
    $\quad$
  4. Recopier et compléter la fonction Suite suivante écrite en Python qui permet de calculer la somme $S$ des $20$ premiers termes de la suite $\left(u_n\right)$.
    $$\begin{array}{|l|}
    \hline
    \text{def Suite( ) :}\\
    \hspace{1cm} \text{U = 400}\\
    \hspace{1cm} \text{S = 0}\\
    \hspace{1cm} \text{for i in range(20) :} \hspace{2cm}\\
    \hspace{2cm} \text{S = } \ldots\ldots\ldots\\
    \hspace{2cm} \text{U = } \ldots\ldots\ldots\\
    \hspace{1cm} \text{return(}\ldots)\\
    \hline
    \end{array}$$
    Le sujet original contenait une erreur dans le programme. Elle a été corrigée ici.
    $\quad$
  5. On admet que $u_n=v_n+600$. En déduire $u_{20}$.
    $\quad$

$\quad$

$\quad$

Correction Exercice

  1. On a
    $\begin{align*}u_1&=0,9u_0+60\\
    &=0,9\times 400+60\\
    &=420\end{align*}$
    et
    $\begin{align*}u_2&=0,9u_1+60\\
    &=0,9\times 420+60\\
    &=438\end{align*}$
    $\quad$
    La suite $\left(v_n\right)$ est géométrique de raison $0,9$ et de premier terme $v_0=-200$.
    Pour tout entier naturel $n$ on a donc $v_n=-200\times 0,9^n$.
    Ainsi :
    $\begin{align*}v_2&=-200\times 0,9^2 \\
    &=-162\end{align*}$
    $\quad$
  2. La somme des $20$ premiers termes de la suite $\left(v_n\right)$ est :
    $\begin{align*} S_{20}&=v_0+v_1+\ldots+v_{19} \\
    &=-200\times \dfrac{1-0,9^{20}}{1-0,9} \\
    &=-2~000\left(1-0,9^{20}\right)\end{align*}$
    $\quad$
  3. On a $u_1-u_0=20$ et $u_2-u_1=18$
    $20\neq 18$ : La suite $\left(u_n\right)$ n’est pas arithmétique.
    On a $\dfrac{u_1}{u_0}=1,05$ et $\dfrac{u_2}{u_1}\approx 1,04$
    Les quotients sont différents : La suite $\left(u_n\right)$ n’est pas géométrique.
    $\quad$
  4. On obtient le code suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def Suite( ) :}\\
    \hspace{1cm} \text{U = 400}\\
    \hspace{1cm} \text{S = 0}\\
    \hspace{1cm} \text{for i in range(20) :} \hspace{2cm}\\
    \hspace{2cm} \text{S = S + U } \\
    \hspace{2cm} \text{U = 0,9 * U + 60} \\
    \hspace{1cm} \text{return(S)}\\
    \hline
    \end{array}$$
    $\quad$
  5. On a donc :
    $\begin{align*} u_{20}&=v_{20}+600 \\
    &=-200\times 0,9^{20}+600\end{align*}$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Partie A :

$\left(U_n\right)$ est une suite géométrique de premier terme $U_0= 25~000$ et de raison $0,94$.

$\left(V_n\right)$ est une suite définie par : $V_n = 50 ( 104 + 25 n)$ pour tout entier naturel $n$.

  1. Déterminer une forme explicite de la suite $\left(U_n\right)$.
    $\quad$
  2. Calculer la somme des sept premiers termes de la suite $\left(U_n\right)$.
    $\quad$
  3. Comparer les termes $U_0$ et $V_0$ puis $U_{20}$ et $V_{20}$.
    $\quad$
  4. Déterminer le plus petit entier naturel $n$ tel que $U_n<V_n$.
    $\quad$

Partie B :

Un concessionnaire de voitures propose des voitures équipées d’un moteur diesel ou d’un moteur essence.
Durant sa première année d’existence en 1995, il a vendu $25~000$ véhicules avec un moteur diesel et $5~200$ véhicules avec un moteur essence.
Ses ventes de voitures avec un moteur diesel ont diminué de 6 % chaque année, alors que ses ventes de voitures avec un moteur essence ont augmenté de $1~250$ unités tous les ans.

En quelle année les ventes de voitures avec un moteur essence ont elles dépassé les ventes de voitures avec un moteur diesel ?

$\quad$


$\quad$

Correction Exercice

  1. $\left(U_n\right)$ est une suite géométrique de premier terme $U_0= 25~000$ et de raison $0,94$.
    Donc, pour tout entier naturel $n$, on a $U_n=25~000\times 0,94^n$.
    $\quad$
  2. La somme des sept premiers termes de la suite $\left(U_n\right)$ est :
    $\begin{align*} S&=U_0+U_1+\ldots+U_7 \\
    &=25~000\times \dfrac{1-0,94^7}{1-0,94} \\
    &=146~467,669~1\end{align*}$
    $\quad$
  3. On a $U_0=25~000$ et $V_0=5~200$
    Donc $U_0>V_0$
    $\quad$
    $U_{20}=25~000\times 0,94^{20} \approx 7252,66$
    $V_{20}=30~200$
    Donc $U_{20}<V_{20}$
    $\quad$
  4. Voici les premières valeurs (arrondies) des suites $\left(U_n\right)$ et $\left(V_n\right)$.
    $$\begin{array}{|c|c|c|}
    \hline
    n &U_n& V_n\\
    \hline
    0 &25~000& 5~200\\
    \hline
    1& 23~500& 6~450\\
    \hline
    2& 22~090& 7~700\\
    \hline
    3& 20~764,6& 8~950\\
    \hline
    4& 19~518,724& 10~200\\
    \hline
    5& 18~347,600~56& 11~450\\
    \hline
    6& 17~246,744~53& 12~700\\
    \hline
    7& 16~211,939~85& 13~950\\
    \hline
    8& 15~239,223~46& 15~200\\
    \hline
    9& 14~324,870~06& 16~450\\
    \hline
    \end{array}$$
    Le plus petit entier naturel $n$ tel que $U_n<V_n$ est donc $9$.
    $\quad$

Partie B

Le nombre de voitures avec un moteur diesel diminue chaque année de $6\%$. Ce nombre est donc multiplié, chaque année, par $0,94$.
Ainsi la suite $\left(U_n\right)$ de la partie A représente le nombre de voitures avec un moteur diesel vendues l’année 1995$+n$.

Le nombre de véhicules avec un moteur essence vendu l’année 1995$+n$ est représenté par la suite $\left(W_n\right)$. Il s’agit d’une suite arithmétique de raison $1~250$ et de premier terme $5~200$.
Ainsi, pour tout entier naturel $n$, on a :
$\begin{align*} W_n&=5~200+1~250n\\
&=50(104+25n)\\
&=V_n\end{align*}$

D’après la question A.4. $U_n<V_n$ pour $n\pg 9$.
C’est donc à partir de l’année 2004 que les ventes de voitures avec un moteur essence ont elles dépassé les ventes de voitures avec un moteur diesel.

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Partie A

Soit $\left(u_n\right)$ une suite géométrique de raison $2$ de premier terme $u_0 = 0,2$ .

  1. Calculer $u_{18}$ puis $u_{50}$.
    $\quad$
  2. Calculer $u_0+u_1+u_2+u_3+u_4+\ldots+u_{18}$, c’est-à-dire la somme des $19$ premiers termes de la suite $\left(u_n\right)$.
    $\quad$
  3. Recopier et compléter les trois parties en pointillé de l’algorithme suivant permettant de déterminer le plus petit entier $n$ tel que la somme des $n+1$ premiers termes de la suite $u$ dépasse $100~000$.
    $$\begin{array}{|l|}
    \hline
    U\leftarrow 0,2 \\
    S\leftarrow 0,2\\
    N\leftarrow 0\\
    \\
    \text{Tant que } \ldots\ldots\ldots\ldots\ldots\ldots \\
    \qquad U\leftarrow \ldots\ldots\ldots \\
    \qquad S\leftarrow \ldots\ldots\ldots \\
    \qquad N\leftarrow N + 1 \hspace{4cm} \\
    \\
    \text{Fin tant que}\\
    \text{Afficher } N\\
    \hline
    \end{array}$$
    $\quad$

Partie B

Claude a donné $20$ centimes d’euros (soit $0,20$ €) à son petit-enfant Camille pour sa naissance. Ensuite, Claude a doublé le montant offert d’une année sur l’autre pour chaque anniversaire jusqu’aux $18$ ans de Camille.

La somme totale versée par Claude à Camille permet-elle de payer un appartement à Angers d’une valeur de $100~000$ € ?

$\quad$

$\quad$

Correction Exercice

Partie A

  1. $\left(u_n\right)$ est une suite géométrique de raison $2$ et de premier terme $u_0=0,2$.
    Par conséquent, pour tout entier naturel $n$, on a $u_n=0,2\times 2^n$.
    Ainsi :
    $\begin{align*} u_{18}&=0,2\times 2^{18} \\
    &=52~428,8\end{align*}$
    et :
    $\begin{align*} u_{50}&=0,2\times 2^{50} \\
    &\approx 2,25\times 2^{14}\end{align*}$
    $\quad$
  2. On a :
    $\begin{align*} S&=u_0+u_1+u_2+u_3+u_4+\ldots+u_{18} \\
    &=0,2\times \dfrac{1-2^{19}}{1-2} \\
    &=0,2\left(2^{19}-1\right) \\
    &=104~857,4\end{align*}$
    $\quad$
  3. On obtient l’algorithme suivant :
    $$\begin{array}{|l|}
    \hline
    U\leftarrow 0,2 \\
    S\leftarrow 0,2\\
    N\leftarrow 0\\
    \\
    \text{Tant que } S\pp 100~000\\
    \qquad U\leftarrow 2\times U \\
    \qquad S\leftarrow S + U \\
    \qquad N\leftarrow N + 1 \hspace{4cm}\\
    \\
    \text{Fin tant que}\\
    \text{Afficher } N\\
    \hline
    \end{array}$$
    $\quad$

Partie B

Chaque année Camille reçoit donc pour son $n$_ième anniversaire $u_n$ euros où $\left(u_n\right)$ est la suite définie à la partie A.

D’après la question 2. Camille aura donc cumuler $104~857,4$ euros à ses $18$ ans.
Elle pourra se payer un appartement à Angers d’une valeur de $100~000$ euros.

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Lors du lancement d’un hebdomadaire, $1~200$ exemplaires ont été vendus.
Une étude de marché prévoit une progression des ventes de $2 \%$ chaque semaine.
On modélise le nombre d’hebdomadaires vendus par une suite $\left(u_n\right)$ où $u_n$ représente le nombre de journaux vendus durant la $n$-ième semaine après le début de l’opération.

On a donc $u_0 = 1~200$.

  1. Calculer le nombre $u_2$. Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  2. Écrire, pour tout entier naturel $n$, l’expression de $u_n$ en fonction de $n$.
    $\quad$
  3. Voici un programme rédigé en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def suite( ):}\\
    \quad \text{u = 1200}\\
    \quad \text{S = 1200}\\
    \quad \text{n = 0}\\
    \quad \text{while S < 30000 :} \hspace{2cm}\\
    \qquad \text{n = n + 1}\\
    \qquad \text{u = u * 1.02}\\
    \qquad \text{S = S + u}\\
    \quad \text{return(n)}\\
    \hline
    \end{array}$$
    Le programme retourne la valeur $20$.
    Attention : il y a des coquilles dans le sujet original pour cette question. Elles ont été corrigées ici.
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  4. Déterminer le nombre total d’hebdomadaires vendus au bout d’un an.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} u_1&=\left(1+\dfrac{2}{100}\right)u_0\\
    &=1,02u_0\\
    &=1~224\end{align*}$
    Et :
    $\begin{align*} u_2&=1,02u_n \\
    &=1~248,48\end{align*}$
    Cela signifie donc que la deuxième semaine après le début de l’opération environ $1~248$ journaux seront vendus.
    $\quad$
  2. Pour tout entier naturel $n$ on a $u_{n+1}=1,02u_n$.
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,02$ et de premier terme $u_0=1~200$.
    Par conséquent, pour tout entier naturel $n$ on a $u_n=1~200\times 1,02^n$.
    $\quad$
  3. Cela signifie qu’il faut $20$ semaines pour que le nombre cumulé de journaux vendus dépasse $30~000$ exemplaires.
    $\quad$
  4. Au bout d’un an, soit $52$ semaines, le nombre total d’hebdomadaires vendus est :
    $\begin{align*} S&=u_0+u_1+\ldots +u_{52}\\
    &=1~200\times \dfrac{1-1,02^{53}}{1-1,02} \\
    &\approx 111~380\end{align*}$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence