E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Partie A :

$\left(U_n\right)$ est une suite géométrique de premier terme $U_0= 25~000$ et de raison $0,94$.

$\left(V_n\right)$ est une suite définie par : $V_n = 50 ( 104 + 25 n)$ pour tout entier naturel $n$.

  1. Déterminer une forme explicite de la suite $\left(U_n\right)$.
    $\quad$
  2. Calculer la somme des sept premiers termes de la suite $\left(U_n\right)$.
    $\quad$
  3. Comparer les termes $U_0$ et $V_0$ puis $U_{20}$ et $V_{20}$.
    $\quad$
  4. Déterminer le plus petit entier naturel $n$ tel que $U_n<V_n$.
    $\quad$

Partie B :

Un concessionnaire de voitures propose des voitures équipées d’un moteur diesel ou d’un moteur essence.
Durant sa première année d’existence en 1995, il a vendu $25~000$ véhicules avec un moteur diesel et $5~200$ véhicules avec un moteur essence.
Ses ventes de voitures avec un moteur diesel ont diminué de 6 % chaque année, alors que ses ventes de voitures avec un moteur essence ont augmenté de $1~250$ unités tous les ans.

En quelle année les ventes de voitures avec un moteur essence ont elles dépassé les ventes de voitures avec un moteur diesel ?

$\quad$


$\quad$

Correction Exercice

  1. $\left(U_n\right)$ est une suite géométrique de premier terme $U_0= 25~000$ et de raison $0,94$.
    Donc, pour tout entier naturel $n$, on a $U_n=25~000\times 0,94^n$.
    $\quad$
  2. La somme des sept premiers termes de la suite $\left(U_n\right)$ est :
    $\begin{align*} S&=U_0+U_1+\ldots+U_6 \\
    &=25~000\times \dfrac{1-0,94^7}{1-0,94} \\
    &=146~467,669~1\end{align*}$
    $\quad$
  3. On a $U_0=25~000$ et $V_0=5~200$
    Donc $U_0>V_0$
    $\quad$
    $U_{20}=25~000\times 0,94^{20} \approx 7252,66$
    $V_{20}=30~200$
    Donc $U_{20}<V_{20}$
    $\quad$
  4. Voici les premières valeurs (arrondies) des suites $\left(U_n\right)$ et $\left(V_n\right)$.
    $$\begin{array}{|c|c|c|}
    \hline
    n &U_n& V_n\\
    \hline
    0 &25~000& 5~200\\
    \hline
    1& 23~500& 6~450\\
    \hline
    2& 22~090& 7~700\\
    \hline
    3& 20~764,6& 8~950\\
    \hline
    4& 19~518,724& 10~200\\
    \hline
    5& 18~347,600~56& 11~450\\
    \hline
    6& 17~246,744~53& 12~700\\
    \hline
    7& 16~211,939~85& 13~950\\
    \hline
    8& 15~239,223~46& 15~200\\
    \hline
    9& 14~324,870~06& 16~450\\
    \hline
    \end{array}$$
    Le plus petit entier naturel $n$ tel que $U_n<V_n$ est donc $9$.
    $\quad$

Partie B

Le nombre de voitures avec un moteur diesel diminue chaque année de $6\%$. Ce nombre est donc multiplié, chaque année, par $0,94$.
Ainsi la suite $\left(U_n\right)$ de la partie A représente le nombre de voitures avec un moteur diesel vendues l’année 1995$+n$.

Le nombre de véhicules avec un moteur essence vendu l’année 1995$+n$ est représenté par la suite $\left(W_n\right)$. Il s’agit d’une suite arithmétique de raison $1~250$ et de premier terme $5~200$.
Ainsi, pour tout entier naturel $n$, on a :
$\begin{align*} W_n&=5~200+1~250n\\
&=50(104+25n)\\
&=V_n\end{align*}$

D’après la question A.4. $U_n<V_n$ pour $n\pg 9$.
C’est donc à partir de l’année 2004 que les ventes de voitures avec un moteur essence ont dépassé les ventes de voitures avec un moteur diesel.

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Partie A

Soit $\left(u_n\right)$ une suite géométrique de raison $2$ de premier terme $u_0 = 0,2$ .

  1. Calculer $u_{18}$ puis $u_{50}$.
    $\quad$
  2. Calculer $u_0+u_1+u_2+u_3+u_4+\ldots+u_{18}$, c’est-à-dire la somme des $19$ premiers termes de la suite $\left(u_n\right)$.
    $\quad$
  3. Recopier et compléter les trois parties en pointillé de l’algorithme suivant permettant de déterminer le plus petit entier $n$ tel que la somme des $n+1$ premiers termes de la suite $u$ dépasse $100~000$.
    $$\begin{array}{|l|}
    \hline
    U\leftarrow 0,2 \\
    S\leftarrow 0,2\\
    N\leftarrow 0\\
    \\
    \text{Tant que } \ldots\ldots\ldots\ldots\ldots\ldots \\
    \qquad U\leftarrow \ldots\ldots\ldots \\
    \qquad S\leftarrow \ldots\ldots\ldots \\
    \qquad N\leftarrow N + 1 \hspace{4cm} \\
    \\
    \text{Fin tant que}\\
    \text{Afficher } N\\
    \hline
    \end{array}$$
    $\quad$

Partie B

Claude a donné $20$ centimes d’euros (soit $0,20$ €) à son petit-enfant Camille pour sa naissance. Ensuite, Claude a doublé le montant offert d’une année sur l’autre pour chaque anniversaire jusqu’aux $18$ ans de Camille.

La somme totale versée par Claude à Camille permet-elle de payer un appartement à Angers d’une valeur de $100~000$ € ?

$\quad$

$\quad$

Correction Exercice

Partie A

  1. $\left(u_n\right)$ est une suite géométrique de raison $2$ et de premier terme $u_0=0,2$.
    Par conséquent, pour tout entier naturel $n$, on a $u_n=0,2\times 2^n$.
    Ainsi :
    $\begin{align*} u_{18}&=0,2\times 2^{18} \\
    &=52~428,8\end{align*}$
    et :
    $\begin{align*} u_{50}&=0,2\times 2^{50} \\
    &\approx 2,25\times 10^{14}\end{align*}$
    $\quad$
  2. On a :
    $\begin{align*} S&=u_0+u_1+u_2+u_3+u_4+\ldots+u_{18} \\
    &=0,2\times \dfrac{1-2^{19}}{1-2} \\
    &=0,2\left(2^{19}-1\right) \\
    &=104~857,4\end{align*}$
    $\quad$
  3. On obtient l’algorithme suivant :
    $$\begin{array}{|l|}
    \hline
    U\leftarrow 0,2 \\
    S\leftarrow 0,2\\
    N\leftarrow 0\\
    \\
    \text{Tant que } S\pp 100~000\\
    \qquad U\leftarrow 2\times U \\
    \qquad S\leftarrow S + U \\
    \qquad N\leftarrow N + 1 \hspace{4cm}\\
    \\
    \text{Fin tant que}\\
    \text{Afficher } N\\
    \hline
    \end{array}$$
    $\quad$

Partie B

Chaque année Camille reçoit donc pour son $n$_ième anniversaire $u_n$ euros où $\left(u_n\right)$ est la suite définie à la partie A.

D’après la question 2. Camille aura donc cumuler $104~857,4$ euros à ses $18$ ans.
Elle pourra se payer un appartement à Angers d’une valeur de $100~000$ euros.

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Lors du lancement d’un hebdomadaire, $1~200$ exemplaires ont été vendus.
Une étude de marché prévoit une progression des ventes de $2 \%$ chaque semaine.
On modélise le nombre d’hebdomadaires vendus par une suite $\left(u_n\right)$ où $u_n$ représente le nombre de journaux vendus durant la $n$-ième semaine après le début de l’opération.

On a donc $u_0 = 1~200$.

  1. Calculer le nombre $u_2$. Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  2. Écrire, pour tout entier naturel $n$, l’expression de $u_n$ en fonction de $n$.
    $\quad$
  3. Voici un programme rédigé en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def suite( ):}\\
    \quad \text{u = 1200}\\
    \quad \text{S = 1200}\\
    \quad \text{n = 0}\\
    \quad \text{while S < 30000 :} \hspace{2cm}\\
    \qquad \text{n = n + 1}\\
    \qquad \text{u = u * 1.02}\\
    \qquad \text{S = S + u}\\
    \quad \text{return(n)}\\
    \hline
    \end{array}$$
    Le programme retourne la valeur $20$.
    Attention : il y a des coquilles dans le sujet original pour cette question. Elles ont été corrigées ici.
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  4. Déterminer le nombre total d’hebdomadaires vendus au bout d’un an.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} u_1&=\left(1+\dfrac{2}{100}\right)u_0\\
    &=1,02u_0\\
    &=1~224\end{align*}$
    Et :
    $\begin{align*} u_2&=1,02u_n \\
    &=1~248,48\end{align*}$
    Cela signifie donc que la deuxième semaine après le début de l’opération environ $1~248$ journaux seront vendus.
    $\quad$
  2. Pour tout entier naturel $n$ on a $u_{n+1}=1,02u_n$.
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,02$ et de premier terme $u_0=1~200$.
    Par conséquent, pour tout entier naturel $n$ on a $u_n=1~200\times 1,02^n$.
    $\quad$
  3. Cela signifie qu’il faut $20$ semaines pour que le nombre cumulé de journaux vendus dépasse $30~000$ exemplaires.
    $\quad$
  4. Au bout d’un an, soit $52$ semaines, le nombre total d’hebdomadaires vendus est :
    $\begin{align*} S&=u_0+u_1+\ldots +u_{52}\\
    &=1~200\times \dfrac{1-1,02^{53}}{1-1,02} \\
    &\approx 111~380\end{align*}$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence