E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Une baisse de $10\%$ suivie d’une baisse de $20\%$ correspond à une baisse globale de $\ldots$
    $\quad$
    Correction Question 2

    Le coefficient multiplicateur associé à cette évolution est :
    $\begin{align*} m&=\left(1-\dfrac{10}{100}\right)\times \left(1-\dfrac{20}{100}\right)\\
    &=0,9\times 0,8\\
    &=0,72\\
    &=1-0,28\end{align*}$
    Il s’agit donc d’une baisse globale de $28\%$.
    $\quad$

    [collapse]

    $\quad$
  2. La forme décimale de $\frac{7}{4}\times 10^{-3}$ est
    $\quad$
    Correction Question 2

    $\begin{align*} \dfrac{7}{4}\times 10^{-3}&=1,75\times 10^{-3} \\
    &=0,001~75\\
    \end{align*}$
    $\quad$

    [collapse]

    $\quad$
  3. La fraction irréductible égale à $1-\left(\dfrac{2}{3}\right)^2$ est :
    $\quad$
    Correction Question 3

    $\begin{align*} 1-\left(\dfrac{2}{3}\right)^2&=1-\dfrac{4}{9} \\
    &=\dfrac{5}{9}\end{align*}$
    $\quad$

    [collapse]

    $\quad$

Une série statistique est résumée à l’aide du diagramme en boîtes ci-dessous, utilisez-le pour répondre aux questions 4 et 5.

  1. L’écart interquartile de cette série vaut
    $\quad$
    Correction Question 4

    D’après le graphique, l’écart interquartile vaut $55-30=25$.
    $\quad$

    [collapse]

    $\quad$
  2. Le pourcentage des valeurs de cette série comprises entre $30$ et $60$ est de :
    $\quad$
    Correction Question 5

    D’après le graphique, le premier quartile est $Q_1=30$ et le maximum vaut $60$.
    Ainsi $75\%$ des valeurs de cette série sont comprises entre $30$ et $60$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$
  3. Résoudre l’équation $3x-10=x+2$.
    $\quad$
    Correction Question 6

    $\begin{align*} 3x-10=x+2 &\ssi 3x-x=2+10\\
    &\ssi 2x=12\\
    &\ssi x=6\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  4. Développer l’expression $(3x-2)^2$.
    $\quad$
    Correction Question 7

    $\begin{align*} (3x-2)^2&=(3x)^2-2\times 3x\times 2+2^2 \\
    &=9x^2-12x+4\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  5. Factoriser l’expression $x^3+5x$.
    $\quad$
    Correction Question 8

    $x^3+5x=x\left(x^2+5\right)$
    $\quad$

    [collapse]

    $\quad$
  6. Tracer la droite d’équation $y=-2x+3$ dans le repère ci-dessous

    $\quad$
    Correction Question 9

    Si $x=0$ alors $y=-2\times 0+3=3$. Le point $A$ de coordonnées $(0;3)$ appartient donc à la droite $\Delta$.
    Si $x=2,5$ alors $y=-2\times 2,5+3=-2$. Le point $B$ de coordonnées $(2,5;-2)$ appartient à la droite $\Delta$.
    $\quad$

    [collapse]

    $\quad$
  7. Dans un repère, on donne $A (5 ; 8)$ et $B (1 ; 0)$, le coefficient directeur de la droite $(AB)$ est :
    $\quad$
    Correction Question 10

    $A$ et $B$ ont des abscisses différentes.
    Le coefficient directeur de la droite $(AB)$ est donc :
    $\begin{align*} m&=\dfrac{8-0}{5-1} \\
    &=\dfrac{8}{4}\\
    &=2\end{align*}$
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. À quelle évolution globale correspond une hausse de $20\%$ suivi d’une baisse de $30\%$ ?
    $\quad$
    Correction Question 1

    Le coefficient multiplicateur est :
    $\begin{align*} m&=\left(1+\dfrac{20}{100}\right)\left(1-\dfrac{30}{100}\right)\\
    &=1,2\times 0,7\\
    &=0,84\\
    &=1-0,16\end{align*}$
    Il s’agit donc, au global, d’une baisse de $16\%$.
    $\quad$

    [collapse]

    $\quad$
  2. Convertir $3,52$ h en heure minute seconde.
    $\quad$
    Correction Question 2

    $0,52$h $=0,52\times 60$ min $= 31,2$ min
    $0,2$ min $=0,2\times 60$ s $=12$ s.
    Ainsi $3,52$h $=3$h $31$min $12$s
    $\quad$

    [collapse]

    $\quad$
  3. Soit $(d)$ la droite d’équation réduite $y = -3x + 2$.
    Le point $B\left(\dfrac{1}{3};1\right)$ appartient-il à la droite $(d)$ ?
    $\quad$
    Correction Question 3

    $-3\times \dfrac{1}{3}+2=-1+2=1$ donc $B$ appartient à la droite $(d)$.
    $\quad$

    [collapse]

    $\quad$
  4. Développer et réduite l’expression suivante :
    $A(x)=(2x-1)^2+3x+2$
    $\quad$
    Correction Question 4

    $\begin{align*} A(x)&=(2x-1)^2+3x+2 \\
    &=(2x)^2-2\times 2x\times 1+1^2+3x+2\\
    &=4x^2-4x+1+3x+2\\
    &=4x^2-x+3\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  5. Soit $f$ la fonction définie par la représentation graphique ci-dessous :

    Déterminer graphiquement l’ensemble des solutions de l’équation $f(x)=0$.
    $\quad$

    Correction Question 5

    L’ensemble solution cherché est, graphiquement, $\left\{-3;0;2;4\right\}$.
    $\quad$

    [collapse]

    $\quad$$\quad$
  6. Résoudre dans $\R$ l’inéquation d’inconnue $x$ suivante : $-2x-4\pg x+2$.
    $\quad$
    Correction Question 6

    $\begin{align*} -2x-4\pg x+2&\ssi -3x\pg 6\\
    &\ssi x\pp -2 \text{ on divise par $-3$ qui est négatif}\end{align*}$
    L’ensemble solution est donc $]-\infty;-2]$.
    $\quad$

    [collapse]

    $\quad$
  7. Quelle est la fraction irréductible égale à $\dfrac{3}{8}+\dfrac{5}{12}$?
    $\quad$
    Correction Question 7

    $\begin{align*}\dfrac{3}{8}+\dfrac{5}{12}&=\dfrac{9}{24}+\dfrac{10}{24} \\
    &=\dfrac{19}{24}\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  8. On considère le calcul suivant : $0,003\times 1,5\times 10^8$.
    Donner le résultat en écriture scientifique.
    $\quad$
    Correction Question 8

    $\begin{align*}0,003\times 1,5\times 10^8&=3\times 10^{-3}\times 15\times 10^{-1}\times 10^8 \\
    &=45\times 10^4 \\
    &=4,5\times 10^5\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  9. Résoudre dans $\R$ l’équation d’inconnue $x$ suivante : $$3x^2+1=13$$
    $\quad$
    Correction Question 9

    $\begin{align*}3x^2+1=13&\ssi 3x^2=12\\
    &\ssi x^2=4\\
    &\ssi x=2 \text{ ou } x=-2\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  10. Les tailles des élèves d’une classe de terminale ont été représentées par l’histogramme ci‐dessous :

    Trois élèves ont une taille inférieure à $160$ cm.
    Déterminer le nombre d’élèves dans cette classe de terminale.
    $\quad$
    Correction Question 10

    $6$ “petits rectangles” représentent donc $3$ élèves.
    Donc $2$ “petits rectangles” représentent $1$ élève.
    Il y a par conséquent $33$ élèves dans cette classe.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Soit $B=\dfrac{5}{3}-\dfrac{7}{3}\times \dfrac{4}{5}$.
    Donner la valeur de $B$ sous la forme d’une fraction irréductible.
    $\quad$
    Correction Question 1

    $\begin{align*} B&=\dfrac{5}{3}-\dfrac{7}{3}\times \dfrac{4}{5}\\
    &=\dfrac{5}{3}-\dfrac{28}{15}\\
    &=\dfrac{25}{15}-\dfrac{28}{15}\\
    &=-\dfrac{3}{15}\\
    &=-\dfrac{1}{5}\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  2. Un prix est multiplié par $0,84$. Quel est le taux d’évolution de ce prix ?
    $\quad$
    Correction Question 2

    $0,84=1-0,16$.
    Il s’agit donc d’une baisse de $16\%$. Le taux d’évolution est donc $-16\%$.
    $\quad$

    [collapse]

    $\quad$
  3. Un prix augmente de $20\%$ puis baisse de $30 \%$. Quelle est l’évolution globale de ce prix ?
    $\quad$
    Correction Question 3

    Le coefficient multiplicateur est :
    $\begin{align*} m&=\left(1+\dfrac{20}{100}\right)\left(1-\dfrac{30}{100}\right)\\
    &=1,2\times 0,7\\
    &=0,84\\
    &=1-0,16\end{align*}$
    Le prix a subi une baisse de $16\%$.
    $\quad$

    [collapse]

    $\quad$
  4. Dans le repère ci-dessous, tracer la droite d’équation $y=3x-2$.
    $\quad$
    Correction Question 4


    Son ordonnée à l’origine est $-2$ et son coefficient directeur est $3$.
    $\quad$

    [collapse]

    $\quad$
  5. Résoudre l’équation $5x+1=4$.
    $\quad$
    Correction Question 5

    $5x+1=4\ssi 5x=3\ssi x=\dfrac{3}{5}$
    La solution de l’équation est $\dfrac{3}{5}$.
    $\quad$

    [collapse]

    $\quad$$\quad$
  6. Résoudre l’équation $3x^2=12$.
    $\quad$
    Correction Question 6

    $3x^2=12\ssi x^2=4\ssi x=2$ ou $x=-2$
    Les solutions de l’équation sont $-2$ et $2$.
    $\quad$

    [collapse]

    $\quad$
  7. Développer l’expression $A=(2x-1)^2-x^2$.
    $\quad$
    Correction Question 7

    $\begin{align*} A&=(2x-1)^2-x^2\\
    &=(2x)^2-2\times 2x\times 1+1^2-x^2\\
    &=4x^2-4x+1-x^2\\
    &=3x^2-4x+1\end{align*}$
    $\quad$

    [collapse]

    $\quad$

Voici la répartition des notes sur $5$ d’une classe de première :

  1. L’effectif total de la classe est :
    $\quad$
    Correction Question 8

    $4+8+7+5+1=25$
    Il y a donc $25$ élèves dans la classe.
    $\quad$

    [collapse]

    $\quad$
  2. Quel est le pourcentage de la classe qui a eu $4$ sur $5$ ?
    $\quad$
    Correction Question 8

    $\dfrac{5}{25}=0,2$.
    $20\%$ des élèves ont donc eu $4$ sur $5$.
    $\quad$

    [collapse]

    $\quad$
  3. Quel est le pourcentage d’élèves de la classe qui ont eu la moyenne ?
    $\quad$
    Correction Question 8

    $7+5+1=13$
    $\dfrac{13}{25}=\dfrac{52}{100}$
    $52\%$ des élèves ont eu la moyenne
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Le plan étant muni d’un repère, la droite d’équation $y = 2x-2,5$ passe par le point $A$ d’ordonnée $0$ et d’abscisse :
    A. $-2,5$
    B. $1,5$
    C. $-1,25$
    D. $\dfrac{5}{4}$
    $\quad$
    Correction Question 1

    $2x-2,5=0\ssi 2x=2,5 \ssi x=1,25\ssi x=\dfrac{5}{4}$
    Réponse D
    $\quad$

    [collapse]

    $\quad$
  2. Une diminution de $50 \%$ est compensée par une augmentation de :
    A. $50 \%$
    B. $100 \%$
    C. $150 \%$
    D. $200 \%$
    $\quad$
    Correction Question 2

    On veut résoudre l’équation :
    $\begin{align*}\left(1-\dfrac{50}{100}\right)\left(1+\dfrac{x}{100}\right)=1&\ssi 0,5\left(1+\dfrac{x}{100}\right)=1 \\
    &\ssi 1+\dfrac{x}{100}=2 \\
    &\ssi x=100\end{align*}$
    Réponse B
    $\quad$

    [collapse]

    $\quad$
  3. On considère une augmentation de $5 \%$, deux années consécutives. Le coefficient multiplicateur est :
    A. $1,055$
    B. $1,10$
    C. $1,102~5$
    D. $2,10$
    $\quad$
    Correction Question 3

    $\begin{align*}\left(1+\dfrac{5}{100}\right)^2&=1,05^2 \\
    &=1,102~5\end{align*}$
    Remarque : le carré d’un nombre se terminant par $5$ se termine par $25$.
    $\quad$

    [collapse]

    $\quad$
  4. Le prix d’un survêtement est passé de $40$ € à $30$ € entre juin 2019 et juillet 2019. Sachant que l’indice du prix de ce survêtement était $80$ en juin 2019, son indice en juillet 2019 est :
    A. $70$
    B. $75$
    C. $90$
    D. $60$
    $\quad$
    Correction Question 4

    On a le tableau de proportionnalité suivant :
    $$\begin{array}{|c|c|c|}
    \hline
    \text{Prix}&40&30\\
    \hline
    \text{indice}&80&x\\
    \hline
    \end{array}$$
    $x=\dfrac{30\times 80}{40}=60$
    Réponse D
    $\quad$

    [collapse]

    $\quad$$\quad$
  5. Selon une enquête de l’INSEE sur la production de déchets non dangereux dans le commerce en 2016, $75 \%$ des déchets non dangereux du commerce ont été triés en 2016 et $3 \%$ des déchets triés du commerce en 2016 ont été mis en décharge.
    En 2016, le pourcentage de déchets du commerce qui ont été triés et mis en décharge est :
    A. $2,25 \%$
    B. $78 \%$
    C. $39 \%$
    D. $25 \%$
    $\quad$
    Correction Question 5

    $\dfrac{3}{100}\times \dfrac{75}{100}=\dfrac{2,25}{100}=2,25\%$
    Réponse A
    $\quad$

    [collapse]

    $\quad$
  6. Lors de deux évolution $CM=(1+t)^2. Alors :
    A. $t=\sqrt{CM-1}$
    B. $t=\sqrt{CM}-1$
    C. $t=\sqrt{1-CM}$
    D. $t=1-\sqrt{CM}$
    $\quad$
    Correction Question 6

    On a donc $\sqrt{CM}=1+t$ soit $t=\sqrt{CM}-1$
    Réponse B
    $\quad$

    [collapse]

    $\quad$
  7. Pour tout réel $x$, $(1-2x)^2$ est égal à :
    A. $1-4x+2x^2$
    B. $4x^2-4x+1$
    C. $1-4x^2$
    D. $1-2x^2$
    $\quad$
    Correction Question 7

    $\begin{align*} (1-2x)^2&=1^2-2\times 1\times 2x+(2x)^2 \\
    &=1-4x+4x^2\end{align*}$
    Réponse B
    $\quad$

    [collapse]

    $\quad$
  8. L’ensemble des valeurs de $x$ pour lesquelles $-2x+6$ est négatif est :
    A. $[3;+\infty[$
    B. $]-\infty;3]$
    C. $[-3;+\infty[$
    D. $]-\infty;-3]$
    $\quad$
    Correction Question 8

    $-2x+6\pp 0 \ssi -2x\pp -6 \ssi x\pg 3$
    L’ensemble solution est donc $[3;+\infty[$.
    Réponse A
    $\quad$

    [collapse]

    $\quad$
  9. On donne la courbe $\mathscr{C}$ d’une fonction $f$ définie sur $[-3 ; 2]$ :

    L’équation $f(x) = 0$ admet :
    A. une solution négative ;
    B. deux solutions positives ;
    C. deux solutions négatives ;
    D. une solution positive et une solution négative.
    $\quad$

    Correction Question 9

    La courbe $\mathscr{C}$ coupe $2$ l’axe des abscisses : une des abscisses est positive l’autre est négative.
    Réponse D
    $\quad$

    [collapse]

    $\quad$
  10. Le diagramme en barres ci-dessous donne la production brute d’électricité, en Twh (térawatt-heure) selon son origine (source : INSEE).

    Indiquer la seule proposition vraie :
    A. La quantité d’électricité d’origine hydraulique a diminué entre 2011 et 2016.
    B. La quantité d’électricité d’origine hydraulique était de $575$ Twh en 2006.
    C. La quantité d’électricité d’origine nucléaire n’a pas cessé de diminuer entre 2001 et 2016.
    D. La quantité d’électricité d’origine thermique était d’environ $40$ Twh en 1995.
    $\quad$
    Correction Question 10

    Réponse D
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Le prix d’un objet est passé de $30$ euros à $36$ euros.
    Calculer le taux d’évolution en pourcentage ?
    $\quad$
    Correction Question 1

    $\dfrac{36-30}{30}=0,2$.
    Le taux d’évolution est donc égal à $20\%$.
    $\quad$

    [collapse]

    $\quad$
  2. Par combien faut-il multiplier une quantité positive pour que celle-ci diminue de $15\%$ ?
    $\quad$
    Correction Question 2

    Le coefficient multiplicateur est $1-\dfrac{15}{100}=0,85$.
    $\quad$

    [collapse]

    $\quad$
  3. Après une augmentation du prix de $10\%$, un article est vendu $44$ euros.
    Quel était le prix de départ?
    $\quad$
    Correction Question 3

    On appelle $P$ le prix de départ. On a donc :
    $\begin{align*} P\times \left(1+\dfrac{10}{100}\right)=44&\ssi 1,1P=44 \\
    &\ssi P=\dfrac{44}{1,1}\\
    &\ssi P=40\end{align*}$
    Le prix de départ était de $40$ euros.
    $\quad$

    [collapse]

    $\quad$
  4. Résoudre dans $\R$ l’équation suivante : $2(x-3)-4=7x$.
    $\quad$
    Correction Question 4

    $\begin{align*} 2(x-3)-4=7x&\ssi 2x-6-4=7x\\
    &\ssi -10=5x\\
    &\ssi x=-2\end{align*}$
    La solution de l’équation est $-2$.
    $\quad$

    [collapse]

    $\quad$
  5. Résoudre dans $\R$ l’équation suivante $(x+1)^2=7$.
    $\quad$
    Correction Question 5

    $\begin{align*} (x+1)^2=7 &\ssi x+1=\sqrt{7} \text{ ou } x+1=-\sqrt{7}\\
    &\ssi x=\sqrt{7}-1 \text{ ou } x=-\sqrt{7}-1\end{align*}$
    Les solutions de l’équation sont $\sqrt{7}-1$ et $-\sqrt{7}-1$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$

  6. Résoudre dans $\R$ l’inéquation $2(x-1) \pp -3x+8$.
    $\quad$
    Correction Question 6

    $\begin{align*} 2(x-1) \pp -3x+8 &\ssi 2x-2 \pp -3x+8 \\
    &\ssi 5x\pp 10 \\
    &\ssi x\pp 2\end{align*}$
    L’ensemble solution est $]-\infty;2]$.
    $\quad$

    [collapse]

    $\quad$
  7. Déterminer l’équation réduite de la droite $\Delta$ représentée ci-dessous.

    $\quad$
    Correction Question 7

    L’ordonnée à l’origine est $2$.
    La droite passe par les points de coordonnées $(0;2)$ et $(1;-1)$.
    Le coefficient directeur est donc :
    $\begin{align*} a&=\dfrac{2-(-1)}{0-1}\\
    &=-3\end{align*}$
    Ainsi l’équation réduite de $\Delta$ est $y=-3x+2$.
    $\quad$

    [collapse]

    $\quad$
  8. Étudier le signe de l’expression $(10x-7)(-x+3)$ sur $\R$.
    $\quad$
    Correction Question 8

    $10x-7=0 \ssi 10x=7 \ssi x=0,7$ et $10x-7>0 \ssi 10x>7\ssi x>0,7$.
    $-x+3=0 \ssi x=3$ et $-x+3>0 \ssi x<3$
    On obtient donc le tableau de signes suivant :

    $\quad$

    [collapse]

    $\quad$

Pour les questions 9 et 10, on considère la situation suivante :
Entre le 1$\ier$ et le 8 mars 2020, une agence bancaire a étudié nombre de paiements effectués par $500$ de ses clients en utilisant le mode « sans contact » de leur carte bancaire. Elle a obtenu le diagramme en barres ci-dessous.

  1. Combien de clients ont effectué $28$ paiements en utilisant le mode « sans contact » de leur carte bancaire entre le 1$\ier$ et le 8 mars 2020 ?
    $\quad$
    Correction Question 9

    D’après le graphique, $20$ clients ont effectué $28$ paiements « sans contact ».
    $\quad$

    [collapse]

    $\quad$
  2. Combien de clients ont effectué au moins $30$ paiements en utilisant le mode « sans contact » de leur carte bancaire entre le 1$\ier$ et le 8 mars 2020 ?
    $\quad$
    Correction Question 10

    $10+14+8=32$.
    $32$ clients ont effectué au moins $30$ paiement en utilisant le mode « sans contact » de leur carte bancaire.
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence