Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 19 mai 2022

Centres étrangers – Liban – 19 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient donc l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(F\cap C)&=P(F)\times P_F(C) \\
    &=0,48\times 0,165 \\
    &=0,079~2\end{align*}$
    La probabilité que la personne choisie soit une femme qui exerce une profession de cadre est égale à $0,079~2$.
    $\quad$
  3. a. $\left(F,\conj{F}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(C)&=P(C\cap F)+P\left(C\cap\conj{F}\right) \\
    &=0,079~2+P\left(\conj{F}\right)\times P_{\conj{F}}(C) \\
    &=0,079~2+0,52\times 0,215 \\
    &=0,191\end{align*}$
    La probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. D’une part $P(C)\times P(F)=0,091~68$
    D’autre part $P(C \cap F)=0,079~2$
    Donc $P(C)\times P(F)\neq P(C\cap F)$.
    Les événements $F$ et $C$ ne sont pas indépendants.
    $\quad$
  4. On a
    $\begin{align*} P_C(F)&=\dfrac{P(C\cap F)}{P(C)} \\
    &=\dfrac{0,079~2}{0,191} \\
    &\approx 0,414~7\end{align*}$.
    La probabilité que la personne choisie soit une femme sachant qu’elle exerce une profession de cadre est environ égale à $0,414~7$.
    $\quad$
  5. a. On répète $15$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de cadres au sein de l’échantillon de $15$ salariés.
    Par conséquent $X$ suit la loi binomiale de paramètres $n=15$ et $p=0,191$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=(1-0,191)^{15}+\dbinom{15}{1}0,191\times (1-0,191)^{14} \\
    &\approx 0,189~0\end{align*}$
    La probabilité que l’échantillon contienne au plus $1$ cadre est environ égale à $0,189~0$.
    $\quad$
    c. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=np\\
    &=15\times 0,191 \\
    &=2,865\end{align*}$
    $\quad$
  6. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire qui compte le nombre de cadres au sein de l’échantillon de $n$ salariés.
    Par conséquent $Y$ suit la loi binomiale de paramètres $n$ et $p=0,191$.
    $\begin{align*} P(Y\pg 1)\pg 0,99 &\ssi 1-P(X=0)\pg 0,199 \\
    &\ssi P(X=0)\pp 0,01 \\
    &\ssi 0,808^n \pp 0,01\\
    &\ssi n\ln(0,808) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,808)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,808)} \approx 21,6$.
    Il faut donc que l’échantillon contienne au moins $22$ salariés pour la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. $[AH]$ et $[ED]$ sont les diagonales du carré $ADHE$.
    Les droites $(AH)$ et $(ED)$ sont par conséquent perpendiculaires.
    $\quad$
    b. $EFGH$ est un carré donc $(EH)$ et $(HG)$ sont perpendiculaires.
    $CDHG$ est un carré donc $(GH)$ et $(DH)$ sont perpendiculaires.
    Ainsi, $(HG)$ est perpendiculaire à deux droites sécantes du plan $(EDH)$.
    Par conséquent, la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. La droite $(ED)$ est incluse dans le plan $(EDH)$. D’après la question précédente, les droites $(GH)$ et $(ED)$ sont orthogonales.
    D’après la question 1.a. les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    La droite $(ED)$ est donc orthogonale à deux droites sécantes (le point $A$ n’appartient pas à la droite $(GH)$) du plan $(AGH)$.
    La droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Dans le repère fourni on a $E(0;0;1)$ et $D(0;1;0)$.
    Par conséquent $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$.
    $\quad$
    $\vect{ED}$ est un vecteur normal au plan $(AGH)$ d’après la question précédente.
    Une équation cartésienne du plan $(AGH)$ est donc de la forme $y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan. Ainsi $d=0$.
    Une équation cartésienne du plan $(AGH)$ est $y-z=0$.
    $\quad$
  3. a. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]1\\-1\end{pmatrix}$.
    Une représentation paramétrique de la droite $(EL)$ est $\begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\end{cases} \qquad t\in \R$.
    $\quad$
    b. On résout le système
    $\begin{align*} \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\y-z=0 \end{cases} &\ssi \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\ 1+t+t=0\end{cases} \\
    &\ssi \begin{cases}t=-\dfrac{1}{2}\\ x=\dfrac{1}{3}t\\[3pt]y=\dfrac{1}{2}\\[3pt]z=\dfrac{1}{2}\end{cases}\end{align*}$
    Le point d’intersection de la droite $(EL)$ et du plan $(AGH)$ a donc pour coordonnées $\left(\dfrac{1}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    c. $\dfrac{1}{2}-\dfrac{1}{2}=0$ : le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ appartient au plan $(AGH)$.
    $\vect{KL}\begin{pmatrix}0\\-\dfrac{1}{2}\\[3pt]\dfrac{1}{2}\end{pmatrix}$.
    Par conséquent $\vect{KL}=-\dfrac{1}{2}\vect{ED}$.
    Ainsi $\vect{KL}$ est un vecteur normal au plan $(AGH)$.
    Donc $K\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ est le projeté orthogonal du point $L$ sur le plan $(AGH)$.
    $\quad$
    d. On a
    $\begin{align*} KL&=\sqrt{0^2+\left(-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^2} \\
    &=\sqrt{\dfrac{1}{2}} \\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$.
    La distance du point $L$ ai plan $(AGH)$ est donc $h=\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. On applique le théorème de Pythagore dans le triangle $AHD$ rectangle en $D$.
    Donc $AH^2=AD^2+HD^2$ ainsi $AH^2=2$ et $AH=\sqrt{2}$
    $(HG)$ est orthogonale au plan $(EDH)$ d’après la question 1.b.
    La droite $(AH)$ est incluse dans le plan $(EDH)$.
    Par conséquent les droites $(AH)$ et $(HG)$ sont perpendiculaires et le triangle $AHG$ est rectangle en $H$.
    L’aire du triangle $AHG$ est donc
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times HG}{2} \\
    &=\dfrac{\sqrt{2}\times 1}{2}\\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$
    Le volume du tétraèdre $LAGH$ est alors
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times h \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{2}}{2}\times \dfrac{\sqrt{2}}{2} \\
    &=\dfrac{1}{6}\end{align*}$.

Ex 3

Exercice 3

  1. La fonction $g$ est deux fois dérivables sur $\R$ en tant que somme de fonctions deux fois dérivables.
    Pour tout réel $x$ on a $g'(x)=1~000x^{999}+1$ et $g\dsec(x)=999~000x^{998}$
    $998$ est pair donc, pour tout réel $x$ $g\dsec(x)\pg 0$.
    La fonction $g$ est convexe sur $\R$
    Réponse b
    $\quad$
  2. D’après le graphique, $f'(0)=1$.
    Une équation de la droite $T$ est donc de la forme $y=x+b$.
    $T$ est par conséquent parallèle à la droite d’équation $y=x$.
    Réponse a
    $\quad$
  3. Pour tout entier naturel $n$ on a $-1\pp (-1)^n \pp 1$.
    Donc $-\dfrac{-1}{1+n}\pp u_n \pp \dfrac{1}{n+1}$
    Or pour tout entier naturel $n$ on a $-1 \pp -\dfrac{1}{1+n}$ et $\dfrac{1}{1+n}\pp 1$.
    Ainsi $-1\pp u_n \pp 1$.
    Réponse c
    $\quad$
  4. Pour tout entier naturel $n$ on a $v_n\times v_{n+1}<0$.
    Cela signifie donc que deux termes consécutifs de la suite $\left(v_n\right)$ sont toujours de signes contraires.
    Ainsi, tous les termes de rang pair sont du même signe.
    Par conséquent $v_{10}$ est du même signe que $v_0$
    Réponse c
    $\quad$
  5. On a $8=2w_1-4 \ssi 12=2w_1 \ssi w_1=6$
    $6=2w_0-4 \ssi 2w_0=10\ssi w_0=5$.
    Réponse 5
    $\quad$
  6. Pour tout entier naturel $n$ on pose $P(n):~a_n>0$
    Initialisation : $a_0=1>0$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $a_n>0$ et $\e^n>0$ donc $\dfrac{\e^n}{\e^n+1}a_n>0$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n$, on a $a_n>0$.
    $\quad$
    Soit $n\in \N$
    $\begin{align*} a_{n+1}-a_n&=\dfrac{\e^n}{\e^n+1}a_n-a_n \\
    &=\left(\dfrac{\e^n}{\e^n+1}-1\right)a_n \\
    &=-\dfrac{1}{\e^n+1}a_n\\
    &<0\end{align*}$
    La suite $\left(a_n\right)$ est donc strictement décroissante.
    Réponse b
    $\quad$
    Remarque : Puisqu’il s’agit d’une question d’un QCM, l’utilisation de la calculatrice est à privilégiée ici pour avoir une idée du comportement de la suite.
    $\quad$
  7. On appelle $u_n$ le nombre de cellules à la $n$-ième génération.
    Ainsi, pour tout entier naturel $n$ on a $u_n=2^n$.
    Au bout de $4$ heures il y a environ $4~000$ cellules. Or $u_{11}=2~048$ et $u_{12}=4~096$.
    Il a donc fallu $4$ heures pour obtenir à la $12$-ième génération.
    $\dfrac{4\times 60}{12}=20$.
    Le temps de génération est donc environ égal à $20$ minutes.
    Réponse c
    $\quad$

 

Ex 4

Exercice 4

Partie A

  1. On a $\lim\limits_{x\to 0^+} \e^x=1$ et $\lim\limits_{x\to 0^+} \ln(x)=-\infty$.
    Ainsi $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
  2. Pour tout réel $x\in ]0;1]$ on a
    $\begin{align*} f'(x)&=-\e^{-x}+\dfrac{1}{x} \\
    &=\dfrac{-x\e^{-x}+1}{x} \\
    &=\dfrac{1-x\e^{-x}}{x}\end{align*}$
    $\quad$
  3. La fonction exponentielle est convexe sur $\R$. Sa courbe représentative est donc au-dessus de toutes ses tangentes.
    On a $\e^0=1$. Une équation de la tangente à la courbe au point d’abscisse $0$ est par conséquent $y=x+1$.
    Ainsi, pour tout réel $x\in $\e^x\pg x+1>x$ soit $1\pg x\e^{-x}$.
    Donc pour tout réel $x\in $]0;1]$ on a $x\e^x<1$.
    Remarque : On pouvait également déterminer le tableau de variations de la fonction $g$ définie sur $]0;1]$ par $g(x)=x\e^{-x}$.
    $\quad$
    Ainsi sur $]0;1]$, $1-x\e^{-x}>0$
    Par conséquent $f'(x)>0$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;1]$.
    $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $f(1)=\e^{-1}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=0$ admet une unique solution $\ell$ sur $]0;1]$.
    $\quad$

Partie B

  1. a. On a $a_1=\e^{-1}\approx 0,37$ et $b_1=\e^{-1/10}\approx 0,90$.
    $\quad$
    b. On peut écrire
    $\begin{array}{|l|}
    \hline
    \text{de termes(n):}\\
    \quad \text{a = 1 / 10} \\
    \quad \text{b = 1} \\
    \quad \text{for k in range(0,n):}\\
    \qquad \text{c = exp(b)}\\
    \qquad \text{b = exp(a)}\\
    \qquad \text{a = c}\\
    \quad \text{return(a,b)}\\
    \hline
    \end{array}$
    Remarque : On suppose donc que la bibliothèque $\texttt{math}$ a été importée (ou au moins la fonction $\texttt{exp}$) pour que la fonction ne comporte pas d’erreur.
    $\quad$
  2. a. Pour tout $n\in \N$ on pose $P(n):~0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    Initialisation : On a $a_0=0,1$, $a_1 \approx 0,37$, $b_1\approx 0,90$ et $b_0=1$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    La fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    Par conséquent $\e^{0}>\e^{-a_n}\pg \e^{-a_{n+1}}\pg \e^{-b_{n+1}}\pg \e^{-b_n}\pg \e^{-1}$
    Soit $1>b_{n+1}\pg b_{n+2}\pg a_{n+2}\pg a_{n+1}\pg \e^{-1}>0$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout entier naturel $n$ on a $0<a_n\pp a_{n+1}\pp b_{n+1} \pp b_n \pp 1$.
    $\quad$
    b. La suite $\left(a_n\right)$ est croissante et majorée par $1$ : elle converge donc.
    La suite $\left(b_n\right)$ est décroissante et minorée par $0$ : elle converge donc.
    $\quad$
  3. a. On a $A=\e^{-B}$  par conséquent $\ln(A)=-B$ et $B=-\ln(A)$.
    Or $B=\e^{-A}$ donc $-\ln(A)=\e^{-A}$ soit $\e^{-A}+\ln(A)=0$.
    Par conséquent $f(A)=0$.
    $\quad$
    b. D’après la question précédente et la question A.4. $A=\ell$.
    On a $B=\e^{-A}$ donc $A=-\ln(B)$
    Or $A=\e^{-B}$ soit $-\ln(B)=\e^{-B}$ et donc $f(B)=0$.
    On a ainsi également $B=\ell$.
    Donc $A-B=0$.
    Remarque : On dit que les suite $\left(a_n\right)$ et $\left(b_n\right)$ sont adjacentes.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Les résultats seront arrondis si besoin à $10^{-4}$ près.
Une étude statistique réalisée dans une entreprise fournit les informations suivantes :

  • $48 \%$ des salariés sont des femmes. Parmi elles, $16,5 \%$ exercent une profession de cadre ;
  • $52 \%$ des salariés sont des hommes. Parmi eux, $21,5 \%$ exercent une profession de cadre.

On choisit une personne au hasard parmi les salariés.
On considère les événements suivants :

  • $F$ : « la personne choisie est une femme » ;
  • $C$ : « la personne choisie exerce une profession de cadre ».
  1. Représenter la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que la personne choisie soit une femme qui exerce une profession de cadre.
    $\quad$
  3. a. Démontrer que la probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. Les événements $F$ et $C$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Calculer la probabilité de $F$ sachant $C$, notée $P_C(F)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  5. On choisit au hasard un échantillon de 15 salariés. Le grand nombre de salariés dans l’entreprise permet d’assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de cadres au sein de l’échantillon de $15$ salariés.
    On rappelle que la probabilité qu’un salarié choisi au hasard soit un cadre est égale à $0,191$.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Calculer la probabilité que l’échantillon contienne au plus $1$ cadre.
    $\quad$
    c. Déterminer l’espérance de la variable aléatoire $X$.
    $\quad$
  6. Soit $n$ un entier naturel.
    On considère dans cette question un échantillon de $n$ salariés.
    Quelle doit être la valeur minimale de 𝑛𝑛 pour que la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

On considère le cube $ABCDEFGH$ de côté $1$ représenté ci-dessous.

 

On munit l’espace du repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. a. Justifier que les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    $\quad$
    b. Justifier que la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. En déduire que la droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Donner les coordonnées du vecteur $\vect{ED}$.
    Déduire de la question 1.c. qu’une équation cartésienne du plan $(AGH)$ est :
    $$y-z=0$$
    $\quad$
  3. On désigne par $L$ le point de coordonnées $\left(\dfrac{2}{3};1;0\right)$
    a. Déterminer une représentation paramétrique de la droite $(EL)$.
    $\quad$
    b. Déterminer l’intersection de la droite $(EL)$ et du plan $(AGH)$.
    $\quad$
    c. Démontrer que le projeté orthogonal du point $L$ sur le plan $(AGH)$ est le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    d. Montrer que la distance du point $L$ au plan $(AGH)$ est égale à $\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. Déterminer le volume du tétraèdre $LAGH$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule :
    $$V=\dfrac{1}{3}\times (\text{aire de la base})\times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonctions, suites

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. . Soit $g$ la fonction définie sur $\R$ par $g(x)=x^{1~000}+x$.
    On peut affirmer que :
    a. la fonction $g$ est concave sur $\R$.
    b. la fonction $g$ est convexe sur $\R$.
    c. la fonction $g$ possède exactement un point d’inflexion.
    d. la fonction $g$ possède exactement deux points d’inflexion.
    $\quad$
  2. On considère une fonction $f$ définie et dérivable sur $\R$. On note $f’$ sa fonction dérivée.
    On note $C$ la courbe représentative de $f$.
    On note $\Gamma$ la courbe représentative de $f’$.
    On a tracé ci-dessous la courbe $\boldsymbol{\Gamma}$ .

    On note $T$ la tangente à la courbe $\boldsymbol{C}$ au point d’abscisse $0$.
    On peut affirmer que la tangente $T$ est parallèle à la droite d’équation :
    a. $y=x$
    b. $y=0$
    c. $y=1$
    d. $x=0$
    $\quad$

  3. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n=\dfrac{(-1)^n}{n+1}$.
    On peut affirmer que la suite $\left(u_n\right)$ est :
    a. majorée et non minorée.
    b. minorée et non majorée.
    c. bornée.
    d. non majorée et non minorée.
    $\quad$
  4. Soit $k$ un nombre réel non nul.
    Soit $\left(v_n\right)$ une suite définie pour tout entier naturel $n$.
    On suppose que $v_0=k$ et que pour tout $n$, on a $v_n\times v_{n+1}<0$.
    On peut affirmer que $v_{10}$ est :
    a. positif.
    b. négatif.
    c. du signe de $k$.
    d. du signe de $-k$.
    $\quad$
  5. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par :
    $$w_{n+1}=2w_n-4\text{ et } w_2=8$$
    On peut affirmer que :
    a. $w_0=0$.
    b. $w_0=5$.
    c. $w_0=10$.
    d. Il n’est pas possible de calculer $w_0$.
    $\quad$
  6. On considère la suite $\left(a_n\right)$ définie pour tout entier naturel $n$ par : $$a_{n+1}=\dfrac{\e^n}{\e^n+1}a_n \text{ et } a_0=1$$
    On peut affirmer que :
    a. la suite $\left(a_n\right)$ est strictement croissante.
    b. la suite $\left(a_n\right)$ est strictement décroissante.
    c. la suite $\left(a_n\right)$ n’est pas monotone.
    d. la suite $\left(a_n\right)$ est constante.
    $\quad$
  7. Une cellule se reproduit en se divisant en deux cellules identiques, qui se
    divisent à leur tour, et ainsi de suite. On appelle temps de génération le temps nécessaire pour qu’une cellule donnée se divise en deux cellules. On a mis en culture $1$ cellule. Au bout de $4$ heures, il y a environ $4~000$ cellules.
    On peut affirmer que le temps de génération est environ égal à :
    a. moins d’une minute.
    b. $12$ minutes.
    c. $20$ minutes.
    d. $1$ heure.
    $\quad$

$\quad$

Exercice 4

Thème : Fonctions, fonction exponentielle, fonction logarithme, suites

Partie A

On considère la fonction $f$ définie pour tout réel $x$ de $]0 ; 1]$ par :$$f(x)=\e^{-x}+\ln(x)$$

  1. Calculer la limite de $f$ en $0$.
    $\quad$
  2. On admet que $f$ est dérivable sur $]0 ; 1]$. On note $f’$ sa fonction dérivée.
    Démontrer que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a :
    $$f'(x)=\dfrac{1-x\e^{-x}}{x}$$
    $\quad$
  3. Justifier que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a $x\e^{-x}<1$.
    En déduire le tableau de variation de $f$ sur $]0 ; 1]$.
    $\quad$
  4. Démontrer qu’il existe un unique réel $\ell$ appartenant à $]0 ; 1]$ tel que $f(\ell)=0$.
    $\quad$

Partie B

  1. On définit deux suites $\left(a_n\right)$ et $\left(b_n\right)$ par :
    $$\begin{cases} a_0=\dfrac{1}{10}\\[3pt]b_0=1\end{cases} \text{ et, pour tout entier naturel }n,~\begin{cases} a_{n+1}=\e^{-b_n}\\[3pt]b_{n+1}=\e^{-a_n}\end{cases}$$
    a. Calculer $a_1$ et $b_1$. On donnera des valeurs approchées à $10^{-2}$ près.
    $\quad$
    b. On considère ci-dessous la fonction termes, écrite en langage Python.
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad\text{a = 1/10}\\
    \quad\text{b = 1}\\
    \quad\text{for k in range(0,n):}\\
    \qquad\text{c = …}\\
    \qquad\text{b = …}\\
    \qquad\text{a = c}\\
    \quad\text{return(a,b)}\\
    \hline
    \end{array}$
    Recopier et compléter sans justifier le cadre ci-dessus de telle sorte que la
    fonction termes calcule les termes des suites $\left(a_n\right)$ et $\left(b_n\right)$.
    $\quad$
  2. On rappelle que la fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    a. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $$0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$$
    $\quad$
    b. En déduire que les suites $\left(a_n\right)$ et $\left(b_n\right)$ sont convergentes.
    $\quad$
  3. On note $A$ la limite de $\left(a_n\right)$ et $B$ la limite de $\left(b_n\right)$.
    On admet que $A$ et $B$ appartiennent à l’intervalle $]0 ; 1]$, et que $A = \e^{-B}$ et $B = \e^{-A}$.
    a. Démontrer que $f(A)=0$.
    $\quad$
    b. Déterminer $A-B$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Amérique du Nord – sujet 1 – 18 mai 2022

Amérique du nord – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant:
    $\quad$
    $\quad$
    b. $\left(V,\conj{V}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(R)&=P(R\cap V)+P\left(R\cap \conj{V}\right) \\
    &=P(V)\times P_V(R)+P\left(\conj{V}\right)\times P_{\conj{V}}(R)\\
    &=\dfrac{2}{3}\times \dfrac{1}{50}+\dfrac{1}{3}\times \dfrac{1}{10} \\
    &=\dfrac{7}{150}\end{align*}$
    La probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} P_R(V)&=\dfrac{P(R\cap V)}{P(R)} \\
    &=\dfrac{~\dfrac{2}{150}~}{\dfrac{7}{150}} \\
    &=\dfrac{2}{7}\end{align*}$
    La probabilité que Paul ait pris son vélo pour rejoindre la gare sachant qu’il a raté son train est égale à $\dfrac{2}{7}$.
    $\quad$
  2. a. On répète $20$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{3}$.
    $\quad$
    b.
    $\begin{align*} P(X=10)&=\dbinom{20}{10}\times \left(\dfrac{2}{3}\right)^{10}\times \left(\dfrac{1}{3}\right)^{10} \\
    &\approx 0,054\end{align*}$
    La probabilité que Paul prenne son vélo exactement $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,054$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 10)&=1-P(X\pp 9) \\
    &\approx 0,962\end{align*}$
    La probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,962$.
    d. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=20\times \dfrac{2}{3}\\
    &=\dfrac{40}{3}\end{align*}$
    En moyenne, sur un période choisie au hasard de $20$ jours, Paul prend son vélo environ $13$ jours pour se rendre à la gare.
    $\quad$
  3. L’espérance mathématique de $T$ est :
    $\begin{align*} E(T)&=10\times P(T=10)+11\times P(T=11)+\ldots+18\times P(T=18) \\
    &=13,5\end{align*}$
    En moyenne Paul met $13,5$ minutes pour se rendre à la gare en voiture.
    $\quad$

Ex 2

Exercice 2

  1. a. Pour tout entier naturel $n$ on note $P(n):~T_n\pg 20$.
    Initialisation : $T_0=180\pg 20$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} T_n\pg 20&\ssi 0,955T_n \pg 19,1 \\
    &\ssi 0,955T_n+0,9 \pg 20 \\
    &\ssi T_{n+1} \pg 20\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $T_n\pg 20$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} T_{n+1}-T_n&=0,955T_n+0,9 -T_n \\
    &=-0,045T_n+0,9 \\
    &=-0,045\left(T_n-0,9\right)\end{align*}$
    $\quad$
    Pour tout $n\in \N$ on a $T_n\pg 20 \ssi T_n-20\pg 0$.
    Ainsi $T_{n+1}-T_n\pp 0$.
    Par conséquent $\left(T_n\right)$ est décroissante.
    $\quad$
    c. La suite $\left(T_n\right)$ est décroissante et minorée par $20$. Elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. Soit $n\in \N$. $u_n=T_n-20\ssi T_n=u_n+20$
    $\begin{align*} u_{n+1}&=T_{n+1}-20 \\
    &=0,955T_n+0,9-20 \\
    &=0,955T_n-19,1\\
    &=0,955\left(u_n+20\right)-19,1 \\
    &=0,955u_n+19,1-19,1\\
    &=0,955u_n\end{align*}$
    Par conséquent, la suite $\left(u_n\right)$ est géométrique de raison $0,955$ et de premier terme $u_0=160$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $u_n=160\times 0,955^n$.
    Donc $T_n=u_n+20=20+160\times 0,955^n$.
    $\quad$
    c. $-1<0,955<1$ donc $\lim\limits_{n\to +\infty} 0,955^n=0$.
    Par conséquent $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    d.
    $\begin{align*} T_n\pp 120&\ssi 20+160\times 0,955^n \pp 120 \\
    &\ssi 160\times 0,955^n \pp 100 \\
    &\ssi 0,955^n \pp 0,625 \\
    &\ssi n\ln(0,955) \pp \ln(0,625) \\
    &\ssi n\pg \dfrac{\ln(0,625)}{\ln(0,955)} \end{align*}$
    Or $\dfrac{\ln(0,625)}{\ln(0,955)} \approx 10,2$.
    L’ensemble solution de $T_n\pp 120$ est l’ensemble des entiers naturels supérieurs ou égaux à $11$.
    $\quad$
  3. a. La température au centre du gâteau va décroitre jusqu’à atteindre la température ambiante.
    Il était donc prévisible que $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    b. La fonction $\texttt{temp}$ renvoie le plus petit entier naturel $n$ tel que $T_n\pp x$.
    D’après la question 2.d. la commande $\texttt{temp(120)}$ renvoie $11$.
    Cela signifie que la température au centre du gâteau devient inférieure à $120$ degré Celsius au bout de $11$ minutes.
    $\quad$

Ex 3

Exercice 3

  1. a. $\vect{JK}\begin{pmatrix} -1\\2\\0\end{pmatrix}$ et $\vect{JL}\begin{pmatrix} -4\\-2\\-3\end{pmatrix}$
    Donc
    $\begin{align*} \vect{JK}.\vect{JL}&=-1\times (-4)+2\times (-2)+0\times (-3) \\
    &=4-4\\
    &=0\end{align*}$
    Les vecteurs $\vect{JK}$ et $\vect{JL}$ sont donc orthogonaux. Le triangle $JKL$ est par conséquent rectangle en $J$.
    $\quad$
    b.
    $\begin{align*} JK&=\sqrt{(-1)^2+2^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} JL&=\sqrt{(-4)^2+(-2)^2+(-3)^2} \\
    &=\sqrt{29}\end{align*}$
    L’aire du triangle $JKL$ est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{JK\times JL}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{29}}{2} \\
    &=\dfrac{\sqrt{145}}{2} \text{ cm}^2\end{align*}$
    c. Dans le triangle $JKL$ rectangle en $J$ on a $\tan \widehat{JKL}=\dfrac{JL}{JK}$
    Soit $\tan \widehat{JKL}=\dfrac{\sqrt{29}}{\sqrt{5}}$
    Par conséquent $\widehat{JKL} \approx 67,5$°
    $\quad$
  2. a. D’une part :
    $\begin{align*}\vect{JK}.\vec{n}&=6\times (-1)+3\times 2+0\times (-10) \\
    &=-6+6\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*}\vect{JL}.\vec{n}&=6\times (-4)+3\times (-2)+(-10)\times (-3)
    &=-24-6+30\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteur non colinéaires (puisqu’orthogonaux) du plan $(JKL)$.
    $\vec{n}$ est par conséquent un vecteur normal au plan $(JKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(JKL)$ est donc de la forme $6x+3y-10z+d=0$.
    Le point $J(2;0;1)$ appartient au plan $(JKL)$.
    Par conséquent $12+0-10+d=0 \ssi d=-2$
    Une équation cartésienne du plan $(JKL)$ est $6x+3y-10z-2=0$.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $\Delta$.
    Une représentation paramétrique de $\Delta$ est donc $\begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\end{cases} \qquad ,t\in \R$.
    $\quad$
    b. On résout le système :
    $\begin{align*} \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6x+3y-10z-2=0\end{cases}&\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6(10+6t)+3(9+3t)-10(-6-10t)-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\60+36t+27+9t+60+100t-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\145t+145=0\end{cases}\\
    &\ssi \begin{cases}t=-1\\ x=4\\y=6\\z=4\end{cases}\end{align*}$
    Ainsi $H$ a pour coordonnées $(4;6;4)$.
    $\quad$
    c. $\vect{HT}\begin{pmatrix} 6\\3\\-10\end{pmatrix}$
    Donc
    $\begin{align*} HT&=\sqrt{6^2+3^2+(-10)^2} \\
    &=\sqrt{145}\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\mathscr{A}\times HT \\
    &=\dfrac{1}{3}\times \dfrac{145}{2}\times \sqrt{145}\\
    &=\dfrac{145}{6} \text{ cm}^3\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. Soit $x\in \R$
    $\begin{align*} 1-\dfrac{1-\e^x}{1+\e^x}&=\dfrac{1+\e^x-1+\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{\e^x\left(\e^{-x}+1\right)} \\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Affirmation 1 vraie
    $\quad$
  2. $\quad$
    $\begin{align*} g(x)=\dfrac{1}{2} &\ssi \dfrac{\e^x}{\e^x+1}=\dfrac{1}{2} \\
    &\ssi 2\e^x=\e^x+1 \\
    &\ssi \e^x=1 \\
    &\ssi x=0\end{align*}$
    L’équation $g(x)=\dfrac{1}{2}$ admet une unique solution : $0$.
    Affirmation 2 vraie
    $\quad$
  3. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=2x\e^{-x}-x^2\e^{-x} \\
    &=\left(2x-x^2\right)\e^{-x} \\
    &=x(2-x)\e^{-x}\end{align*}$
    Si l’axe des abscisses est tangent à la courbe $C$ en $A\left(x_A;y_A\right)$ alors $f’\left(x_A\right)=0$.
    Or $f'(x)=0 \ssi x(2-x)=0$ car la fonction exponentielle est strictement positive.
    $x(2-x)=0 \ssi x=0$ ou $x=2$.
    Cependant $f(0)=0$ et $f(2)=4\e^{-2}\neq 0$. Le point de coordonnées $(0;0)$ appartient à l’axe des abscisses mais le point de coordonnées $\left(2;4\e^{-2}\right)$ n’appartient pas à cet axe.
    L’axe des abscisses est tangent à la courbe $C$ qu’en l’origine du repère.
    Affirmation 3 vraie
    $\quad$
  4. La fonction $h$ est deux fois dérivable sur $\R$ en tant que produit de fonctions deux fois dérivables.
    Soit $x\in \R$
    $\begin{align*} h'(x)&=\e^x\left(1-x^2\right)-2x\e^x \\
    &=\e^x\left(-x^2-2x+1\right)\end{align*}$
    $\begin{align*} h\dsec(x)&=\e^x\left(-x^2-2x+1\right)+\e^{-x}(-2x-2)\\
    &=\e^x\left(-x^2-2x+1-2x-2\right) \\
    &=\e^x\left(-x^2-4x-1\right)\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$. Le signe de $h\dsec(x)$ ne dépend donc que de celui de $-x^2-4x-1$.
    Le discriminant de ce polynôme du second degré est $\Delta=12>0$.
    Ainsi l’équation $-x^2-4x-1=0$ admet $2$ solutions distinctes et $h\dsec(x)$ change deux fois de signe en s’annulant.
    La courbe représentative de la fonction $h$ admet donc deux points d’inflexion.
    Affirmation 4 fausse
    $\quad$
  5. Soit $x>0$. $\dfrac{\e^x}{\e^x+x}=\dfrac{1}{1+\dfrac{x}{\e^x}}$
    Or, par croissances comparées $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    Par conséquent $\lim\limits_{x\to +\infty} \dfrac{1}{1+\dfrac{x}{\e^x}}=1$
    Affirmation 5 fausse
    $\quad$
  6. $\quad$
    $\begin{align*} 1+\e^{2x}\pg 2\e^x &\ssi \left(\e^x\right)^2-2\e^x+1 \pg 0\\
    &\ssi \left(\e^x-1\right)^2 \pg 0\end{align*}$
    Cette dernière inégalité est vraie pour tout réel $x$.
    Affirmation 6 vraie
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Chaque chaque jour où il travaille, Paul doit se rendre à la gare pour rejoindre son lieu de travail en train. Pour cela, il prend son vélo deux fois sur trois et, si il ne prend pas son vélo, il prend sa voiture.

  1. lorsqu’il prend son vélo pour rejoindre la gare, Paul ne rate le train qu’une fois sur $50$ alors que, lorsqu’il prend sa voiture pour rejoindre la gare Paul rate son train une fois sur $10$.
    On considère une journée au hasard lors de laquelle Paul sera à la gare pour prendre le train qui le conduira au travail.
    On note :
    • $V$ l’évènement « Paul prend son vélo pour rejoindre la gare »;
    • $R$ l’évènement « Paul rate son train ».
    a. Faire un arbre pondéré résumant la situation.
    $\quad$
    b. Montrer que la probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. Paul a raté son train. Déterminer la valeur exacte de la probabilité qu’il ait pris son vélo pour rejoindre la gare.
    $\quad$
  2. On choisit au hasard un mois pendant lequel Paul s’est rendu $20$ jours à la gare pour rejoindre son lieu de travail selon les modalités décrites en préambule.
    On suppose que, pour chacun de ces $20$ jours, le choix entre le vélo et la voiture est indépendant des choix des autres jours.
    On note $X$ la variable aléatoire donnant le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    a. Déterminer la loi suivie par la variable aléatoire $X$. Préciser ses paramètres.
    $\quad$
    b. Quelle est la probabilité que Paul prenne son vélo exactement 10 jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    c. Quelle est la probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    d. En moyenne, combien de jours sur une période choisie au hasard de $20$ jours pour se rendre à la gare, Paul prend-il son vélo ? On arrondira la réponse à l’entier.
    $\quad$
  3. Dans le cas où Paul se rend à la gare en voiture, on note $T$ la variable aléatoire donnant le temps de trajet nécessaire pour se rendre à la gare. La durée du trajet est donnée en minutes, arrondie à la minute. La loi de probabilité de $T$ est donnée par le tableau ci-dessous :
    $\begin{array}{|l|c|c|c|c|c|c|c|c|c|}
    \hline
    k\text{ (en minutes)}&10&11&12&13&14&15&16&17&18\\
    \hline
    P(T=k)&0,14&0,13&0,13&0,12&0,12&0,11&0,10&0,08&0,07\\
    \hline
    \end{array}$
    Déterminer l’espérance de la variable aléatoire $T$ et interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites

Dans cet exercice, on considère la suite $\left(T_n\right)$ définie par :
$$T0 = 180 \text{ et, pour tout entier naturel }n,~ T_{n+1} = 0,955T_n +0,9$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$, $T_n > 20$.
    $\quad$
    b. Vérifier que pour tout entier naturel $n$, $T_{n+1}-T_n = −0,045\left(T_n-20\right))$. En déduire le sens de
    variation de la suite $\left(T_n\right)$.
    $\quad$
    c. Conclure de ce qui précède que la suite $\left(T_n\right)$ est convergente. Justifier.
    $\quad$
  2. Pour tout entier naturel $n$, on pose : $u_n = T_n-20$.
    a. Montrer que la suite $\left(u_n\right)$ est une suite géométrique dont on précisera la raison.
    $\quad$
    b. En déduire que pour tout entier naturel $n$, $T_n = 20+160×0,955^n$.
    $\quad$
    c. Calculer la limite de la suite $\left(T_n\right)$.
    $\quad$
    d. Résoudre l’inéquation $T_n\pp 120$ d’inconnue $n$ entier naturel.
    $\quad$
  3. Dans cette partie, on s’intéresse à l’évolution de la température au centre d’un gâteau après sa sortie du four.
    On considère qu’à la sortie du four, la température au centre du gâteau est de $180$° C et celle de l’air ambiant de $20$° C.
    La loi de refroidissement de Newton permet de modéliser la température au centre du gâteau par la suite précédente $\left(T_n\right)$. Plus précisément, $T_n$ représente la température au centre du gâteau, exprimée en degré Celsius, n minutes après sa sortie du four.
    a. Expliquer pourquoi la limite de la suite $\left(T_n\right)$ déterminée à la question 2. c. était prévisible dans le contexte de l’exercice.
    $\quad$
    b. On considère la fonction Python ci-dessous :
    $$\begin{array}{|l|}
    \hline
    \text{def temp(x):}\\
    \quad \text{T = 180} \\
    \quad \text{n = 0}\\
    \quad \text{while T > x:} \\
    \qquad \text{T = 0.955 * T + 0.9}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner le résultat obtenu en exécutant la commande $\texttt{temp(120)}$.
    Interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Dans l’espace muni d’un repère orthonormé $\Oijk$ d’unité $1$ cm, on considère les points suivants :
$$J(2 ; 0 ; 1),~~ K(1 ; 2 ; 1) \text{ et } L(−2 ; −2 ; −2)$$

  1. a. Montrer que le triangle $JKL$ est rectangle en $J$.
    $\quad$
    b. Calculer la valeur exacte de l’aire du triangle $JKL$ en cm$^2$.
    $\quad$
    c. Déterminer une valeur approchée au dixième près de l’angle géométrique $\widehat{JKL}.
    $\quad$
  2. a. Démontrer que le vecteur $\vec{n}$ de coordonnées$\begin{pmatrix}6\\3\\-10\end{pmatrix}$ est un vecteur normal au plan $(JKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(JKL)$.

$\quad$
Dans la suite, $T$ désigne le point de coordonnées $(10 ; 9 ; −6)$.

  1. a. Déterminer une représentation paramétrique de la droite $\Delta$ orthogonale au plan $(JKL)$ et passant par $T$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $T$ sur le plan $(JKL)$.
    $\quad$
    c. On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{B}\times h \text{où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur correspondante}$$
    Calculer la valeur exacte du volume du tétraèdre $JKLT$ en cm$^3$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonction exponentielle

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Justifier chaque réponse.

  1. Affirmation 1 : Pour tout réel $x$ : $1-\dfrac{1-\e^x}{1+\e^x}=\dfrac{2}{1+\e^{-x}}$.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par $g(x) =
    \dfrac{\e^x}{\e^x+1}$.
    Affirmation 2 : L’équation $g(x) = \dfrac{1}{2}$ admet une unique solution dans $\R$.
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par $f(x) = x^2\e^{-x}$ et on note $\mathscr{C}$ sa courbe dans un repère orthonormé.
    Affirmation 3 : L’axe des abscisses est tangent à la courbe $\mathscr{C}$ en un seul point.
    $\quad$
  4. On considère la fonction $h$ définie sur $\R$ par $h(x)=\e^x\left(1-x^2\right)$.
    Affirmation 4 : Dans le plan muni d’un repère orthonormé, la courbe représentative de la fonction $h$ n’admet pas de point d’inflexion.
    $\quad$
  5. Affirmation 5 : $\lim\limits_{x\to +\infty} \dfrac{\e^x}{\e^x+x}=0$.
    $\quad$
  6. Affirmation 6 : Pour tout réel $x$, $1+\e^{2x}\pg 2\e^x$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 18 mai 2022

Centres étrangers – Liban – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On a
    $\begin{align*} P(J\cap C)&=P(J)\times P_J(C)\\
    &=0,2\times 0,06 \\
    &=0,012\end{align*}$
    $\quad$
  3. $\left(J,\conj{J}\right)$ forme un système complet d’événements.
    D’après la formule des probabilités totales :
    $\begin{align*} P(C)&=P(J\cap C)+P\left(\conj{J}\cap C\right) \\
    &=0,012+P\left(\conj{J}\right)P_{\conj{J}}(C)\\
    &=0,012+0,8\times 0,125 \\
    &=0,112\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_C\left(\conj{J}\right)&=\dfrac{P\left(C\cap \conj{J}\right)}{P(C)} \\
    &=\dfrac{0,8\times 0,125}{0,112} \\
    &\approx 0,893\end{align*}$
    La probabilité que le skieur ait un forfait SÉNIOR sachant qu’il a choisi l’option coupe-file est environ égale à $0,893$.
    $\quad$
  5. Un skieur ayant choisi l’option coupe-file a moins de vingt-cinq ans ou plus de vingt-cinq ans.
    Ainsi :
    $\begin{align*} P_C(J)&=1-P_C\left(\conj{J}\right) \\
    &\approx 0,107\\
    &<0,15\end{align*}$
    L’affirmation est donc vraie.
    $\quad$

Partie B

  1. $X$ suit la loi binomiale de paramètres $n=30$ et $p=0,112$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,112)^{30} \\
    &=1-0,888^{30} \\
    &\approx 0,972\end{align*}$
    La probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,972$.
    $\quad$
  3. On veut calculer :
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,888^{30}+\dbinom{30}{1}0,112^1\times 0,888^{29} \\
    &\approx 0,136\end{align*}$
    La probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,136$.
    $\quad$
  4. L’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=np\\
    &=30\times 0,112 \\
    &=3,36\end{align*}$
    $\quad$

Ex 2

Exercice 2

  1. On appelle $v_n$ le volume d’eau, en litres, contenu dans la bouteille au bout de $n$ heures.
    On a donc, pour tout entier naturel $n$, $v_{n+1}=(1-0,15)v_n$ soit $v_{n+1}=0,85 v_n$.
    $\left(v_n\right)$ est donc une suite géométrique de raison $0,85$ et de premier terme $1$.
    Par conséquent, pour tout entier naturel $n$, $v_n=0,85^n$.
    $\begin{align*} u_n \pp 0,25&\ssi 0,85^n \pp 0,25 \\
    &\ssi n\ln(0,85)\pp \ln(0,25) \\
    &\ssi n\pg \dfrac{\ln(0,25)}{\ln(0,85)} \qquad \text{car } \ln(0,85)<0 \end{align*}$
    Or $\dfrac{\ln(0,25)}{\ln(0,85)}\approx 8,53$.
    C’est donc au bout de $9$ heures que le volume d’eau devient inférieur à un quart de litre.
    Réponse c
    $\quad$
  2. Pour tout $n\in \N$, on pose $P(n):~u_n=6$.
    Initialisation : $u_0=6$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_{n+1}&=\dfrac{1}{2} u_n+3 \\
    &=\dfrac{1}{2}\times 6+3 \\
    &=6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n, $u_n=6$.
    Réponse d
    $\quad$
  3. Soit $x\in ]0;+\infty[$
    $\begin{align*} f(2x)&=4\ln(3\times 2x) \\
    &=4\left(\ln(2)+\ln(3x)\right) \\
    &=4\ln(2)+4\ln(3x)\\
    &=\ln\left(2^4\right)+f(x)\\
    &=\ln(16)+f(x)\end{align*}$
    Réponse b
    $\quad$
  4. Pour tout réel $x>1$ on a $g(x)=\dfrac{\ln(x)}{x}\times \dfrac{x}{x-1}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$
    D’après la limite du quotient des termes de plus haut degré $\lim\limits_{x\to +\infty} \dfrac{x}{x-1}=\lim\limits_{x\to +\infty} \dfrac{x}{x}=1$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=0$ : $C_g$ admet une asymptote horizontale d’équation $y=0$.
    $\quad$
    $C_g$ ne peut avoir d’asymptote verticale qu’en $1$.
    Pour tout réel $x\in ]1;+\infty[$ on a $g(x)=\dfrac{\ln(x)-\ln(1)}{x-1}$.
    Ainsi $g(x)$ est le taux d’accroissement de la fonction $\ln$ entre $1$ et $x$.
    Donc $\lim\limits_{x\to 1^+} g(x)=\ln'(1)=\dfrac{1}{1}$.
    $C_g$ n’a pas d’asymptote verticale.
    Réponse c
    $\quad$
  5. $h$ est définie sur $]0;2]$. Par conséquent :
    $\begin{align*} h(x)=0&\ssi 1+2\ln(x)=0 \\
    &\ssi 2\ln(x)=-1 \\
    &\ssi \ln(x)=-0,5 \\
    &\ssi x=\e^{-0,5}\end{align*}$
    Or $\e^{-0,5}\in \left[\dfrac{1}{\e};2\right]$.
    Réponse b
    $\quad$
  6. D’une part
    $\begin{align*} h\left(\sqrt{\e}\right)&=\left(\sqrt{\e}\right)^2\left(1+2\ln\left(\sqrt{\e}\right)\right) \\
    &=\e\left(1+2\times \dfrac{1}{2}\ln(\e)\right) \\
    &=2\e\end{align*}$
    D’autre part
    $\begin{align*} h’\left(\sqrt{\e}\right)&=4\left(\sqrt{\e}\right)\left(1+\ln\left(\sqrt{\e}\right)\right) \\
    &=4\sqrt{e}\left(1+\dfrac{1}{2}\right)\\
    &=6\sqrt{\e}\end{align*}$
    Une équation de la tangente à $C_h$ au point d’abscisse $\sqrt{\e}$ est donc $y=6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e$
    Or
    $\begin{align*} 6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e&=6\sqrt{\e}x-6\e+2\e \\
    &=6\sqrt{\e}x-4\e \\
    &=\left(6\e^{1/2}\right).x-4\e\end{align*}$
    Réponse d
    $\quad$
  7. Pour tout réel $x\in ]0;2]$ on a
    $\begin{align*} h\dsec(x)&=4\left(1+\ln(x)\right)+4x\times \dfrac{1}{x} \\
    &=4+4\ln(x)+4 \\
    &=8+4\ln(x)\end{align*}$
    $\begin{align*} h\dsec(x)>0&\ssi 8+4\ln(x)>0 \\
    &\ssi 4\ln(x)>8 \\
    &\ssi \ln(x)>0,5 \\
    &\ssi x>\sqrt{\e}\end{align*}$.
    On a, de même, $h\dsec(x)=0 \ssi x=\sqrt{\e}$.
    $\sqrt{2}\in ]0;2]$.
    La courbe $C_h$ possède donc un unique point d’inflexion sur $]0;2]$.
    Réponse b
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. a. $\lim\limits_{x\to -\infty} 0,5x-2=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to -\infty} \e^{0,5x-2}=0$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$.
    $\quad$
    b. Pour tout réel $x$ non nul on a
    $\begin{align*} 1+0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right) &=1+x-\e^{-0,5x}\times \e^{-2} \\
    &=f(x)\end{align*}$
    $\lim\limits_{x\to +\infty} 0,5x=+\infty$ et, par croissances comparées, $\lim\limits_{X\to +\infty} \dfrac{\e^X}{X}=+\infty$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^{0,5x}}{0,5x}=+\infty$.
    Par produit des limites, $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a $f'(x)=1-0,5\e^{0,5x-2}$
    $\quad$
    b.
    $\begin{align*} f'(x)<0&\ssi 1-0,5\e^{0,5x-2}<0 \\
    &\ssi -0,5\e^{0,5x-2}<-1 \\
    &\ssi \e^{0,5x-2}>2 \\
    &\ssi 0,5x-2>\ln(2) \\
    &\ssi 0,5x>2+\ln(2) \\
    &\ssi x>4+2\ln(2)\end{align*}$
    Ainsi l’ensemble des solutions de l’inéquation $f'(x)<0$ est bien $\left]4+2\ln(2);+\infty\right[$.
    $\quad$
  3. En raisonnant de la même façon on obtient $f'(x)=0 \ssi x=4+2\ln(2)$.
    On obtient donc le tableau de variations suivant :

    $\begin{align*} f\left(4+2\ln(2)\right)&=1+4+2\ln(2)-\e^{2+\ln(2)-2} \\
    &=5+2\ln(2)-2\\
    &=3+2\ln(2)\end{align*}$
    $\quad$
  4. $4+2\ln(2)>0$.
    La fonction $f$ est donc continue (car dérivable) et strictement croissante sur $[-1;0]$.
    $f(-1)=-\e^{-2,5}<0$ et $f(0)=1-\e^{-2}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet donc une unique solution sur l’intervalle $[-1;0]$.
    $\quad$

Partie B

  1. a. Pour tout entier naturel $n$ on pose $P(n):~u_n\pp u_{n+1} \pp 4$
    Initialisation : $u_0=0$ et $u_1=2-\e^{-1,5}\approx 1,78$
    Donc $u_0\pp u_1\pp 4$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    La fonction $f$ est strictement croissante sur $\left]-\infty;4+2\ln(2)\right]$ donc sur $[0;4]$.
    $\begin{align*} u_n\pp u_{n+1} \pp 4&\Rightarrow f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(4) \\
    &\Rightarrow u_{n+1}\pp u_{n+2}\pp 5-1\end{align*}$
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n \pp u_{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $4$; elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. $\ell$ est solution de l’équation $x=f(x)$
    $\begin{align*} x=f(x)&\ssi 1+x-\e^{0,5x-2}=x \\
    &\ssi 1-\e^{0,5x-2}=0 \\
    &\ssi \e^{0,5x-2}=1 \\
    &\ssi 0,5x-2=0 \\
    &\ssi 0,5x=2 \\
    &\ssi x=4\end{align*}$
    Ainsi $\ell =4$.
    $\quad$
    b. La fonction $\texttt{valeur}$ renvoie le plus petit entier naturel $n$ tel que $u_n>a$.
    Cela signifie donc le plus petit entier naturel $n$ tel que $u_n>3,99$ est $12$.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a $R(3;2;0)$ et $\vect{AB}\begin{pmatrix} -4\\4\\0\end{pmatrix}$
    $\quad$
    b. Une équation du plan $\mathscr{P}_1$ est donc de la forme $-4x+4y+d=0$.
    $R(2;2;0)$ appartient au plan $\mathscr{P}_1$ donc $-12+8+d=0 \ssi d=4$.
    Une équation de $\mathscr{P}_1$ est donc $-4x+4y+4=0$ soit $x-y-1=0$.
    $\quad$
    c. $10-9-1=0$ donc $E(10;9;8)$ appartient à $\mathscr{P}_1$.
    $\vect{EA}\begin{pmatrix} -5\\-9\\-9\end{pmatrix}$ et $\vect{EB}\begin{pmatrix} -9\\-5\\-9\end{pmatrix}$
    $\begin{align*} EA&=\sqrt{(-5)^2+(-9)^2+(-9)^2}\\
    &=\sqrt{25+81+81} \\
    &=\sqrt{187}\end{align*}$
    $\begin{align*} EB&=\sqrt{(-9)^2+(-5)^2+(-9)^2}\\
    &=\sqrt{187}\end{align*}$
    On a donc $EA=EB$.
    $\quad$
  2. a. Un vecteur normal au plan $\mathscr{P}_2$ est $\vec{n}\begin{pmatrix}1\\0\\-1\end{pmatrix}$
    $\vect{AB}$ et $\vec{n}$ ne sont pas colinéaires.
    Les plans $\mathscr{P}_1$ et $\mathscr{P}_2$ sont par conséquent sécants.
    $\quad$
    b. Soit $t\in \R$.
    $\begin{align*} (2+t)-(1+t)-1&=2+t-1-t-1 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_1$.
    $\begin{align*} (2+t)-t-2&=2+t-t-2 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_2$.
    L’intersection de deux plans et une droite.
    Ainsi une représentation paramétrique de $\Delta$ est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$.
    $\quad$
  3. $\quad$
    $\begin{align*} \begin{cases} x=2+t\\y=1+t\\z=t\\y+z-3=0\end{cases} &\ssi  \begin{cases} x=2+t\\y=1+t\\z=t\\1+t+t-3=0\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=1+t\\z=t\\t=1\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=2\\z=1\end{cases}\end{align*}$
    La droite $\Delta$ est sécante au plan $\mathscr{P}_3$ en $\Omega(3;2;1)$.
    $\quad$
  4. a. $\Omega$ appartient au plan médiateur de $[AB]$ donc $\Omega A=\Omega B$.
    $\Omega$ appartient au plan médiateur de $[AC]$ donc $\Omega A=\Omega C$.
    $\Omega$ appartient au plan médiateur de $[AD]$ donc $\Omega A=\Omega D$.
    Ainsi $\Omega A=\Omega B=\Omega C=\Omega D$.
    $\quad$
    b. Les points $A$, $B$, $C$ et $D$ appartiennent donc à la sphère de centre $\Omega$ et de rayon $\Omega A$.
    Or
    $\begin{align*} \Omega A&=\sqrt{(5-3)^2+(0-2)^2+(-1-1)^2} \\
    &=\sqrt{4+4+4} \\
    &=2\sqrt{3}\end{align*}$
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Dans une station de ski, il existe deux types de forfait selon l’âge du skieur :

  • un forfait JUNIOR pour les personnes de moins de vingt-cinq ans ;
  • un forfait SÉNIOR pour les autres.

Par ailleurs, un usager peut choisir, en plus du forfait correspondant à son âge,
l’option coupe-file qui permet d’écourter le temps d’attente aux remontées
mécaniques.

On admet que :

  • $20\%$ des skieurs ont un forfait JUNIOR ;
  • $80\% des skieurs ont un forfait SÉNIOR ;
  • parmi les skieurs ayant un forfait JUNIOR, $6\%$ choisissent l’option coupe-file ;
  • parmi les skieurs ayant un forfait SÉNIOR, $12,5\%$ choisissent l’option coupe-file.

On interroge un skieur au hasard et on considère les événements :

  • $J$ : « le skieur a un forfait JUNIOR » ;
  • $C$ : « le skieur choisit l’option coupe-file ».

Les deux parties peuvent être traitées de manière indépendante.

Partie A

  1. Traduire la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité $P(J\cap C)$.
    $\quad$
  3. Démontrer que la probabilité que le skieur choisisse l’option coupe-file
    est égale à $0,112$.
    $\quad$
  4. Le skieur a choisi l’option coupe-file. Quelle est la probabilité qu’il s’agisse d’un skieur ayant un forfait SÉNIOR ? Arrondir le résultat à $10^{-3}$.
    $\quad$
  5. Est-il vrai que les personnes de moins de vingt-cinq ans représentent moins de $15\%$ des skieurs ayant choisi l’option coupe-file ? Expliquer.
    $\quad$

Partie B
On rappelle que la probabilité qu’un skieur choisisse l’option coupe-file est
égale à $0,112$.

On considère un échantillon de $30$ skieurs choisis au hasard.

Soit $X$ la variable aléatoire qui compte le nombre des skieurs de l’échantillon ayant choisi l’option coupe-file.

  1. On admet que la variable aléatoire $X$ suit une loi binomiale.
    Donner les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  3. Calculer la probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  4. Calculer l’espérance mathématique de la variable aléatoire $X$.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites, fonctions, fonction logarithme

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. Un récipient contenant initialement $1$ litre d’eau est laissé au soleil.
    Toutes les heures, le volume d’eau diminue de $15\%$.
    Au bout de quel nombre entier d’heures le volume d’eau devient-il inférieur à un quart de litre ?
    a. $2$ heures
    b. $8$ heures
    c. $9$ heures
    d. $13$ heures
    $\quad$
  2. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_{n+1}=\dfrac{1}{2}u_n+3$ et $u_0=6$. On peut affirmer que :
    a. la suite $\left(u_n\right)$ est strictement croissante.
    b. la suite $\left(u_n\right)$ est strictement décroissante.
    c. la suite $\left(u_n\right)$ n’est pas monotone.
    d. la suite $\left(u_n\right)$ est constante.
    $\quad$
  3. On considère la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=4\ln(3x)$
    Pour tout réel $x$ de l’intervalle $]0;+\infty[$ , on a :
    a. $f(2x)=f(x)+\ln(24)$
    b. $f(2x)=f(x)+\ln(16)$
    c. $f(2x)=\ln(2)+f(x)$
    d. $f(2x)=2f(x)$
    $\quad$
  4. On considère la fonction $g$ définie sur l’intervalle $]1;+\infty[$ par :
    $$g(x)\dfrac{\ln(x)}{x-1}$$
    On note $\mathcal{C}_g$ la courbe représentative de la fonction $g$ dans un repère orthogonal.
    La courbe $\mathcal{C}_g$ admet :
    a. une asymptote verticale et une asymptote horizontale.
    b. une asymptote verticale et aucune asymptote horizontale.
    c. aucune asymptote verticale et une asymptote horizontale.
    d. aucune asymptote verticale et aucune asymptote horizontale.
    $\quad$

Dans la suite de l’exercice, on considère la fonction $h$ définie sur l’intervalle $]0 ; 2]$ par : $$h(x) = x^2\left(1 + 2 \ln(x)\right)$$
On note $\mathcal{C}_h$ la courbe représentative de $h$ dans un repère du plan.
On admet que $h$ est deux fois dérivable sur l’intervalle $]0 ; 2]$.
On note $h’$ sa dérivée et $h\dsec$ sa dérivée seconde.

On admet que, pour tout réel $x$ de l’intervalle $]0 ; 2]$, on a :$$h'(x)=4x\left(1+\ln(x)\right)$$

  1. Sur l’intervalle $\left[\dfrac{1}{\e};2\right]$, la fonction $h$ s’annule :
    a. exactement $0$ fois.
    b. exactement $1$ fois.
    c. exactement $2$ fois.
    d. exactement $3$ fois.
    $\quad$
  2. Une équation de la tangente à $\mathcal{C}_h$ au point d’abscisse $\sqrt{\e}$ est :
    a. $y=\left(6\e^{\frac{1}{2}}\right).x$
    b. $y=\left(6\sqrt{\e}\right).x+2\e$
    c. $y=6\e^{\frac{x}{2}}$
    d. $y=\left(6\e^{\frac{1}{2}}\right).x-4\e$
    $\quad$
  3. Sur l’intervalle $]0 ; 2]$, le nombre de points d’inflexion de la courbe $\mathcal{C}_h$ est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. $3$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : suites, fonctions, fonction exponentielle

Partie A

On considère la fonction $f$ définie pour tout réel $x$ par : $$f(x)=1+x-\e^{0,5x-2}$$
On admet que la fonction $f$ est dérivable sur $\R$. On note $f’$ sa dérivée.

  1. a. Déterminer la limite de la fonction $f$ en $-\infty$.
    $\quad$
    b. Démontrer que, pour tout réel $x$ non nul, $f(x) = 1 + 0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right)$.
    En déduire la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. a. Déterminer $f'(x)$ pour tout réel $x$.
    $\quad$
    b. Démontrer que l’ensemble des solutions de l’inéquation $f'(x)<0$ est
    l’intervalle $]4 + 2\ln(2) ; +\infty[$.
    $\quad$
  3. Déduire des questions précédentes le tableau de variation de la fonction $f$ sur $\R$.
    On fera figurer la valeur exacte de l’image de $4 + 2\ln(2)$ par $f$.
    $\quad$
  4. Montrer que l’équation $f(x) = 0$ admet une unique solution sur l’intervalle $[-1; 0]$.
    $\quad$

Partie B

On considère la suite $\left(u_n\right)$ définie par $u_0=0$ et, pour tout entier naturel $n$ ,
$$u_{n+1}=f\left(u_n\right) \text{ où } f \text{ est la fonction définie à la }\textbf{ partie A.}$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$ , on a : $$u_n\pp u_{n+1}\pp 4$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ converge. On notera $\ell$ la limite.
    $\quad$
  2. a. On rappelle que $\ell$ vérifie la relation $\ell=f(\ell)$.
    Démontrer que $\ell = 4$.
    $\quad$
    b. On considère la fonction $\texttt{valeur}$ écrite ci-dessous dans le langage Python :
    $\begin{array}{|l|}
    \hline
    \text{def valeur(a):}\\
    \quad\text{u=0}\\
    \quad\text{n=0}\\
    \quad\text{while u<=a:}\\
    \qquad\text{u=1+u-exp(0.5*u-2)}\\
    \qquad\text{n=n+1}\\
    \quad\text{return n}\\
    \hline
    \end{array}$
    L’instruction $\texttt{valeur(3.99)}$ renvoie la valeur $12$.
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $\Oijk$.
On considère les points $A(5 ; 0 ; -1)$, $B(1 ; 4 ; -1)$, $C(1 ; 0 ; 3)$, $D(5 ; 4 ; 3)$ et $E(10 ; 9 ; 8)$

  1. a. Soit $R$ le milieu du segment $[AB]$.
    Calculer les coordonnées du point $R$ ainsi que les coordonnées du vecteur $\vect{AB}$.
    $\quad$
    b. Soit $\mathcal{P}_1$ le plan passant par le point $R$ et dont $\vect{AB}$ est un vecteur normal.
    Démontrer qu’une équation cartésienne du plan $\mathcal{P}_1$ est :
    $$x-y-1=0$$
    $\quad$
    c. Démontrer que le point $E$ appartient au plan $\mathcal{P}_1$ et que $EA = EB$.
    $\quad$
  2. On considère le plan $\mathcal{P}_2$ d’équation cartésienne $x-z-2=0$.
    a. Justifier que les plans $\mathcal{P}_1$ et $\mathcal{P}_2$ sont sécants.
    $\quad$
    b. On note $\Delta$ la droite d’intersection de $\mathcal{P}_1$ et $\mathcal{P}_2$ .
    Démontrer qu’une représentation paramétrique de la droite $\Delta$ est :$$\begin{cases} x=2+t\\y=1+t\\z=t\end{cases} \quad (t\in \R)$$
    $\quad$
  3. On considère le plan $\mathcal{P}_3$ d’équation cartésienne $z+z-3=0$.
    Justifier que la droite $\Delta$ est sécante au plan $\mathcal{P}_3$ en un point $\Omega$ dont on déterminera les coordonnées.

Si $S$ et $T$ sont deux points distincts de l’espace, on rappelle que l’ensemble des points $M$ de l’espace tels que $MS = MT$ est un plan, appelé plan médiateur du segment $[ST]$.
On admet que les plans $\mathcal{P}_1$, $\mathcal{P}_2$ et $\mathcal{P}_3$ sont les plans médiateurs respectifs des segments $[AB]$, $[AC]$ et $[AD]$.

  1. a. Justifier que $\Omega A = \Omega B = \Omega C = \Omega D$.
    $\quad$
    b. En déduire que les points $A$, $B$, $C$ et $D$ appartiennent à une même sphère dont on précisera le centre et le rayon.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – 11 mai 2022

Métropole – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A : Étude du premier protocole

  1. a. Pour tout $t\in[0;10]$ on a
    $\begin{align*} f'(t)&=3\e^{-0,5t+1}+3t\times (-0,5)\e^{-0,5t+1} \\
    &=3(-0,5t+1)\e^{-0,5t+1}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $-0,5t+1$.
    Or $-0,5t+1=0 \ssi -0,5t=-1 \ssi t=2$
    et $-0,5t+1>0 \ssi -0,5t>-1 \ssi t<2$
    On obtient donc le tableau de variations suivant :$\quad$
    c. D’après le tableau de variations, la fonction $f$ atteint son maximum pour $t=2$ et celui-ci vaut $f(2)=6$.
    La quantité de médicament présente dans le sang est donc maximale au bout de $2$ h et elle vaut alors $6$ mg.
    $\quad$
  2. a. La fonction $f$ est continue et strictement croissante sur $[0;2]$.
    De plus, $f(0)=0<5$ et $f(2)=6>5$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(t)=5$ admet une unique solution $\alpha$ sur $[0;2]$.
    D’après la calculatrice $\alpha \approx 1,02$.
    $\quad$
    b. $\beta-\alpha \approx 2,44$. Le médicament est donc efficace environ $2,44$ heures soit $2$ heures et $26$ minutes.
    $\quad$

Partie B : Étude du deuxième protocole

  1. La quantité de médicament baisse de $30\%$ au bout d’une heure. Il en reste donc $70\%$ soit $0,7u_0=1,4$.
    On réinjecte $1,8$ mg
    Donc $u_1=1,4+1,8=3,2$.
    Après l’injection de la première heure, il y a donc $3,2$ mg de médicament dans le sang.
    $\quad$
  2. La quantité de médicament baisse de $30\%$ en une heure. Il est donc $70\%$ soit $0,7u_n$.
    On réinjecte $1,8$ mg.
    Donc, pour tout $n\in \N$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on note $P(n):~u_b \pp u_{n+1} <6$.
    Initialisation : $u_0=2$ et $u_1=3,2$. Donc $u_0\pp u_1<6$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <6 &\ssi 0,7u_n \pp 0,7u_{n+1} < 4,2 \\
    &\ssi 0,7u_n+1,8 \pp 0,7u_{n+1}+1,8<6 \\
    &\ssi u_{n+1} \pp u_{n+2}<6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n\pp u_{n+1} <6$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $6$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. On considère la fonction $g$ définie sur $\R$ par $g(x)=0,7x+1,8$.
    La fonction $f$ est continue sur $\R$ en tant que fonction affine et, pour tout $n\in \N$ on a $u_{n+1}=g\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $g(x)=x$
    $\begin{align*} 0,7x+1,8=x&\ssi 0,3x=1,8 \\
    &\ssi x=6\end{align*}$
    Donc $\ell=6$.
    Sur le long terme, le patient aura $6$ mg de médicament dans le sang.
    $\quad$
  4. a. Pour tout $n\in \N$
    $\begin{align*} v_{n+1}&=6-u_{n+1} \\
    &=6-0,7u_n-1,8 \\
    &=4,2-0,7u_n \\
    &=0,7\left(6-u_n\right)\\
    &=0,7v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,7$ et de premier terme $v_0=6-u_0=4$.
    $\quad$
    b. On a donc, pour tout $n\in \N$, $v_n=4\times 0,7^n$.
    Par conséquent $u_n=6-v_n=6-4\times 0,7^n$.
    $\quad$
    c. $\quad$
    $\begin{align*} u_n\pg 5,5&\ssi 6-4\times 0,7^n \pg 5,5 \\
    &\ssi -4\times 0,7^n \pg 0,5 \\
    &\ssi 0,7^n \pp 0,125 \\
    &\ssi n\ln(0,7) \pp \ln(0,125) \\
    &\ssi n \pg \dfrac{\ln(0,125)}{\ln(0,7)} \qquad \text{car } \ln(0,7)<0\end{align*}$
    $\quad$

 

Ex 2

Exercice 2

  1. a. On a $\vec{u}(2;-1;2)$.
    $\quad$
    b. Si $t=-1$ alors $x=-1$, $y=3$ et $z=0$ donc $B(-1;3;0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. $\vect{AB}(0;2;-3)$.
    Donc
    $\begin{align*} \vect{AB}.\vec{u}&=0\times 2+2\times (-1)+2\times (-3) \\
    &=-8\end{align*}$
    $\quad$
  2. a. $\vec{u}$ est donc un vecteur normal au plan $\mathscr{P}$.
    Une équation cartésienne de ce plan est par conséquent de la forme : $2x-y+2z+d=0$.
    Or $A(-1;1;3)$ appartient à $\mathscr{P}$.
    Donc $-2-1+6+d=0\ssi d=-3$.
    Une équation cartésienne de $\mathscr{P}$ est $2x-y+2z-3=0$.
    $\quad$
    b. $2\times \dfrac{7}{9}-\dfrac{19}{9}+2\times \dfrac{16}{9}-3=\dfrac{27}{9}-3=0$ : le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{P}$.
    $1+2t=\dfrac{7}{9}\ssi 2t=\dfrac{-2}{9}\ssi t=\dfrac{-1}{9}$.
    En prenant $t=-\dfrac{1}{9}$ dans l’équation de $\mathscr{D}$ on obtient $\begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}$ donc le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{D}$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$
    c. $\vect{AH}\left(\dfrac{16}{9};\dfrac{10}{9};-\dfrac{11}{9}\right)$
    Donc
    $\begin{align*} AH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{10}{9}\right)^2+\left(\dfrac{-11}{9}\right)^2} \\
    &=\dfrac{\sqrt{477}}{9} \\
    &=\dfrac{\sqrt{53}}{3}\end{align*}$
    $\quad$
  3. a. $(HB)$ est orthogonale au plan $\mathscr{P}$. Par conséquent $\vect{HB}$ et $\vec{u}$ sont colinéaires.
    Il existe donc un réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b.
    $\begin{align*} \vect{AB}.\vec{u}&=\left(\vect{AH}+\vect{HB}\right).\vec{u} \\
    &= \vect{AH}.\vec{u}+ \vect{HB}.\vec{u} \\
    &=0+k\vec{u}.\vec{u} \\
    &=k\left\|\vec{u}\right\|^2\end{align*}$
    Ainsi $kj=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. On a $\left\|\vec{u}\right\|^2=2^2+(-1)^2+2^2=9$.
    Ainsi $k=-\dfrac{8}{9}$
    $\quad$
    Soit $H(x;y;z)$
    $\vect{HB}(-1-x;3-x;-z)$.
    $\begin{align*} \vect{HB}=-\dfrac{8}{9}\vec{u}&\ssi \begin{cases} 1-x=-\dfrac{8}{9}\times 2\\3-y=-\dfrac{8}{9}\times (-1)\\-z=-\dfrac{8}{9}\times 2\end{cases} \\
    &\ssi \begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}\end{align*}$
    On retrouve donc les coordonnées du point $H$ trouvées à la question 2.b.
    $\quad$
  4. $\vect{BH}\left(\dfrac{16}{9};\dfrac{-8}{9};\dfrac{16}{9}\right)$
    Donc
    $\begin{align*} BH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{-8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2} \\
    &=\dfrac{8}{3}\end{align*}$
    On appelle $\mathscr{B}$ l’aire du triangle $ACH$.
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times BH\times \mathscr{B} &\ssi \dfrac{8}{9}&=\dfrac{1}{3}\times \dfrac{8}{3}\times \mathscr{B} \\
    &\ssi \mathscr{B}=1\end{align*}$
    L’aire du triangle $ACH$ vaut $1$ unité d’aire.
    $\quad$

 

 

Ex 3

Exercice 3

  1. a. D’après l’énoncé $P(S)=0,25$.
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    c. On a
    $\begin{align*} P(F\cap S)&=P(F)\times P_F(S) \\
    &=0,52\times 0,4\\
    &=0,208\end{align*}$
    La probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On veut calculer
    $\begin{align*} P_F(S)&=\dfrac{P(S\cap F)}{P(S)} \\
    &=\dfrac{0,208}{0,25} \\
    &=0,832\end{align*}$
    La probabilité que la personne interrogée soit une femme sachant qu’elle a suivi le stage est égale à $0,832$.
    $\quad$
    e. $\left(F,\conj{F}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales
    $\begin{align*} P(S)=P(S\cap F)+P\left(S\cap \conj{F}\right) &\ssi P\left(S\cap \conj{F}\right)=P(S)-P(S\cap F)\\
    &\ssi P\left(S\cap \conj{F}\right)=0,042\end{align*}$
    Par conséquent
    $\begin{align*} P_F(S)&=\dfrac{P\left(S\cap \conj{F}\right)}{P\left(\conj{F}\right)} \\
    &=\dfrac{0,042}{0,48} \\
    &=0,0875 \\
    &<0,1\end{align*}$
    $\quad$
  2. a. On répète indépendamment $20$ fois  la même expérience de Bernoulli. $X$ compte le nombre de salariés ayant suivi le stage.
    Donc $X$ suit la loi binomiale de paramètres $n=20$ et $p=0,25$.
    $\quad$
    b.
    $\begin{align*} P(X=5)&=\dbinom{10}{5}\times 0,25^5\times (1-0,25)^{10-5} \\
    &\approx 0,202\end{align*}$
    La probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage est environ égale à $0,202$.
    $\quad$
    c. Ce programme calcule $P(X\pp k)$.
    D’après la calculatrice $P(X\pp 5) \approx 0,617$.
    Le programme renvoie donc $0,617$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} P(X\pg 6)&=1-P(X<6) \\
    &=1-P(X\pp 5) \\
    &\approx 0,383\end{align*}$
    $\quad$
  3. $1,05\times 0,25+1,02\times 0,75=1,0275$.
    Le pourcentage moyen d’augmentation des salaires de cette entreprise est donc de $2,75\%$.
    $\quad$

Ex 4

Exercice 4

  1. D’après la limite des termes de plus haut degré
    $\begin{align*} \lim\limits_{x\to +\infty} f(x)&=\lim\limits_{x\to +\infty} \dfrac{-2x^2}{x^2} \\
    &=-2\end{align*}$
    La droite d’équation $y=-2$ est donc asymptote à la courbe représentative de la fonction $f$.
    Réponse C
    $\quad$
  2. Une primitive de $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2}+K$
    $F(0)=1 \ssi \dfrac{1}{2}+K=1 \ssi K=\dfrac{1}{2}$
    Réponse D
    $\quad$
  3. $f’$ semble être strictement croissante sur $]-\infty;4[$ et strictement décroissante sur $[4;+\infty[$.
    Donc $f$ est convexe sur $]-\infty;4]$ et concave sur $[4;+\infty[$.
    Réponse C
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$. Par conséquent, pour tout réel $x$, $f(x)>0$ sur $\R$. $f$ est la dérivée de chacune de ses primitives.
    Réponse A
    $\quad
  5. Pour tout réel $x$, $f(x)=\dfrac{2\ln(x)}{3x^2}\times \dfrac{1}{1+\dfrac{3}{x^2}}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$
    De plus $\lim\limits_{x\to +\infty}  \dfrac{1}{1+\dfrac{3}{x^2}}=0$
    Par conséquent $\lim\limits_{x\to +\infty}f(x)=0$.
    Réponse D
    $\quad$
  6. L’équation peut s’écrire $\left(\e^x\right)^2+\e^x-12=0 \ssi \begin{cases} X=\e^x\\X^2+X-12=0\end{cases}$
    $X^2+X-12=0$ a pour discriminant $\Delta=49>0$
    Ses racines sont donc $X_1=-4$ et $X_2=3$.
    Or $\e^x=-4$ n’admet pas de solution et $\e^x=3$ admet une unique solution $x=\ln(3)$.
    Réponse C
    $\quad$

 

Énoncé

Exercice 1     7 points

Thèmes : fonction exponentielle, suites

Dans le cadre d’un essai clinique, on envisage deux protocoles de traitement d’une maladie.
L’objectif de cet exercice est d’étudier, pour ces deux protocoles, l’évolution de la quantité de médicament présente dans le sang d’un patient en fonction du temps.

Les parties A et B sont indépendantes.

Partie A : Étude du premier protocole

Le premier protocole consiste à faire absorber un médicament, sous forme de comprimé, au patient.
On modélise la quantité de médicament présente dans le sang du patient, exprimée en mg, par la fonction $f$ définie sur l’intervalle $[0; 10]$ par $f(t)=3t\e^{-0,5t+1}$, où $t$ désigne le temps, exprimé en heure, écoulé depuis la prise du comprimé.

  1. a. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 10]$ et on note $f’$ sa fonction dérivée.
    Montrer que, pour tout nombre réel $t$ de $[0; 10]$, on a : $f'(t)=3(-0,5t+1)\e^{-0,5t+1}$.
    $\quad$
    b. En déduire le tableau de variations de la fonction $f$ sur l’intervalle $[0; 10]$.
    $\quad$
    c. Selon cette modélisation, au bout de combien de temps la quantité de médicament présente dans le sang du patient sera-t-elle maximale ? Quelle est alors cette quantité maximale ?
    $\quad$
  2. a. Montrer que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[0; 2]$, notée $\alpha$, dont
    on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
    On admet que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[2; 10]$, notée $\beta$, et qu’une
    valeur approchée de $\beta$ à $10^{-2}$ près est $3,46$.
    $\quad$
    b. On considère que ce traitement est efficace lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5$ mg.
    Déterminer, à la minute près, la durée d’efficacité du  médicament dans le cas de ce protocole.
    $\quad$

Partie B : Étude du deuxième protocole

Le deuxième protocole consiste à injecter initialement au patient, par piqûre intraveineuse, une dose de $2$ mg de médicament puis à réinjecter toutes les heures une dose de $1,8$ mg.

On suppose que le médicament se diffuse instantanément dans le sang et qu’il est ensuite progressivement éliminé.

On estime que lorsqu’une heure s’est écoulée après une injection, la quantité de médicament dans le sang a diminué de $30 \%$ par rapport à la quantité présente immédiatement après cette injection.

On modélise cette situation à l’aide de la suite $\left(u_n\right)$ où, pour tout entier naturel $n$, $u_n$ désigne la quantité de médicament, exprimée en mg, présente dans le sang du patient immédiatement après l’injection de la $n$-ème heure. On a donc $u_0=2$.

  1. Calculer, selon cette modélisation, la quantité $u_1$ de médicament (en mg) présente dans le sang du patient immédiatement après l’injection de la première heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pp u_{n+1} <6$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
    c. Déterminer la valeur de $\ell$. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par $v_n=6-u_n$.
    a. Montrer que la suite $\left(v_bn\right)$ est une suite géométrique de raison $0,7$ dont on précisera le premier terme.
    $\quad$
    b. Déterminer l’expression de $v_n$ en fonction de $n$, puis de $u_n$ en fonction de $𝑛$.
    $\quad$
    c. Avec ce protocole, on arrête les injections lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5,5$ mg.
    Déterminer, en détaillant les calculs, le nombre d’injections réalisées en appliquant ce protocole.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$ on considère :

  • Le point $A$ de coordonnées $(-1;1;3)$;
  • La droite $\mathscr{D}$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=2-t\\z=2+2t\end{cases} \quad ,t\in \R$.

On admet que le point $A$ n’appartient pas à la droite $\mathscr{D}$.

  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u}$ de la droite $\mathscr{D}$.
    $\quad$
    b. Montrer que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. Calculer le produit scalaire $\vect{AB}.\vec{u}$.
    $\quad$
  2. On note $\mathscr{P}$ le plan passant par le point $A$ et orthogonal à la droite $\mathscr{D}$, et on appelle $H$ le point d’intersection du plan $\mathscr{P}$ et de la droite $\mathscr{D}$. Ainsi, $H$ est le projeté orthogonal de $A$ sur la droite $\mathscr{D}$.
    a. Montrer que le plan $\mathscr{P}$ admet pour équation cartésienne : $2x-y+2z-3=0$.
    $\quad$
    b. En déduire que le point $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    c. Calculer la longueur $AH$. On donnera une valeur exacte.
    $\quad$
  3. Dans cette question, on se propose de retrouver les coordonnées du point $H$, projeté orthogonal du point $A$ sur la droite $\mathscr{D}$, par une autre méthode.On rappelle que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$ et que le vecteur $\vec{u}$ est un vecteur directeur de la droite $\mathscr{D}$.
    a. Justifier qu’il existe un nombre réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b. Montrer que $k=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. Calculer la valeur du nombre réel $k$ et retrouver les coordonnées du point $H$.
    $\quad$
  4. On considère un point $C$ appartenant au plan $\mathscr{P}$ tel que le volume du tétraèdre $ABCH$ soit égal à $\dfrac{8}{9}$.
    Calculer l’aire du triangle $ACH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : probabilités

Le directeur d’une grande entreprise a proposé à l’ensemble de ses salariés un stage de formation à l’utilisation d’un nouveau logiciel.

Ce stage a été suivi par $25 \%$ des salariés.

  1. Dans cette entreprise, $52 \%$ des salariés sont des femmes, parmi lesquelles $40 \%$ ont suivi le stage.
    On interroge au hasard un salarié de l’entreprise et on considère les événements :
    $\bullet$ $F$ : « le salarié interrogé est une femme »,
    $\bullet$ $S$ : « le salarié interrogé a suivi le stage ».
    $\conj{F}$ et $\conj{S}$ désignent les événements contraires des événements $F$ et $S$.
    a. Donner la probabilité de l’événement $S$.
    $\quad$
    b. Recopier et compléter les pointillés de l’arbre pondéré ci-dessous sur les quatre branches indiquées.

    $\quad$
    c. Démontrer que la probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On sait que la personne interrogée a suivi le stage. Quelle est la probabilité que ce soit une femme ?
    $\quad$
    e. Le directeur affirme que, parmi les hommes salariés de l’entreprise, moins de $10 \%$ ont suivi le stage.
    Justifier l’affirmation du directeur.
    $\quad$

  2. On note $X$ la variable aléatoire qui à un échantillon de $20$ salariés de cette entreprise choisis au hasard associe le nombre de salariés de cet échantillon ayant suivi le stage. On suppose que l’effectif des salariés de l’entreprise est suffisamment important pour assimiler ce choix à un tirage avec remise.
    a. Déterminer, en justifiant, la loi de probabilité suivie par la variable aléatoire $X$.
    $\quad$
    b. Déterminer, à $10^{-3}$ près, la probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
    c. Le programme ci-dessous, écrit en langage Python, utilise la fonction $\texttt{binomiale(i,n,p)}$ créée pour l’occasion qui renvoie la valeur de la probabilité $P(X=i)$ dans le cas où la variable aléatoire $X$ suit une loi binomiale de paramètres $n$ et $p$.
    $\begin{array}{|l|}
    \hline
    \textbf{def proba}\text{(k):}\\
    \quad \text{P = 0}\\
    \quad \text{for i in range(0 , k + 1):}\\
    \qquad \text{P = P + binomiale(i,20,0.25)}\\
    \quad \textbf{return P}\\
    \hline
    \end{array}$
    Déterminer, à $10^{-3}$ près, la valeur renvoyée par ce programme lorsque l’on saisit $\texttt{proba(5)}$ dans la console Python. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
    d. Déterminer, à $10^{-3}$ près, la probabilité qu’au  moins $6$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
  3. Cette question est indépendante des questions 1 et 2.
    Pour inciter les salariés à suivre le stage, l’entreprise avait décidé d’augmenter les salaires des salariés ayant suivi le stage de $5\ %$, contre $2\%$ d’augmentation pour les salariés n’ayant pas suivi le stage.
    Quel est le pourcentage moyen d’augmentation des salaires de cette entreprise dans ces conditions ?
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonctions numériques

Cet exercice est un questionnaire à choix multiple.
Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la réponse choisie. Aucune justification n’est  demandée.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Les six questions sont indépendantes.

  1. La courbe représentative de la fonction $f$ définie sur $\R$ par $f(x)=\dfrac{-2x^2+3x-1}{x^2+1}$ admet pour asymptote la droite d’équation :
    a. $x=-2$;
    b. $y=-1$;
    c. $y=-2$;
    d. $y=0$.
    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=x\e^{x^2}$.
    La primitive $F$ de $f$ sur $\R$ qui vérifie $F(0)=1$ est définie par :
    a. $F(x)=\dfrac{x^2}{2}\e^{x^2}$;
    b. $F(x)=\dfrac{1}{2}\e^{x^2}$;
    c. $F(x)=\left(1+2x^2\right)\e^{x^2}$;
    d. $F(x)=\dfrac{1}{2}\e^{x^2}+\dfrac{1}{2}$.
    $\quad$
  3. On donne ci-dessous la représentation graphique $\mathscr{C}_{f’}$ de la fonction dérivée $f’$ d’une fonction $f$ définie sur ℝ.
    On peut affirmer que la fonction $f$ est :
    a. concave sur $]0; +\infty[$ ;
    b. convexe sur $]0; +\infty[$ ;
    c. convexe sur $[0; 2]$ ;
    d. convexe sur $[2; +\infty[$.
    $\quad$
  4. Parmi les primitives de la fonction $f$ définie sur $\R$ par $f(x)=3\e^{-x^2}+2$:
    a. toutes sont croissantes sur $\R$ ;
    b. toutes sont décroissantes sur $\R$ ;
    c. certaines sont croissantes sur $\R$ et d’autres décroissantes sur $\R$ ;
    d. toutes sont croissantes sur $]−\infty; 0]$ et décroissantes sur $[0; +\infty[$.
    $\quad$
  5. La limite en $+\infty$ de la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=\dfrac{2\ln(x)}{3x^2+1}$ est égale à :
    a. $\dfrac{2}{3}$ ;
    b. $+\infty$ ;
    c. $-\infty$ ;
    d. $0$.
    $\quad$
  6. L’équation $\e^{2x}+\e^x-12=0$ admet dans $\R$ :
    a. trois solutions ;
    b. deux solutions ;
    c. une seule solution ;
    d. aucune solution.
    $\quad$

 

Bac – Spécialité mathématiques – Métropole – sujet 2 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(S\cap I)&=p(S)\times p_S(I) \\
    &=0,08\times 0,9\\
    &=0,072\end{align*}$
    La probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. $\left(S,\conj{S}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(I)&=p(S)p_S(I)+p\left(\conj{S}\right)p_{\conj{S}}(I) \\
    &=0,08\times 0,9+0,92\times 0,01 \\
    &=0,0812\end{align*}$
    La probabilité que le message soit classé indésirable est $0,0812$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} p_I(S)&=\dfrac{p(S)\times p_S(I)}{p(I)} \\
    &=\dfrac{0,08\times 0,9}{0,0812} \\
    &\approx 0,89\end{align*}$
    La probabilité que le message soit du spam sachant qu’il est classé comme indésirable est environ égale à $0,89$.
    $\quad$
  3. a. On effectue $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $S$ et $\conj{S}$.
    Ainsi $Z$ suit la loi binomiale de paramètres $n=50$ et $p=0,08$.
    $\quad$
    b. On a :
    $\begin{align*} p(Z\pg 2)&=1-p(Z=0)-p(Z=1) \\
    &=1-0,92^{50}-\dbinom{50}{1}0,08\times 0,92^{49} \\
    &=1-0,92^{50}-50\times 0,08\times 0,92^{49} \\
    &\approx 0,92\end{align*}$
    La probabilité qu’au moins deux courriels choisis soient du spam est environ égale à $0,92$.
    $\quad$

 

Ex 2

Exercice 2 (5 points)

  1. Si $t=-2$ on obtient alors $\begin{cases} x=-3\\y=-4\\z=6\end{cases}$
    Le point $N(-3;-4;6)$ appartient donc à la droite $\Delta$.
    Réponse B
    $\quad$
  2. $\vect{AB}$ a pour coordonnées $\begin{pmatrix} 2-1\\1-0\\0-2\end{pmatrix}$ soit $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse C
    $\quad$
  3. La droite $(AB)$ passe par le point $B(2;1;0)$ et a pour vecteur directeur $\vect{AB}\begin{pmatrix} 1\\1\\-2\end{pmatrix}$ mais également le vecteur $-\vect{AB}\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Ainsi, une représentation paramétrique de $(AB)$ est $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases}\quad, t\in \R$.
    Réponse B
    $\quad$
  4. Un vecteur directeur de $\Delta$ est $\vec{n}\begin{pmatrix}2\\1\\-1\end{pmatrix}$
    Ainsi une équation cartésienne de ce plan est de la forme $2x+y-z+d=0$.
    Le point $C(0;1;2)$ appartient à ce plan.
    Donc $0+1-2+d=0 \ssi d=1$.
    Une équation cartésienne du plan est $2x+y-z+1=0$.
    Réponse B
    $\quad$
  5. On a
    $\begin{align*} \vect{AD}&=\vect{AO}+\vect{OD} \\
    &=\vect{AO}+3\vect{OA}-\vect{OB}-\vect{OC} \\
    &=2\vect{OA}-\vect{OB}-\vect{OC} \\
    &=\vect{BO}+\vect{OA}+\vect{CO}+\vect{OA} \\
    &=\vect{BA}+\vect{CA}\end{align*}$
    Ainsi les vecteurs $\vect{AD}$, $\vect{AB}$ et $\vect{AC}$ sont coplanaires.
    Réponse A
    $\quad$

 

 

Ex 3

Exercice 3 (6 points)

Partie 1

  1. $\lim\limits_{x\to -\infty} -2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to -\infty} -\e^{-2x}=-\infty$
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$
    $\lim\limits_{x\to +\infty} -2x=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to +\infty} -\e^{-2x}=0$
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. La fonction $f$ est dérivable sur $\R$ en tant que somme et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1-(-2)\e^{-2x} \\
    &=1+2\e^{-2x}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $\R$.
    On obtient le tableau de variation suivant :
    $\quad$

    $\quad$
  3. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\R$.
    De plus $\lim\limits_{x\to -\infty} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $\R$.
    D’après la calculatrice $\alpha \approx 0,43$.
    $\quad$
  4. La fonction $f$ est strictement croissante sur $\R$ et s’annule en $\alpha$.
    Donc :
    – $f(x)<0$ sur $]-\infty;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. a. La fonction $t\mapsto t^2+\e^{-2t}$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$. Cette fonction est de plus positive en tant que somme de fonctions positives.
    La fonction $h$ est donc dérivable sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} h'(t)&=\dfrac{2t-2\e^{-2t}}{2\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{t-\e^{-t}}{\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{h(t)}{\sqrt{t^2+\e^{-2t}}}\end{align*}$
    $\quad$
    b. $h'(x)$ a donc le même signe que $f(x)$ pour tout réel $x$.
    D’après la question I.4. on a donc :
    – $h'(x)<0$ sur $]-\infty;\alpha[$;
    – $h'(\alpha)=0$;
    – $h(x)>0$ sur $]\alpha;+\infty[$.
    Ainsi $h$ admet un minimum en $\alpha$.
    Le point $A\left(\alpha,g(\alpha)\right)$, c’est-à-dire $A\left(\alpha,\e^{-\alpha}\right)$, est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    $\quad$
  2. a. Le coefficient directeur de la tangente $T$ est $g'(\alpha)=-\e^{-\alpha}$.
    $\quad$
    b. Le produit des deux coefficients directeurs est :
    $\begin{align*} -\e^{-\alpha}\times \dfrac{\e^{-\alpha}}{\alpha}&=-\dfrac{\e^{-2\alpha}}{\alpha} \\
    &=-\dfrac{\alpha}{\alpha} \quad \text{car }f(\alpha)=0 \ssi \e^{-2\alpha}=\alpha  \\
    &=-1\end{align*}$
    Les droites $(OA)$ et $T$ sont donc perpendiculaires.
    $\quad$

$\quad$

Ex A

Exercice A (5 points)

  1. On a $u_1=\dfrac{3\times 16+2\times 5}{5}=11,6$.
    et $v_1=\dfrac{16+5}{2}=10,5$
    $\quad$
  2. a. Soit $n\in \N$.
    $\begin{align*} w_{n+1}&=u_{n+1}-v_{n+1} \\
    &=\dfrac{3u_n+2v_n}{5}-\dfrac{u_n+v_n}{2} \\
    &=\dfrac{6u_n+4v_n-5u_n-5v_n}{10} \\
    &=\dfrac{u_n-v_n}{10} \\
    &=0,1 w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $0,1$ et de premier terme $w_0=u_0-v_0=11$.
    Ainsi, pour tout $n\in \N$ on a $w_n=11\times 0,1^n$.
    $\quad$
    b. Pour tout $n\in \N$ on a $w_n\pg 0$ en tant que produit de facteurs positifs.
    De plus $-1<0,1<1$ donc $\lim\limits_{n\to +\infty} w_n=0$.
    $\quad$
  3. a. Soit $n\in \N$. On a
    $\begin{align*} u_{n+1}-u_n&=\dfrac{3u_n+2v_n}{5}-u_n \\
    &=\dfrac{3u_n+2v_n-5u_n}{5} \\
    &=\dfrac{-2u_n+2v_n}{5} \\
    &=-\dfrac{2}{5} \times \left(u_n-v_n\right) \\
    &=-0,4w_n\end{align*}$
    $\quad$
    b. $w_n\pg 0$ et $u_{n+1}-u_n=-0,4w_n$ pour tout $n\in \N$.
    Ainsi $u_{n+1}-u_n \pp 0$ pour tout $n\in \N$.
    La suite $\left(u_n\right)$ est donc décroissante.
    On admet que la suite $\left(v_n\right)$ est croissante et on sait que $v_0=5$.
    Ainsi, pour tout $n\in \N$ on a $v_n\pg v_0$ soit $v_n\pg 5$.
    $\quad$
    c. Initialisation : On a $u_0=16$ donc $u_0\pg 5$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$.
    $\begin{align*} u_{n+1}&=\dfrac{3u_n+2v_n}{5} \\
    &\pg \dfrac{3\times 5+2\times 5}{5} \\
    &\pg 5\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout $n\in \N$ on a $u_n \pg 5$.
    $\quad$
    La suite $\left(u_n\right)$ est donc décroissante et minorée par $5$. Elle est par conséquent convergente.
    $\quad$
  4. a. Pour tout $n\in \N$ on a $w_n=u_n-v_n$ et $\lim\limits_{n\to +\infty} w_n=0$.
    Or $\lim\limits_{n\to +\infty} u_n-v_n=\ell-\ell’$
    Ainsi $\ell-\ell’=0 \ssi \ell=\ell’$.
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} c_{n+1}&=5u_{n+1}+4v_{n+1} \\
    &=3u_n+2v_n+2\left(u_n+v_n\right) \\
    &=3u_n+2v_n+2u_n+2v_n\\
    &=5u_n+4v_n\\
    &=w_n\end{align*}$
    La suite $\left(c_n\right)$ est donc constante.
    Or $c_0=5u_0+4v_0=100$.
    Ainsi, pour tout $n\in \N$ on a $c_n=100$.
    $\quad$
    c. Or $\lim\limits_{n\to +\infty} c_n=5\ell+4\ell’$ soit $\lim\limits_{n\to +\infty} c_n=9\ell$ puisque $\ell=\ell’$.
    Par conséquent $9\ell=100 \ssi \ell=\dfrac{100}{9}$.
    $\quad$

Remarque : On dit que les suites $\left(u_n\right)$ et $\left(v_n\right)$ sont adjacentes.

Ex B

Exercice B (5 points)

Partie 1

  1. $f(x)=0\ssi 2\ln(x)-1=0 \ssi \ln(x)=\dfrac{1}{2}\ssi x=\e^{1/2}$.
    Ainsi l’équation $f(x)=0$ possède une unique solution $\alpha=\e^{1/2}\approx 1,65$.
    $\quad$
  2. Graphiquement :
    – $f(x)<0$ sur $]0;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$
    $\quad$

Partie II

  1. a. Pour tout $x>0$ on a $g(x)=\ln(x)\left(\ln(x)-1\right)$
    Or $\lim\limits_{x\to 0^-} \ln(x)=-\infty$ donc $\lim\limits_{x\to 0^-} \ln(x)-1=-\infty$.
    Ainsi $\lim\limits_{x\to 0^-} g(x)=+\infty$.
    $\quad$
    b. $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} \ln(x)-1=+\infty$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    $\quad$
  2. La fonction $g$ est dérivable sur $]0;+\infty[$ comme produit et somme de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} g'(x)&=2\dfrac{1}{x}\times \ln(x)-\dfrac{1}{x} \\
    &=\dfrac{2\ln(x)-1}{x} \\
    &=f(x)\end{align*}$
    $\quad$
  3. On obtient le tableau de variations suivant :
    $\quad$

    On a en effet $\alpha=\e^{1/2}$ donc $g(\alpha)=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}$
    $\quad$
  4. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $]0;\alpha[$.
    De plus $\lim\limits_{x\to 0^+} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]0;\alpha[$.
    $\quad$
    La fonction $g$ est continue (car dérivable) et strictement croissante sur $]\alpha;+\infty[$.
    De plus $\lim\limits_{x\to +\infty} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]\alpha;+\infty[$.
    $\quad$
    De plus $g(\alpha)\neq m$.
    L’équation $g(x)=m$ possède donc exactement deux solutions sur $\R$ pour tout $m>-0,25$.
    $\quad$
  5. $g(x)=0 \ssi \ln(x)\left(\ln(x)-1\right)=0 \ssi \ln(x)=0$ ou $\ln(x)=1$
    Ainsi $g(x)=0 \ssi x=1$ ou $x=\e$
    Les solutions de l’équation $g(x)=0$ sont donc $1$ et $\e$.
    $\quad$

 

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Une entreprise reçoit quotidiennement de nombreux courriels (courriers électroniques).
Parmi ces courriels, $8 \%$ sont du « spam », c’est-à-dire des courriers à intention publicitaire, voire malveillante, qu’il est souhaitable de ne pas ouvrir.
On choisit au hasard un courriel reçu par l’entreprise.
Les propriétés du logiciel de messagerie utilisé dans l’entreprise permettent d’affirmer que :

  • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que c’est un spam est égale à $0,9$.
    • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que ce n’est pas un spam est égale à $0,01$.

On note :

  • $S$ l’évènement « le courriel choisi est un spam »;
  • $I$ l’évènement « le courriel choisi est classé comme indésirable par le logiciel de messagerie ».
  • $\conj{S}$ et $\conj{I}$ les évènements contraires de $S$ et $I$ respectivement.
  1. Modéliser la situation étudiée par un arbre pondéré, sur lequel on fera apparaître les probabilités associées à chaque branche.
    $\quad$
  2. a. Démontrer que la probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. Calculer la probabilité que le message choisi soit classé indésirable.
    $\quad$
    c. Le message choisi est classé comme indésirable. Quelle est la probabilité que ce soit effectivement un message de spam ? On donnera un résultat arrondi au centième.
    $\quad$
  3. On choisit au hasard $50$ courriels parmi ceux reçus par l’entreprise. On admet que ce choix se ramène à un tirage au hasard avec remise de $50$ courriels parmi l’ensemble des courriels reçus par l’entreprise.
    On appelle $Z$ la variable aléatoire dénombrant les courriels de spam parmi les $50$ choisis.
    a. Quelle est la loi de probabilité suivie par la variable aléatoire $Z$, et quels sont ses paramètres ?
    $\quad$
    b. Quelle est la probabilité que, parmi les $50$ courriels choisis, deux au moins soient du spam ? On donnera un résultat arrondi au centième.
    $\quad$

$\quad$

Exercice 2     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points $A(1; 0; 2)$, $B(2; 1; 0)$, $C(0; 1; 2)$ et la droite $\Delta$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=-2+t\\z=4-t\end{cases} \quad,t\in \R$.

  1. Parmi les points suivants, lequel appartient à la droite $\Delta$?
    Réponse A : $M(2 ; 1 ; -1)$;
    Réponse B : $N(-3 ; -4 ; 6)$;
    Réponse C : $P(-3 ; -4 ; 2)$;
    Réponse D : $Q(-5 ; -5 ; 1)$.
    $\quad$
  2. Le vecteur $\vect{AB}$ admet pour coordonnées :
    Réponse A : $\begin{pmatrix} 1,5\\0,5\\1\end{pmatrix}$
    Réponse B : $\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Réponse C : $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse D : $\begin{pmatrix} 3\\1\\2\end{pmatrix}$
    $\quad$
  3. Une représentation paramétrique de la droite $(AB)$ est :
    Réponse A : $\begin{cases} x=1+2t\\y=t\\z=2\end{cases} \quad,t\in\R$
    Réponse B : $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases} \quad,t\in\R$
    Réponse C : $\begin{cases} x=2+t\\y=1+t\\z=2t\end{cases} \quad,t\in\R$
    Réponse D : $\begin{cases} x=1+t\\y=1+t\\z=2-2t\end{cases} \quad,t\in\R$
    $\quad$
  4. Une équation cartésienne du plan passant par le point $C$ et orthogonal à la droite $\Delta$ est :
    Réponse A : $x-2y +4z -6 = 0$;
    Réponse B : $2x + y – z +1 = 0$;
    Réponse C : $2x + y – z -1 = 0$;
    Réponse D : $y +2z -5 = 0$.
    $\quad$
  5. On considère le point $D$ défini par la relation vectorielle $\vect{OD}=3\vect{OA}-\vect{OB}-\vect{OC}$.
    Réponse A : $\vect{AD}$, $\vect{AB}$, $\vect{AC}$ sont coplanaires;
    Réponse B : $\vect{AD} =\vect{BC}$;
    Réponse C : $D$ a pour coordonnées $(3 ; -1 ; -1)$;
    Réponse D : les points $A$, $B$, $C$ et $D$ sont alignés.
    $\quad$

$\quad$

Exercice 3     6 points

Partie I

On considère la fonction $f$ définie sur $\R$ par $$f (x) = x -\e^{-2x}$$
On appelle $\Gamma$ la courbe représentative de la fonction $f$ dans un repère orthonormé $\Oij$.

  1. Déterminer les limites de la fonction $f$ en $-\infty$ et en $+\infty$.
    $\quad$
  2. Étudier le sens de variation de la fonction $f$ sur $\R$ et dresser son tableau de variation.
    $\quad$
  3. Montrer que l’équation $f (x) = 0$ admet une unique solution $\alpha$ sur $\R$, dont on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
  4. Déduire des questions précédentes le signe de $f(x)$ suivant les valeurs de $x$.
    $\quad$

 

Partie II

Dans le repère orthonormé $\Oij$, on appelle $\mathscr{C}$ la courbe représentative de la fonction $g$ définie sur $\R$ par : $$g(x) = \e^{-x}$$
La courbe $\mathscr{C}$ et la courbe $\Gamma$ (qui représente la fonction $f$ de la Partie I) sont tracées sur le graphique donné en annexe qui est à compléter et à rendre avec la copie.
Le but de cette partie est de déterminer le point de la courbe $\mathscr{C}$ le plus proche de l’origine $O$ du repère et d’étudier la tangente à $\mathscr{C}$ en ce point.

  1. Pour tout nombre réel $t$, on note $M$ le point de coordonnées $\left(t,\e^{-t}\right)$ de la courbe $\mathscr{C}$.
    On considère la fonction $h$ qui, au nombre réel $t$, associe la distance $OM$.
    On a donc : $h(t) = OM$, c’est-à-dire : $$h(t) =\sqrt{t^2+\e^{-2t}}$$
    a. Montrer que, pour tout nombre réel $t$, $$h'(t) =\dfrac{f(t)}{\sqrt{t^2+\e^{-2t}}}$$
    où $f$ désigne la fonction étudiée dans la Partie I.
    $\quad$
    b. Démontrer que le point $A$ de coordonnées $\left(\alpha ; \e^{-\alpha}\right)$ est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    Placer ce point sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$
  2. On appelle $T$ la tangente en $A$ à la courbe $\mathscr{C}$.
    a. Exprimer en fonction de $\alpha$ le coefficient directeur de la tangente $T$.
    On rappelle que le coefficient directeur de la droite $(OA)$ est égal à $\dfrac{\e^{-\alpha}}{\alpha}$.
    On rappelle également le résultat suivant qui pourra être utilisé sans démonstration :
    Dans un repère orthonormé du plan, deux droites $D$ et $D’$ de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si, et seulement si le produit $mm’$ est égal à $-1$.
    $\quad$
    b. Démontrer que la droite $(OA)$ et la tangente $T$ sont perpendiculaires.
    Tracer ces droites sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$

ANNNEXE

$\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.

Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Suites numériques; raisonnement par récurrence.

On considère les suites $\left(u_n\right)$ et $\left(u_n\right)$ définies par : $$u_0 = 16 ; v_0 = 5 ;$$
et pour tout entier naturel $n$ : $$\begin{cases} u_{n+1}=\dfrac{3u_n+2v_n}{5}\\v_{n+1}=\dfrac{u_n+v_n}{2}\end{cases}$$

  1. Calculer $u_1$ et $v_1$.
    $\quad$
  2. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par : $w_n = u_n-v_n$.
    a. Démontrer que la suite $\left(w_n\right)$ est géométrique de raison $0,1$.
    En déduire, pour tout entier naturel $n$, l’expression de $w_n$ en fonction de $n$.
    $\quad$
    b. Préciser le signe de la suite $\left(w_n\right)$ et la limite de cette suite.
    $\quad$
  3. a. Démontrer que, pour tout entier naturel $n$, on a : $u_{n+1}-u_n = -0,4w_n$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est croissante. On admet ce
    résultat, et on remarque qu’on a alors : pour tout entier naturel $n$, $vn \pg v_0 = 5$.
    $\quad$
    c. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pg 5$.
    En déduire que la suite $\left(u_n\right)$ est convergente. On appelle $\ell$ la limite de $\left(u_n\right)$.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est convergente. On admet ce
    résultat, et on appelle $\ell’$ la limite de $\left(v_n\right)$.
    $\quad$
  4. a. Démontrer que $\ell=\ell’$.
    $\quad$
    b. On considère la suite $\left(c_n\right)$ définie pour tout entier naturel $n$ par : $c_n = 5u_n +4v_n$.
    Démontrer que la suite $\left(c_n\right)$ est constante, c’est-à-dire que pour tout entier naturel $n$, on a : $c_{n+1} = c_n$.
    En déduire que, pour tout entier naturel $n$ , $c_n = 100$.
    $\quad$
    c. Déterminer la valeur commune des limites $\ell$ et $\ell’$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme, limites, dérivation.

Partie 1

Le graphique ci-dessous donne la représentation graphique dans un repère orthonormé de la fonction $f$ définie sur l’intervalle $]0 ; +\infty[$ par : $$f (x) =\dfrac{2\ln(x)-1}{x}$$

 

  1. Déterminer par le calcul l’unique solution $\alpha$ de l’équation $f(x) = 0$.
    On donnera la valeur exacte de $\alpha$ ainsi que la valeur arrondie au centième.
    $\quad$
  2. Préciser, par lecture graphique, le signe de $f(x)$ lorsque $x$ varie dans l’intervalle $]0 ; +\infty[$.
    $\quad$

Partie II

On considère la fonction $g$ définie sur l’intervalle $]0 ; +\infty[$ par : $$g(x) = \left[\ln(x)\right]^2-\ln(x)$$

  1. a. Déterminer la limite de la fonction $g$ en $0$.
    $\quad$
    b. Déterminer la limite de la fonction $g$ en $+\infty$.
    $\quad$
  2. On note $g’$ la fonction dérivée de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $g'(x)=f(x)$, où $f$ désigne la fonction définie dans la partie I.
    $\quad$
  3. Dresser le tableau de variations de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    On fera figurer dans ce tableau les limites de la fonction $g$ en $0$ et en $+\infty$, ainsi que la valeur du minimum de $g$ sur $]0 ; +\infty[$.
    $\quad$
  4. Démontrer que, pour tout nombre réel $m > -0,25$, l’équation $g(x) = m$ admet exactement deux solutions.
    $\quad$
  5. Déterminer par le calcul les deux solutions de l’équation $g(x) = 0$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. $f'(0)$ est le coefficient directeur de la droite $(AB)$ tangente à $\mathscr{C}_f$ en $A$.
    Ainsi,
    $\begin{align*} f'(0)&=\dfrac{20-5}{1-0} \\
    &=15\end{align*}$
    Réponse c
    $\quad$
  2. $A(0;5)$ appartient à $\mathscr{C}_f$. Donc $f(0)=5 \ssi b=5$.
    Donc $f(x)=(ax+5)\e^x$.
    Le point de coordonnées $(-0,5;0)$ appartient à $\mathscr{C}_f$.
    Donc $f(-0,5)=0 \ssi (-0,5a+5)\e^{-0,5}=0 \ssi -0,5a+5=0 \ssi a=10$
    (La fonction exponentielle est, en effet, strictement positive.)
    Réponse a
    $\quad$
  3. La fonction exponentielle est, en effet, strictement positive. Le signe de $f\dsec(x)$ ne dépend donc que de celui de $10x+25$.
    Or $10x+25>0 \ssi 10x>-25 \ssi x>-2,5$
    Et $10x+25=0 \ssi 10x=-25\ssi x=-2,5$
    Ainsi $f\dsec(x)$ change de signe en s’annulant en $-2,5$.
    Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$.
    Réponse c
    $\quad$
  4. Si on prend $U_n=-n$ et $V_n=2$ pour tout $n\in \N$ alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$. Mais $\lim\limits_{n\to +\infty} U_n=-\infty$. La réponse a est donc fausse.
    Si on prend $V_n=2+\dfrac{1}{n}$ et $U_n=V_n-1$ pour tout $n\in \N$. alors, pour tout $n\in \N$ on a bien $U_n \pp V_n$ et $\lim\limits_{n\to +\infty} V_n=2$ mais $V_n >2$ pour tout $n\in \N$ et $\lim\limits_{n\to +\infty} U_n=1$. Les reponses b et c sont fausses.
    Réponse d
    $\quad$
    Remarque : On pouvait également montrer que la réponse c était la bonne directement de la façon suivante :
    $\lim\limits_{n\to +\infty} V_n=2$. Il existe donc un entier naturel $n_0$ tel que, pour tout $n\pg n_0$, $\abs{V_n-2}<1$ (On peut remplacer $1$ par n’importe quel réel strictement positif).
    Ainsi, pour tout $n\pg n_0$ on a $-1< V_n-2<1$ soit $1<V_n<3$.
    Or, pour tout $n\in N$, on a $U_n\pp V_n$ donc, pour tout $n\pg n_0$, $U_n<3$.
    Ainsi, pour tout $n\in \N$, $U_n \pp \max\left(U_0,U_1,\ldots, U_{n_0},3\right)$ et la suite $\left(U_n\right)$ est majorée (mais on ne connaît pas le majorant).
    $\quad$

 

 

 

Ex 2

Exercice 2 (5 points)

  1. On a
    $\begin{align*} u_1&=f\left(u_0\right) \\
    &=f\left(\dfrac{1}{2}\right) \\
    &=\dfrac{2}{1+\dfrac{3}{2}} \\
    &=\dfrac{4}{5}\end{align*}$
    $\quad$
  2. a. Initialisation : On a $u_0=\dfrac{1}{2}$ et $u_1=\dfrac{4}{5}$ donc $\dfrac{1}{2} \pp u_0 \pp u_1 \pp 2$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$, c’est-à-dire $\dfrac{1}{2} \pp u_n\pp u_{n+1} \pp 2$.
    La fonction $f$ est croissante sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$.
    Ainsi $f\left(\dfrac{1}{2}\right) \pp f\left(u_n\right)\pp f\left(u_{n+1}\right) \pp f(2)$
    Soit $\dfrac{4}{5} \pp u_{n+1} \pp u_{n+2} \pp \dfrac{8}{7}$
    Donc $\dfrac{1}{2} \pp u_{n+1} \pp u_{n+2} \pp 2$.
    La propriété est, par conséquent, vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout $n\in \N$, on a $\dfrac{1}{2} \pp u_n \pp u_{n+1} \pp 2$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $2$. Elle est donc convergente.
    $\quad$
    c. La fonction $f$ est continue sur $\left[\dfrac{1}{2};2\right]$ comme quotient de fonctions continues dont le dénominateur ne s’annule pas.
    Ainsi $\ell$ est solution de l’équation, définie sur $\left[\dfrac{1}{2};2\right]$ :
    $\begin{align*} f(x)=x&\ssi \dfrac{4x}{1+3x}=x \\
    &\ssi 4x=x+3x^2\\
    &\ssi 3x^2-3x=0\\
    &\ssi 3x(x-1)=0\end{align*}$
    Les solutions de cette équation sont $0$ et $1$.
    $1$ est la seule valeur appartenant à $\left[\dfrac{1}{2};2\right]$.
    Par conséquent $\ell=1$.
    $\quad
  3. a. On peut écrire
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E):} \\
    \quad \text{u = 0.5} \\
    \quad \text{n = 0} \\
    \quad \text{while 1 – u >= E :} \\
    \qquad \text{u = 4 * u / (1 + 3 * u)} \\
    \qquad \text{n = n + 1} \\
    \quad \text{return n} \\
    \hline
    \end{array}$$
    $\quad$
    b. Si $E = 10^{-4}$
    Voici les premières valeurs (approchées pour certaines) de $u_n$ et de $1-u_n$
    $\begin{array}{|c|c|c|}
    \hline
    n& u_n &1-u_n \\ \hline
    0& 0,5& 0,5\\ \hline
    1& 0,8& 0,2\\ \hline
    2& 0,9411764706& 0,05882352941\\ \hline
    3& 0,9846153846& 0,01538461538\\ \hline
    4& 0,9961089494& 0,003891050584\\ \hline
    5& 0,9990243902& 0,0009756097561\\ \hline
    6& 0,999755919& 0,0002440810349\\ \hline
    7& 0,9999389686& 0,00006103143119\\ \hline
    \end{array}$
    Le programme renvoie donc $7$.
    $\quad$
  4. a. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\dfrac{u_{n+1}}{1-u_{n+1}} \\
    &=\dfrac{\dfrac{4u_n}{1+3u_n}}{1-\dfrac{4u_n}{1+3u_n}} \\
    &=\dfrac{4u_n}{1+3u_n-4u_n} \\
    &=\dfrac{4u_n}{1-u_n} \\
    &=4v_n\end{align*}$.
    La suite $\left(v_n\right)$ est donc géométrique de raison $4$ et de premier terme $v_0=\dfrac{u_0}{1-u_0}=1$.
    Ainsi, pour tout $n\in \N$, on a $v_n=4^n$.
    $\quad$
    b. Soit $n\in \N$.
    \begin{align*} v_n=\dfrac{u_n}{1-u_n} &\ssi v_n\left(1-u_n\right)=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n-u_nv_n=u_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n+u_nv_n \text{  et } u_n\neq 1\\
    &\ssi v_n=u_n\left(1+v_n\right) \text{  et } u_n\neq 1\end{align*}$
    Ainsi $u_n=\dfrac{v_n}{1+v_n}$.
    $\quad$
    c. Soit $n\in \N$ on a
    $\begin{align*} u_n&=\dfrac{v_n}{1+v_n} \\
    &=\dfrac{4^n}{1+4^n} \\
    &=\dfrac{4^n}{4^n\left(0,25^n+1\right)} \\
    &=\dfrac{1}{1+0,25^n}\end{align*}$
    On a $-1<0,25<1$ donc $\lim\limits_{n\to +\infty} 0,25^n=0$ et $\lim\limits_{n\to +\infty} u_n=1$.

 

 

Ex 3

Exercice 3 (6 points)

Partie I : Effet de l’introduction d’une nouvelle espèce

  1. On a $f(0)=440$.
    Il y avait donc $440$ crapauds dans le lac lors de l’introduction des truites.
    $\quad$
  2. Pour tout $t\in [0;120]$ on a
    $\begin{align*} f'(t)&=(0,08t-8)\e^{\frac{t}{50}}+\left(0,04t^2-8t+400\right)\times \dfrac{1}{50}\e^{\frac{t}{50}} \\
    &=\left(0,08t-8+0,0008t^2-0,16t+8\right)\e^{\frac{t}{50}} \\
    &=\left(0,0008t^2-0,08t\right)\e^{\frac{t}{50}} \\
    &=0,0008t(t-100)\e^{\frac{t}{50}} \\
    &=8\times 10^{-4}t(t-100)\e^{\frac{t}{50}} \end{align*}$
    $\quad$
  3. La fonction exponentielle est strictement positive sur $\R$.
    Sur $[0;120]$ on a $t\pg 0$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $t-100$.
    Or $t-100=0 \ssi t=100$ et $t-100>0 \ssi t>100$.
    On obtient donc le tableau de variations suivant :
    $\quad$
  4. a. D’après le tableau de variations, la fonction $f$ atteint son minimum pour $t=100$.
    Ainsi, le nombre de crapauds atteint son minimum au bout de $100$ jours. Il y a alors $40$ crapauds dans le lac.
    $\quad$
    b. La fonction $f$ est strictement croissante sur l’intervalle $[100;120]$ et $f(120)\approx 216,37 > 140$.
    Ainsi, le nombre de crapauds dépassera un jour $140$ individus après avoir atteint son minimum.
    $\quad$
    c. D’après la calculatrice, $f(t)=140$ pour $t\approx 115,72$.
    C’est donc à partir du $116$ ième jour que le nombre de crapauds dépassera $140$ individus.
    $\quad$

 

Partie II : Effet de la Chytridiomycose sur une population de têtards

  1. On obtient l’arbre de probabilité suivant :
    $\quad$$\quad$
  2. $\left(L,\conj{L}\right)$ est un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(T)&=P(L)\times P_L(T)+P\left(\conj{L}\right)P_{\conj{L}}(T) \\
    &=0,25 \times 0,74+0\\
    &=0,185\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_{\conj{T}}(L)&=\dfrac{P(L)\times P_L\left(\conj{T}\right)}{1-P(T)} \\
    &=\dfrac{0,25 \times 0,26}{1-0,185} \\
    &\approx 0,080\end{align*}$
    La probabilité que le lac soit infecté sachant que le tétard n’est pas contaminé est environ égale à $0,08$.
    $\quad$

 

Ex A

Exercice A (5 points)

  1. On a $I\left(\dfrac{1}{4};0;1\right)$, $J\left(0;\dfrac{1}{4};1\right)$ et $K\left(1;0;\dfrac{1}{4}\right)$.
    $\quad$
  2. On a $\vect{AG}\begin{pmatrix}1\\1\\1\end{pmatrix}$, $\vect{IJ}\begin{pmatrix} -\dfrac{1}{4}\\[2mm] \dfrac{1}{4}\\[2mm]\\0\end{pmatrix}$ et $\vect{IK}\begin{pmatrix} \dfrac{3}{4} \\[2mm]0\\-\dfrac{3}{4}\end{pmatrix}$
    Ainsi $\vect{AG}.\vect{IJ}=-\dfrac{1}{4}+0+\dfrac{1}{4}=0$ et $\vect{AG}.\vect{IK}=\dfrac{3}{4}+0-\dfrac{3}{4}=0$
    Le vecteur $\vect{AG}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(IJK)$. Il est par conséquent normal à celui-ci.
    $\quad$
  3. Une équation cartésienne du plan $(IJK)$ est donc de la forme $x+y+z+d=0$.
    Le point $I\left(\dfrac{1}{4};0;1\right)$ appartient à ce plan.
    Ainsi $\dfrac{1}{4}+0+1+d=0 \ssi d=-\dfrac{5}{4}$
    Une équation cartésienne du plan $(IJK)$ est donc $x+y+z-\dfrac{5}{4}=0$ soit $4x+4y+4z-5=0$.
    $\quad$
  4. On a $\vect{BC}\begin{pmatrix} 0\\1\\0\end{pmatrix}$
    Une représentation paramétrique de $(BC)$ est donc $\begin{cases} x=1\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  5. On résout le système
    $\begin{align*} \begin{cases} x=1\\y=t\\z=0\\4x+4y+4z-5=0 \end{cases} &\ssi \begin{cases} x=1\\y=t\\z=0\\4+4t-5=0 \end{cases} \\
    &\ssi \begin{cases}x=1\\y=t\\z=0\\t=\dfrac{1}{4}\end{cases}\end{align*}$
    Ainsi les coordonnées du point $L$ sont $\left(1;\dfrac{1}{4};0\right)$.
    $\quad$
  6. On obtient la figure suivante :
    $\quad$

    $\quad$
  7. On a $\vect{LM}\begin{pmatrix} -\dfrac{3}{4} \\[2mm]\dfrac{3}{4}\\[2mm]0\end{pmatrix}$
    Ainsi $\vect{LM}=3\vect{IJ}$
    Les vecteurs $\vect{LM}$ et $\vect{IJ}$ sont colinéaires. Les points $I,J,L$ et $M$ sont donc coplanaires.
    $\quad$

 

 

 

Ex B

Exercice B (5 points)

Partie I

  1. On a $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{x\to 0^+} h(x)=-\infty$.
    $\quad$
  2. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\quad$
  3. La fonction $h$ est dérivable sur $]0;+\infty[$ en tant que somme et quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]0;+\infty[$.
    Ainsi, pour tout $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)\times 1}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
  4. Le signe de $h'(x)$ ne dépend que de celui de $1-\ln(x)$.
    Or $1-\ln(x)=0 \ssi \ln(x)=1 \ssi x=\e$ et $1-\ln(x)>0 \ssi -\ln(x)>-1 \ssi \ln(x)<1 \ssi x< \e$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$
  5. Sur l’intervalle $[\e;+\infty[$ on a $h(x)>1$. L’équation $h(x)=0$ ne possède donc pas de solution sur cet intervalle.
    Sur l’intervalle $]0;\e[$, la fonction $h$ est continue (car dérivable) et strictement croissante.
    De plus, $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h(\e)=\dfrac{1+\e}{\e}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une unique solution sur $]0;+\e[$.
    Ainsi, l’équation $h(x)=0$ possède une unique solution sur $]0;+\infty[$.
    De plus $h(0,5) \approx -0,39<0$ et $h(0,6)\approx 0,15>0$
    La fonction $h$ est strictement croissante sur $]0;\e[$ donc $0,5<\alpha<0,6$.
    $\quad$

Partie II

  1. Le coefficient directeur de $D_a$ au point d’abscisse $a$ est $g'(a)=\dfrac{1}{a}$.
    $\quad$
  2. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=x\times \dfrac{1}{x}+1\times \ln(x)-1 \\
    &=1+\ln(x)-1\\
    &=\ln(x)\end{align*}$
    Ainsi, le coefficient directeur de $T_a$ est $f'(a)=\ln(a)$.
    $\quad$
  3. $T_a$ et $D_a$ sont perpendiculaires
    $\ssi \dfrac{1}{a}\ln(a)=-1 $
    $\ssi 1+\dfrac{\ln(a)}{a}=0$
    $\ssi h(a)=0$
    $\ssi a=\alpha$
    Il existe donc une unique valeur de $a$ pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires. Il s’agit de $a=\alpha$.
    $\quad$

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Le graphique ci-dessous donne la représentation graphique $\mathscr{C}_f$ dans un repère orthogonal d’une fonction $f$ définie et dérivable sur $\R$.
On notera $f’$ la fonction dérivée de $f$ .
On donne les points $A$ de coordonnées $(0; 5)$ et $B$ de coordonnées $(1; 20)$. Le point $C$ est le point de la courbe $\mathscr{C}_f$ ayant pour abscisse $-2,5$. La droite $(AB)$ est la
tangente à la courbe $\mathscr{C}_f$ au point $A$.
Les questions 1 à 3 se rapportent à cette même fonction $f$.

  1. On peut affirmer que :
    a. $f'(-0,5)=0$
    b. si $x\in]-\infty ; -0,5[$, alors $f'(x)< 0$
    c. $f'(0) = 15$
    d. la fonction dérivée $f’$ ne change pas de signe sur $\R$.
    $\quad$
  2. On admet que la fonction $f$ représentée ci-dessus est définie sur $\R$ par $f(x) = (ax +b)\e^x$, où $a$ et $b$ sont deux nombres réels et que sa courbe coupe l’axe des abscisses en son point de coordonnées $(-0,5 ; 0)$.
    On peut affirmer que :
    a. $a = 10$ et $b = 5$
    b. $a = 2,5$ et $b = -0,5$
    c. $a = -1,5$ et $b = 5$
    d. $a=0$ et $b=5$
    $\quad$
  3. . On admet que la dérivée seconde de la fonction $f$ est définie sur $\R$ par : $f\dsec(x)= (10x +25)\e^x$.
    On peut affirmer que :
    a. La fonction $f$ est convexe sur $\R$
    b. La fonction $f$ est concave sur $\R$
    c. Le point $C$ est l’unique point d’inflexion de $\mathscr{C}_f$
    d. $\mathscr{C}_f$ n’admet pas de point d’inflexion
    $\quad$
  4. On considère deux suites $\left(U_n\right)$ et $\left(V_n\right)$ définies sur $\N$ telles que :
    $\bullet$ pour tout entier naturel $n$, $U_n \pp V_n$ ;
    $\bullet$  $\lim\limits_{n\to +\infty} V_n=2$.
    On peut affirmer que :
    a. la suite $\left(U_n\right)$ converge
    b. pour tout entier naturel $n$, $V_n \pp 2$
    c. la suite $\left(U_n\right)$ diverge
    d. la suite $\left(U_n\right)$ est majorée
    $\quad$

$\quad$

Exercice 2     5 points

Soit $f$ la fonction définie sur l’intervalle $\left]-\dfrac{1}{3};+\infty\right[$ par $$f(x)

On considère la suite $\left(u_n\right)$ définie par : $u_0=\dfrac{1}{2}$ et, pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$.

  1. Calculer $u_1$.
    $\quad$
  2. On admet que la fonction f est croissante sur l’intervalle ¸$\left]-\dfrac{1}{3};+\infty\right[$.
    a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $\dfrac{1}{2} \pp u_n \pp u_{n+1}\pp 2$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    c. On appelle $\ell$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $\ell$.
    $\quad$
  3. a. Recopier et compléter la fonction Python ci-dessous qui, pour tout réel positif $E$, détermine la plus petite valeur $P$ tel que : $1-u_P < E$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(E) :}\\
    \quad \text{u = 0.5}\\
    \quad \text{n = 0}\\
    \quad \text{while . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{u = . . . . . . . . . . . . . . . . . . . . . .}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. Donner la valeur renvoyée par ce programme dans le cas où $E = 10^{-4}$.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par : $$v_n =\dfrac{u_n}{1-u_n}$$
    a. Montrer que la suite $\left(v_n\right)$ est géométrique de raison $4$.
    En déduire, pour tout entier naturel $n$, l’expression de $v_n$ en fonction de $n$.
    $\quad$
    b. Démontrer que, pour tout entier naturel $n$, on a : $u_n = \dfrac{v_n}{v_n+1}$.
    $\quad$
    c. Montrer alors que, pour tout entier naturel $n$ , on a :
    $$u_n =\dfrac{1}{1+0,25^n}$$
    Retrouver par le calcul la limite de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 3     5 points

Dans le parc national des Pyrénées, un chercheur travaille sur le déclin d’une espèce protégée dans les lacs de haute-montagne : le «crapaud accoucheur».
Les parties I et II peuvent être abordées de façon indépendante.

Partie I : Effet de l’introduction d’une nouvelle espèce.

Dans certains lacs des Pyrénées, des truites ont été introduites par l’homme afin de permettre des activités de pêche en montagne. Le chercheur a étudié l’impact de cette introduction sur la population de crapauds accoucheurs d’un lac.
Ses études précédentes l’amènent à modéliser l’évolution de cette population en fonction du temps par la fonction f suivante : $$f(t)=\left(0,04t^2-8t+400\right)\e^{\frac{t}{50}}+40 \text{ pour } t\in [0;120]$$

La variable $t$ représente le temps écoulé, en jour, à partir de l’introduction à l’instant $t = 0$ des truites dans le lac, et $f(t)$ modélise le nombre de crapauds à l’instant $t$.

  1. Déterminer le nombre de crapauds présents dans le lac lors de l’introduction des truites.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 120]$ et on note $f′$ sa fonction dérivée.
    Montrer, en faisant apparaitre les étapes du calcul, que pour tout nombre réel $t$ appartenant à l’intervalle $[0; 120]$ on a : $$f'(t)=t(t-100)\e^{\frac{t}{50}}\times 8\times 10^{-4}$$
    $\quad$
  3. Étudier les variations de la fonction $f$ sur l’intervalle $[0; 120]$, puis dresser le tableau de variations de $f$ sur cet intervalle (on donnera des valeurs approchées au centième).
    $\quad$
  4. Selon cette modélisation :
    a. Déterminer le nombre de jours $J$ nécessaires afin que le nombre de crapauds atteigne son minimum. Quel est ce nombre minimum ?
    $\quad$
    b. Justifier que, après avoir atteint son minimum, le nombre de crapauds dépassera un jour $140$ individus.
    $\quad$
    c. À l’aide de la calculatrice, déterminer la durée en jour à partir de laquelle le nombre de crapauds dépassera $140$ individus.
    $\quad$

Partie II : Effet de la Chytridiomycose sur une population de têtards

Une des principales causes du déclin de cette espèce de crapaud en haute montagne est une maladie, la « Chytridiomycose », provoquée par un champignon.
Le chercheur considère que :

  • Les trois quarts des lacs de montagne des Pyrénées ne sont pas infectés par le champignon, c’est-à-dire qu’ils ne contiennent aucun têtard (larve du crapaud) contaminé.
  • Dans les lacs restants, la probabilité qu’un têtard soit contaminé est de $0,74$.

Le chercheur choisit au hasard un lac des Pyrénées, et y procède à des prélèvements.
Pour la suite de l’exercice, les résultats seront arrondis au millième lorsque cela est nécessaire.
Le chercheur prélève au hasard un têtard du lac choisi afin d’effectuer un test avant de le relâcher.
On notera $T$ l’évènement « Le têtard est contaminé par la maladie » et $L$ l’évènement « Le lac est infecté par le champignon ».
On notera $\conj{L}$ l’évènement contraire de $L$ et $\conj{T}$ l’évènement contraire de $T$.

  1. Recopier et compléter l’arbre de probabilité suivant en utilisant les données de l’énoncé :$\quad$
  2. Montrer que la probabilité $P(T )$ que le têtard prélevé soit contaminé est de $0,185$.
    $\quad$
  3. Le têtard n’est pas contaminé. Quelle est la probabilité que le lac soit infecté ?
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Géométrie de l’espace rapporté à un repère orthonormé.

On considère le cube $ABCDEFGH$ donné en annexe.
On donne trois points $I$, $J$ et $K$ vérifiant : $$\vect{EI}=\dfrac{1}{4}\vect{EH}, \quad \vect{EJ}=\dfrac{1}{4}\vect{EF},\quad \vect{BK}=\dfrac{1}{4}\vect{BF}$$
Les points $I$, $J$ et $K$ sont représentés sur la figure donnée en annexe, à compléter et à rendre avec la copie.
On se place dans le repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. Donner sans justification les coordonnées des points $I$, $J$ et $K$.
    $\quad$
  2. Démontrer que le vecteur $\vect{AG}$ est normal au plan $(IJK)$.
    $\quad$
  3. Montrer qu’une équation cartésienne du plan $(IJK)$ est $4x +4y +4z -5 = 0$.
    $\quad$
  4. Déterminer une représentation paramétrique de la droite $(BC)$.
    $\quad$
  5. En déduire les coordonnées du point $L$, point d’intersection de la droite $(BC)$ avec le plan $(IJK)$.
    $\quad$
  6. Sur la figure en annexe, placer le point $L$ et construire  l’intersection du plan $(IJK)$ avec la face $(BCGF)$.
    $\quad$
  7. Soit $M\left(\dfrac{1}{4};1;0\right)$. Montrer que les points $I$, $J$, $L$ et $M$ sont coplanaires.
    $\quad$

ANNEXE

$\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme.

Partie I

On considère la fonction h définie sur l’intervalle $]0 ; +\infty[$ par : $$h(x) = 1+\dfrac{\ln(x)}{x}$$

  1. Déterminer la limite de la fonction $h$ en $0$.
    $\quad$
  2. Déterminer la limite de la fonction $h$ en $+\infty$.
    $\quad$
  3. On note $h’$ la fonction dérivée de $h$. Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $$h'(x) =\dfrac{1-\ln(x)}{x^2}$$
    $\quad$
  4. Dresser le tableau de variations de la fonction $h$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  5. Démontrer que l’équation $h(x) = 0$ admet une unique solution $\alpha$ dans $]0 ; +\infty[$.
    Justifier que l’on a : $0,5 < \alpha < 0,6$.$\quad$

Partie II

Dans cette partie, on considère les fonctions $f$ et $g$ définies sur $]0 ; +\infty[$ par : $$f (x) = x \ln(x)− x;\quad g(x) = \ln(x)$$
On note $\mathscr{C}_f$ et $\mathscr{C_g}$ les courbes représentant respectivement les fonctions $f$ et $g$ dans un repère orthonormé $\Oij$.
Pout tout nombre réel $a$ strictement positif, on appelle :

  • $T_a$ la tangente à $\mathscr{C}_f$ en son point d’abscisse $a$ ;
  • $D_a$ la tangente à $\mathscr{C}_g$ en son point d’abscisse $a$.

Les courbes $\mathscr{C}_f$ et $\mathscr{C}g$ ainsi que deux tangentes $T_a$ et $D_a$ sont représentées ci-dessous.

On recherche d’éventuelles valeurs de $a$ pour lesquelles les droites $T_a$ et $D_a$ sont perpendiculaires.
Soit $a$ un nombre réel appartenant à l’intervalle $]0 ; +\infty[$.

  1. Justifier que la droite $D_a$ a pour coefficient directeur $\dfrac{1}{a}$.
    $\quad$
  2. Justifier que la droite $T_a$ a pour coefficient directeur $\ln(a)$.

On rappelle que dans un repère orthonormé, deux droites de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si et seulement si $mm’ = -1$.

  1. Démontrer qu’il existe une unique valeur de $a$, que l’on identifiera, pour laquelle les droites $T_a$ et $D_a$ sont perpendiculaires.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Asie – sujet 2 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    f'(x)&=(2x-2)\e^x+\left(x^2-2x-1\right)\e^x \\
    &=\left(2x-2+x^2-2x-1\right)\e^x \\
    &=\left(x^2-3\right)\e^x\end{align*}$
    L’affirmation A est donc fausse.
    $f'(2)>0$ et $f(0)<0$ : l’affirmation B est donc fausse
    Réponse C
    $\quad$
  2. $\lim\limits_{x\to +\infty} \e^x=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=0$
    La droite d’équation $y=0$ est donc asymptote à la courbe représentant la fonction $f$.
    $\lim\limits_{x\to -\infty} \e^x=-\infty$ donc $\lim\limits_{x\to -\infty} f(x)=\dfrac{3}{5}$
    La droite d’équation $y=\dfrac{3}{5}$ est donc asymptote à la courbe représentant la fonction $f$.
    Réponse C
    $\quad$
  3. La fonction $f\dsec$ s’annule en changeant de signe à trois reprise.
    La courbe représentant la fonction $f$ possède donc trois points d’inflexion.
    Réponse B
    $\quad$
  4. $\left(u_n\right)$ est une suite définie de manière explicite par un polynôme du second degré dont le coefficient principal est $a=1>0$.
    La fonction du second degré associée possède un minimum, d’abscisse $\dfrac{17}{2}$.
    $\left(u_n\right)$ est donc minorée.
    Réponse A
    $\quad$
  5. Cette fonction renvoie le plus entier naturel $n$ tel que $u_n\pg 45$.
    Réponse ARemarque :dans les faits cette fonction ne renvoie aucun résultat car la suite $\left(u_n\right)$ est croissante et majorée par $20$. Il est donc impossible que $u_n\pg 45$ !
    $\quad$

Ex 2

Exercice 2 (5 points)

  1. On a $A(0;0;0)$, $C(1;1;0)$ et $D(0;1;0)$
    Par conséquent $K\left(\dfrac{1}{2};1;0\right)$
    Donc $\vect{AK}\left(\dfrac{1}{2};1;0\right)$ et $\vect{AL}\left(0;1;\dfrac{3}{2}\right)$.
    $\quad$
  2. a. On a $\vec{n}.\vect{AK}=3-3+0=0$ et $\vec{n}.\vect{AL}=0-3+3=0$.
    $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AKL)$.
    C’est par conséquent un vecteur normal au plan $(AKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(AKL)$ est donc de la forme $6x-3y+2z+d=0$.
    Le point $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Une équation cartésienne du plan $(AKL)$ est alors $6x-3y+2z=0$.
    $\quad$
    c. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Ainsi une représentation paramétrique de la droite $\Delta$ est $$\begin{cases} x=6t\\y=1-3t\\z=2t\end{cases} \quad,t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{3}{49}$, on constate que le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient à la droite $\Delta$.
    De plus
    $\begin{align*} 6\times \dfrac{18}{49}-3\dfrac{40}{49}+2\dfrac{6}{49}&=\dfrac{108}{49}-\dfrac{120}{49}+\dfrac{12}{49} \\
    &=0\end{align*}$
    Le point de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ appartient donc également au plan $(AKL)$.
    Par conséquent $N$ a pour coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$.
    $\quad$
  3. a. L’aire de la base $ADK$ est
    $\begin{align*} \mathcal{A}&=\dfrac{AD\times DK}{2} \\
    &=\dfrac{1\times \dfrac{1}{2}}{2} \\
    &=\dfrac{1}{4}\end{align*}$
    Ainsi
    $\begin{align*} \mathcal{V}&=\dfrac{\mathcal{A}\times DL}{3} \\
    &=\dfrac{\dfrac{1}{4}\times \dfrac{3}{2}}{3} \\
    &=\dfrac{1}{8}\end{align*}$
    $\quad$
    b. La distance du point $D$ au plan $(AKL)$ est
    $\begin{align*} DN&=\sqrt{\left(\dfrac{18}{49}\right)^2+\left(\dfrac{40}{49}-1\right)^2+\left(\dfrac{6}{49}\right)^2} \\
    &=\sqrt{\dfrac{9}{49}} \\
    &=\dfrac{3}{7}\end{align*}$
    $\quad$
    c. On a
    $\begin{align*} \mathcal{V}=\dfrac{1}{8}&\ssi \dfrac{\mathcal{A}_{AKL}\times DN}{3}=\dfrac{1}{8} \\
    &\ssi \dfrac{3}{7}\mathcal{A}_{AKL}=\dfrac{3}{8} \\
    &\ssi \mathcal{A}_{AKL}=\dfrac{7}{8}\end{align*}$
    L’aire du triangle $AKL$ est donc $\dfrac{7}{8}$.
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. Il y a $\dbinom{9}{3}=84$ façons différentes de positionner les trois cœurs.
    $\quad$
  2. Il y a $3$ façons de placer les cœurs sur une ligne pour gagner.
    Il y a $3$ façons de placer les cœurs sur une colonne pour gagner.
    Il y a $2$ façons de placer les cœurs sur une diagonale pour gagner.
    La probabilité qu’un ticket soit gagnant est donc $\dfrac{3+3+2}{84}=\dfrac{2}{21}$.
    $\quad$
  3. On appelle $G$ la variable aléatoire égale au gain algébrique du joeur.
    $G$ ne prend donc que $2$ valeurs $4$ et $-1$.
    $p(G=4)=\dfrac{2}{21}$ et $p(G=-1)=\dfrac{19}{21}$.
    L’espérance de $G$ est :
    $\begin{align*} E(G)&=4\times \dfrac{2}{21}+(-1)\times \dfrac{19}{21} \\
    &=-\dfrac{11}{21}\\
    &<0\end{align*}$
    Le jeu est donc défavorable au joueur.
    $\quad$
  4. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : le joueur gagne ou le joueur perd.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{21}$.
    $\quad$
    b. $p(X=5)=\dbinom{20}{5}\left(\dfrac{2}{21}\right)^5\left(\dfrac{19}{21}\right)^{15} \approx 0,027$.
    $\quad$
    c. On a
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-\left(\dfrac{19}{21}\right)^{20} \\
    & \approx 0,865\end{align*}$
    La probabilité qu’il y ait au moins un gagnant est environ égale à $0,865$.
    $\quad$

 

 

Ex A

Exercice A (5 points)

Partie I : modèle discret

  1. On a
    $\begin{align*} u_1&=u_0+0,05\left(20-u_0\right) \\
    &=1+0,05\times 19\\
    &=1,95\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}&=u_n+0,05\left(20-u_n\right) \\
    &=u_n+1-0,05u_n \\
    &=0,95u_n+1\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ on a $v_n=20-u_n$ soit $u_n=20-v_n$.
    $\begin{align*} v_{n+1}&=20-u_{n+1} \\
    &=20-0,95u_n-1 \\
    &=19-0,95u_n \\
    &=19-0,95\left(20-v_n\right) \\
    &=19-19+0,95v_n\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=20-1=19$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $v_n=19\times 0,95^n$.
    Par conséquent $u_n=20-19\times 0,95^n$.
    $\quad$
  3. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 0,95^n=0$ et $\lim\limits_{n\to +\infty}u_n=20$.
    $\quad$

Partie II : modèle continu

  1. La fonction $L$ est dérivable sur $[0;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $t\pg 0$ on a d’une part :
    $\begin{align*} L'(t)&=-19\times (-0,05)\e^{-0,05t}\\
    &=0,95\e^{-0,05t}\end{align*}$
    D’autre part :
    $\begin{align*} 0,05\left(20-L(t)\right)&=0,05\left(20-20+19\e^{-0,05t}\right) \\
    &=0,05 \times 19\e^{-0,05t} \\
    &=0,95\e^{-0,05t}\end{align*}$
    Ainsi $L$ est solution de $(E)$.
    De plus $L(0)=20-19=1$.
    $\quad$
  2. a. On a $L'(0)=0,95$ et $L'(5)=0,95\e^{-0,25} \approx 0,74$.
    Ainsi $L'(0)>L'(5)$
    $\quad$
    b. $\lim\limits_{t\to +\infty} -0,05t=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{t\to +\infty} L'(t)=0$.
    Ce résultat est cohérent avec la description du modèle de croissance exposé au début de l’exercice : le bambou croît de moins en moins rapidement et atteint finalement une taille de $20$ mètres. Au début de l’observation il mesure bien $1$ mètre.
    $\quad$

Ex B

Exercice B (5 points)

Partie I

  1. On a pu saisir la formule $=B2-\ln(B2-1)$.
    $\quad$
  2. Il semblerait que la suite $\left(u_n\right)$ soit décroissante et converge vers $2$.
    $\quad$

Partie II

  1. $\lim\limits_{x\to 1} x-1=0$ et $\lim\limits_{X\to 0} \ln(X)=-\infty$
    Donc $\lim\limits_{x\to 1} f(x)=+\infty$.
    $\quad$
  2. a. $f$ est dérivable sur $]1;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout $x>1$ on a
    $\begin{align*} f'(x)&=1-\dfrac{1}{x-1} \\
    &=\dfrac{x-1-1}{x-1} \\
    &=\dfrac{x-2}{x-1}\end{align*}$
    $\quad$
    b. Le signe de $f'(x)$ ne dépend que de celui de $x-2$.
    Or $x-2=0 \ssi x=2$ et $x-2>0 \ssi x>2$.
    On obtient donc le tableau de signes suivant :
    $\quad$$\quad$
    c. D’après la question précédente, la fonction $f$ admet $2$ pour minimum atteint pour $x=2$.
    Ainsi, pour tout réel $x\pg 2, ~f(x)\pg 2$.
    $\quad$

Partie III

  1. Initialisation : Si $n=0$ alors $u_0=10\pg 2$. La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n\in \N$.
    Donc $u_n\pg 2$.
    D’après la question précédente $u_{n+1}=f\left(u_n\right) \pg 2$.
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n\pg 2$.
    $\quad$
  2. Soit $n\in \N$
    $\begin{align*} u_{n+1}-u_n&= u_n-\ln\left(u_n-1\right)-u_n \\
    &=-\ln\left(u_n-1\right)\end{align*}$
    Or $u_n\pg 2$ donc $u_n-1\pg 1$ et $\ln\left(u_n-1\right)\pg 0$.
    Donc $u_{n+1}-u_n \pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $2$. Elle converge donc.
    $\quad$
  4. $\ell$ est donc solution de l’équation $f(x)=x$.
    Or
    $\begin{align*} f(x)=x&\ssi x-\ln(x-1)=x\\
    &\ssi -\ln(x-1)=0\\
    &\ssi x-1=1 \\
    &\ssi x=2\end{align*}$
    Par conséquent $\ell=2$.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

Cet exercice est un questionnaire à choix multiples (QCM)

Pour chaque question, trois affirmations sont proposées, une seule de ces affirmations est exacte.
Le candidat recopiera sur sa copie le numéro de chaque question et la lettre de la réponse choisie pour celle-ci.
AUCUNE JUSTIFICATION n’est demandée. Une réponse fausse ou l’absence de réponse n’enlève aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par $$f(x) = \left(x^2-2x-1\right)\e^x$$
    A. La fonction dérivée de $f$ est la fonction définie par $f'(x) = (2x-2)\e^x$.
    B. La fonction $f$ est décroissante sur l’intervalle $]-\infty;2]$.
    C. $\ds\lim\limits_{x \to -\infty} f(x) = 0$.
    $\quad$
  2. On considère la fonction $f$ définie sur $\R$ par $f(x) = \dfrac{3}{5 + \e^x}$.
    Sa courbe représentative dans un repère admet :
    A. une seule asymptote horizontale;
    B. une asymptote horizontale et une asymptote verticale;
    C. deux asymptotes horizontales.
    $\quad$
  3. On donne ci-dessous la courbe $\mathcal{C}_{f”}$ représentant la fonction dérivée seconde $f”$ d’une fonction $f$ définie et deux fois dérivable sur l’intervalle $[-3,5;6]$.
    $\quad$

    A. La fonction $f$ est convexe sur l’intervalle $[-3;3]$.
    B. La fonction $f$ admet trois points d’inflexion.
    C. La fonction dérivée $f’$ de $f$ est décroissante sur l’intervalle $[0;2]$.
    $\quad$

  4. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n = n^2-17n+20$.
    A. La suite $\left(u_n\right)$ est minorée.
    B. La suite $\left(u_n\right)$ est décroissante.
    C. L’un des termes de la suite $\left(u_n\right)$ est égal à $2~021$.
    $\quad$
  5. On considère la suite $\left(u_n\right)$ définie par $u_0 = 2$ et, pour tout entier naturel $n$, $u_{n+1} = 0,75u_n +5$.
    On considère la fonction « seuil » suivante écrite en Python :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() }:\\
    \quad \text{u} = 2\\
    \quad \text{n} = 0\\
    \quad \text{while u} < 45 :\\
    \qquad \text{u} = 0.75*u + 5\\
    \qquad \text{n} = \text{n} + 1\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Cette fonction renvoie :
    A. la plus petite valeur de $n$ telle que $u_n \pg 45$ ;
    B. la plus petite valeur de $n$ telle que $u_n < 45$ ;
    C. la plus grande valeur de $n$ telle que $u_n \pg 45$.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un pavé droit $ABCDEFGH$ tel que $AB = AD = 1$ et $AE = 2$, représenté ci- dessous.
Le point $I$ est le milieu du segment $[AE]$. Le point $K$ est le milieu du segment $[DC]$.
Le point $L$ est défini par: $\vect{DL} = \dfrac{3}{2}\vect{AI}$. $N$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.

 

 

On se place dans le repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AI}\right)$.
On admet que le point $L$ a pour coordonnées $\left(0;1;\dfrac{3}{2}\right)$.

  1. Déterminer les coordonnées des vecteurs $\vect{AK}$ et $\vect{AL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vect{n}$ de coordonnées $(6;-3;2)$ est un vecteur normal au plan $(AKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(AKL)$.
    $\quad$
    c. Déterminer un système d’équations paramétriques de la droite $\Delta$ passant par $D$ et perpendiculaire au plan $(AKL)$.
    $\quad$
    d. En déduire que le point $N$ de coordonnées $\left(\dfrac{18}{49};\dfrac{40}{49};\dfrac{6}{49}\right)$ est le projeté orthogonal du point $D$ sur le plan $(AKL)$.
    $\quad$

On rappelle que le volume $\mathcal{V}$ d’un tétraèdre est donné par la formule : $$\mathcal{V} = \dfrac{1}{3}\times (\text{aire de la base}) \times \text{hauteur}$$

  1. a. Calculer le volume du tétraèdre $ADKL$ en utilisant le triangle $ADK$ comme base.
    $\quad$
    b. Calculer la distance du point $D$ au plan $(AKL)$.
    $\quad$
    c. Déduire des questions précédentes l’aire du triangle $AKL$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Une société de jeu en ligne propose une nouvelle application pour smartphone nommée « Tickets coeurs! ».
Chaque participant génère sur son smartphone un ticket comportant une grille de taille $3 \times 3$ sur laquelle sont placés trois cœurs répartis au hasard, comme par exemple ci-dessous.

 

 

Le ticket est gagnant si les trois cœurs sont positionnés côte à côte sur une même ligne, sur une même colonne ou sur une même diagonale.

  1. Justifier qu’il y a exactement $84$ façons différentes de positionner les trois cœurs sur une grille.
    $\quad$
  2. Montrer que la probabilité qu’un ticket soit gagnant est égale à $\dfrac{2}{21}$.
    $\quad$
  3. Lorsqu’un joueur génère un ticket, la société prélève $1$ € sur son compte en banque. Si le ticket est gagnant, la société verse alors au joueur $5$ €. Le jeu est-il favorable au joueur?
    $\quad$
  4. Un joueur décide de générer $20$ tickets sur cette application. On suppose que les générations des tickets sont indépendantes entre elles.
    a. Donner la loi de probabilité de la variable aléatoire $X$ qui compte le nombre de tickets gagnants parmi les $20$ tickets générés.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X = 5)$.
    $\quad$
    c. Calculer la probabilité, arrondie à $10^{-3}$, de l’évènement $(X \pg 1)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • Suites
  • Équations différentielles

Dans cet exercice, on s’intéresse à la croissance du bambou Moso de taille maximale $20$ mètres.
Le modèle de croissance de Ludwig von Bertalanffy suppose que la vitesse de croissance pour un tel bambou est proportionnelle à l’écart entre sa taille et la taille maximale.

Partie I : modèle discret

Dans cette partie, on observe un bambou de taille initiale $1$ mètre.
Pour tout entier naturel $n$, on note $u_n$ la taille, en mètre, du bambou $n$ jours après le début de l’observation. On a ainsi $u_0 = 1$.
Le modèle de von Bertalanffy pour la croissance du bambou entre deux jours consécutifs se traduit par l’égalité : $$u_{n+1} = u_n + 0,05\left(20-u_n\right)~~ \text{pour tout entier naturel } n$$

  1. Vérifier que $u_1 = 1,95$.
    $\quad$
  2. a. Montrer que pour tout entier naturel $n$, $u_{n+1} = 0,95u_n + 1$.
    $\quad$
    b. On pose pour tout entier naturel $n$, $v_n = 20-u_n$.
    Démontrer que la suite $\left(v_n\right)$ est une suite géométrique dont on précisera le terme initial $v_0$ et la raison.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $u_n = 20-19 \times 0,95^n$.
    $\quad$
  3. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II : modèle continu

Dans cette partie, on souhaite modéliser la taille du même bambou Moso par une fonction donnant sa taille, en mètre, en fonction du temps $t$ exprimé en jour.
D’après le modèle de von Bertalanffy, cette fonction est solution de l’équation différentielle $$(E) \qquad y’ = 0,05(20-y)$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0;+\infty[$ et $y’$ désigne sa fonction dérivée.
Soit la fonction $L$ définie sur l’intervalle $[0;+\infty[$ par $$L(t) = 20-19\e^{-0,05t}$$

  1. Vérifier que la fonction $L$ est une solution de $(E)$ et qu’on a également $L(0) = 1$.
    $\quad$
  2. On prend cette fonction $L$ comme modèle et on admet que, si on note $L’$ sa fonction dérivée, $L'(t)$ représente la vitesse de croissance du bambou à l’instant $t$.
    a. Comparer $L'(0)$ et $L'(5)$.
    $\quad$
    b. Calculer la limite de la fonction dérivée $L’$ en $+\infty$.
    Ce résultat est-il en cohérence avec la description du modèle de croissance exposé au début de l’exercice ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Suites, étude de fonction
  • Fonction logarithme

Soit la fonction $f$ définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$
On considère la suite $\left(u_n\right)$ de terme initial $u_0 = 10$ et telle que $u_{n+1} = f\left(u_n\right)$ pour tout entier naturel $n$.

Partie I :

La feuille de calcul ci-dessous a permis d’obtenir des valeurs approchées des premiers termes de la suite $\left(u_n\right)$.

$$\begin{array}{|c|c|c|}
\hline
&\phantom{12345}A\phantom{12345} &B\\
\hline
1 &n&u_n\\
\hline
2 &0&10\\
\hline
3& 1&7,802~775~42\\
\hline
4& 2&5,885~444~74\\
\hline
5& 3&4,299~184~42\\
\hline
6& 4&3,105~509~13\\
\hline
7& 5&2,360~951~82\\
\hline
8& 6&2,052~767~5\\
\hline
9& 7&2,001~345~09\\
\hline
10& 8&2,000~000~9\\
\hline
\end{array}$$

  1. Quelle formule a été saisie dans la cellule B3 pour permettre le calcul des valeurs approchées de $\left(u_n\right)$ par recopie vers le bas ?
    $\quad$
  2. À l’aide de ces valeurs, conjecturer le sens de variation et la limite de la suite $\left(u_n\right)$.
    $\quad$

Partie II :

On rappelle que la fonction $f$ est définie sur l’intervalle $]1; +\infty[$ par $$f(x) = x-\ln (x-1)$$

  1. Calculer $\lim\limits_{x \to 1} f(x)$. On admettra que $\lim\limits_{x \to + \infty} f(x) = +\infty$.
    $\quad$
  2. a. Soit $f’$ la fonction dérivée de $f$. Montrer que pour tout $x \in ]1; +\infty[$, $f'(x) = \dfrac{x-2}{x-1}$.
    $\quad$
    b. En déduire le tableau des variations de $f$ sur l’intervalle $]1;+\infty[$, complété par les limites.
    $\quad$
    c. Justifier que pour tout $x\pg 2$, $f(x) \pg 2$.
    $\quad$

Partie III :

  1. En utilisant les résultats de la partie II, démontrer par récurrence que $u_n \pg 2$ pour tout entier naturel $n$.
    $\quad$
  2. Montrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
  4. On admet que $\ell$ vérifie $f(\ell) = \ell$. Donner la valeur de $\ell$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Asie – sujet 1 – mars 2021

Asie – mars 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (5 points)

  1. On a
    $\begin{align*} u_1&=\left(1-\dfrac{10}{100}\right)\times u_0+250 \\
    &=0,9\times 1~000+250 \\
    &= 1~150\end{align*}$
    $\quad$
  2. Chaque année elle ne conserve que $90\%$ de ses abonnés soit $0,9u_n$. De plus $250$ nouveaux abonnés s’ajoutent chaque année à ceux conservés.
    Ainsi, pour tout entier naturel $n$ on a $u_{n+1}=0,9u_n+250$.
    $\quad$
  3. L’instruction suite(10) renvoie la valeur de $u_{10}$ c’est-à-dire le nombre d’abonnés à son profil en 2030.
    $\quad$
  4. a. Initialisation : $u_0=1~000 \pp 2~500$
    La propriété est donc vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} u_{n+1}&=0,9u_n+250 \\
    &\pp 0,9\times 2~500+250 \\
    &\pp 2~250+250\\
    &\pp 2~500\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n \pp 2~500$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} u_{n+1}-u_n&=0,9u_n+250-u_n \\
    &=-0,1u_n+250 \\
    &=-0,1\left(u_n-2~500\right) \end{align*}$
    Or $u_n-2~500    \pp 0$ d’après la question précédente.
    Ainsi $u_{n+1}-u_n\pg 0$ et la suite $\left(u_n\right)$ est croissante.
    $\quad$
    c. La suite $\left(u_n\right)$ est croissante et majorée par $2~500$. Elle converge donc.
    $\quad$
  5. a. Soit $n\in \N$. On a $v_n=u_n-2~500$ donc $u_n=v_n+2~500$.
    $\begin{align*} v_{n+1}&=u_{n+1}-2~500 \\
    &=0,9u_n+250-2~500 \\
    &=0,9\left(v_n+2~500\right)-2~250 \\
    &=0,9v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,9$ et de premier terme $v_0=u_0-2~500=-1~500$.
    $\quad$
    b. Ainsi, pour tout $n\in \N$, on a $v_n=-1~500\times 0,9^n$
    Donc $u_n=v_n+2~500=-1~500\times 0,9^n+2~500$.
    $\quad$
  6. On peut écrire $$\begin{array}{|l|}
    \hline
    \text{u} = 1000 \\
    \text{n} = 2020 \\
    \text{while u} <= 2200 \\
    \quad \text{u} = 0,9 * \text{u} + 250 \\
    \quad \text{n} = \text{n} + 1\\
    \text{disp(n)}\\
    \hline
    \end{array}$$
    $\quad$
    On veut déterminer le plus petit entier naturel $n$ tel que:
    $\begin{align*} u_n > 2~200&\ssi -1~500 \times 0,9^n + 2~500>2~200 \\
    &\ssi -1~500\times 0,9^n > -300 \\
    &\ssi 0,9^n < 0,2 \\
    &\ssi n\ln(0,9) < \ln(0,2) \\
    &\ssi n>\dfrac{\ln(0,2)}{\ln(0,9)}\end{align*}$
    Or $\dfrac{\ln(0,2)}{\ln(0,9)} \approx 15,3$
    C’est donc en 2036 que le nombre d’abonnés dépassera $2~200$.
    $\quad$

Ex 2

Exercice 2 (5 points)

Partie I

  1. On a $P(6;0;0)$ et $Q(0;0;6)$.
    $\quad$
  2. $\vect{PQ}(-6;0;6)$ et $\vect{PR}(2;2;8)$.
    Donc $\vect{PQ}.\vec{n}=-6+0+6=0$ et $\vect{PR}.\vec{n}=2-10+8=0$.
    Par conséquent $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(PQR)$.
    C’est un vecteur normal au plan $(PQR)$.
    $\quad$
  3. Une équation cartésienne du plan $(PQR)$ est alors de la forme $x-5y+z+d=0$.
    Le point $P(6;0;0)$ appartient à ce plan.
    Donc $6+d=0 \ssi d=-6$.
    Une équation cartésienne du plan $(PQR)$ est donc $x-5y+z-6=0$.
    $\quad$

Partie II

  1. $\Omega$ est le milieu de $[EC]$
    Or $E(0;0;8)$ et $C(8;8;0)$
    Ainsi $\Omega\left(\dfrac{8+0}{2};\dfrac{0+8}{2};\dfrac{0+8}{2}\right)$ soit $\Omega(4;4;4)$.
    $\quad$
  2. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $d$.
    Une représentation paramétrique de cette droite est $$\begin{cases} x=4+t\\y=4-5t\\z=4+t\end{cases} \quad, t\in \R$$
    $\quad$
  3. Si on prend $t=\dfrac{2}{3}$ on a $4+t=\dfrac{14}{3}$, $4-5t=\dfrac{2}{3}$ donc le point de coordonnées $\left(\dfrac{14}{3};\dfrac{2}{3};\dfrac{14}{3}\right)$ appartient à $d$.
    De plus $\dfrac{14}{3}-\dfrac{5\times 2}{3}+\dfrac{14}{3}-6=\dfrac{18}{3}-6=0$ : le point de coordonnées $\left(\dfrac{14}{3};\dfrac{2}{3};\dfrac{14}{3}\right)$ appartient au plan $(PQR)$.
    Par conséquent $L$ a pour coordonnées $\left(\dfrac{14}{3};\dfrac{2}{3};\dfrac{14}{3}\right)$.
    $\quad$
  4. Cette distance est
    $\begin{align*} L\Omega&=\sqrt{\left(4-\dfrac{14}{3}\right)^2+\left(4-\dfrac{2}{3}\right)^2+\left(4-\dfrac{14}{3}\right)^2} \\
    &=\sqrt{12}\end{align*}$
    $\quad$

 

Ex 3

Exercice 3 (5 points)

  1. a. Il y a $\dbinom{8}{2}=28$ tirages possibles .
    $\quad$
    b. Il y a $\dbinom{6}{1}\times \dbinom{2}{1}=12$ tirages permettant de gagner.
    La probabilités de gagner à ce jeu est donc $\dfrac{12}{28}=\dfrac{3}{7}$.
    $\quad$
  2. a. La variable aléatoire $G$ ne peut prendre que deux valeurs : $10-k$ et $-k$.
    $P(G=10-k)=\dfrac{3}{7}$ et $P(G=-k)=\dfrac{4}{7}$.
    $\quad$
    b. Le jeu est favorable au joueur si son espérance est positive.
    $\begin{align*} E(G)>0&\ssi \dfrac{3}{7}(10-k)-\dfrac{4}{7}k>0 \\
    &\ssi \dfrac{30}{7}-k>0 \\
    &\ssi k<\dfrac{30}{7}\end{align*}$
    Or $\dfrac{30}{7}\approx 4,2857$
    La somme maximale à payer est donc $4,28$ € pour que le jeu reste favorable au joueur.
    $\quad$
  3. a. On effectue $10$ tirages aléatoires, identiques et indépendants.
    À chaque tirage, il n’y a que deux issues : le joueur gagne ou le joueur perd.
    Ainsi $X$ suit la loi binomiale de paramètres $n=10$ et $p=\dfrac{3}{7}$.
    $\quad$
    b. On veut calculer
    $\begin{align*}P(X=4)&=\dbinom{10}{4}\left(\dfrac{3}{7}\right)^4\left(\dfrac{4}{7}\right)^6\\
    &\approx 0,247\end{align*}$
    La probabilité qu’il y ait exactement quatre joueurs gagnants est environ égale à $0,247$.
    $\quad$
    c. $P(X\pp5)=1-P(X\pp 4) \approx 0,440$
    La probabilité qu’il y ait au moins $5$ gagnants est environ égale à $0,440$.
    $\quad$
    d. D’après la calculatrice on a $P(X\pp 5) \approx 0,78$ et $P(X\pp 6) \approx 0,92$.
    Ainsi le plus petit entier naturel $n$ tel que $P(X\pp n) \pg 0,9$ est $6$.
    $\quad$

 

Ex A

Exercice A (5 points)

Partie I – lectures graphiques

  1. Le coefficient directeur de la tangente à la courbe de la fonction $f$ en $0$ est $f'(0)$.
    Graphiquement $f'(0)=0,4$.
    Le coefficient directeur de la tangente à la courbe de la fonction $f$ en $0$ est graphiquement égal à $0,4$.
    $\quad$
  2. a. La fonction $f’$ semble décroissante sur $]-\infty;-2[$ et sur $[1;+\infty[$ et croissante sur $[-2;1]$.
    $\quad$
    b. La fonction $f$ semble donc convexe sur $[-2;1]$.
    $\quad$

 

Partie II : étude de fonction

  1. D’après la limite des termes de plus haut degré, $\lim\limits_{x\to +\infty} x^2+x+\dfrac{5}{2}=\lim\limits_{x\to +\infty} x^2=+\infty$ et $\lim\limits_{x\to -\infty} x^2+x+\dfrac{5}{2}=\lim\limits_{x\to -\infty} x^2=+\infty$
    Or $\lim\limits_{X\to +\infty} \ln(X)=+\infty$
    Par conséquent $\lim\limits_{x\to +\infty} f(x)=+\infty$ et $\lim\limits_{x\to -\infty} f(x)=+\infty$
    $\quad$
  2. Pour tout réel $x$ on a $f'(x)=\dfrac{2x+1}{x^2+x+\dfrac{5}{2}}$.
    $\quad$
  3. Le signe de $f'(x)$ ne dépend que de celui de $2x+1$.
    Or $2x+1=0 \ssi x=-\dfrac{1}{2}$ et $2x+1>0 \ssi x>-\dfrac{1}{2}$.
    On obtient alors le tableau de variations suivant :
    $\quad$
  4. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\left[-\dfrac{1}{2};+\infty\right[$.
    De plus $f\left(-\dfrac{1}{2}\right)=\ln\left(\dfrac{9}{4}\right)\approx 0,81<2$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=2$ possède une unique solution dans $\left[-\dfrac{1}{2};+\infty\right[$.
    $\quad$
    b. D’après la calculatrice $\alpha \approx 1,8$.
    $\quad$
  5. Le signe de $f\dsec(x)$ ne dépend que de celui de $-2x^2-2x+4$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=36>0$ et les racines sont $1$ et $-2$.
    Ainsi $f\dsec(x)$ s’annule en changeant de signe en $-2$ et $1$.
    La courbe représentative de $f$ possède donc deux points d’inflexion d’abscisse $-2$ et $1$.
    $\quad$

 

Ex B

Exercice B (5 points)

Partie I

  1. a. La fonction $f$ définie sur $\R$ par $f(t)=1$ est solution de cette équation.
    En effet $f'(t)=0$ pour tout réel $t$ et $-0,4\times 1+0,4=0$.
    Donc $f'(t)=-0,4f(t)+0,4$ pour tout réel $t$.
    $\quad$
    b. Soit $f$ une autre solution de cette équation différentielle.
    Ainsi, la fonction $g$ définie pour tout réel $t$ par $g(t)=f(t)+1$ est également solution de cette équation différentielle.
    Par conséquent :
    $f'(t)=-0,4\left(f(t)+1\right)+0,4 \ssi f'(t)=-0,4f(t)$
    Les solutions de l’équation différentielle $y=-0,4y$ sont les fonctions définies par $t\mapsto C\e^{-0,4t}$ où $C\in \R$.
    Les solutions de l’équation différentielle initiale sont donc les fonctions définies par $t\mapsto C\e^{-0,4t}+1$ pour tout $C\in \R$
    $\quad$
    c. $g(0)=10 \ssi C+1=10 \ssi C=9$
    Ainsi $g$ est la fonction définie sur $\R$ par $t\mapsto 9\e^{-0,4t}+1$.
    $\quad$

Partie II

  1. $\lim\limits_{t\to +\infty} -0,4t=-\infty$ or $\lim\limits_{X\to -\infty} \e^{X}=0$
    Par conséquent $\lim\limits_{t\to +\infty} p(t)=1$.
    $\quad$
  2. Pour tout réel $t\pg 0$ on a
    $\begin{align*} p'(t)&=\dfrac{9\times -0,4\e^{-0,4t}}{\left(1+9\e^{-0,4t}\right)^2} \\
    &=\dfrac{-3,6\e^{-0,4}}{\left(1+9\e^{-0,4t}\right)^2} \end{align*}$
    $\quad$
  3. a. On a
    $\begin{align*} p(t)=\dfrac{1}{2} &\ssi \dfrac{1}{1+9\e^{-0,4t}}=\dfrac{1}{2} \\
    &\ssi 2=1+9\e^{-0,4t} \\
    &\ssi \e^{-0,4t}=\dfrac{1}{9} \\
    &\ssi -0,4t=-\ln(9) \qquad \text{car } \ln\left(\dfrac{1}{9}\right)=-\ln(9)\\
    &\ssi t=\dfrac{\ln(9)}{0,4}\end{align*}$
    Or $\dfrac{\ln(9)}{0,4}>0$ car $9>1$
    L’équation $p(t)=\dfrac{1}{2}$ admet donc une unique solution solution sur $[0;+\infty[$.
    Remarque : On pouvait également utiliser le corollaire du théorème des valeurs intermédiaires (ou théorème de la bijection)
    $\quad$
    b. D’après la calculatrice $\alpha=\dfrac{\ln(9)}{0,4}\approx 5,5$.
    $\quad$

Partie III

  1. Soit $t\pg 0$
    $\begin{align*} 0,4p(t)\left(1-p(t)\right)&=\dfrac{0,4}{1+9\e^{-0,4t}}\left(1-\dfrac{1}{1+9\e^{-0,4t}}\right) \\
    &=\dfrac{0,4}{1+9\e^{-0,4t}}\times \dfrac{-9\e^{-0,4t}}{1+9\e^{-0,4t}} \\
    &=\dfrac{-3,6\e^{-0,4t}}{1+9\e^{-0,4t}} \\
    &=p'(t)\end{align*}$
    Par conséquent $p$ est solution de l’équation différentielle $y’=0,4y(1-y)$.
    De plus $p(0)=\dfrac{1}{1+9}=\dfrac{1}{10}$.
    $\quad$
  2. $\lim\limits_{t\to +\infty} p(t)=1$ signifie que sur le long terme toutes les écoles auront accès à internet.
    $p(\alpha)=\dfrac{1}{2}$ avec $\alpha\approx 5,5$ signifie qu’au milieu de l’année 2026, la moitié des écoles auront accès à internet.
    $p(0)=\dfrac{1}{10}$ signifie qu’en 2020 seulement $10\%$ des écoles ont accès à internet.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

En 2020, une influenceuse sur les réseaux sociaux compte $1~000$ abonnés à son profil. On modélise le nombre d’abonnés ainsi: chaque année, elle perd $10\%$ de ses abonnés auxquels s’ajoutent $250$ nouveaux abonnés.
Pour tout entier naturel $n$, on note $u_n$ le nombre d’abonnés à son profil en l’année (2020 $+n$), suivant cette modélisation. Ainsi $u_0 = 1~000$.

  1. Calculer $u_1$.
    $\quad$
  2. Justifier que pour tout entier naturel $n$, $u_{n+1} = 0,9u_n + 250$.
    $\quad$
  3. La fonction Python nommée « suite » est définie ci-dessous. Dans le contexte de l’exercice, interpréter la valeur renvoyée par suite(10).
    $$\begin{array}{|l|}
    \hline
    \text{def suite( n) }:\\
    \quad \text{u} = 1000\\
    \quad \text{for i in range(n)} :\\
    \qquad \text{u} = 0,9*\text{u} + 250\\
    \quad \text{return u}\\
    \hline
    \end{array}$$
    $\quad$
  4. a. Montrer, à l’aide d’un raisonnement par récurrence, que pour tout entier naturel $n$, $u_n \pp 2~500$.
    $\quad$
    b. Démontrer que la suite $\left(u_n\right)$ est croissante.
    $\quad$
    c. Déduire des questions précédentes que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  5. Soit $\left(v_n\right)$ la suite définie par $v_n = u_n – 2~500$ pour tout entier naturel $n$.
    a. Montrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,9$ et de terme initial $v_0 = -1~500$.
    $\quad$
    b. Pour tout entier naturel $n$, exprimer $v_n$ en fonction de $n$ et montrer que : $$u_n = – 1~500 \times 0,9^n + 2~500$$
    $\quad$
    c. Déterminer la limite de la suite $\left(u_n\right)$ et interpréter dans le contexte de l’exercice.
    $\quad$
  6. Écrire un programme qui permet de déterminer en quelle année le nombre d’abonnés dépassera $2~200$.
    Déterminer cette année.
    $\quad$

$\quad$

Exercice 2 (5 points)

On considère un cube $ABCDEFGH$ d’arête $8$ cm et de centre $\Omega$.
Les points $P$, $Q$ et $R$ sont définis par $\vect{AP} = \dfrac{3}{4}\vect{AB}$, $ \vect{AQ} = \dfrac{3}{4}\vect{AE}$ et $\vect{FR} = \dfrac{1}{4}\vect{FG}$.
On se place dans le repère orthonormé  $\left(\text{A};\vec{i},\vec{j},\vec{k}\right)$ avec : $\vec{i} = \dfrac{1}{8}\vect{AB}$, $\vec{j}= \dfrac{1}{8}\vect{AD}$ et $\vec{k} = \dfrac{1}{8}\vect{AE}$.

 

 

Partie I

  1. Dans ce repère, on admet que les coordonnées du point $R$ sont $(8;2;8)$.
    Donner les coordonnées des points $P$ et $Q$.
    $\quad$
  2. Montrer que le vecteur $\vec{n}(1;-5;1)$ est un vecteur normal au plan $(PQR)$.
    $\quad$
  3. Justifier qu’une équation cartésienne du plan $(PQR)$ est $x-5y+z-6 = 0$.
    $\quad$

Partie II

On note $L$ le projeté orthogonal du point $\Omega$ sur le plan $(PQR)$.

  1. Justifier que les coordonnées du point $\Omega$ sont $(4;4;4)$.
    $\quad$
  2. Donner une représentation paramétrique de la droite $d$ perpendiculaire au plan $(PQR)$ et passant par $\Omega$.
    $\quad$
  3. Montrer que les coordonnées du point $L$ sont $\left(\dfrac{14}{3}; \dfrac{2}{3};\dfrac{14}{3}\right)$
    $\quad$
  4. Calculer la distance du point $\Omega$ au plan $(PQR)$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Un sac contient les huit lettres suivantes: A B C D E F G H ($2$ voyelles et $6$ consonnes).
Un jeu consiste à tirer simultanément au hasard deux lettres dans ce sac.
On gagne si le tirage est constitué d’une voyelle et d’une consonne.

  1. Un joueur extrait simultanément deux lettres du sac.
    a. Déterminer le nombre de tirages possibles.
    $\quad$
    b. Déterminer la probabilité que le joueur gagne à ce jeu.
    $\quad$

Les questions 2 et 3 de cet exercice sont indépendantes.
Pour la suite de l’exercice, on admet que la probabilité que le joueur gagne est égale à $\dfrac{3}{7}$.

  1. Pour jouer, le joueur doit payer $k$ euros, $k$ désignant un entier naturel non nul.
    Si le joueur gagne, il remporte la somme de $10$ euros, sinon il ne remporte rien.
    On note $G$ la variable aléatoire égale au gain algébrique d’un joueur (c’est-à-dire la somme remportée à laquelle on soustrait la somme payée).
    a. Déterminer la loi de probabilité de $G$.
    $\quad$
    b. Quelle doit être la valeur maximale de la somme payée au départ pour que le jeu reste favorable au joueur ?
    $\quad$
  2. Dix joueurs font chacun une partie. Les lettres tirées sont remises dans le sac après chaque partie.
    On note $X$ la variable aléatoire égale au nombre de joueurs gagnants.
    a. Justifier que $X$ suit une loi binomiale et donner ses paramètres.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$, qu’il y ait exactement quatre joueurs gagnants.
    $\quad$
    c. Calculer $P(X \pg 5)$ en arrondissant à $10^{-3}$. Donner une interprétation du résultat obtenu.
    $\quad$
    d. Déterminer le plus petit entier naturel $n$ tel que $P(X \pp  n) \pg 0,9$.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter UN SEUL des deux exercices A ou B
Il indique sur sa copie l’exercice choisi: exercice A ou exercice B

Exercice A

Principaux domaines abordés :

  • convexité
  • fonction logarithme

Partie I : lectures graphiques

$f$ désigne une fonction définie et dérivable sur $\R$.
On donne ci-dessous la courbe représentative de la fonction dérivée $f’$.

 

 

Avec la précision permise par le graphique, répondre aux questions suivantes

  1. Déterminer le coefficient directeur de la tangente à la courbe de la fonction $f$ en $O$.
    $\quad$
  2. a. Donner les variations de la fonction dérivée $f’$.
    $\quad$
    b. En déduire un intervalle sur lequel $f$ est convexe.
    $\quad$

Partie II : étude de fonction

La fonction $f$ est définie sur $\R$ par $$f(x) = \ln \left(x^2 + x + \dfrac{5}{2}\right)$$

  1. Calculer les limites de la fonction $f$ en $+\infty$ et en $-\infty$.
    $\quad$
  2. Déterminer une expression $f'(x)$ de la fonction dérivée de $f$ pour tout $x \in \R$.
    $\quad$
  3. En déduire le tableau des variations de $f$. On veillera à placer les limites dans ce tableau.
    $\quad$
  4. a. Justifier que l’équation $f(x) = 2$ a une unique solution $\alpha$ dans l’intervalle $\left[-\dfrac{1}{2};+ \infty\right[$.
    $\quad$
    b. Donner une valeur approchée de $\alpha$ à $10^{-1}$ près.
    $\quad$
  5. La fonction $f’$ est dérivable sur $\R$. On admet que, pour tout $x \in \R$, $f”(x) = \dfrac{-2x^2-2x+4}{\left(x^2+x+\dfrac{5}{2}\right)^2}$.
    Déterminer le nombre de points d’inflexion de la courbe représentative de $f$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Étude de fonction, fonction exponentielle
  • Équations différentielles

Partie I

Considérons l’équation différentielle $$y’= -0,4y + 0,4$$ où $y$ désigne une fonction de la variable $t$, définie et dérivable sur $[0; + \infty[$.

  1. a. Déterminer une solution particulière constante de cette équation différentielle.
    $\quad$
    b. En déduire l’ensemble des solutions de cette équation différentielle.
    $\quad$
    c. Déterminer la fonction $g$, solution de cette équation différentielle, qui vérifie $g(0) = 10$.
    $\quad$

$\quad$

Partie II

Soit $p$ la fonction définie et dérivable sur l’intervalle $[0;+ \infty[$ par $$p(t) = \dfrac{1}{g(t)} = \dfrac{1}{1 + 9\e^{-0,4t}}$$

  1. Déterminer la limite de $p$ en $+ \infty$.
    $\quad$
  2. Montrer que $p'(t) = \dfrac{3,6\e^{-0,4t}}{ \left(1 + 9\e^{-0,4t}\right)^2}$ pour tout $t \in [0;+ \infty[$.
    $\quad$
  3. a. Montrer que l’équation $p(t) = \dfrac{1}{2}$ admet une unique solution $\alpha$ sur $[0;+ \infty[$.
    $\quad$
    b. Déterminer une valeur approchée de $\alpha$ à $10^{-1}$ près à l’aide d’une calculatrice.
    $\quad$

Partie III

  1. $p$ désigne la fonction de la partie II.
    Vérifier que $p$ est solution de l’équation différentielle $y’ = 0,4y(1-y)$ avec la condition initiale $y(0) = \dfrac{1}{10}$ où $y$ désigne une fonction définie et dérivable sur $[0; + \infty[$.
    $\quad$
  2. Dans un pays en voie de développement, en l’année 2020, $10\%$ des écoles ont accès à internet.
    Une politique volontariste d’équipement est mise en œuvre et on s’intéresse à l’évolution de la proportion des écoles ayant accès à internet.
    On note $t$ le temps écoulé, exprimé en année, depuis l’année 2020.
    La proportion des écoles ayant accès à internet à l’instant $t$ est modélisée par $p(t)$.
    Interpréter dans ce contexte la limite de la question II.1 puis la valeur approchée de $\alpha$ de la question II 3. b. ainsi que la valeur $p(0)$.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Polynésie – sujet 2 – mars 2021

Polynésie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On a
    $\begin{align*} u_1&=0,95\times 10~000+200 \\
    &=9~700\end{align*}$
    $\quad$
    et
    $\begin{align*} u_2&=0,95\times 9~700+200 \\
    &=9~415\end{align*}$
    $\quad$
  2. a. Initialisation : Si $n=0$ alors $u_0=10~000>4~000$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n$.
    $\begin{align*}
    u_{n+1}&=0,95u_n+200 \\
    &>0,95 \times 4~000+200\\
    &>3~800+200\\
    &>4~000\end{align*}$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout $n\in \N$ on a $u_n>4~000$.
    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante et minorée par $4~000$. Elle converge donc.
    $\quad$
  3. a. $v_0=10~000-4~000=6~000$.
    $\quad$
    b. Soit $n\in \N$. $v_n=u_n-4~000 \ssi u_n=v_n+4~000$
    $\begin{align*} v_{n+1}&=u_{n+1}-4~000\\
    &=0,95u_n+200-4~000\\
    &=0,95u_n-3~800 \\
    &=0,95\left(v_n+4~000\right)-3~800\\
    &=0,95v_n+3~800-3~800\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=6~000$.
    $\quad$
    c. Pour tout $n\in \N$ on a donc $v_n=6~000\times 0,95^n$.
    Par conséquent :
    $\begin{align*} u_n&=v_n+4~000 \\
    &=6~000\times 0,95^n+4~000\end{align*}$
    $\quad$
    d. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 6~000\times 0,95^n=0$
    Par conséquent $\lim\limits_{n\to +\infty} u_n=4~000$.
    $\quad$
  4. La population de cette espèce baisse de $5\%$ chaque année. Il reste donc $95\%$ de la population d’une année sur l’autre.
    $200$ individus sont réintroduit chaque année.
    En 2020, il y avait $10~000$ individus.
    Par conséquent, la population de cette espèce peut être modélisée par la suite $\left(u_n\right)$ étudiée dans les questions précédentes.
    Sur le long terme, il restera $4~000$ individus.
    Or $4~000<\dfrac{10~000}{2}$
    L’affirmation est donc vraie.
    $\quad$

Ex 2

Exercice 2

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. On veut calculer
    $\begin{align*} p(M\cap T)&=p(M)\times p_M(T) \\
    &=0,07\times 0,8\\
    &=0,056\end{align*}$
    La probabilité pour que la personne soit infectée par la maladie et que son test soit positif est $0,056$.
    $\quad$
    b. $M$ et $\conj{M}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*}
    p(T)&=p(M\cap T)+p\left(\conj{M}\cap T\right)\\
    &=0,056+0,93\times 0,01 \\
    &=0,0653\end{align*}$
    La probabilité que son test soit positif est de $0,0653$.
    $\quad$
  3. On veut calculer
    $\begin{align*} p_T(M)&=\dfrac{p(T\cap M)}{p(T)} \\
    &=\dfrac{0,056}{0,0653} \\
    &\approx 0,86\end{align*}$
    La probabilité que la personne soit infectée sachant que son test est positif est environ égale à $0,86$.
    $\quad$
  4. a. On effectue $10$ tirages aléatoires, indépendants et identiques.
    À chaque tirage, il n’y a que deux issues  : $T$ et $\conj{T}$.
    La variable aléatoire $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,0653$.
    $\quad$
    b. On a
    $\begin{align*} p(X=2)&=\dbinom{10}{2}0,0653^2 \times (1-0,653)^8 \\
    &\approx 0,11\end{align*}$
    La probabilité pour qu’exactement deux personnes aient un test positif est environ égale à $0,11$.
    $\quad$
  5. On effectue $n$ tirages aléatoires, indépendants et identiques.
    À chaque tirage, il n’y a que deux issues  : $T$ et $\conj{T}$.
    On note $Y$ la variable aléatoire qui comptabilise le nombre d’individus ayant un test positif parmi les $n$ personnes.
    La variable aléatoire $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,0653$.
    On veut
    $\begin{align*} p(Y\pg 1)> 0,99 &\ssi 1-p(Y=0)>0,99 \\
    &\ssi p(Y=0)<0,01 \\
    &\ssi (1-0,0653)^n<0,01 \\
    &\ssi 0,9347^n<0,01 \\
    &\ssi n\ln(0,9347)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,9347)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,9347)} \approx 63,2$.
    Il faut donc tester au minimum $64$ personnes pour que la probabilité qu’au moins une de ces personnes ait un test positif soit supérieure à $99\%$.
    $\quad$

Ex 3

Exercice 3

  1. On a $B(1;0;0)$, $D(0;1;0)$, $E(0;0;1)$, $G(1;1;1)$ et $H(0;1;1)$.
    $\quad$
  2. a. $[EG]$, $[ED]$ et $[GD]$ sont des diagonales de carrés dont les côtés ont la même longueur.
    Par conséquent $EG=ED=GD$.
    Le triangle $EGD$ est donc équilatéral.
    $\quad$
    b. Dans le triangle $EGH$ rectangle en $H$ on applique le théorème de Pythagore.
    $\begin{align*} EG^2&=EH^2+GH^2 \\
    &=1+1\\
    &=2\end{align*}$
    Par conséquent l’aire du triangle $EGD$ est
    $\begin{align*} \mathscr{A}&=\dfrac{\sqrt{3}}{4}EG^2 \\
    &=\dfrac{\sqrt{3}}{4}\times 2\\
    &=\dfrac{\sqrt{3}}{2}\end{align*}$
    $\quad$
  3. On a $\vect{BH}\begin{pmatrix} -1\\1\\1\end{pmatrix}$.
    $\begin{align*} \vect{BM}=\dfrac{1}{3}BH&\ssi \begin{cases} x_M-1=\dfrac{1}{3}\times (-1) \\
    y_M=\dfrac{1}{3}\times 1\\
    z_M=\dfrac{1}{3}\times 1\end{cases} \\
    &\ssi \begin{cases} x_M=\dfrac{2}{3} \\y_M=\dfrac{1}{3}\\z_M=\dfrac{1}{3}\end{cases}\end{align*}$
    Ainsi les coordonnées de $M$ sont bien $\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$.
    $\quad$
  4. a. On a $\vect{EG}\begin{pmatrix}1\\1\\0\end{pmatrix}$ et $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$
    Par conséquent :
    $\begin{align*} \vec{n}.\vect{EG}&=-1+1+0\\
    &=0\end{align*}$
    $\begin{align*} \vec{n}.\vect{ED}&=0+1-1\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(EGD)$.
    Ainsi $\vec{n}$ est normal au plan $(EGD)$.
    $\quad$
    b. Une équation cartésienne du plan $(EGD)$ est de la forme $-x+y+z+d=0$.
    Le point $E$ appartient au plan $(EGD)$ donc
    $0+0+1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(EGD)$ est donc $-x+y+z-1=0$.
    $\quad$
    c. $\vec{n}$ est un vecteur directeur de la droite $\mathcal{D}$.
    Une représentation paramétrique de cette droite est donc :
    $\begin{cases} x=\dfrac{2}{3}-t\\y=\dfrac{1}{3}+t\\z=\dfrac{1}{3}+t\end{cases}\quad, t\in \R$.
    $\quad$
  5. a. Si on prend $t=\dfrac{1}{3}$ dans la représentation paramétrique de la droite $\mathcal{D}$ on obtient les coordonnées $\left(\dfrac{1}{3};\dfrac{2}{3};\dfrac{2}{3}\right)$.
    $-\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{2}{3}-1=0$
    Le point de coordonnées $\left(\dfrac{1}{3};\dfrac{2}{3};\dfrac{2}{3}\right)$ appartient donc au plan $(EGD)$ et à la droite $\mathcal{D}$.
    Il s’agit par conséquent du point $K$.
    $\quad$
    b. On a
    $\begin{align*} MK^2&=\left(-\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2 \\
    &=\dfrac{1}{3} \end{align*}$
    Le volume de la pyramide $GEDM$ est donc
    $\begin{align*} V&=\dfrac{\mathscr{A}\times MK}{3} \\
    &=\dfrac{\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{3}}}{3} \\
    &=\dfrac{1}{6}\end{align*}$
    $\quad$

Ex A

Exercice A

Partie 1

  1. $A(0;2)$ appartient à $\mathcal{C}$ donc $f(0)=2$.
    $f'(0)$ est le coefficient directeur de la droite $(AB)$.
    Donc $f'(0)=\dfrac{0-2}{2-0}=-1$.
    $\quad$
  2. La fonction $f$ semble convexe sur l’intervalle $[0;3]$.
    $\quad$

Partie 2

  1. Les solutions de l’équation $(H)$ sont les fonctions $f$ définies sur $\R$ par $f(x)=k\e^{-x}$ où $k\in \R$.
    $\quad$
  2. Soit $f$ une solution de l’équation $(E)$.
    On a donc $f’=-f+\e^{-x}$ et $g’=-g+\e^{-x}$.
    Ainsi, par différence $(f-g)’=-(f-g)$
    Il existe donc $k\in \R$ tel que, pour tout réel $x$ on ait $(f-g)(x)=k\e^{-x}$ soit $f(x)=g(x)+k\e^{-x}$
    Les solutions de l’équation $(E)$ sont donc les fonctions $f$ définies sur $\R$ par $f(x)=x\e^{-x}+k\e^{-x}$.
    $\quad$
  3. $f(0)=2 \ssi k=2$
    Ainsi $f(x)=(x+2)\e^{-x}$ pour tout réel $x$.
    $\quad$

Partie 3

  1. a. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=\e^{-x}+(x+2)\times \left(-\e^{-x}\right)\\
    &=(1-x-2)\e^{-x} \\
    &=(-x-1)\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive.
    Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0 \ssi -x>1\ssi x<-1$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  2. a. La fonction $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=-\e^{-x}+(-x-1)\left(-\e^{-x}\right) \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $x$.
    Ainsi $f\dsec(x)\pg 0 \ssi x\pg 0$.
    La fonction $f$ est donc convexe sur l’intervalle $[0;+\infty[$.
    $\quad$

Ex B

Exercice B

Partie 1 : Étude d’une fonction auxiliaire

  1. a. La fonction $f$ est dérivable sur $[1;4]$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout $x\in [1;4]$ on a
    $\begin{align*} f'(x)&=-30+\dfrac{35}{x} \\
    &=\dfrac{-30x+35}{x} \\
    &=\dfrac{35-30x}{x}\end{align*}$
    $\quad$
    b. $35-30x=0 \ssi 30x=35 \ssi x=\dfrac{7}{6}$
    $35-30x>0 \ssi -30x>-35 \ssi x<\dfrac{7}{6}$
    On obtient le tableau de signes et de variations suivant :
    $\quad$$\quad$
    c. La fonction $f$ est donc strictement croissante sur l’intervalle $\left[1;\dfrac{7}{6}\right]$ et strictement décroissante sur l’intervalle $\left[\dfrac{7}{6};4\right]$.
    $\quad$
  2. Sur l’intervalle $\left[1;\dfrac{7}{6}\right]$ on a $f(x)\pg 20$.
    L’équation $f(x)=0$ ne possède donc pas de solution sur cet intervalle.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement décroissante sur l’intervalle $\left[\dfrac{7}{6};4\right]$.
    De plus $f\left(\dfrac{7}{6}\right) \approx 20,4 >0$ et $f(4)\approx -21,5<0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ possède donc une unique solution sur $\left[\dfrac{7}{6};4\right]$.
    $\quad$
    L’équation $f(x)=0$ possède donc une unique solution $\alpha$ sur l’intervalle $[1;4]$.
    D’après la calculatrice $\alpha \approx 2,915$.
    $\quad$
  3. D’après les questions précédentes on a donc le tableau de signes suivant :
    $\quad$

 

Partie 2 : Optimisation

  1. On a $B(2,5) \approx 23,925$
    Lorsque l’entreprise vend $2~500$ litres de jus de fruits son bénéfice est environ égal à $23~925$ euros.
    $\quad$
  2. La fonction $B$ est dérivable sur $[1;4]$ en  tant que somme et produits de fonctions dérivables sur cet intervalle.
    Pour tout réel $x$ on a
    $\begin{align*} B'(x)&=-15\times 2x+15+35\ln(x)+35x\times \dfrac{1}{x} \\
    &=-30x+15+35\ln(x)+35 \\
    &=-30x+50+35\ln(x)\\
    &=f(x)\end{align*}$
    $\quad$
  3. a. D’après la question 1.3. $B$ est donc strictement croissante sur l’intervalle $[1;\alpha]$ et strictement décroissante sur l’intervalle $[\alpha;4]$.
    $\quad$
    b. La fonction $B$ atteint donc son maximum en $\alpha$.
    L’entreprise doit donc vendre environ $2~915$ litres de jus de fruits pour réaliser un bénéfice maximal.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

On considère la suite $\left(u_{n}\right)$ définie par $u_{0}=10~000$ et pour tout entier naturel $n$ :
$$u_{n+1}=0,95 u_{n}+200$$

  1. Calculer $u_{1}$ et vérifier que $u_{2}=9415$.
    $\quad$
  2. a. Démontrer, à l’aide d’un raisonnement par récurrence, que pour tout entier naturel $n$ :
    $$u_{n}>4000$$
    $\quad$
    b. On admet que la suite $\left(u_{n}\right)$ est décroissante. Justifier qu’elle converge.
    $\quad$
  3. Pour tout entier naturel $n$, on considère la suite $\left(v_{n}\right)$ définie par : $v_{n}=u_{n}-4~000$.
    a. Calculer $v_{0}$.
    $\quad$
    b. Démontrer que la suite $\left(v_{n}\right)$ est géométrique de raison égale à $0,95$.
    $\quad$
    c. En déduire que pour tout entier naturel $n$ :
    $$u_{n}=4~000+6~000 \times 0,95^{n} $$
    $\quad$
    d. Quelle est la limite de la suite $\left(u_{n}\right)$ ? Justifier la réponse.
    $\quad$
  4. En 2020, une espèce animale comptait 10000 individus. L’évolution observée les années précédentes conduit à estimer qu’à partir de l’année 2021, cette population baissera de $5 \%$ chaque début d’année.
    Pour ralentir cette baisse, il a été décidé de réintroduire $200$ individus à la fin de chaque année, à partir de 2021.
    Une responsable d’une association soutenant cette stratégie affirme que : « l’espèce ne devrait pas s’éteindre, mais malheureusement, nous n’empêcherons pas une disparition de plus de la moitié de la population ». Que pensez-vous de cette affirmation ? Justifier la réponse.
    $\quad$

$\quad$

Exercice 2 (5 points)

Un test est mis au point pour détecter une maladie dans un pays.
Selon les autorités sanitaires de ce pays, $7 \%$ des habitants sont infectés par cette maladie. Parmi les individus infectés, $20 \%$ sont déclarés négatifs.
Parmi les individus sains, $1 \%$ sont déclarés positifs.
Une personne est choisie au hasard dans la population.
On note :

  • $M$ l’évènement: « la personne est infectée par la maladie » ;
  • $T$ l’évènement : « le test est positif ».
  1. Construire un arbre pondéré modélisant la situation proposée.
    $\quad$
  2. a. Quelle est la probabilité pour que la personne soit infectée par la maladie et que son test soit positif?
    $\quad$
    b. Montrer que la probabilité que son test soit positif est de $0,0653$.
    $\quad$
  3. On sait que le test de la personne choisie est positif.
    Quelle est la probabilité qu’elle soit infectée ?
    On donnera le résultat sous forme approchée à $10^{-2}$ près.
    $\quad$
  4. On choisit dix personnes au hasard dans la population. La taille de la population de ce pays permet d’assimiler ce prélèvement à un tirage avec remise.
    On note $X$ la variable aléatoire qui comptabilise le nombre d’individus ayant un test positif parmi les dix personnes.
    a. Quelle est la loi de probabilité suivie par $X$ ? Préciser ses paramètres.
    $\quad$
    b. Déterminer la probabilité pour qu’exactement deux personnes aient un test positif.
    On donnera le résultat sous forme approchée à $10^{-2}$ près.
    $\quad$
  5. Déterminer le nombre minimum de personnes à tester dans ce pays pour que la probabilité qu’au moins une de ces personnes ait un test positif, soit supérieure à $99 \%$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Dans l’espace, on considère le cube $ABCDEFGH$ d’arête de longueur égale à $1$
On munit l’espace du repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$. On considère le point $M$ tel que $\vect{BM}=\dfrac{1}{3} \vect{BH}$.

 

  1. Par lecture graphique, donner les coordonnées des points $B$, $D$, $E$, $G$ et $H$.
    $\quad$
  2. a. Quelle est la nature du triangle $EGD$ ? Justifier la réponse.
    $\quad$
    b. On admet que l’aire d’un triangle équilatéral de côté $c$ est égale à $\dfrac{\sqrt{3}}{4} c^{2}$.
    Montrer que l’aire du triangle $EGD$ est égale à $\dfrac{\sqrt{3}}{2}$.
    $\quad$
  3. Démontrer que les coordonnées de M sont $\left(\dfrac{2}{3} ; \dfrac{1}{3} ; \dfrac{1}{3}\right)$.
    $\quad$
  4. a. Justifier que le vecteur $\vec{n}(-1 ; 1 ; 1)$ est normal au plan $(EGD)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(EGD)$ est : $-x+y+z-1=0$.
    $\quad$
    c. Soit $\mathcal{D}$ la droite orthogonale au plan $(EGD)$ et passant par le point $M$.
    Montrer qu’une représentation paramétrique de cette droite est :
    $$\mathcal{D}:\begin{cases} x=\dfrac{2}{3}-t\\y=\dfrac{1}{3}+t\\z=\dfrac{1}{3}+t\end{cases}, \quad t\in \R$$
    $\quad$
  5. Le cube $ABCDEFGH$ est représenté ci-dessus selon une vue qui permet de mieux percevoir la pyramide $GEDM$, en gris sur la figure :Le but de cette question est de calculer le volume de la pyramide $GEDM$.
    a. Soit K, le pied de la hauteur de la pyramide $GEDM$ issue du point $M$.
    Démontrer que les coordonnées du point $K$ sont $\left(\dfrac{1}{3} ; \dfrac{2}{3} ; \dfrac{2}{3}\right)$.
    $\quad$
    b. En déduire le volume de la pyramide $GEDM$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule $V=\dfrac{b \times h}{3}$ $b$ désigne l’aire d’une base et $h$ la hauteur associée.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués dans un encadré.

Exercice A

Principaux domaines abordés :

  • Fonction exponentielle,
  • convexité,
  • dérivation,
  • équations différentielles.

Cet exercice est composé de trois parties indépendantes.
On a représenté ci-dessous, dans un repère orthonormé, une portion de la courbe représentative $\mathcal{C}$ d’une fonction $f$ définie sur $\R$ :

On considère les points $A(0 ; 2)$ et $B(2 ; 0)$.

Partie 1

Sachant que la courbe $\mathcal{C}$ passe par $A$ et que la droite $(AB)$ est la tangente à la courbe $\mathcal{C}$ au point $A$, donner par lecture graphique :

  1. La valeur de $f(0)$ et celle de $f'(0)$.
    $\quad$
  2. Un intervalle sur lequel la fonction $f$ semble convexe.
    $\quad$

Partie 2

On note $(E)$ l’équation différentielle $y’=-y+\e^{-x}$.
On admet que $g: x \mapsto 𝑥x\e^{-x}$ est une solution particulière de $(E)$.

  1. Donner toutes les solutions sur $\R$ de l’équation différentielle $(H) ∶ y’ = -y$.
    $\quad$
  2. En déduire toutes les solutions sur $\R$ de l’équation différentielle $(E)$.
    $\quad$
  3. Sachant que la fonction $f$ est la solution particulière de $(E)$ qui vérifie $f(0) = 2$, déterminer une expression de $f(x)$ en fonction de $x$.
    $\quad$

Partie 3

On admet que pour tout nombre réel $x$, $f(x) = (x + 2) \e^{-𝑥}$.

  1. On rappelle que $f’$ désigne la fonction dérivée de la fonction $f$.
    a. Montrer que pour tout $x\in \R$, $f'(x)=(-x-1)\e^{-x}$.
    $\quad$
    b. Étudier le signe de $f'(x)$ pour tout $x\in \R$ et dresser le tableau des variations de $f$ sur $\R$.
    On ne précisera ni la limite de $f$ en $-\infty$ ni la limite de $f$ en $+\infty$.
    On calculera la valeur exacte de l’extremum de $f$ sur $\R$.
    $\quad$
  2. On rappelle que $d\dsec$ désigne la fonction dérivée seconde de la fonction $f$.
    a. Calculer pour tout $x\in \R$, $f\dsec(x)$.
    $\quad$
    b. Peut-on affirmer que $f$ est convexe sur l’intervalle $[0 ; +\infty[$ ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction logarithme népérien,
  • dérivation.

Cet exercice est composé de deux parties.
Certains résultats de la première partie seront utilisés dans la deuxième

Partie 1 : Étude d’une fonction auxiliaire

Soit la fonction $f$ définie sur l’intervalle $[1 ; 4]$ par $: f(x)=-30 x+50+35 \ln (x)$.

  1. On rappelle que $f’$ désigne la fonction dérivée de la fonction $f$.
    a. Pour tout nombre réel $x$ de l’intervalle $[1 ; 4]$, montrer que :
    $$f'(x)=\frac{35-30 x}{x}$$
    $\quad$
    b. Dresser le tableau de signe de $f'(x)$ sur l’intervalle $[1 ; 4]$.
    $\quad$
    c. En déduire les variations de $f$ sur ce même intervalle.
    $\quad$
  2. Justifier que l’équation $f(x)=0$ admet une unique solution, notée $\alpha$, sur l’intervalle $[1 ; 4]$ puis donner une valeur approchée de $\alpha$ à $10^{-3}$ près.
    $\quad$
  3. Dresser le tableau de signe de $f(x)$ pour $x \in[1 ; 4]$.
    $\quad$

$\quad$

Partie 2: Optimisation

Une entreprise vend du jus de fruits. Pour $x$ milliers de litres vendus, avec $x$ nombre réel de l’intervalle $[1;4]$, l’analyse des ventes conduit à modéliser le bénéfice $B(x)$ par l’expression donnée en milliers d’euros par :
$$B(x)=-15 x^{2}+15 x+35 x \ln (x) $$

  1. D’après le modèle, calculer le bénéfice réalisé par l’entreprise lorsqu’elle vend $2~500$ litres de jus de fruits.
    On donnera une valeur approchée à l’euro près de ce bénéfice.
    $\quad$
  2. Pour tout 𝑥 de l’intervalle $[1 ; 4]$, montrer que $B'(x)=f(x)$ où $B’$ désigne la fonction dérivée de $B$.
    $\quad$
  3. a. À l’aide des résultats de la partie 1, donner les variations de la fonction $B$ sur l’intervalle $[1 ; 4]$.
    $\quad$
    b. En déduire la quantité de jus de fruits, au litre près, que l’entreprise doit vendre afin de réaliser un bénéfice maximal.
    $\quad$

$\quad$

 

 

 

 

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – mars 2021

Centres étrangers – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Question 1 : La fonction $g$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
Pour tout réel $x\pg 0$, $g'(x)= 2x+2+\dfrac{3}{x^2}$.
Une équation de cette tangente est de la forme $y=g'(1)(x-1)+g(1)$.
Or $g(1)=0$ et $g'(1)=7$.
Une équation de cette tangente est donc $y=7(x-1)$.
Réponse a
$\quad$

Question 2 : Pour tout entier naturel $n$ on a $v_n=\dfrac{3}{1+\dfrac{2}{n}}$
Or $\lim\limits_{n\to +\infty} \dfrac{2}{n}=0$ donc $\lim\limits_{n\to +\infty} v_n=3$.
Remarque : On pouvait également utiliser la limite des termes de plus haut degré.
Réponse b
$\quad$

Question 3 : On appelle $X$ la variable comptant le nombre de boules noires tirées. On effectue $10$ tirages aléatoires, indépendants et identiques. À chaque tirage il n’y a que deux issues $N$ « La boule tirée est noire » et $\conj{N}$. De plus $p(N)=0,6$.
$X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,6$.
Ainsi $P(X=4) = \dbinom{10}{4} 0,6^4 \times 0,4^6 \approx 0,111~5$
Réponse c
$\quad$

Question 5 : Pour tout réel $x$ on a $f(x)=\e^{x}\left(3-\dfrac{x}{\e^x}\right)$.
Or, par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} {x}\dfrac{e^x}=0$
De plus $\lim\limits_{x\to +\infty} \e^x=+\infty$
Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$
Réponse b
$\quad$

Question 5 : Il y a $36^8$ combinaisons possibles.
Il faut donc au maximum $\dfrac{36^8}{10^8} \approx 28~211$ secondes pour découvrir le code.
Cela correspond à environ $8$ heures.
Réponse b
$\quad$

 

 

Ex 2

Exercice 2

Partie A – Modélisation à l’aide d’une suite

  1. a. Si $2\%$ des panneaux se sont détériorés cela signifie que $98\%$ sont en état de fonctionner. Pour tout entier naturel $n$, cela correspond donc à $0,98u_n$ panneaux.
    Chaque année $250$ nouveaux panneaux sont installés.
    Par conséquent $u_{n+1}=0,98u_n+250$.
    En 2020, la société possédait $10~560$ panneaux. Donc $u_0=10~560$.
    $\quad$
    b. D’après la calculatrice, c’est-à-partir du rang $68$ que $u_n\pg 12~000$.
    Il faut $68$ ans pour que le nombre de panneaux solaires soit strictement supérieur à $12~000$.
    $\quad$
    c.
    $$\begin{array}{|l|}
    \hline
    \text{u = 10560} \\
    \text{n = 0} \\
    \textbf{while }\text{u  < 12000 :} \\
    \quad \text{u =  0.98 * u + 250}\\
    \quad \text{n = n + 1}\\
    \hline
    \end{array}$$
    $\quad$
  2. Initialisation : On a $u_0 = 10~560 < 12~500$
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n \in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} u_{n+1} &= 0,98u_n +250 \\
    &\pp 0,98 \times 12~500+250 \\
    &\pp 12~250+250\\
    &\pp 12~500\end{align*}$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $u_n \pp 12~500$.
    $\quad$
  3. Pour tout entier naturel $n$ on a
    $\begin{align*} u_{n+1}-u_n&=0,98u_n+250-u_n \\
    &=-0,02u_n+250 \\
    &=0,02\left(-u_n+12~500\right)\end{align*}$
    Or, pour tout entier naturel $n$, on a $u_n\pp 12~500$.
    Par conséquent $u_{n+1}-u_n\pg 0$.
    La suite $\left(u_n\right)$ est croissante.
    $\quad$
  4. La suite $\left(u_n\right)$ est croissante et majorée par $12~500$. Elle converge donc.
    $\quad$
  5. a. Pour tout entier naturel $n$,
    $\begin{align*} v_{n+1}&=u_{n+1}-12~500 \\
    &=0,98u_n+250-12~500 \\
    &=0,98u_n-12~250 \\
    &=0,98\left(u_n-12~500\right)\\
    &=0,98v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $q=0,98$ et de premier terme $v_0=u_0-12~500=-1~940$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$ on a $v_n=-1~940\times 0,98^n$.
    $\quad$
    c. Donc, pour tout entier naturel $n$, $u_n=v_n+12~500=12~500-1~940\times 0,98^n$.
    $\quad$
    d. $-1<0,98<1$ donc $\lim\limits_{n\to +\infty} -1~940\times 0,98^n=0$.
    Donc $\lim\limits_{n\to +\infty} u_n=12~500$.
    Sur le long terme, la centra solaire Big Sun possèdera $12~500$ panneaux solaires.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que composée et somme de fonctions dérivables.
    Pour tout réel $x\pg 0$
    $\begin{align*} f'(x)&=-500\times (-0,02)\e^{-0,02x+1,4} \\
    &=10\e^{-0,02x+1,4}\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$ donc $f'(x)>0$.
    La fonction $f$ est par conséquent strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. $\lim\limits_{x\to +\infty} -0,02x+1,4=-\infty$ or $\lim\limits_{X\to -\infty} \e^X=0$
    Donc $\lim\limits_{x\to +\infty} \e^{-0,02x+1,4}=0$ et $\lim\limits_{x\to +\infty} f(x)=12~500$.
    $\quad$
  3. On veut résoudre l’inéquation :
    $\begin{align*} f(x)>12~000 &\ssi 12~500-500\e^{-0,02x+1,4} > 12~000 \\
    &\ssi -500\e^{-0,02x+1,4} > -500 \\
    &\ssi \e^{-0,02x+1,4} < 1 \\
    &\ssi -0,02x+1,4< 0\\
    &\ssi -0,02x<-1,4 \\
    &\ssi x> 70\end{align*}$
    C’est donc au bout de $70$ ans, selon ce modèle, que le nombre de panneaux solaires dépassera $12~000$.
    $\quad$

 

 

 

Ex 3

Exercice 3

Partie A

  1. On a $F(1;0;1)$, $I(0;0,5;0,5)$ et $J\left(1;1;\dfrac{2}{3}\right)$
    $\quad$
  2. Ainsi $\vect{FJ}\begin{pmatrix} 0\\1\\-\dfrac{1}{3}\end{pmatrix}$
    Une représentation paramétrique de la droite $(d)$ est par conséquent $$\begin{cases} x=0\\y=0,5+t\\z=0,5-\dfrac{1}{3}t\end{cases} \quad, t\in \R$$
    $\quad$
  3. a. Le point de coordonnées $\left(0;0;\dfrac{2}{3}\right)$ appartient bien à la droite $(AE)$.
    En prenant $t=-0,5$, dans la représentation paramétrique de $(d)$, on trouve $\begin{cases} x=0\\y=0\\z=\dfrac{2}{3}\end{cases}$.
    Le point de coordonnées $\left(0;0;\dfrac{2}{3}\right)$ appartient aux droites $(d)$ et $(AE)$. C’est donc le point $K$.
    $\quad$
    b. Le point $L$ appartient à la droite $(DH)$. Ses coordonnées sont donc de la forme $(0;1;\gamma)$.
    En prenant $t=0,5$, dans la représentation paramétrique de (d)$, on trouve $\begin{cases} x=0\\y=1\\z=\dfrac{1}{3}\end{cases}$.
    Ainsi, le point $L$ a pour coordonnées $\left(0;1;\dfrac{1}{3}\right)$.
    $\quad$
  4. a. On a $\vect{LK}\begin{pmatrix} 0\\1\\-\dfrac{1}{3}\end{pmatrix}$.
    Par conséquent $\vect{LK}=\vect{FJ}$ et $FJLK$ est un paralélogramme.
    $\quad$
    b. $FJ=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}}$
    $\vect{FK}\begin{pmatrix} -1\\0\\-\dfrac{1}{3}\end{pmatrix}$ donc $FK=\sqrt{1+\dfrac{1}{9}}=\sqrt{\dfrac{10}{9}}$
    Le parallélogramme $FJLK$ possède deux côtés consécutifs de même longueur. C’est donc un losange.
    $\quad$
    c. $\vect{FJ}.\vect{FK}=0+0+\dfrac{1}{9}\neq 0$
    Ces deux vecteurs ne sont pas orthogonaux. Par conséquent $FJLK$ n’est pas un carré.
    $\quad$

Partie B : Cas général

  1. On a $\vect{CG}\begin{pmatrix}0\\0\\1\end{pmatrix}$
    Donc
    $\begin{align*} \vect{CJ}=a\vect{CG}&\ssi \begin{cases} x_J-1=0\\y_J=1=0\\z_J-0=a\end{cases} \\
    &\ssi \begin{cases} x_j=1\\y_J=1\\z_J=a\end{cases}\end{align*}$
    $\quad$
  2. Ainsi $\vect{FJ}\begin{pmatrix} 0\\1\\a-1\end{pmatrix}$ et $\vect{KL}\begin{pmatrix} 0\\1\\a-1\end{pmatrix}$
    Donc $\vect{FJ}=\vect{KL}$ et $FJKL$ est un parallélogramme.
    $\quad$
  3. D’après la question A.4.b. si $a=\dfrac{2}{3}$ alors $FJKL$ est un losange.
    $\quad$
  4. On a $\vect{FK}\begin{pmatrix} -1\\0\\-\dfrac{a}{2}\end{pmatrix}$
    $\begin{align*} \vect{FK}.\vect{FJ}=0&\ssi 0+0-\dfrac{a}{2}(a-1)=0 \\
    &\ssi a=0\text{ ou } a=1\end{align*}$
    Ainsi, les deux seules valeurs de $a$ pour lesquelles $\vect{FK}$ et $\vect{FJ}$ soient orthogonaux sont $0$ et $1$.
    Or si $a=0$ alors $FJ=FC=\sqrt{2}$ (d’après le théorème de Pythagore) et $FK=FE=1$. $FJLK$ n’est pas un losange et donc pas un carré.
    Si $a=1$ alors $FJ=FG=1$ et $FK=FA=\sqrt{2}$ et ce n’est toujours pas un carré.
    Il n’existe donc pas de valeurs de $a$ telles que le quadrilatère $FJLK$ soit un carré.
    $\quad$

 

 

Ex A

Exercice A

Partie A

  1. Si le test du mélange est négatif alors on n’a fait qu’un seul test et $X_n$ prend la valeur $1$.
    Si le test est positif alors on teste tous les individus. On a donc fait $1+n$ tests au total et $X$ prend la valeur $n+1$.
    $\quad$
  2. Si l’événement $\left[X_n=1\right]$  est réalisé alors aucun individu n’est positif. La probabilité qu’un individu ne soit pas malade est égale à $0,95$.
    Par conséquent, la probabilité que tous les individus ne soient pas malade est $0,95^n$.
    Donc $P\left(X_n=n+1\right)=1-0,95^n$.
    On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|}
    \hline
    x_i&1&n+1\\
    \hline
    P\left(X_n=x_i\right)&0,95^n&1-0,95^n\\
    \hline
    \end{array}$$
    $\quad$
  3. L’espérance de $X_n$ indique le nombre moyen qu’on va réaliser.
    $\begin{align*}
    E\left(X_n\right)&=1\times 0,95^n+(n+1)\times \left(1-0,95^n\right)\\
    &=0,95^n +n+1 -(n+1)\times 0,95^n \\
    &=n+1-n\times 0,95^n\end{align*}$
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[20;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x\pg 20$, $f'(x)=\dfrac{1}{x}+\ln(0,95)$
    $\begin{align*} f(x)<0 &\ssi \dfrac{1}{x} < -\ln(0,95)\\
    &\ssi x>-\dfrac{1}{\ln(0,95)}\end{align*}$
    Or $-\dfrac{1}{\ln(0,95)} \approx 19,5<20$
    Donc $f'(x)<0$ sur $[20;+\infty[$.
    $f$ est strictement décroissante sur $[20;+\infty[$.
    $\quad$
  2. Pour tout réel $x$ on a $f(x)=x\left(\dfrac{\ln(x)}{x}+\ln(0,95)\right)$
    Or, par croissance comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}+\ln(0,95)=\ln(0,95)<0$
    Ainsi, $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. La fonction $f$ est strictement décroissante et continue (car dérivable) sur $[20;+\infty[$.
    De plus $f(20) \approx 4,02>0$ et $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $[20;+\infty[$.
    D’après la calculatrice, $87<\alpha \approx< 87,1$.
    $\quad$
  4. La fonction $f$ est strictement décroissante sur $[20;+\infty[$ et s’annule en $\alpha$.
    Par conséquent :
    $\bullet f(x)>0$ sur $[20;\alpha[$;
    $\bullet f(\alpha)=0$;
    $\bullet f(x)<0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie C

$\begin{align*} E\left(X_n\right)<n &\ssi n+1-n\times 0,95^n < n\\
&\ssi -n\times 0,95^n <-1 \\
&\ssi 0,95^n > \dfrac{1}{n} \\
&\ssi n\ln(0,95) > \ln\left(\dfrac{1}{n}\right) \\
&\ssi n\ln(0,95)> -\ln(n) \\
&\ssi n\ln(0,95)+\ln(n)>0\\
&\ssi f(n)>0\end{align*}$

D’après la partie B, cela signifie que $n<\alpha$.
La première méthode diminue le nombre d’analysés pour des échantillons comportant au maximum $87$ personnes.
$\quad$

 

 

 

Ex B

Exercice B

Partie A : : Détermination d’une fonction $\boldsymbol{f}$ et résolution d’une équation différentielle

  1. Graphiquement $f(0)=3$ et $f'(0)=-2$.
    $\quad$
  2. On a $f(0)=1+b$.
    Donc $1+b=3 \ssi b=2$.
    $\quad$
  3. a. Pour tout réel $x$ on a $f'(x)=\e^x+a-b\e^{-x}$.
    Soit $f'(x)=\e^x+a-2\e^{-x}$
    $\quad$
    b. Par conséquent $f'(0)=1+a-2=a-1$.
    $\quad$
    c. $f'(0)=-2 \ssi a-1=-2 \ssi a=-1$.
    Par conséquent, pour tout réel $x$, $f(x)=\e^x-x+2\e{-x}$.
    $\quad$
  4. a. La fonction $g$ est dérivable sur $\R$ en tant que somme de fonction dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*}
    g'(x)+g(x)&=\left(e^x-1-2\e^{-x}\right)+\left(\e^x-x+2\e^{-x}\right)\\
    &=2e^x-1-x\end{align*}$
    La fonction $g$ est donc solution de l’équation $(E)$.
    $\quad$
    b. $y’+y=0 \ssi y’=-y$
    Les solutions de cette équation sont les fonctions $h$ définies sur $\R$ par $h(x)=K\e^{-x}$ où $K\in \R$.
    $\quad$
    c. Soit $j$ une solution de l’équation $(E)$.
    Ainsi $j-g$ est solution de l’équation différentielle homogène $y’-y=0$.
    Par conséquent, pour tout réel $x$ on a $j(x)-g(x)=K\e^{-x}$.
    Soit $j(x)=\e^x-x+(2+K)\e^{-x}$
    Les solutions de l’équation $(E)$ sont les fonctions $j$ définies sur $\R$ par $j(x)=\e^x-x+(2+K)\e^{-x}$ où $K\in \R$.
    $\quad$

Partie B : Étude de la fonction $\boldsymbol{g} sur $\boldsymbol{[1;+\infty[}$

  1. Pour tout réel $x$ on a
    $\begin{align*} \left(\e^x-2\right)\left(\e^x+1\right) &=\e^{2x}+\e^x-2\e^x-2 \\
    &=\e^{2x}-\e^x-2\end{align*}$
    $\quad$
  2. Pour tout réel $x$ on a
    $\begin{align*}
    g'(x)&=\e^x-2\e^{-x} \\
    &=\e^{-x}\left(\e^{2x}-2\e^x-2\right) \\
    &=\e^{-x}\left(\e^x-2\right)\left(\e^x+1\right)\end{align*}$
    $\quad$
  3. Pour tout réel $x$ on a $\e^x>0$ donc $e^x+1>0$.
    Par conséquent $g'(x)>0$ sur $[1;+\infty[$.
    La fonction $g$ est donc strictement croissante sur $[1;+\infty[$.
    $\quad$

 

Énoncé

Exercice 1     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des cinq questions, quatre réponses sont proposées ; une seule de ces réponses est exacte.

Indiquer sur la copie le numéro de la question et recopier la réponse exacte sans justifier le choix effectué.

Barème : une bonne réponse rapporte un point. Une réponse inexacte ou une absence de réponse n’apporte ni n’enlève aucun point.

Question 1 :

On considère la fonction $g$ définie sur $]0;+\infty[$ par $g(x)=x^2+2x-\dfrac{3}{x}$.
Une équation de la tangente à la courbe représentative de $g$ au point d’abscisse $1$ est :

a. $y=7(x-1)$
b. $y=x-1$
c. $y=7x+7$
d. $y=x+1$
$\quad$

Question 2 :

On considère la suite $\left(v_n\right)$ définie sur $\N$ par $v_n=\dfrac{3n}{n+2}$. On cherche à déterminer la limite de $v_n$ lorsque $n$ tend vers $+\infty$.

a. $\lim\limits_{n\to +\infty} v_n=1$
b. $\lim\limits_{n\to +\infty} v_n=3$
c. $\lim\limits_{n\to +\infty} v_n=\dfrac{3}{2}$
d. On ne peut pas la déterminer
$\quad$

Question 3 :

Dans une urne il y a $6$ boules noires et $4$ boules rouges. On effectue successivement $10$ tirages aléatoires avec remise. Quelle est la probabilité (à $10^{-4}$ près) d’avoir $4$ boules noires et $6$ boules rouges ?

a. $0,166~2$
b. $0,4$
c. $0,111~5$
d. $0,888~6$
$\quad$

Question 4 :

On considère la fonction $f$ définie sur $\R$ par $f(x)=3\e^x-x$.

a. $\lim\limits_{x\to +\infty} f(x)=3$
b. $\lim\limits_{x\to +\infty} f(x)=+\infty$
c. $\lim\limits_{x\to +\infty} f(x)=-\infty$
d. On ne peut pas déterminer la limite de la fonction $f$ lorsque $x$ tend vers $+\infty$.
$\quad$

Question 5 :

On code inconnu est constitué de $8$ signes. Chaque signe peut être une lettre ou un chiffre. Il y a donc $36$ signes utilisables pour chacune des positions.
Un logiciel de cassage de code teste environ cent millions de codes par seconde.
En combien de temps au maximum le logiciel peut-il découvrir le code ?

a. environ $0,3$ seconde
b. environ $8$ heures
c. environ $3$ heures
d. environ $470$ heures
$\quad$

$\quad$

Exercice 2     5 points

Au 1$\ier$ janvier 2020, la centrale solaire de Big Sun possédait $10~560$ panneaux solaires. On observe, chaque année, que $2 \%$ des panneaux se sont détériorés et nécessitent d’être retirés tandis que $250$ nouveaux panneaux solaires sont installés.

Partie A – Modélisation à l’aide d’une suite

On modélise l’évolution du nombre de panneaux solaires par la suite $\left(u_n\right)$ définie par $u_0 = 10~560$ et, pour tout entier naturel $n$, $u{n+1}= 0,98u_n + 250$, où $u_n$ est le nombre de panneaux solaires au 1er janvier de l’année 2020 $+ n$.

  1. a. Expliquer en quoi cette modélisation correspond à la situation étudiée.
    $\quad$
    b. On souhaite savoir au bout de combien d’années le nombre de panneaux solaires sera strictement supérieur à $12~000$. À l’aide de la calculatrice, donner la réponse à ce problème.
    $\quad$
    c. Recopier et compléter le programme en Python ci-dessous de sorte que la valeur cherchée à la question précédente soit stockée dans la variable $\text{n}$ à l’issue de l’exécution de ce dernier.
    $$\begin{array}{|l|}
    \hline
    \text{u = 10560} \\
    \text{n = 0} \\
    \textbf{while } \text{……….} \\
    \quad \text{u = ……….}\\
    \quad \text{n = ……….}\\
    \hline
    \end{array}$$
  2. Démontrer par récurrence que, pour tout entier naturel $n$, on a $u_n < 12~500$.
    $\quad$
  3. Démontrer que la suite $\left(u_n\right)$ est croissante.
    $\quad$
  4. En déduire que la suite $\left(u_n\right)$ converge. Il n’est pas demandé, ici, de calculer sa limite.
    $\quad$
  5. On définit la suite $\left(v_n\right)$ par $v_n=u_n-12~500$, pour tout entier naturel $n$.
    a. Démontrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,98$ dont in précisera le premier terme.
    $\quad$
    b. Exprimer, pour tout entier naturel $n$, $v_n$ en fonction de $n$.
    $\quad$
    c. En déduire, pour tout entier naturel $n$, $u_n$ en fonction de $n$.
    $\quad$
    d. Déterminer la limite de la suite $\left(u_n\right)$. Interpréter ce résultat dans le contexte du modèle.
    $\quad$

Partie B – Modélisation à l’aide d’une fonction

Une modélisation plus précise a permis d’estimer le nombre de panneaux solaires de la centrale à l’aide de la fonction $f$ définie pour tout $x \in [0 ; +\infty[$ par $f(x) = 12~500-500\e^{-0,02x+1,4}$, où $x$ représente le nombre d’années écoulées depuis le 1$\ier$ janvier 2020.

  1. Étudier le sens de variation de la fonction $f$.
    $\quad$
  2. Déterminer la limite de la fonction $f$ en $+\infty$.
    $\quad$
  3. En utilisant ce modèle, déterminer au bout de combien d’années le nombre de panneaux solaires dépassera $12~000$.
    $\quad$

$\quad$

Exercice 3     5 points

$ABCDEFGH$ est un cube. $I$ est le centre de la face $ADHE$ et $J$ est un point du segment $[CG]$. Il existe donc $a \in [0 ; 1] $tel que $\vect{CJ}=a\vect{CG}$.

On note $(d)$ la droite passant par $I$ et parallèle à $(FJ)$.

On note $K$ et $L$ les points d’intersection de la droite $(d)$ et des droites $(AE)$ et $(DH)$.

On se place dans le repère $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

Partie A : Dans cette partie $a=\dfrac{2}{3}$

 

 

  1. Donner les coordonnées des points $F$, $I$ et $J$.
    $\quad$
  2. Déterminer une représentation paramétrique de la droite $(d)$.
    $\quad$
  3. a. Montrer que le point de coordonnées $\left(0;0;\dfrac{2}{3}\right)$ est le point $K$.
    $\quad$
    b. Déterminer les coordonnées du point $L$, intersection des droites $(d)$ et $(DH)$.
    $\quad$
  4. a. Démontrer que le quadrilatère $FJLK$ est un parallélogramme.
    $\quad$
    b. Démontrer que le quadrilatère $FJLK$ est un losange.
    $\quad$
    c. Le quadrilatère $FJLK$ est-il un carré?
    $\quad$

Partie B : Cas général

On admet que les coordonnées des points $K$ et $L$ sont : $K\left(o; 0; 1-\dfrac{a}{2}\right)$ et $L\left(0; 1; \dfrac{a}{2}\right)$.
On rappelle que $a \in [0 ; 1]$.

  1. Déterminer les coordonnées de $J$ en fonction de $a$.
    $\quad$
  2. Montrer que le quadrilatère $FJLK$ est un parallélogramme.
    $\quad$
  3. Existe-t-il des valeurs de $a$ telles que le quadrilatère $FJLK$ soit un losange ? Justifier.
    $\quad$
  4. Existe-t-il des valeurs de $a$ telles que le quadrilatère $FJLK$ soit un carré ? Justifier.
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Exercice A

Fonction $\boldsymbol{\ln}$

Partie A

Dans un pays, une maladie touche la population avec une probabilité de $0,05$. On possède un test de dépistage de cette maladie.
On considère un échantillon de $n$ personnes $(n \pg 20)$ prises au hasard dans la population assimilé à un tirage avec remise.

On teste l’échantillon suivant cette méthode : on mélange le sang de ces $n$ individus, on teste le mélange. Si le test est positif, on effectue une analyse individuelle de chaque personne.
Soit $X_n$ la variable aléatoire qui donne le nombre d’analyses effectuées.

  1.  Montrer $X_n$ prend les valeurs $1$ et $(n + 1)$.
    $\quad$
  2. Prouver que $P\left(X_n = 1\right) = 0,95^n$.
    Établir la loi de $X_n$ en recopiant sur la copie et en complétant le tableau suivant :
    $$\begin{array}{|c|c|c|}
    \hline
    x_i&1&n+1\\
    \hline
    P\left(X_n=x_i\right)&\phantom{123456}&\phantom{123456}\\
    \hline
    \end{array}$$
    $\quad$
  3.  Que représente l’espérance de $X_n$ dans le cadre de l’expérience ?
    Montrer que $E\left(X_ n\right) = n + 1-n \times 0,95^n$.
    $\quad$

Partie B

  1. On considère la fonction $f$ définie sur $[20;+\infty[$ par $f(x)=\ln(x)+x\ln(0,95)$.
    Montrer que $f$ est décroissante sur $[20;+\infty[$.
    $\quad$
  2. On rappelle que $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$. Montrer que $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. Montrer que $f(x)=0$ admet une unique solution $\alpha$ sur $[20;+\infty[$.
    Donner un encadrement à $0,1$ près de cette solution.
    $\quad$
  4. En déduire le signe de $f$ sur $[20;+\infty[$.
    $\quad$

Partie C

On cherche à comparer deux types de dépistages. La première méthode est décrite dans la partie A, la seconde, plus classique, consiste à tester tous les individus.
La première méthode permet de diminuer le nombre d’analyses dès que $E\left(X_n\right) < n$.

En utilisant la partie B, montrer que la première méthode diminue le nombre d’analyses pour des échantillons comportant $87$ personnes maximum.
$\quad$

$\quad$

Exercice B

Équation différentielle

Partie A : Détermination d’une fonction $\boldsymbol{f}$ et résolution d’une équation différentielle

On considère la fonction $f$ définie sur $\R$ par : $$f(x)=\e^x+ax+b\e^{-x}$$
où $a$ et $b$ sont des nombres réels que l’on propose de déterminer dans cette partie.

Dans le plan muni d’un repère d’origine $O$, on a représenté ci-dessous la courbe $\mathcal{C}$, représentant la fonction $f$, et la tangente $(T)$ à la courbe $\mathcal{C}$ au point d’abscisse $0$.

  1.  Par lecture graphique, donner les valeurs de $f(0)$ et de $f'(0)$.
    $\quad$
  2. En utilisant l’expression de la fonction $f$, exprimer $f(0)$ en fonction de $b$ et en déduire la valeur de $b$.
    $\quad$
  3. On admet que la fonction $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. Donner, pour tout réel $x$, l’expression de $f'(x)$.
    $\quad$
    b. Exprimer $f'(0)$ en fonction de $a$.
    $\quad$
    c. En utilisant les questions précédentes, déterminera, puis en déduire l’expression de $f(x)$.
    $\quad$
  4. On considère l’équation différentielle : $$(E) : y’ + y = 2\e^x-x-1$$
    a. Vérifier que la fonction $g$ définie sur $\R$ par : $$g(x) = \e^x-x+2\e^{-x}$$
    est solution de l’équation $(E)$.
    $\quad$
    b. Résoudre l’équation différentielle $y’ + y = 0$.
    $\quad$
    c. En déduire toutes les solutions de l’équation $(E)$.
    $\quad$

Partie B : Étude de la fonction $\boldsymbol{[g}$ sur $\boldsymbol{[1 ; +oo[}$

  1. Vérifier que pour tout réel $x$, on a $$\e^{2x}-\e^x-2=\left(\e^x-2\right)\left(\e^x+1\right)$$
    $\quad$
  2. En déduire une epression factorisée de $g'(x)$, pour tout réel $x$.
    $\quad$
  3. On admettra que, pour tout $x\in [1;+\infty[$, $\e^x-2>0$.
    Étudier le sens de variation de la fonction $g$ sur $[1 ; +\infty[$.
    $\quad$

$\quad$