Bac – Spécialité mathématiques – Amérique du Sud – sujet 1 – 26 septembre 2022

Amérique du Sud – 26 septembre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. a. On veut calculer :
    $\begin{align*} P(D\cap A)&=P(D)\times P_D(A) \\
    &=0,01\times 0,97 \\
    &=0,009~7\end{align*}$
    La probabilité qu’un danger se présente et que l’alarme s’active est égale à $0,009~7$.
    $\quad$
    b. La probabilité qu’un danger se présente sachant que l’alarme d’active est :
    $\begin{align*} P_A(D)&=\dfrac{P(A\cap D)}{P(A)} \\
    &=\dfrac{0,009~7}{0,014~65} \\
    &\approx 0,662\end{align*}$
    $\quad$
  3. $\left(D,\conj{D}\right)$ est un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} P(A)=P(A\cap D)+P\left(A\cap \conj{D}\right) &\ssi 0,014~65=0,009~7+P\left(\conj{D}\right)\times P_{\conj{D}}(A) \\
    &\ssi 0,99\times P_{\conj{D}}(A)=0,004~95 \\
    &\ssi P_{\conj{D}}(A)=\dfrac{0,004~95}{0,99} \\
    &\ssi P_{\conj{D}}(A)=0,005\end{align*}$
    $\quad$
  4. La probabilité que l’alarme ne fonctionne pas normalement est :
    $\begin{align*} p&=P\left(\left(\conj{A}\cap D\right)\cup\left(A\cap \conj{D}\right)\right) \\
    &=P(\left(\conj{A}\cap D\right)+P\left(A\cap \conj{D}\right) \qquad \text{(incompatibilité)} \\
    &=P(D)\times P_D\left(\conj{A}\right)+P\left(\conj{D}\right))\times P_{\conj{D}}(A) \\
    &=0,01\times 0,03+0,99\times 0,005 \\
    &=0,005~25 \\
    &<0,01\end{align*}$

Partie B

  1. On répète $5$ fois la même expérience de Bernoulli de paramètre $0,005~25$.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,005~25$.
    $\quad$
  2. La probabilité qu’un seul système d’alarme ne fonctionne pas normalement est :
    $\begin{align*} P(X=1)&=\dbinom{5}{1}\times 0,005~25\times (1-0,005~25)^4 \\
    &\approx 0,025~7\end{align*}$
    $\quad$
  3. La probabilité que, dans le lot prélevé, au moins un système d’alarme ne fonctionne pas normalement est :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,005~2)^5 \\
    &\approx 0,026~0\end{align*}$
    $\quad$

Partie C

On répète $n$ fois la même expérience de Bernoulli de paramètre $0,005~25$. On appelle $Y$ la variable aléatoire qui donne le nombre de systèmes d’alarme ne fonctionnant pas normalement parmi les $n$ systèmes d’alarme prélevés.
$Y$ suit donc la loi binomiale de paramètre $n$ et $p=0,005~25$.

$\begin{align*} P(Y\pg 1)\pg 0,07&\ssi 1-P(Y=0)\pg 0,07 \\
&\ssi P(Y=0)\pp 0,93 \\
&\ssi (1-0,005~25)^n \pp 0,93 \\
&\ssi n\ln(0,994~75) \pp \ln(0,93) \\
&\ssi n\pg \dfrac{\ln(0,93)}{\ln(0,994~75)} \end{align*}$
Or $\dfrac{\ln(0,93)}{\ln(0,994~75)}\approx 13,79$

Il faut donc prélever au moins $14$ systèmes d’alarme pour que la probabilité d’avoir au moins un système d’alarme qui ne fonctionne pas normalement soit supérieur à $0,07$.

$\quad$

 

Ex 2

Exercice 2

  1. a. 
    $\begin{align*} u_1&=\dfrac{1}{5}\times 4^2 \\
    &=\dfrac{16}{5} \end{align*}$
    $\quad$
    $\begin{align*} u_2&=\dfrac{1}{5}\times \left(\dfrac{16}{5}\right)^2 \\
    &=\dfrac{256}{125} \end{align*}$
    $\quad$
    b. On peut écrire :
    $\begin{array}{l}
    \text{def suite_u(p) :}\\
    \quad \text{u = 4} \\
    \quad \text{for i in range(1,p+1) :} \\
    \qquad \text{u = u**2 / 5} \\
    \quad \text{return u}\end{array}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $P(n):~~ 0<u_n\pp 4$.
    Initialisation : $u_0=4$ donc $P(0)$ est vraie
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $\begin{align*} 0<u_n\pp 4 &\Rightarrow 0<u_n^2\pp 16 \\
    &\Rightarrow 0<\dfrac{1}{5} u_n^2 \pp \dfrac{16}{5} \\
    &\Rightarrow0<u_{n+1}\pp 4\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$, on a $0<u_n\pp 4$.
    $\quad$
    b. Soit $n \in \N$
    $\begin{align*} u_{n+1}-u_n&=\dfrac{1}{5}u_n^2-u_n \\
    &=\dfrac{u_n}{5}\left(u_n-5\right)\end{align*}$
    Or $u_n>0$ et $u_n-5<0$ car $u_n\pp 4$
    Par conséquent $u_{n+1}-u_n <0$.
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
    c. La suite $\left(u_n\right)$ est décroissante et minorée par $0$.
    Par conséquent la suite $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  3. a. On appelle $f$ la fonction définie sur $\R$ par $f(x)=\dfrac{1}{5}x^2$. Elle est continue sur $\R$ en tant que fonction polynôme.
    La suite $\left(u_n\right)$ est convergente et, pour tout entier naturel $n$, on a $u_{n+1}=f\left(u_n\right)$.
    Par conséquent $\ell$ est solution de l’équation $f(x)=x$.
    Ainsi $\ell =\dfrac{1}{5}\ell^2$.
    $\quad$
    b.
    $\begin{align*} \ell =\dfrac{1}{5}\ell^2 &\ssi 5\ell-\ell^2=0 \\
    &\ssi \ell(5-\ell)=0 \\
    &\ssi \ell=0 \text{ ou } \ell =5 \end{align*}$
    Pour tout $n\in \N$ on a $0<u_n\pp 4$.
    Par conséquent $\ell$ ne peut pas être égale à $5$.
    Ainsi $\ell=0$.
    $\quad$
  4. a. Soit $n\in \N$
    $\begin{align*} v_{n+1}&=\ln\left(u_{n+1}\right) \\
    &=\ln\left(\dfrac{1}{5}u_n^2\right) \\
    &=\ln\left(u_n^2\right)-\ln(5) \\
    &=2\ln\left(u_n\right)-\ln(5) \\
    &=2v_n-\ln(5)\end{align*}$
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} w_{n+1}&=v_{n+1}-\ln(5) \\
    &=2v_n-\ln(5)-\ln(5) \\
    &=2\left(v_n-\ln(5)\right) \\
    &=2w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $2$ et de premier terme
    $\begin{align*} w_0&=v_0-\ln(5)\\
    &=ln(4)-\ln(5) \\
    &=\ln\left(\dfrac{4}{5}\right)\end{align*}$
    $\quad$
    c. Ainsi, pour tout $n\in \N$, $w_n= \ln\left(\dfrac{4}{5}\right)\times 2^n$.
    Donc
    $\begin{align*} v_n&=w_n+\ln(5) \\
    &=\ln(5)+\ln\left(\dfrac{4}{5}\right)\times 2^n \end{align*}$
    $\quad$
  5. $\ln\left(\dfrac{4}{5}\right)<0$ et $1<2$ donc $\lim\limits_{n\to +\infty} \ln\left(\dfrac{4}{5}\right)\times 2^n=-\infty$.
    Par conséquent $\lim\limits_{n\to +\infty} v_n=-\infty$
    Or $v_n=\ln\left(u_n\right)$.
    Donc $\lim\limits_{n\to +\infty} u_n=0^+$
    $\quad$

Ex 3

Exercice 3

Partie A

  1. On a
    $\begin{align*} g(\e)&=1+\e^2\left(1-2\ln(\e)\right) \\
    &=1+\e^2(1-2) \\
    &=1-\e^2 \\
    &\approx -6,39\end{align*}$
    Donc $g(\e)<0$.
    $\quad$
  2. $\lim\limits_{x\to +\infty} 1-2\ln(x)=-\infty$ et $\lim\limits_{x\to +\infty} x^2=+\infty$
    Donc $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
  3. a. Par hypothèse la fonction $g$ est dérivable sur $]0;+\infty[$.
    Ainsi, pour tout $x>0$
    $\begin{align*} g'(x)&=2x\left(1-2\ln(x)\right)+x^2\times \dfrac{-2}{x} \\
    &=2x-4x\ln(x)-2x \\
    &=-4x\ln(x)\end{align*}$
    $\quad$
    b. Pour tout $x>0$ on a $-4x<0$.
    $\ln(x)=0 \ssi x=1$ et $\ln(x)>0 \ssi x>1$.
    Ainsi $f'(x)=0 \ssi x=1$ et $f'(x)<0 \ssi 0<x<1$
    La fonction $f$ est strictement croissante sur $]0;1]$ et strictement décroissante sur $[1;+\infty[$.
    $\quad$
    c. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $[1;+\infty[$.
    $g(1)=2>0$ et $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution $\alpha$ sur l’intervalle $[1;+\infty[$.
    $\quad$
    d. D’après la calculatrice $g(1,89) \approx 0,02>0$ et $g(1,90) \approx -0,02<0$.
    Donc $1,89 <\alpha<1,90$.
    $\quad$
  4. La fonction $g$ est strictement décroissante sur $[1;+\infty[$ et $g(\alpha)=0$.
    Ainsi:
    – pour tout $x\in [1;\alpha[$ on a $g(x)>0$;
    – $g(\alpha)=0$;
    – pour tout $x\in ]\alpha;+\infty[$ on a $g(x)>0$.
    $\quad$

Partie B

  1. Pour tout $x\in [1;\alpha]$ on a $\ln(x)\pg 0$ donc $g\dsec(x)\pp 0$.
    La fonction $g$ est concave sur l’intervalle $[1;\alpha]$.
    $\quad$
  2. a. $g(1)=2$ et $g(\alpha)=0$.
    L’équation réduite de la droite $(AB)$ est donc de la forme $y=ax+b$.
    Or le coefficient directeur de cette droite est
    $\begin{align*} a&=\dfrac{0-2}{\alpha-1} \\
    &=\dfrac{-2}{\alpha-1}\end{align*}$
    $\begin{align*} g(\alpha)=0&\ssi 0=\dfrac{-2}{\alpha-1}\times \alpha+b \\
    &\ssi b=\dfrac{2\alpha}{\alpha-1}\end{align*}$
    Ainsi l’équation réduite de la droite $(AB)$ est $y=\dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$
    b. La fonction $g$ est concave sur $[1;\alpha]$. Ainsi la courbe $\mathscr{C}$ est au-dessus de toutes ses cordes sur cet intervalle, en particulier de la droite $(AB)$.
    Ainsi, pour tout $x\in [1;\alpha]$ on a $g(x)\pg \dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a donc $H(0;3;2)$ et $G(5;3;2)$.
    $\quad$
    b. Ainsi $\vect{HG}\begin{pmatrix}5\\0\\0\end{pmatrix}$
    Par conséquent, une représentation paramétrique de la droite $(GH)$ est $\begin{cases} x=5t\\y=3\\z=2\end{cases}$.
    $\quad$
  2. a. $M$ a donc pour coordonnées $(x;3;2)$ avec $x\in [0;5]$.
    Par conséquent $\vect{HM}\begin{pmatrix}x\\0\\0\end{pmatrix}$
    $\vect{HM}=k\vect{HG}\ssi  x=5k$.
    Donc $M$ a pour coordonnées $(5k;3;2)$.
    $\quad$
    b. $\vect{AM}\begin{pmatrix} 5k\\3\\2\end{pmatrix}$ et $\vect{CM}\begin{pmatrix} 5k-5\\0\\2\end{pmatrix}$
    Donc
    $\begin{align*} \vect{AM}.\vect{CM}&=5k(5k-5)+0+4\\
    &=25k^2-25k+4\end{align*}$
    $\quad$
    c. Le triangle $AMC$ est rectangle en $M$
    si, et seulement si, $\vect{AM}.\vect{CM}=0$
    si, et seulement si, $25k^2-25k+4=0$
    Le discriminant de cette équation du second degré est $\delta=(-25)^2-4\times 4\times 25=225>0$
    Les solutions de cette équation sont donc $k_1=\dfrac{25-\sqrt{225}}{50}=\dfrac{1}{5}$ et $k_2=\dfrac{25+\sqrt{225}}{50}=\dfrac{4}{5}$
    Ainsi, le triangle $AMC$ est rectangle en $M$ est rectangle si, et seulement si, $k=\dfrac{1}{5}$ ou $k=\dfrac{4}{5}$.
    $\quad$
  3. a. On a $A(0;0;0)$, $C(5;3;0)$ et $D(0;3;0)$
    Une équation cartésienne du plan $(ACD)$ est donc $z=0$.
    $\quad$
    b. D’après la question précédente, un vecteur normal au plan $(ACD)$ est $\vec{n}\begin{pmatrix}0\\0\\1\end{pmatrix}$.
    On a $\vect{MK}\begin{pmatrix} 0\\0\\-2\end{pmatrix}$
    Ainsi $\vec{n}$ et $\vect{MK}$ sont colinéaires et $\vect{MK}$ un vecteur normal au plan $(ACD)$.
    De plus, la côte du point $K$ est $0$ donc $K$ appartient au plan $(ACD)$.
    Par conséquent, $K$ est le projeté orthogonal du point $M$ sur le plan $(ACD)$.
    $\quad$
    c. $AD=3$, $DC=5$. Donc l’aire du triangle $ACD$ est $\mathscr{A}=\dfrac{15}{2}$.
    De plus $MK=2$.
    Le volume, en unités de volume, du tétraèdre $MACD$ est donc :
    $\begin{align*} V&=\dfrac{1}{3}\times MK\times \mathscr{A} \\
    &=\dfrac{1}{3}\times 2\times \dfrac{15}{2} \\
    &=5\end{align*}$
    $\quad$
  4. Le point $M$ de coordonnées $(1;3;2)$ correspond au point obtenu à l’aide $k=\dfrac{1}{5}$ à la question 2.a.
    Par conséquent, le triangle $AMC$ est rectangle en $M$.
    $\begin{align*} AM^2&=1+9+4 \\
    &=14\end{align*}$
    Donc $AM=\sqrt{14}$
    $\begin{align*} MC^2&=(-4)^2+0+2 \\
    &=20\end{align*}$
    Donc $MC=\sqrt{20}$
    L’aire du triangle $AMC$ rectangle en $M$ est donc
    $\begin{align*} \mathscr{A}’&=\dfrac{AM\times MC}{2} \\
    &=\dfrac{\sqrt{14\times 20}}{2} \\
    &=\sqrt{70}\end{align*}$
    Le volume du tétraèdre $AMCD$ est
    $\begin{align*} V=5&\ssi \dfrac{1}{3}\times \mathscr{A}’\times DP =5\\
    &\ssi \dfrac{1}{3}\times \sqrt{70}\times DP=5 \\
    &\ssi DP=\dfrac{15}{\sqrt{70}} \end{align*}$
    Par conséquent $DP\approx 1,8$.
    $\quad$

 

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : Probabilités

PARTIE A

Le système d’alarme d’une entreprise fonctionne de telle sorte que, si un danger se présente, l’alarme s’active avec une probabilité de $0,97$.
La probabilité qu’un danger se présente est de $0,01$ et la probabilité que l’alarme s’active est de $0,014~65$.
On note $A$ l’évènement « l’alarme s’active » et $D$ l’événement « un danger se présente ».
On note $\conj{M}$ l’évènement contraire d’un évènement $M$ et $P(M)$ la probabilité de l’évènement $M$.

  1. Représenter la situation par un arbre pondéré qui sera complété au fur et à mesure de l’exercice.
    $\quad$
  2. a. Calculer la probabilité qu’un danger se présente et que l’alarme s’active.
    $\quad$
    b. En déduire la probabilité qu’un danger se présente sachant que l’alarme s’active.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  3. Montrer que la probabilité que l’alarme s’active sachant qu’aucun danger ne s’est présenté est $0,005$.
    $\quad$
  4. On considère qu’une alarme ne fonctionne pas normalement lorsqu’un danger se présente et qu’elle ne s’active pas ou bien lorsqu’aucun danger ne se présente et qu’elle s’active.
    Montrer que la probabilité que l’alarme ne fonctionne pas normalement est inférieure à $0,01$.
    $\quad$

PARTIE B

Une usine fabrique en grande quantité des systèmes d’alarme. On prélève successivement et au hasard $5$ systèmes d’alarme dans la production de l’usine. Ce prélèvement est assimilé à un tirage avec remise.
On note $S$ l’évènement « l’alarme ne fonctionne pas normalement » et on admet que $P(S) = 0,005~25$.
On considère $X$ la variable aléatoire qui donne le nombre de systèmes d’alarme ne fonctionnant pas normalement parmi les $5$ systèmes d’alarme prélevés.
Les résultats seront arrondis à $10^{-4}$.

  1. Donner la loi de probabilité suivie par la variable aléatoire $X$ et préciser ses paramètres.
    $\quad$
  2. Calculer la probabilité que, dans le lot prélevé, un seul système d’alarme ne fonctionne pas normalement.
    $\quad$
  3. Calculer la probabilité que, dans le lot prélevé, au moins un système d’alarme ne fonctionne pas normalement.
    $\quad$

PARTIE C

Soit $n$ un entier naturel non nul. On prélève successivement et au hasard $n$ systèmes d’alarme.
Ce prélèvement est assimilé à un tirage avec remise.
Déterminer le plus petit entier $n$ tel que la probabilité d’avoir, dans le lot prélevé, au moins un système d’alarme qui ne fonctionne pas normalement soit supérieure à $0,07$.
$\quad$

$\quad$

Exercice 2     7 points
Thème : Suites

Soit $\left(u_n\right)$ la suite définie par $u_0 = 4$ et, pour tout entier naturel $n$, $u_{n+1} =\dfrac{1}{5}u_n^2$.

  1. a. Calculer $u_1$ et $u_2$.
    $\quad$
    b. Recopier et compléter la fonction ci-dessous écrite en langage Python. Cette fonction est nommée suite_u et prend pour paramètre l’entier naturel $p$.
    Elle renvoie la valeur du terme de rang $p$ de la suite $\left(u_n\right)$.
    $$\begin{array}{l}
    \text{def suite_u(p) :}\\
    \quad \text{u= …}\\
    \quad \text{for i in range(1,…) :}\\
    \qquad \text{u =…}\\
    \quad \text{return u}\end{array}$$
    $\quad$
  2. a. Démontrer par récurrence que pour tout entier naturel $n$, $0 < u_n \pp 4$.
    $\quad$
    b. Démontrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  3. a. Justifier que la limite $\ell$ de la suite $\left(u_n\right)$ vérifie l’égalité $\ell=\dfrac{1}{5}\ell^2$.
    $\quad$
    b. En déduire la valeur de $\ell$.
    $\quad$
  4. Pour tout entier naturel $n$, on pose $v_n = \ln\left(u_n\right)$ et $w_n = v_n-\ln(5)$.
    a. Montrer que, pour tout entier naturel $n$, $v_{n+1} = 2v_n-\ln(5)$.
    $\quad$
    b. Montrer que la suite $\left(w_n\right)$ est géométrique de raison $2$.
    $\quad$
    c. Pour tout entier naturel $n$, donner l’expression de $w_n$ en fonction de $n$ et montrer que $v_n = \ln\left(\dfrac{4}{5}\right)\times 2^n+\ln(5)$
    $\quad$
  5. Calculer $\lim\limits_{n\to +\infty} v_n$ et retrouver $\lim\limits_{n\to +\infty} u_n$.
    $\quad$

$\quad$

 

 

Exercice 3     7 points
Thème : Fonctions, fonction logarithme

Soit $g$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par $$g(x)=1+x^2\left[1-2\ln(x)\right]$$

La fonction $g$ est dérivable sur l’intervalle $]0 ; +\infty[$ et on note $g’$ sa fonction dérivée.
On appelle $\mathscr{C}$ la courbe représentative de la fonction $g$ dans un repère orthonormé du plan.

PARTIE A

  1. Justifier que $g(\e)$ est strictement négatif.
    $\quad$
  2. Justifier que $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
  3. a. Montrer que, pour tout $x$ appartenant à l’intervalle $]0 ; +\infty[$, $g'(x)=-4x\ln(x)$.
    $\quad$
    b. Étudier le sens de variation de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
    c. Montrer que l’équation $g(x) = 0$ admet une unique solution, notée $\alpha$, sur l’intervalle $[1 ; +\infty[$.
    $\quad$
    d. Donner un encadrement de $\alpha$ d’amplitude $10^{-2}$.
    $\quad$
  4. Déduire de ce qui précède le signe de la fonction $g$ sur l’intervalle $[1 ; +\infty[$.
    $\quad$

PARTIE B

  1. On admet que, pour tout $x$ appartenant à l’intervalle $[1 ; \alpha]$, $g\dsec(x)= -4\left[\ln(x)+1\right]$.
    Justifier que la fonction $g$ est concave sur l’intervalle $[1 ; \alpha]$.
    $\quad$
  2. Sur la figure ci-dessous, $A$ et $B$ sont les points de la courbe $\mathscr{C}$ d’abscisses respectives $1$ et $\alpha$.
    $\quad$

    $\quad$
    a. Déterminer l’équation réduite de la droite $(AB)$.
    $\quad$
    b. En déduire que pour tout réel $x$ appartenant à l’intervalle $[1 ; \alpha]$, $g(x)\pg \dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : Géométrie dans l’espace

Dans la figure ci-dessous, $ABCDEFGH$ est un parallélépipède rectangle tel que
$AB = 5$, $AD = 3$ et $AE = 2$.
L’espace est muni d’un repère orthonormé d’origine $A$ dans lequel les points $B$, $D$ et $E$ ont respectivement pour coordonnées $(5; 0; 0)$, $(0; 3; 0)$ et $(0; 0; 2)$.

  1. a. Donner, dans le repère considéré, les coordonnées des points $H$ et $G$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(GH)$.
    $\quad$
  2. Soit $M$ un point du segment $[GH]$ tel que $\vect{HM}=k\vect{HG}$ avec $k$ un nombre réel de l’intervalle $[0; 1]$.
    a. Justifier que les coordonnées de $M$ sont $(5k ; 3 ; 2)$.
    $\quad$
    b. En déduire que $\vect{AM}.\vect{Cm}=25k^2-25k+4$
    $\quad$
    c. Déterminer les valeurs de $k$ pour lesquelles $AMC$ est un triangle rectangle en $M$.
    $\quad$

Dans toute la suite de l’exercice, on considère que le point $M$ a pour coordonnées $(1; 3; 2)$.
On admet que le triangle $AMC$ est rectangle en $M$ .
On rappelle que le volume d’un tétraèdre est donné par la formule  $\dfrac{1}{3}\times$ Aire de la base $\times h$ où $h$ est la hauteur relative à la base.

  1. On considère le point $K$ de coordonnées $(1; 3; 0)$.
    a. Déterminer une équation cartésienne du plan $(ACD)$.
    $\quad$
    b. Justifier que le point $K$ est le projeté orthogonal du point $M$ sur le plan $(ACD)$.
    $\quad$
    c. En déduire le volume du tétraèdre $MACD$.
    $\quad$
  2. On note $P$ le projeté orthogonal du point $D$ sur le plan $(AMC)$.
    Calculer la distance $DP$ en donner une valeur arrondie à $10^{-1}$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Amérique du Sud – sujet 2 – 27 septembre 2022

Amérique du Sud – 27 septembre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On veut calculer
    $\begin{align*}P\left(C_3\cap D\right)&=P\left(C_3\right)\times P_{C_3}(D) \\
    &=0,2\times 0,04 \\
    &=0,008\end{align*}$
    La probabilité que le composant prélevé provienne de la chaîne n° 3 et soit défectueux est égale à $0,008$.
    $\quad$
  3. $\left(C_1,C_2,C_3\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a
    $\begin{align*} P(D)&=P\left(C_1\cap D\right)+P\left(C_2\cap D\right)+P\left(C_3\cap D\right) \\
    &=P\left(C_1\right)\times P_{C_1}(D) +P\left(C_2\right)\times P_{C_2}(D) +0,008 \\
    &=0,5\times 0,01+0,3\times 0,005+0,008 \\
    &=0,014~5\end{align*}$
    $\quad$
  4. On veut calculer
    $\begin{align*} P_D\left(C_3\right)&=\dfrac{P\left(C_3\cap D\right)}{P(D)} \\
    &=\dfrac{0,008}{0,014~5} \\
    &\approx 0,551~7\end{align*}$
    La probabilité qu’un composant défectueux provienne de la chaîne n° 3 est environ égale à $0,551~7$.
    $\quad$

Partie B

  1. a. On veut calculer :
    $\begin{align*} P(X=3)&=\dbinom{20}{3}0,014~5^3\times (1-0,014~5)^{17} \\
    &\approx 0,002~7\end{align*}$
    La probabilité pour qu’un lot possède exactement trois composants défectueux est environ égale à $0,002~7$.
    $\quad$
    b. On a
    $\begin{align*} P(X=0)&=(1-0,014~5)^{20}\\
    &\approx 0,746~7\end{align*}$
    La probabilité pour qu’un lot ne possède aucun composant défectueux est environ égale $0,746~7$.
    $\quad$
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &\approx 0,253~3\end{align*}$
    La probabilité qu’un lot possède au moins un composant défectueux est environ égale $0,253~3$.
    $\quad$
  2. $X$ suit la loi binomiale de paramètres $n$ et $p=0,014~5$.
    $\begin{align*} P(X=0)\pg 0,85&\ssi (1-0,014~5)^n\pg 0,85 \\
    &\ssi 0,985~5^n\pg 0,85 \\
    &\ssi n\ln(0,985~5)\pg \ln(0,85) \\
    &\ssi n\pp \dfrac{\ln(0,85)}{\ln(0,985~5)}\end{align*}$
    Or $\dfrac{\ln(0,85)}{\ln(0,985~5)} \approx 11,13$.
    La proposition de former des lots de $11$ composants au maximum est donc exact.
    $\quad$

Partie C

$0,5\times 15+0,3\times 12+0,2\times 9=12,9$
Le coût moyen de fabrication d’un composant pour cette entreprise est égale à $12,90$ euros.

$\quad$

 

Ex 2

Exercice 2

PARTIE A : Étude d’une fonction auxiliaire $\boldsymbol{g}$

  1. $g(1)=0$ et $g(\e)=2(\e-1)-\e$ soit $g(\e)=\e-2$.
    $\quad$
  2. Par croissances comparées, $\lim\limits_{x\to 0^-} x\ln(x)=0$.
    Par conséquent $\lim\limits_{x\to 0^-} g(x)=-2$.
    $\quad$
  3. La fonction $g$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a
    $\begin{align*} g'(x)&=2-\left(\ln(x)+x\times \dfrac{1}{x}\right) \\
    &=2-\ln(x)-1 \\
    &=1-\ln(x)\end{align*}$
    $g'(x)>0 \ssi 1-\ln(x)>0 \ssi \ln(x)<1 \ssi x<\e$
    $g'(x)=0\ssi 1-\ln(x)=0 \ssi x=\e$
    On obtient donc le tableau de variations suivant :$\quad$
  4. La fonction $g$ est continue (car dérivable) et strictement croissante sur $]0;\e]$.
    $\lim\limits_{x\to 0^-}  g(x)=-2<0$ et $g(\e)=\e-2>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution sur $]0;\e]$.
    Or $g(1)=0$. L’unique solution de l’équation appartenant à $]0;\e]$ est donc $1$.
    $\quad$
    La fonction $g$ est continue (car dérivable) et strictement décroissante sur $[\e;+\infty$.
    $g(\e)=\e-2>0$ et $\lim\limits_{x\to +\infty}g(x)=-\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution $\alpha$ sur $[\e;+\infty[$.
    $\quad$
    Finalement l’équation $g(x)=0$ admet exactement deux solutions $1$ et $\alpha$ où $\alpha\in[\e;+\infty[$.
    D’après la calculatrice, $4,92<\alpha<4,93$.
    $\quad$.
  5. D’après le tableau de variations et la question précédente on obtient le tableau de signes suivant :
    $\quad$$\quad$

PARTIE B : Étude de la fonction $\boldsymbol{f}$

  1. Pour tout $x>0$ on a $f(x)=x\left(3-\ln(x)-2\dfrac{\ln(x)}{x}\right)$.
    Or $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ et, par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    Par conséquent $\lim\limits_{x\to +\infty}3-\ln(x)-2\dfrac{\ln(x)}{x}=-\infty$.
    Donc $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  2. a. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a
    $\begin{align*}f'(x)&=3-\left(\ln(x)+x\times \dfrac{1}{x}\right)-2\times \dfrac{1}{x} \\
    &=3-\ln(x)-1-\dfrac{2}{x} \\
    &=2-\ln(x)-\dfrac{2}{x} \\
    &=2\times \dfrac{x-1}{x}-\ln(x) \\
    &=\dfrac{2(x-1)-x\ln(x)}{x} \\
    &=\dfrac{g(x)}{x}\end{align*}$
    $\quad$
    b. On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  3. $f\dsec(x)>0 \ssi 2-x>0 \ssi x<2$
    $f\dsec(x)=0 \ssi 2-x=0 \ssi x=2$
    La fonction $f$ est donc convexe sur $]0;2]$ et concave sur $[2;+\infty[$.
    $f(2)=6-4\ln(2)$
    $\mathscr{C}_f$ admet donc un unique point d’inflexion de coordonnées $\left(2;6-4\ln(2)\right)$.
    $\quad$

Ex 3

Exercice 3

  1. Chaque année la population diminue de $10\%$. Il reste donc $90\%$ de cette population soit $0,9u_n$.
    On réintroduit $100$ individus dans cette réserve à la fin de chaque année.
    Ainsi, pour tout $n\in \N$, $u_{n+1}=0,9u_n+100$.
    $\quad$
  2. $u_1=1~900$ et $u_2=1~810$.
    $\quad$
  3. Pour tout entier naturel $n\in \N$ on pose $P(n):~1~000<u_{n+1}\pp u_n$.
    Initialisation : $u_0=2~000$ et $u_1=1~900$. Donc $1~000<u_1\pp u_0$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $\begin{align*}1~000 <u_{n+1} \pp u_n &\ssi 900 <0,9u_{n+1} \pp 0,9u_n \\
    &\ssi 1~000 <0,9u_{n+1}+100\pp 0,9u_n+100 \\
    &\ssi 1~000< u_{n+2}\pp u_{n+1}\end{align*}$
    La propriété $P(n+1)$ est donc vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$ on a $1~000<u_{n+1} \pp u_n$.
    $\quad$
  4. La suite $\left(u_n\right)$ est donc décroissante et minorée par $1~000$. Par conséquent $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  5. a. Pour tout $n\in \N$ on a
    $\begin{align*} v_{n+1}&=u_{n+1}-1~000 \\
    &=0,9u_n+100-1~000 \\
    &=0,9u_n-900 \\
    &=0,9\left(u_n-1~000\right) \\
    &=0,9v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,9$.
    $\quad$
    b. $v_0=1~000$. Par conséquent, pour tout $n\in \N$, $v_n=1~000\times 0,9^n$.
    Or $v_n=u_n-1~000 \ssi u_n=v_n+1~000$.
    Donc
    $\begin{align*} u_n&=v_n+1~000 \\
    &=1~000\times 0,9^n+1~000 \\
    &=1~000\left(0,9^n+1\right)\end{align*}$
    $\quad$
    c. $0<0,9<1$ donc $\lim\limits_{n\to +\infty} 0,9^n=0$
    Ainsi, $\lim\limits_{n\to +\infty} u_n=1~000$.
    Sur le long terme, la population de cette espèce sera de $1~000$ individus dans cette réserve.
    $\quad$
  6. a.
    $\begin{align*} u_n\pp 1~020&\ssi 1~000\left(1+0,9^n\right)\pp 1~020 \\
    &\ssi 1+0,9^n \pp 1,02 \\
    &\ssi 0,9^n \pp 0,02 \\
    &\ssi n\ln(0,9)\pp \ln(0,02) \\
    &\ssi n\pg \dfrac{\ln(0,02)}{\ln(0,9)} \end{align*}$
    Or $\dfrac{\ln(0,02)}{\ln(0,9)}\approx 37,13$.
    Le plus petit entier naturel $n$ tel que $u_n\pp 1~020$ est donc $38$.
    $\quad$
    b. On peut écrire
    $\begin{array}{|cl|}
    \hline
    1&\text{def population(S) :}\\
    2& \text{  n=0}\\
    3&\text{  u=2000}\\
    4&\\
    5&\text{  while u > 1020 :}\\
    6&\text{    u = 0.9 * u + 100}\\
    7&\text{    n = n + 1}\\
    8&\text{  return n}\\
    \hline
    \end{array}$
    $\quad$

Ex 4

Exercice 4

  1. a. $\vect{AB}\begin{pmatrix}6\\-4\\-2\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}2\\-4\\-6\end{pmatrix}$
    $\dfrac{6}{2}\neq \dfrac{-2}{-6}$.
    Les vecteurs $\vect{AB}$ et $\vect{AC}$ ne sont pas colinéaires. Les points $A$, $B$ et $C$ ne sont donc pas alignés.
    $\quad$
    b. D’une part $\vect{AB}.\vec{n}=6-8+2=0$
    D’autre part $\vect{AC}.\vec{n}=2-8+6=0$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    Par conséquent $\vec{n}$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABC)$ est donc de la forme $x+2y-z+d=0$.
    $A(0;8;6)$ appartient au plan $(ABC)$. Ainsi $0+16-6+d=0 \ssi d=-10$.
    Une équation cartésienne du plan $(ABC)$ est donc $x+2y-z-10=0$.
    $\quad$
  2. a. On a $\vect{DE}\begin{pmatrix}6\\6\\-6\end{pmatrix}$.
    Une représentation paramétrique de la droite $(DE)$ est donc $\begin{cases} x=6t\\y=6t\\z=6-6t\end{cases} \quad y\in \R$.
    $\quad$
    b. $I$ a pour coordonnées $(4;4;2)$.
    En prenant $t=\dfrac{4}{6}$ dans la représentation paramétrique précédente on obtient le point de coordonnées $(4;4;2)$.
    Le point $I$ appartient bien à la droite $(DE)$.
    $\quad$
  3. a. $\vect{BC}\begin{pmatrix} -4\\0\\-4\end{pmatrix}$
    Par conséquent $\vect{AC}.\vect{BC}\neq 0$, $\vect{AB}.\vect{BC}\neq 0$ et $\vect{AC}.\vect{AB}\neq 0$.
    $\begin{align*} AC^2&=2^2+(-4)^2+(-6)^2 \\
    &=4+16+36 \\
    &=56\end{align*}$
    $\begin{align*} AB^2&=6^2+(-4)^2+(-2)^2 \\
    &=36+16+4 \\
    &=56\end{align*}$
    $\begin{align*} BC^2&=(-4)^2+0^2+(-4)^2 \\
    &=32\end{align*}$.
    Le triangle $ABC$ est donc isocèle en $A$.
    $\quad$
    b. $\vect{AI}\begin{pmatrix} 4\\-4\\-4\end{pmatrix}$.
    Donc
    $\begin{align*} AI^2&=4^2+(-4)^2+(-4)^2 \\
    &=16+16+16 \\
    &=48\end{align*}$
    L’aire du triangle $ABC$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{\sqrt{48}\times \sqrt{32}}{2} \\
    &=8\sqrt{6} \text{u.a.}\end{align*}$
    $\quad$
    c.
    $\begin{align*} \vect{AB}.\vect{AC}&=12+16+12 \\
    &=40\end{align*}$
    $\quad$
    d.
    $\begin{align*}
    \vect{AB}.\vect{AC}=40&\ssi AB\times AC\times \cos \widehat{BAC}=40 \\
    &\ssi 56\cos \widehat{BAC}=40 \\
    &\ssi \cos \widehat{BAC}=\dfrac{5}{7}\end{align*}$
    Par conséquent $\widehat{BAC}\approx 44,4$°.
    $\quad$
  4. $\vect{OH}\begin{pmatrix} \dfrac{5}{3}\\\dfrac{10}{3}\\-\dfrac{5}{3}\end{pmatrix}$.
    Par conséquent $\vect{OH}=\dfrac{5}{3}\vec{n}$.
    $\vect{OH}$ est orthogonal au plan $(ABC)$.
    $\begin{align*} \dfrac{5}{3}+2\times \dfrac{10}{3}+\dfrac{5}{3}-10&=\dfrac{30}{3}-10 \\
    &=0\end{align*}$
    Le point $H$ appartient donc au plan $(ABC)$.
    Ainsi $H$ est le projeté orthogonal du point $O$ sur le plan $(ABC)$.
    La distance du point $O$ au plan $(ABC)$ est
    $\begin{align*} OH&=\sqrt{\left(\dfrac{5}{3}\right)^2+\left(\dfrac{10}{3}\right)^2+\left(\dfrac{5}{3}\right)^2} \\
    &=\sqrt{\dfrac{150}{9}}\\
    &=\dfrac{5\sqrt{6}}{3}\end{align*}$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : Probabilités

Une entreprise fabrique des composants pour l’industrie automobile. Ces composants sont conçus sur trois chaînes de montage numérotées de 1 à 3.

  • • La moitié des composants est conçue sur la chaîne n°1;
  • $30 \%$ des composants sont conçus sur la chaîne n°2;
  • les composants restant sont conçus sur la chaîne n°3.

À l’issue du processus de fabrication, il apparaît que $1 \%$ des pièces issues de la chaîne n°1 présentent un défaut, de même que $0,5 \%$ des pièces issues de la chaîne n°2 et $4 \%$ des pièces issues de la chaîne n°3.

On prélève au hasard un de ces composants. On note :

  • $C_1$ l’évènement « le composant provient de la chaîne n°1 »;
  • $C_2$ l’évènement « le composant provient de la chaîne n°2 »;
  • $C_3$ l’évènement « le composant provient de la chaîne n° 3 »;
  • $D$ l’évènement « le composant est défectueux » et $\conj{D}$ son évènement contraire.

Dans tout l’exercice, les calculs de probabilité seront donnés en valeur décimale exacte ou arrondie à $10^{-4}$ si nécessaire.

PARTIE A

  1. Représenter cette situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que le composant prélevé provienne de la chaîne n°3 et soit défectueux.
    $\quad$
  3. Montrer que la probabilité de l’évènement $D$ est $P(D) = 0,014~5$.
    $\quad$
  4. Calculer la probabilité qu’un composant défectueux provienne de la chaîne n°3.

PARTIE B

L’entreprise décide de conditionner les composants produits en constituant des lots de $n$ unités. On note $X$ la variable aléatoire qui, à chaque lot de $n$ unités, associe le nombre de composants défectueux de ce lot.
Compte tenu des modes de production et de conditionnement de l’entreprise, on peut considérer que $X$ suit la loi binomiale de paramètres $n$ et $p = 0,014~5$.

  1. Dans cette question, les lots possèdent $20$ unités. On pose $n = 20$.
    a. Calculer la probabilité pour qu’un lot possède exactement trois composants défectueux.
    $\quad$
    b. Calculer la probabilité pour qu’un lot ne possède aucun composant défectueux.
    En déduire la probabilité qu’un lot possède au moins un composant défectueux.
    $\quad$
  2. Le directeur de l’entreprise souhaite que la probabilité de n’avoir aucun composant défectueux dans un lot de $n$ composants soit supérieure à $0,85$.
    Il propose de former des lots de $11$ composants au maximum. A-t-il raison ? Justifier la réponse.
    $\quad$

PARTIE C

Les coûts de fabrication des composants de cette entreprise sont de $15$ euros s’ils proviennent de la chaîne de montage n°1, $12$ euros s’ils proviennent de la chaîne de montage n°2 et $9$ euros s’ils proviennent de la chaîne de montage n°3.
Calculer le coût moyen de fabrication d’un composant pour cette entreprise.
$\quad$

$\quad$

Exercice 2     7 points
Thème : Fonctions, fonction logarithme

Le but de cet exercice est d’étudier la fonction $f$, définie sur $]0;+\infty[$, par : $$f(x)=3x-x\ln(x)-2\ln(x)$$

PARTIE A : Étude d’une fonction auxiliaire $\boldsymbol{g}$

Soit $g$ la fonction définie sur $]0 ; +\infty[$ par $$g(x) = 2(x-1)-x \ln(x)$$
On note $g’$ la fonction dérivée de $g$. On admet que $\lim\limits_{x\to +\infty} g(x)=-\infty$

  1. Calculer $g(1)$ et $g(\e)$.
    $\quad$
  2. Déterminer $\lim\limits_{x\to 0} g(x)$ en justifiant votre démarche.
    $\quad$
  3. Montrer que, pour tout $x > 0$, $g'(x) = 1-\ln(x)$.
    En déduire le tableau des variations de $g$ sur $]0 ; +\infty[$.
    $\quad$
  4. Montrer que l’équation $g(x) = 0$ admet exactement deux solutions distinctes sur $]0 ; +\infty[$ : $1$ et $\alpha$ avec $\alpha$ appartenant à l’intervalle $[\e ; +\infty[$.
    On donnera un encadrement de $\alpha$ à $0,01$ près.
    $\quad$
  5. En déduire le tableau de signes de $g$ sur $]0 ; +\infty[$.
    $\quad$

PARTIE B : Étude de la fonction $\boldsymbol{f}$

On considère dans cette partie la fonction $f$ , définie sur $]0 ; +\infty[$,par
$$f(x) = 3x-x \ln(x)-2\ln(x)$$
On note $f’$ la fonction dérivée de $f$.
La représentation graphique $\mathscr{C}_f$ de cette fonction $f$ est donnée dans le repère $\Oij$ ci-dessous. On admet que : $\lim\limits_{x\to 0} f(x)=+\infty$.

  1. Déterminer la limite de $f$ en $+\infty$ en justifiant votre démarche.
    $\quad$
  2. a. Justifier que pour tout $x > 0$, $f'(x)=\dfrac{g(x)}{x}$.
    $\quad$
    b. En déduire le tableau des variations de $f$ sur $]0 ; +\infty[$.
    $\quad$
  3. On admet que, pour tout $x > 0$, la dérivée seconde de $f$ , notée $f\dsec$, est définie par $f\dsec(x)=\dfrac{2-x}{x^2}$.
    Étudier la convexité de $f$ et préciser les coordonnées du point d’inflexion de $\mathscr{C}_f$.
    $\quad$

$\quad$

Exercice 3     7 points
Thème : Suites

La population d’une espèce en voie de disparition est surveillée de près dans une réserve naturelle.
Les conditions climatiques ainsi que le braconnage font que cette population diminue de $10 \%$ chaque année.
Afin de compenser ces pertes, on réintroduit dans la réserve 100 individus à la fin de chaque année.
On souhaite étudier l’évolution de l’effectif de cette population au cours du temps. Pour cela, on modélise l’effectif de la population de l’espèce par la suite $\left(u_n\right)$ où $u_n$ représente l’effectif de la population au début de l’année 2020$+n$.
On admet que pour tout entier naturel $n$, $u_n > 0$.
Au début de l’année 2020, la population étudiée compte $2~000$ individus, ainsi $u_0 = 2~000$.

  1. Justifier que la suite $\left(u_n\right)$ vérifie la relation de récurrence :
    $u_{n+1} = 0,9u_n +100$.
    $\quad$
  2. Calculer $u_1$ puis $u_2$.
    $\quad$
  3. Démontrer par récurrence que pour tout entier naturel $n$ : $1~000 < u_{n+1}\pp u_n$.
    $\quad$
  4. La suite $\left(u_n\right)$ est-elle convergente ? Justifier la réponse.
    $\quad$
  5. On considère la suite $\left(v_n\right)$ définie pour tout entier naturel $n$ par $v_n = u_n −1~000$.
    a. Montrer que la suite $\left(v_n\right)$ est géométrique de raison $0,9$.
    $\quad$
    b. En déduire que, pour tout entier naturel $n$, $u_n = 1~000(1+0,9n
    )$.
    $\quad$
    c. Déterminer la limite de la suite $\left(u_n\right)$.
    En donner une interprétation dans le contexte de cet exercice.
    $\quad$
  6. On souhaite déterminer le nombre d’années nécessaires pour que l’effectif de la population passe en dessous d’un certain seuil $S$ (avec $S > 1~000$).
    a. Déterminer le plus petit entier $n$ tel que $u_n \pp 1~020$.
    Justifier la réponse par un calcul.
    $\quad$
    b. Dans le programme Python ci-dessous, la variable $n$ désigne le nombre d’années écoulées depuis 2020, la variable $u$ désigne l’effectif de la population.
    $$\begin{array}{|ll|}
    \hline
    1&\text{def population(S) :}\\
    2&\quad \text{n=0}\\
    3&\quad \text{u=2000}\\
    4&\\5&\quad \text{while …… :}\\
    6& \qquad \text{u= …}\\
    7& \qquad \text{n = …}\\
    8& \quad \text{return …}\\
    \hline
    \end{array}$$
    Recopier et compléter ce programme afin qu’il retourne le nombre d’années nécessaires pour que l’effectif de la population passe en dessous du seuil $S$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : Géométrie dans l’espace

Dans l’espace muni d’un repère orthonormé $\Oijk$, on considère les points $$
A(0 ; 8 ; 6), B(6 ; 4 ; 4) \text{ et } C(2 ; 4 ; 0)$$

  1. a. Justifier que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b. Montrer que le vecteur $\vec{n}(1 ; 2 ; -1)$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Déterminer une équation cartésienne du plan $(ABC)$.
    $\quad$
  2. Soient $D$ et $E$ les points de coordonnées respectives $(0; 0; 6)$ et $(6; 6; 0)$.
    a. Déterminer une représentation paramétrique de la droite $(DE)$.
    $\quad$
    b. Montrer que le milieu $I$ du segment $[BC]$ appartient à la droite $(DE)$.
    $\quad$
  3. On considère le triangle $ABC$.
    a. Déterminer la nature du triangle $ABC$.
    $\quad$
    b. Calculer l’aire du triangle $ABC$ en unité d’aire.
    $\quad$
    c. Calculer $\vect{AB}.\vect{AC}$.
    $\quad$
    d. En déduire une mesure de l’angle $\widehat{BAC}$ arrondie à $0,1$ degré.
    $\quad$
  4. On considère le point $H$ de coordonnées $\left(\dfrac{5}{3};\dfrac{10}{3};-\dfrac{5}{3}\right)$.
    Montrer que $H$ est le projeté orthogonal du point $O$ sur le plan $(ABC)$.
    En déduire la distance du point $O$ au plan $(ABC)$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole, Antilles, Guyane – sujet 2 – 9 septembre 2022

Métropole Antilles/Guyane – 9 septembre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient l’arbre pondéré suivant :
    $\quad$$\quad$
  2. a. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} p(E)&=p(R)\times p_R(E)+p\left(\conj{R}\right)\times p_{\conj{R}}(E) \\
    &=0,4\alpha+0,7(1-\alpha) \\
    &=0,7-0,3\alpha\end{align*}$
    $\quad$
    b.
    $\begin{align*} p(E)=0,58&\ssi 0,7-0,3\alpha=0,58 \\
    &\ssi -0,12=-0,3\alpha\\
    &\ssi  \alpha=0,4\end{align*}$
    $\quad$
  3. On a
    $\begin{align*}
    p_E\left(\conj{R}\right)&=\dfrac{p\left(E\cap \conj{R}\right)}{p(E)} \\
    &=\dfrac{p\left(\conj{R}\right)\times P_{\conj{R}}(E)}{p(E)} \\
    &=\dfrac{0,7(1-\alpha)}{0,58} \\
    &=\dfrac{0,7\times 0,6}{0,58} \\
    &=\dfrac{21}{29}\\
    &\approx 0,72
    \end{align*}$
    La probabilité que le client ayant loué un vélo électrique ait loué un vélo tout terrain est environ égale à $0,72$.
    $\quad$
  4. On a
    $\begin{align*} p\left(\conj{R}\cap E\right)&=p\left(\conj{R}\right)\times p_{\conj{R}}(E) \\
    &=0,7(1-\alpha)\\
    &=0,7\times 0,6\\
    &=0,42\end{align*}$
    La probabilité que le client loue un vélo tout terrain électrique est égale à $0,42$.
    $\quad$
  5. a. $X(\Omega)=\acco{25,~35,~40,~50}$
    $\begin{align*} p(X=25)&=p\left(R\cap \conj{E}\right) \\
    &= 0,4\times 0,4\\
    &=0,24\end{align*}$
    $\begin{align*} p(X=35)&=p\left(\conj{R}\cap \conj{E}\right) \\
    &= 0,6\times 0,3\\
    &=0,18\end{align*}$
    $\begin{align*} p(X=40)&=p\left(R\cap \conj{E}\right) \\
    &= 0,4\times 0,4\\
    &=0,16\end{align*}$
    $\begin{align*} p(X=50)&=p\left(\conj{R}\cap E\right) \\
    &= 0,6\times 0,7\\
    &=0,42\end{align*}$
    On obtient ainsi le tableau de loi de probabilité de $X$ suivant :
    $\begin{array}{|c|c|c|c|c|}
    \hline
    x&25&35&40&50\\
    \hline
    p(X=x)&0,24&0,18&0,16&0,42\\
    \hline
    \end{array}$
    $\quad$
    b. L’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=25\times 0,24+35\times 0,18+40\times 0,16+50\times 0,42 \\
    &=39,7\end{align*}$
    En moyenne, une location de vélo coûte $39,70$ euros.
    $\quad$
  6. a. On répète $30$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,58$.
    $Y$ suit donc la loi binomiale de paramètres $n=30$ et $p=0,58$.
    $\quad$
    b.
    $\begin{align*} p(X=20)&=\dbinom{30}{20} 0,58^{20}\times 0,42^{10} \\
    &\approx 0,095\end{align*}$
    La probabilité qu’un échantillon contienne exactement $20$ clients qui
    louent un vélo électrique est environ égale à $0,095$.
    $\quad$
    c. On veut calculer $P(X\pg 15) \approx 0,858$.
    La probabilité qu’un échantillon contienne au moins $15$ clients qui louent un vélo électrique est environ égale à $0,858$.
    $\quad$

Ex 2

Exercice 2

  1. Soit $n\in \N$
    $\begin{align*} b_{n+1}&=a_{n+1}-2 \\
    &=0,5a_n+1-2 \\
    &=0,5a_n-1 \\
    &=0,5\left(a_n-2\right) \\
    &=0,5b_n\end{align*}$
    La suite $\left(b_n\right)$ est donc géométrique de raison $0,5$.
    Réponse b
    $\quad$
  2. On a donc $u_1=5$, $v_1=3$, $u_2=14$ et $v_2=8$.
    Donc $\dfrac{u_2}{v_2}=1,75$
    Réponse c
    $\quad$
  3. La boucle du programme calcule tous les termes $u_n$ et $v_n$ pour $n$ allant de $1$ à $10$.
    Le programme renvoie donc $u_{10}$ et $v_{10}$.
    Réponse d
    $\quad$
  4. La fonction $f’$ semble croissante sur l’intervalle $[-4;0]$.
    Par conséquent la fonction $f$ semble convexe sur cet intervalle.
    Réponse b
    $\quad$
  5. Le coefficient directeur de la droite $(BC)$ est
    $\begin{align*} f\dsec(1)&=\dfrac{y_C-y_B}{x_C-x_B} \\
    &=5\end{align*}$
    Réponse d
    $\quad$
  6. On considère la fonction $F$ définie sur $\R$ par $F(x)=\left(x^2-2x+3\right)\e^x-2$.
    La fonction $F$ est dérivable sur $\R$ en tant que somme et produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} F'(x)&=(2x-2)\e^x+\left(x^2-2x+3\right)\e^x \\
    &=\left(2x-2+x^2-2x+3\right)\e^x \\
    &=\left(x^2+1\right)\e^x\end{align*}$
    Ainsi $F$ est une primitive de la fonction $f$ sur $\R$.
    De plus $F(0)=3-2=1$.
    Réponse b
    $\quad$

Ex 3

Exercice 3

Partie A

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=0$.
    $\quad$
  2. Pour tout réel $x>0$ on a $f(x)=x\left(1-\ln(x)\right)$.
    Or $\lim\limits_{x\to +\infty}\ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} 1-\ln(x)=-\infty$ ainsi $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. a. Pour tout réel $x>0$ on a
    $\begin{align*} f'(x)&=1-\ln(x)-x\times \dfrac{1}{x} \\
    &=1-\ln(x)+1\\
    &=-\ln(x)\end{align*}$
    $\quad$
    b. $f'(x)=0\ssi -\ln(x)=0 \ssi x=1$
    $f'(x)>0 \ssi -\ln(x)>0 \ssi x\in ]0;1[$.
    La fonction $f$ est donc strictement croissante sur $]0;1]$ et strictement décroissante sur $[1;+\infty[$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$

    $\quad$
  4. $f(x)=x\ssi x-x\ln(x)=x \ssi -x\ln(x)=0 \ssi x=1$ (la valeur $0$ n’est pas solution puisque $f$ n’est pas définie en $0$).
    $\quad$

Partie B

  1. Pour tout $n\in \N$ on pose $P(n):~0,5\pp u_n\pp u_{n+1} \pp 1$.
    Initialisation : $u_0=0,5$ et $u_1\approx 0,85$.
    Par conséquent $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $0,5\pp u_n \pp u_{n+1} \pp 1$.
    La fonction $f$ est croissante sur l’intervalle $[0,5;1]$.
    Par conséquent $f(0,5) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp p(1)$ c’est-à-dire $u_1\pp u_{n+1} \pp u_{n+2} \pp 1$.
    Or $u_1\approx 0,85$.
    La propriété $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout $n\in \N$, $0,5\pp u_n\pp u_{n+1} \pp 1$.
    $\quad$
  2. a. La suite $\left(u_n\right)$ est croissante et majorée par $1$. Elle converge donc vers un réel $\ell$.
    $\quad$
    b. La fonction $f$ est continue sur $]0;+\infty[$ et, pour tout $n\in \N$, on a $u_{n+1}=f\left(u_n\right)$.
    Par conséquent $\ell$ est solution de l’équation $f(x)=x$.
    D’après la question A.4. l’unique solution de cette équation est $1$.
    Ainsi $\ell=1$.
    $\quad$

Partie C

  1. La fonction $f_k$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f_k'(x)&=k-\ln(x)-x\times \dfrac{1}{x} \\
    &=-\ln(x)+k-1\end{align*}$
    $f_k'(x)>0 \ssi -\ln(x)+k-1>0 \ssi \ln(x)<k-1 \ssi x<\e^{k-1}$
    La fonction $f_k$ est donc strictement croissante sur $\left]0;\e^{k-1}\right]$ et strictement décroissante sur $\left[\e^{k-1};+\infty\right[$.
    La fonction $f_k$ admet par conséquent un maximum en $x_k=\e^{k-1}$.
    $\quad$
  2. Soit $k\in \R$.
    $\begin{align*} y_k=f_k\left(x_k\right)\\
    &=k\e^{k-1}-\e^{k-1}\ln\left(\e^{k-1}\right) \\
    &=k\e^{k-1}-(k-1)\e^{k-1} \\
    &=\e^{k-1}\left(k-(k-1)\right) \\
    &=\e^{k-1}\\
    &=x_k\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. a. Les coordonnées du vecteur $\vec{u}’$ sont $\begin{pmatrix} 0\\1\\1\end{pmatrix}$.
    $\quad$
    b. Les vecteurs $\vec{u}$ et $\vec{u}’$ ne sont pas colinéaires (ils n’ont pas les mêmes coordonnées nulles). Les droites $\mathscr{D}$ et $\mathscr{D}’$ ne sont donc pas parallèles.
    $\quad$
    c. Une représentation paramétrique de la droite $\mathscr{D}$ est $\begin{cases} x=2+k\\y=4+2k\\z=0\end{cases}$.
    $\quad$
  2. $\vec{v}.\vec{u}=2-2+0=0$ et $\vec{v}3.\vec{u}’=0-1+1=0$.
    $\vec{v}$ est donc orthogonal aux deux vecteurs, non colinéaires, $\vec{u}$ et $\vec{u}’$.
    $\vec{v}$ est donc un vecteur directeur de la droite perpendiculaire à la fois à $\mathscr{D}$ et $\mathscr{D}’$.
    Ainsi $\vec{v}\begin{pmatrix}2\\-1\\1\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$.
    $\quad$
  3. a. $\vec{n}.\vec{u}=2-2+0=0$ et $\vec{n}.\vec{v}= 4+1-5=0$.
    Ainsi $\vec{n}$ orthogonal à deux vecteurs non colinéaires du plan $\mathscr{P}$.
    $\quad$
    b. Une équation cartésienne du plan $\mathscr{P}$ est donc de la forme $2x-y-5z+d=0$.
    Le point $A(2;4;0)$ appartient au plan $\mathscr{P}$.
    Par conséquent $4-4-0+d=0 \ssi d=0$.
    Une équation cartésienne du plan $\mathscr{P}$ est donc $2x-y-5z=0$.
    $\quad$
    c. $M’$ est un point de $Delta$. Il appartient donc également au plan $\mathscr{P}$ qui contient cette droite.
    $M’$ est un point de $\mathscr{D}’$.
    $M’$ est donc le point d’intersection de la droite $\mathscr{D}’$ avec le plan $\mathscr{P}$.
    $2\times 3-1-5=0$ : le point de coordonnées $(3;1;1)$ appartient donc au plan $\mathscr{P}$.
    En prenant $t=-2$ dans la représentation paramétrique de la droite $\mathscr{D}’$ on obtient le point de coordonnées $(3;1;1)$.
    Ainsi ce point est le point d’intersection de la droite $\mathscr{D}’$ et $\mathscr{P}$.
    Ainsi $M’$ a pour coordonnées $(3;1;1)$.
    $\quad$
  4. a. $\vec{v}$ est un vecteur directeur de $\Delta$ et $M’$ appartient à cette droite.
    Une représentation paramétrique de la droite $\Delta$ est donc $\begin{cases} x= 3+2k’\\y=1-k’\\z=1+k’\end{cases} \qquad k’\in \R$.
    $\quad$
    b. En prenant $k’=-1$ dans la représentation paramétrique de $\Delta$ on obtient le point de coordonnées $(-1;2;0)$.
    En prenant $k=-1$ dans la représentation paramétrique de $\mathscr{D}$ on obtient le point de coordonnées $(-1;2;0)$.
    $M$ est le point d’intersection de ces deux droites. Donc $M$ a pour coordonnées $(1;2;0)$.
    $\quad$
    c. Les coordonnées de $\vect{MM’}$ sont $\begin{pmatrix}2\\-1\\1\end{pmatrix}$.
    Par conséquent
    $\begin{align*} MM’&=\sqrt{2^2+(-1)^2+1^2}\\
    &=\sqrt{4+1+1} \\
    &=\sqrt{6}\end{align*}$.
    $\quad$
  5. a. Un vecteur directeur de la droite $d$ est $\vec{r}\begin{pmatrix} 5\\5\\1\end{pmatrix}$.
    $\vec{n}.\vec{r}=10-5-5=0$. Par conséquent $\vec{n}$ est normal à la droite $d$.
    Ainsi $d$ est parallèle au plan $\mathscr{P}$.
    $\quad$
    b. Les droites $\mathscr{D}$ et $\Delta$ sont perpendiculaires en $M$.
    Le point $A$ appartient à la droite $\mathscr{D}$ et le point $M’$ appartient à la droite $\Delta$.
    Le triangle $AMM’$ est rectangle en $M$.
    Les coordonnées de $\vect{AM}$ sont $\begin{pmatrix} -1\\-2\\0\end{pmatrix}$.
    Par conséquent
    $\begin{align*} AM&=\sqrt{(-1)^2+(-2)^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    Ainsi l’aire du triangle $AMM’$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AM\times MM’}{2} \\
    &=\dfrac{\sqrt{30}}{2}\end{align*}$.
    Le volume du tétraèdre $ANMM’$ est donc $V=\dfrac{\sqrt{30}}{3}\ell$.
    $\quad$
    c. La droite $d$ est parallèle au plan $\mathscr{P}$. La distance d’un point de la droite $d$ à ce plan est donc toujours la même. Ainsi $\ell$ ne dépend pas du point $N$ choisi.
    Par conséquent $AN_1MM’$ et $AN_2MM’$ ont le même volume.
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : probabilités

Dans le magasin d’Hugo, les clients peuvent louer deux types de vélos : vélos de route ou bien vélos tout terrain. Chaque type de vélo peut être loué dans sa version électrique ou non.
On choisit un client du magasin au hasard, et on admet que :

  • Si le client loue un vélo de route, la probabilité que ce soit un vélo électrique est de $0,4$ ;
  • Si le client loue un vélo tout terrain, la probabilité que ce soit un vélo électrique est de $0,7$ ;
  • La probabilité que le client loue un vélo électrique est de $0,58$.

On appelle $\alpha$ la probabilité que le client loue un vélo de route, avec $0\pp \alpha\pp 1$.

On considère les événements suivants :

  • $R$ : « le client loue un vélo de route » ;
  • $E$ : « le client loue un vélo électrique » ;
  • $\conj{R}$ et $\conj{E}$ , événements contraires de $R$ et $E$.

On modélise cette situation aléatoire à l’aide de l’arbre reproduit ci-dessous :

Si $F$ désigne un événement quelconque, on notera $p(F)$ la probabilité de $F$.

  1. Recopier cet arbre sur la copie et le compléter.
    $\quad$
  2. a. Montrer que $p(E)=0,7-0,3\alpha$.
    $\quad$
    b. En déduire que : $\alpha = 0,4$.
    $\quad$
  3. On sait que le client a loué un vélo électrique. Déterminer la probabilité qu’il ait loué un vélo tout terrain. On donnera le résultat arrondi au centième.
    $\quad$
  4. Quelle est la probabilité que le client loue un vélo tout terrain électrique ?
    $\quad$
  5. Le prix de la location à la journée d’un vélo de route non électrique est de $25$ euros, celui d’un vélo tout terrain non électrique de $35$ euros. Pour chaque type de vélo, le choix de la version électrique augmente le prix de location à la journée de $15$ euros.
    On appelle $X$ la variable aléatoire modélisant le prix de location d’un vélo à la journée.
    a. Donner la loi de probabilité de $X$. On présentera les résultats sous forme d’un tableau.
    $\quad$
    b. Calculer l’espérance mathématique de $X$ et interpréter ce résultat.
    $\quad$
  6. Lorsqu’on choisit $30$ clients d’Hugo au hasard, on assimile ce choix à un tirage avec remise. On note $Y$ la variable aléatoire associant à un échantillon de $30$ clients choisis au hasard le nombre de clients qui louent un vélo électrique.
    On rappelle que la probabilité de l’événement $E$ est : $p(E) = 0,58$.
    a. Justifier que $Y$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Déterminer la probabilité qu’un échantillon contienne exactement $20$ clients qui louent un vélo électrique. On donnera le résultat arrondi au millième.
    $\quad$
    c. Déterminer la probabilité qu’un échantillon contienne au moins $15$ clients qui louent un vélo électrique. On donnera le résultat arrondi au millième.
    $\quad$

$\quad$

Exercice 2     7 points
Thèmes : suites, fonctions

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère les suites $\left(a_n\right)$ et $\left(b_n\right)$ définie par $a_0=1$ et, pour tout entier naturel $n$, $a_{n+1} = 0,5a_n+1$ et $b_n=a_n-2$.
    On peut affirmer que :
    a. $\left(a_n\right)$ est arithmétique ;
    b. $\left(b_n\right)$ est géométrique ;
    c. $\left(a_n\right)$ est géométrique ;
    d. $\left(b_n\right)$ est arithmétique.
    $\quad$

Dans les questions 2. et 3., on considère les suites $\left(u_n\right)$ et $\left(b_n\right)$ définies par :$$u_0=2,~v_0=1 \text{ et, pour tout entier naturel }n :\begin{cases} u_{n+1}=u_n+3v_n\\v_{n+1}=u_n+v_n\end{cases}$$

  1. On peut affirmer que :
    a. $\begin{cases} u_2=5\\v_2=3\end{cases}$;
    b. $u_2^2-3v_2^2=-2^2$;
    c. $\dfrac{u_2}{v_2}=1,75$;
    d. $5u_1=3v_1$.
    $\quad$
  2. On considère le programme ci-dessous écrit en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def valeurs() :}\\
    \quad \text{u = 2}\\
    \quad \text{v = 1}\\
    \quad \text{for k in range(1,11) :}\\
    \qquad \text{c = u}\\
    \qquad \text{u = u+3*v}\\
    \qquad \text{v = c+v}\\
    \quad \text{return (u,v)}\\
    \hline
    \end{array}$$
    Ce programme renvoie :
    a. $u_{11} et $v_{11};
    b. $u_{10}$ et $v_{11}$;
    c. les valeurs de $u_n$ et $v_n$ pour $n$ allant de $1$ à $10$;
    d. $u_{10}$ et $v_{10}$.
    $\quad$

Pour les questions 4. et 5., on considère une fonction $f$ deux fois dérivable sur l’intervalle $[-4 ; 2]$. On note $f’$ la fonction dérivée de $f$ et $f\dsec$ la dérivée seconde de $f$.
On donne ci-dessous la courbe représentative $\mathcal{C}’$ de la fonction dérivée $f’$ dans un repère du plan. On donne de plus les points $A(-2; 0)$, $B(1; 0)$ et $C(0; 5)$.

  1. La fonction $f$ est :
    a. concave sur $[-2; 1]$;
    b. convexe sur $[-4; 0]$;
    c. convexe sur $[-2; 1]$;
    d. convexe sur $[0; 2]$.
    $\quad$
  2. On admet que la droite $(BC)$ est la tangente à la courbe $\mathcal{C}’$ au point $B$.
    On a :
    a. $f'(1) < 0$;
    b. $f'(1)= 5$;
    c. $f\dsec(1) > 0$;
    d. $f\dsec(1) = -5$.
    $\quad$
  3. Soit $f$ la fonction définie sur $\R$ par $f(x)=\left(x^2+1\right)\e^x$.
    La primitive $F$ de $f$ sur $\R$ telle que $F(0) = 1$ est définie par :
    a. $F(x)=\left(x^2-2x+3\right)\e^x$;
    b. $F(x)=\left(x^2-2x+3\right)\e^x-2$;
    c. $F(x)=\left(\dfrac{1}{3}x^3+x\right)\e^x+1$;
    d. $F(x)=\left(\dfrac{1}{3}x^3+x\right)\e^x$;
    $\quad$

$\quad$

Exercice 3     7 points
Thèmes : fonction logarithme, suites

Les parties B et C sont indépendantes.

On considère la fonction $f$ définie sur $]0; +\infty[$ par $f(x) = x-x\ln(x)$, où $\ln$ désigne la fonction logarithme népérien.

Partie A

  1. Déterminer la limite de $f(x)$ quand $x$ tend vers $0$.
    $\quad$
  2. Déterminer la limite de $f(x)$ quand $x$ tend vers $+\infty$.
    $\quad$
  3. On admet que la fonction $f$ est dérivable sur $]0; +\infty[$ et on note $f’$ sa fonction dérivée.
    a. Démontrer que, pour tout réel $x>0$, on a : $f'(x)=-\ln(x)$.
    $\quad$
    b. En déduire les variations de la fonction $f$ sur $]0; +\infty[$ et dresser son tableau de variation.
    $\quad$
  4. Résoudre l’équation $f(x) = x$ sur $]0; +\infty[$.
    $\quad$

Partie B

Dans cette partie, on pourra utiliser avec profit certains résultats de la partie A.

On considère la suite $\left(u_n\right)$ définie par : $$\begin{cases} u_0=0,5\\\text{pour tout entier naturel }n, u_{n+1}=u_n-u_n\ln\left(u_n\right)\end{cases}$$
Ainsi, pour tout entier naturel $n$, on a : $u_{n+1}=f\left(u_n\right)$.

  1. On rappelle que la fonction $f$ est croissante sur l’intervalle $[0,5; 1]$.
    Démontrer par récurrence que, pour tout entier naturel $n$, on a : $0,5\pp u_n\pp u_{n+1}\pp 1$.
    $\quad$
  2. a. Montrer que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    b. On note $l$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $l$.
    $\quad$

Partie C

Pour un nombre réel $k$ quelconque, on considère la fonction $f_k$ définie sur $]0; +\infty[$ par : $$f_k(x)=kx-x\ln(x)$$

  1. Pour tout nombre réel $k$, montrer que $f_k$ admet un maximum $y_k$ atteint en $x_k=\e^{k-1}$.
    $\quad$
  2. Vérifier que, pour tout nombre réel $k$, on a : $x_k=y_k$.
    $\quad$

$\quad$

 

Exercice 4     7 points
Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère :

  • la droite $\mathcal{D}$ passant par le point $𝐴(2; 4; 0)$ et dont un vecteur directeur est $\vec{u}\begin{pmatrix}1\\2\\0\end{pmatrix}$;
  • la droite $\mathcal{D}’$ dont une représentation paramétrique est : $\begin{cases}x=3\\y=3+t\\z=3+t\end{cases} \quad, t\in \R$.
  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u’}de la droite $\mathcal{D}’$.
    $\quad$
    b. Montrer que les droites $\mathcal{D}$ et $\mathcal{D}’$ ne sont pas parallèles.
    $\quad$
    c. Déterminer une représentation paramétrique de la droite $\mathcal{D}$.

On admet dans la suite de cet exercice qu’il existe une unique droite $\Delta$ perpendiculaire aux droites $\mathcal{D}$ et $\mathcal{D}’$. Cette droite ∆$\Delta$ coupe chacune des droites $\mathcal{D}$ et $\mathcal{D}’$. On appellera $M$ le point d’intersection de $\Delta$ et $\mathcal{D}$, et $M’$ le point d’intersection de $\Delta$ et $\mathcal{D}’$.

On se propose de déterminer la distance $MM’$ appelée « distance entre les droites $\mathcal{D}$ et $\mathcal{D}’$ ».

  1. Montrer que le vecteur $\vec{v}\begin{pmatrix}2\\-1\\1\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$.
    $\quad$
  2. On note $\mathcal{P}$ le plan contenant les droites $\mathcal{D}$ et $\Delta$, c’est-à-dire le plan passant par le point $A$ et de vecteurs directeurs $\vec{u}$ et $\vec{v}$.
    a. Montrer que le vecteur $\vec{n}\begin{pmatrix}2\\-1\\-5\end{pmatrix}$ est un vecteur normal au plan $\mathcal{P}$.
    $\quad$
    b. En déduire qu’une équation du plan $\mathcal{P}$ est : $2x-y-5z=0$.
    $\quad$
    c. On rappelle que $M’$ est le point d’intersection des droites $\Delta$ et $\mathcal{D}’$. Justifier que $M’$ est également le point d’intersection de $\mathcal{D}’$ et du plan $\mathcal{P}$.
    En déduire que les coordonnées du point $M’$ sont $(3; 1; 1)$.
    $\quad$
  3. a. Déterminer une représentation paramétrique de la droite $\Delta$.
    $\quad$
    b. Justifier que le point $M$ a pour coordonnées $(1; 2; 0)$.
    $\quad$
    c. Calculer la distance $MM’$.
    $\quad$
  4. On considère la droite $d$ de représentation paramétrique $\begin{cases} x=5t\\y=2+5t\\z=1+t\end{cases} \quad$ avec $t\in \R$.
    a. Montrer que la droite $d$ est parallèle au plan $\mathcal{P}$.
    $\quad$
    b. On note $\ell$ la distance d’un point $N$ de la droite $d$ au plan $\mathcal{P}$. Exprimer le volume du tétraèdre $ANMM’$ en fonction de $\ell$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$
    c. Justifier que, si $N_1$ et $N_2$ sont deux points quelconques de la droite $d$, les tétraèdres $AN_1MM’$ et $AN_2MM’$ ont le même volume.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole, Antilles, Guyane – sujet 1 – 8 septembre 2022

Métropole Antilles/Guyane – 8 septembre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. Pour tout réel $x$
    $\begin{align*} g(x)&=\dfrac{2\e^x}{\e^x+1} \\
    &=\dfrac{2\e^x}{\e^x\left(1+\e^{-x}\right) }\\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$ et $\lim\limits_{x\to +\infty} g(x)=2$.
    La droite d’équation $y=2$ est donc asymptote à la courbe représentative de la fonction $g$ en $+\infty$.
    Réponse b
    $\quad$
  2. La fonction $f\dsec$ semble positive sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Par conséquent $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Réponse c
    $\quad$
  3. Pour tout $n\in \N$ on a :
    $\begin{align*} v_{n+1}&=u_{n+1}-2 \\
    &=\dfrac{1}{2}u_{n+1}+1-2 \\
    &=\dfrac{1}{2}u_{n+1}-1 \\
    &=\dfrac{1}{2}\left(u_n-2\right)\\
    &=\dfrac{1}{2}v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $\dfrac{1}{2}$.
    Réponse d
    $\quad$
  4. $0<\dfrac{1}{4}<1$ donc $\lim\limits_{n\to +\infty} \left(\dfrac{1}{4}\right)^n=0$. Par conséquent $\lim\limits_{n\to +\infty} 1+\left(\dfrac{1}{4}\right)^n=1$.
    $\begin{align*}\dfrac{n}{n+1}&=\dfrac{n}{n\left(1+\dfrac{1}{n}\right)}\\
    &=\dfrac{1}{1+\dfrac{1}{n}}\end{align*}$
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{n}=0$.
    Par conséquent $\lim\limits_{n\to +\infty} \dfrac{n}{n+1}=1$ et $\lim\limits_{n\to +\infty} 2-\dfrac{n}{n+1}=1$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} u_n=1$.
    Réponse b
    $\quad$
  5. On considère la fonction $F$ définie sur $]0;+\infty[$ par $F(x)=\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$.
    La fonction $F$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a :
    $\begin{align*} F'(x)&=\dfrac{1}{3}\times 3x^2\left(\ln(x)-\dfrac{1}{3}\right)+\dfrac{1}{3}x^3\times \dfrac{1}{x}\\
    &=x^2\ln(x)-\dfrac{1}{3}x^2+\dfrac{1}{3}x^2 \\
    &=x^2\ln(x)\end{align*}$
    Ainsi $F$ est une primitive de la fonction $f$.
    Réponse a
    $\quad$
  6. Soit $x\in \R$
    $\begin{align*} 2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}&=\dfrac{2\e^{-x}+2+3\e^{-x}-5}{\e^{-x}+1} \\
    &=\dfrac{5\e^{-x}-3}{\e^{-x}+1} \\
    &=\dfrac{\e^{-x}\left(5-3\e^x\right)}{\e^{-x}\left(1+\e^x\right)} \\
    &=\dfrac{5-3\e^x}{1+\e^x}\end{align*}$
    Réponse a
    $\quad$

Ex 2

Exercice 2

  1. a. On a $p\left(\conj{M}\cap \conj{G}\right)=0,06$ et $p\left(\conj{M}\right)=1-0,7$ c’est-à-dire $p\left(\conj{M}\right)=0,3$.
    Or
    $\begin{align*} P_{\conj{M}}\left(\conj{G}\right)&=\dfrac{p\left(\conj{M}\cap \conj{G}\right)}{p\left(\conj{M}\right)} \\
    &=\dfrac{0,06}{0,3} \\
    &=0,2\end{align*}$
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    $\quad$
    c. On veut calculer
    $\begin{align*} p\left(G\cap \conj{M}\right)&=p\left(\conj{M}\right)\times p_{\conj{M}}(G) \\
    &=0,3\times 0,8\\
    &=0,24\end{align*}$
    La probabilité de l’événement « le client visite la grotte et ne visite pas le musée » est égale à $0,24$.
    $\quad$
    d. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} p(G)&=p(G\cap M)+p\left(\conj{M}\cap G\right) \\
    &=p(M)\times p_M(G)+p\left(\conj{M}\cap G\right) \\
    &=0,7\times 0,6+0,24 \\
    &=0,66\end{align*}$
    $\quad$
  2. On veut calculer
    $\begin{align*} p_G(M)&=\dfrac{p(G\cap M)}{p(G)} \\
    &=\dfrac{0,7\times 0,6}{0,66} \\
    &=\dfrac{7}{11} \\
    &>\dfrac{1}{2}
    \end{align*}$
    L’affirmation est donc exacte.
    $\quad$
  3. a. On a $T(\Omega)=\acco{0,~5,~12,~17}$
    $\begin{align*} p(T=0)&=p\left(\conj{G}\cap \conj{M}\right) \\
    &=0,06\end{align*}$
    $\begin{align*} p(T=5)&=p\left(G\cap \conj{M}\right) \\
    &=0,24\end{align*}$
    $\begin{align*} p(T=12)&=p\left(\conj{G}\cap M\right) \\
    &=0,28\end{align*}$
    $\begin{align*} p(T=17)&=p\left(G\cap M\right) \\
    &=0,42\end{align*}$
    Ainsi
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&5&12&17\\
    \hline
    p(T=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    $\quad$
    b. L’espérance mathématique de $T$ est donc
    $\begin{align*} E(T)&=0\times 0,06+5\times 0,24+12\times 0,28+17\times 0,42 \\
    &=11,7\end{align*}$
    $\quad$
    c. Un client dépense donc en moyenne $11,70$ €.
    On appelle $N$ le nombre moyen de clients par journée.
    $11,7N\pg 700 \ssi x\pg \dfrac{700}{11,7}$
    Or $\dfrac{700}{11,7}\approx 59,83$.
    Il faut donc, en moyenne, au moins $60$ clients par journée pour atteindre cet objectif.
    $\quad$
  4. On appelle $p$ le prix de la visite de la grotte. On appelle $T’$ la variable aléatoire qui modélise la somme dépensée par un client de l’hôtel pour ces visites. On obtient alors la loi de probabilité suivante
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&x&12&12+x\\
    \hline
    p(T’=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    Son espérance est donc
    $\begin{align*} E(T’)&=0,24x+12\times 0,28+0,42(12+x) \\
    &=0,24x+3,36+5,04+0,42x \\
    &=8,4+0,66x\end{align*}$
    $\begin{align*} E(T’)=15&\ssi 8,4+0,66x=15 \\
    &\ssi 0,66x=6,6 \\
    &\ssi x=10\end{align*}$
    Le prix de la visite de la grotte devrait donc être de $10$ euros pour atteindre l’objectif.
    $\quad$
  5. On appelle $X$ la variable aléatoire comptant le nombre de clients ayant visité la grotte. On répète $100$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,66$.
    $X$ suit donc la loi binomiale de paramètres $n=100$ et $p=0,66$.
    D’après la calculatrice :
    $\begin{align*} P(X\pg 75)&=1-P(X\pp 74) \\
    &\approx 0,034\end{align*}$
    La probabilité qu’au moins les trois quarts des clients de l’hôtel aient visité la grotte est environ égale à $0,034$.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. Par croissances comparées,$\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    $\quad$
  2. a. Pour tout réel $x\pg 1$ on a :
    $\begin{align*} f'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
    b. Pour tout réel $x\pg 1$ on a $x^2\pg 1$
    $1-\ln(x)=0\ssi \ln(x)=1\ssi=\e$ donc $f'(x)=0 \ssi x=\e$
    $1-\ln(x)>0 \ssi \ln(x)<1 \ssi x<\e$ donc $f'(x)>0 \ssi x\in [1;\e]$
    $1-\ln(x)<0 \ssi \ln(x)>1 \ssi x>\e$ donc $f'(x)>0 \ssi x\in [\e;+\infty[$
    $\quad$
    c. On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  3. a. Soit $k$ un réel, $0\pp k \pp \e^{-1}$. La fonction $f$ est continue et strictement croissante sur $[1;\e]$.
    $f(0)=0\pp k$ et $f(\e)=\e^{-1}\pg k$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=k$ admet une unique solution $\alpha$ sur l’intervalle $[1;\e]$.
    $\quad$
    b. Soit $k$ strictement supérieur à $\dfrac{1}{\e}$.
    Pour tout réel $x\pg 1$ on a $fx)\pp \e^{-1}$.
    Par conséquent l’équation $f(x)=k$ n’admet aucune solution sur $[1;+\infty[$.
    $\quad$

Partie B

  1. La fonction $g$ est dérivable sur $\R$ comme composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $g'(x)=\dfrac{1}{4}\e^{\frac{x}{4}}>0$ car la fonction exponentielle est strictement positive.
    La fonction $g$ est donc strictement croissante sur $\R$.
    $\quad$
  2. Pour tout $n\in \N$ on pose $P(n):~u_n \pp u_{n+1} \pp \e$.
    Initialisation : $u_0=1$ et $u_1=\e^{\frac{1}{4}}\approx 1,28$
    Par conséquent $u_0\pp u_1 \pp \e$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $u_n \pp u_{n+1} \pp \e$. La fonction $g$ est strictement croissante sur $[1;\e]$. Par conséquent :
    $g\left(u_{n+1}\right) \pp g\left(u_{n+1}\right) \pp g(\e)$ soit $u_{n+1} \pp u_{n+2} \pp \e^{-1}\pp \e$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$, on a $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. La suite $\left(u_n\right)$ est croissante et majorée par $\e$.
    Par conséquent $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  4. $\e^{\frac{x}{4}}=x \ssi \dfrac{x}{4}=\ln(x) \ssi \dfrac{1}{4}=\dfrac{\ln(x)}{x} \ssi f(x)=\dfrac{1}{4}$
    $\quad$
  5. D’après la calculatrice une solution de l’équation $f(x)=\dfrac{1}{4}$ est environ égale à $1,43$ qui appartient bien à $[1;\e]$.
    Ainsi $\ell \approx 1,43$.

Ex 4

Exercice 4

  1. a. $\vect{DE}\begin{pmatrix} 12\\-15\\-6\end{pmatrix}$
    Par conséquent $\dfrac{1}{3}\vect{DE}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$ est un vecteur directeur de $\Delta$.
    Ainsi, une représentation paramétrique de $\Delta$ est $\begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\end{cases} \qquad t\in \R$.
    $\quad$
    b. $\Delta$ et $\Delta’$ sont parallèles. Un vecteur directeur de de $\Delta$ est donc également un vecteur directeur de $\Delta’$.
    Une représentation paramétrique de $\Delta’$ est donc $\begin{cases} x=4t\\y=-5t\\z=-2t\end{cases} \qquad t\in \R$.
    $\quad$
    c. $4t=1,36 \ssi t=0,34$
    De plus $-5\times 0,34=-1,7$ et $-2\times 0,34=-0,68 \neq -0,7$.
    Donc $F$ n’appartient pas à la droite $\Delta’$.
    $\quad$
  2. a. $\vect{AB}\begin{pmatrix}2\\2\\-1\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}2\\0\\4\end{pmatrix}$.
    Ces deux vecteurs ne sont clairement pas colinéaires (aucune coordonnée nulle pour le vecteur $\vect{AB}$). Les points $A$, $B$ et $C$ définissent donc bien un plan.
    $\quad$
    b. On note $\vec{n}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$.
    $\vec{n}.\vect{AB}=8-10+2=0$ et $\vec{n}.\vect{AC}=8+0-8=0$.
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    La droite $\Delta$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Une équation du plan $(ABC)$ est donc de la forme $4x-5y-2z+d=0$.
    Le point $A(-1;-1;3)$ appartient au plan $(ABC)$.
    Par conséquent $-4+5-6+d=0 \ssi d=5$.
    Une équation cartésienne du plan $(ABC)$ est donc $4x-5y-2z+5=0$.
    $\quad$
  3. a. Prenons $t=2$ dans la représentation paramétrique de $\Delta$.
    Le point de coordonnées $(7;-4;5)$ appartient donc à la droite $\Delta$.
    Donc $G(7;-4;4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Les coordonnées du point $H$ sont solution du système
    $\begin{align*} \begin{cases} 4x-5y-2z+5=0\\x=-1+4t\\y=6-5t\\z=8-2t\end{cases}&\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\-4+16t-30+25t-16+4t+5=0\end{cases} \\
    &\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\45t=45\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=1\\z=6\end{cases} \end{align*}$.
    Le point $H$ a donc pour coordonnées $(3;1;6)$.
    $\quad$
    c. La distance du point $G$ au plan $(ABC)$ est par conséquent $HG$.
    Or $\vect{HG}$ a pour coordonnées $\begin{pmatrix} -4\\5\\2\end{pmatrix}$
    Ainsi
    $\begin{align*} HG&=\sqrt{(-4)^2+5^2+2^2} \\
    &=\sqrt{16+25+4} \\
    &=\sqrt{45} \\
    &=\sqrt{9\times 5}\\
    &=3\sqrt{5}\end{align*}$
    $\quad$
  4. a. $\vect{AB}.\vect{AC}=4+0-4=0$.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b. $AB=\sqrt{9}=3$ et $AC=\sqrt{20}=2\sqrt{5}$
    Le volume du tétraèdre $ABCG$ est donc
    $\begin{align*} V&=\dfrac{\dfrac{AB\times AC}{2}\times HG}{3} \\
    &=\dfrac{3\times \sqrt{5}\times 3\sqrt{5}}{3} \\
    &=15\end{align*}$
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thèmes : fonctions, suites

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $g$ définie sur $\R$ par : $g(x)=\dfrac{2\e^x}{\e^x+1}$.
    La courbe représentative de la fonction $g$ admet pour asymptote en $+\infty$ la droite d’équation :
    a. $x=2$;
    b. $y=2$;
    c. $y=0$
    d. $x=-1$.
    $\quad$
  2. On considère une fonction $f$ définie et deux fois dérivable sur $\R$.
    On appelle $C$ sa représentation graphique.
    $\quad$
    On désigne par $d\dsec$ la dérivée seconde de $f$.
    $\quad$
    On a représenté sur le graphique ci-dessous la courbe de $f\dsec$, notée $C\dsec$.
    $\quad$

    $\quad$
    a. $C$ admet un unique point d’inflexion;
    b. $f$ est convexe sur l’intervalle $[-1;2]$;
    c. $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$;
    d. $f$ est convexe sur $\R$.
    $\quad$
  3. On donne la suite $\left(u_n\right)$ définie par : $u_0= 0$ et pour tout entier naturel $n$, $u_{n+1}=\dfrac{1}{2}u_n+1$.
    La suite $\left(v_n\right)$, définie pour tout entier naturel $n$ par $v_n=u_n-2$, est :
    a. arithmétique de raison $-2$;
    b. géométrique de raison $-2$;
    c. arithmétique de raison $1$;
    d. géométrique de raison $\dfrac{1}{2}$.
    $\quad$
  4. On considère une suite $\left(u_n\right)$ telle que, pour tout entier naturel $n$, on a : $$1+\left(\dfrac{1}{4}\right)^n \pp u_n \pp 2-\dfrac{n}{n+1}$$
    On peut affirmer que la suite $\left(u_n\right)$ :
    a. converge vers $2$;
    b. converge vers $1$;
    c. diverge vers $+\infty$;
    d. n’a pas de limite.
    $\quad$
  5. Soit $f$ la fonction définie sur $]0; +\infty[$ par $f(x)=x^2\ln(x)$.
    Une primitive $F$ de $f$ sur $]0; +\infty[$ est définie par :
    a. $F(𝑥) =\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$;
    b. $F(x) = \dfrac{1}{3}x^3\left(\ln(x)-1\right)$;
    c. $F(x) = \dfrac{1}{3}x^2$;
    d. $F(x) = \dfrac{1}{3}x^2\left(\ln(x)-1\right)$.
    $\quad$
  6. Pour tout réel $x$ , l’expression $2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}$ est égale à :
    a. $\dfrac{5-3\e^x}{1+\e^x}$;
    b. $\dfrac{5+3\e^x}{1-\e^x}$;
    c. $\dfrac{5+3\e^x}{1+\e^x}$;
    d. $\dfrac{5-3\e^x}{1-\e^x}$.
    $\quad$

$\quad$

Exercice 2     7 points
Thème : probabilités

Un hôtel situé à proximité d’un site touristique dédié à la préhistoire propose deux visites dans les environs, celle d’un musée et celle d’une grotte.

Une étude a montré que $70\%$ des clients de l’hôtel visitent le musée. De plus, parmi les clients visitant le musée, $60\%$ visitent la grotte.
Cette étude montre aussi que $6\%$ des clients de l’hôtel ne font aucune visite.
On interroge au hasard un client de l’hôtel et on note :

  • $M$ l’événement : « le client visite le musée » ;
  • $G$ l’événement : « le client visite la grotte ».

On note $\conj{M}$ l’événement contraire de $M$, 𝐺$\conj{G}$ l’événement contraire de $G$, et pour tout événement $E$, on note $p(E)$ la probabilité de $E$.

Ainsi, d’après l’énoncé, on a : $p\left(\conj{M}\cap \conj{G}\right)= 0,06$

  1. a. Vérifier que $p_{\conj{M}}\left(\conj{G}\right) = 0,2$, où $p_{\conj{M}}\left(\conj{G}\right)$ désigne la probabilité que le client interrogé ne visite pas la grotte sachant qu’il ne visite pas le musée.
    $\quad$
    b. L’arbre pondéré ci-dessous modélise la situation. Recopier et
    compléter cet arbre en indiquant sur chaque branche la probabilité
    associée.
    $\quad$
    $\quad$
    c. Quelle est la probabilité de l’événement « le client visite la grotte et ne visite pas le musée » ?
    $\quad$
    d. Montrer que $p(G) = 0,66$.
    $\quad$
  2. Le responsable de l’hôtel affirme que parmi les clients qui visitent la grotte, plus de la moitié visitent également le musée. Cette affirmation est-elle exacte ?
    $\quad$
  3. Les tarifs pour les visites sont les suivants :
    $\bullet$ visite du musée : $12$ euros ;
    $\bullet$ visite de la grotte : $5$ euros.
    On considère la variable aléatoire $T$ qui modélise la somme dépensée par un client de l’hôtel pour ces visites.
    a. Donner la loi de probabilité de $T$. On présentera les résultats sous la forme d’un tableau.
    $\quad$
    b. Calculer l’espérance mathématique de $T$.
    $\quad$
    c. Pour des questions de rentabilité, le responsable de l’hôtel estime que le montant moyen des recettes des visites doit être supérieur à $700$ euros par jour. Déterminer le nombre moyen de clients par journée permettant d’atteindre cet objectif.
    $\quad$
  4. Pour augmenter les recettes, le responsable souhaite que l’espérance de la variable aléatoire modélisant la somme dépensée par un client de l’hôtel pour ces visites passe à $15$ euros, sans modifier le prix de visite du musée qui demeure à $12$ euros. Quel prix faut-il fixer pour la visite de la grotte afin d’atteindre cet objectif ? (On admettra que l’augmentation du
    prix d’entrée de la grotte ne modifie pas la fréquentation des deux sites).
    $\quad$
  5.  On choisit au hasard $100$ clients de l’hôtel, en assimilant ce choix à un tirage avec remise. Quelle est la probabilité qu’au moins les trois quarts de ces clients aient visité la grotte à l’occasion de leur séjour à l’hôtel ? On donnera une valeur du résultat à $10^{-3}$ près.
    $\quad$

$\quad$

Exercice 3     7 points
Thèmes : fonctions logarithme et exponentielle, suites

Les parties A et B sont, dans une large mesure, indépendantes.

Partie A

On considère la fonction $f$ définie sur l’intervalle $[1 ; +\infty[$ par $f(x)=\dfrac{\ln(x)}{x}$, où $\ln$ désigne la fonction logarithme népérien.

  1. Donner la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[1 ; +\infty[$ et on note $f’$ sa fonction dérivée.
    a. Montrer que, pour tout nombre réel $x\pg 1$, $f'(x)=\dfrac{1-\ln(x)}{x^2}$.
    $\quad$
    b. Justifier le tableau de signes suivant, donnant le signe de $f'(x)$ suivant les valeurs de $x$.
    $\quad$

    $\quad$
    c. Dresser le tableau de variations complet de la fonction $f$.
    $\quad$
  3. Soit $k$ un nombre réel positif ou nul.
    a. Montrer que, si $0\pp k\pp \dfrac{1}{\e}$, l’équation $f(x)=k$ admet une unique solution sur l’intervalle $[1 ;\e]$.
    $\quad$
    b. Si $k>\dfrac{1}{\e}$, l’équation $𝑓(𝑥) = k$ admet-elle des solutions sur l’intervalle $[1 ; +\infty[$ ?
    Justifier.
    $\quad$

Partie B

Soit $g$ la fonction définie sur $\R$ par : $g(x)=\e^{\frac{x}{4}}$.
On considère la suite $\left(u_n\right)$ définie par $u_0 = 1$ et, pour tout entier naturel $n$ : $$u_{n+1}=\e^{\frac{u_n}{4}} \text{  c’est à dire : } u_{n+1}=g\left(u_n\right)$$

  1. Justifier que la fonction $g$ est croissante sur $\R$.
    $\quad$
  2. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

On note $\ell$ la limite de la suite $\left(u_n\right)$, et on admet que $\ell$ est solution de l’équation : $$\e^{\frac{x}{4}}=x$$

  1. En déduire que $\ell$ est solution de l’équation $f(x)=\dfrac{1}{4}$, où $f$ est la fonction étudiée dans la partie A.
    $\quad$
  2. Donner une valeur approchée à $10^{-2}$ près de la limite $\ell$ de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points
$A(-1 ; -1 ; 3)$, $B(1 ; 1 ; 2)$, $C(1 ; -1 ; 7)$.
On considère également la droite ∆ passant par les points $D(-1 ; 6 ; 8)$ et $E(11 ; -9 ; 2)$.

  1. a. Vérifier que la droite $\Delta$ admet pour représentation paramétrique :
    $$\begin{cases}x = -1 + 4t\\y = 6-5t,z = 8-2t\end{cases} \quad \text{avec }t\in \R$$
    $\quad$
    b. Préciser une représentation paramétrique de la droite $\Delta’$ parallèle à $\Delta$ et passant par l’origine $O$ du repère.
    $\quad$
    c. Le point $F(1,36 ; -1,7 ; -0,7)$ appartient-il à la droite $\Delta’$ ?
    $\quad$
  2. a. Montrer que les points $A$, $B$ et $C$ définissent un plan.
    $\quad$
    b. Montrer que la droite $\Delta$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Montrer qu’une équation cartésienne du plan $(ABC)$ est : $4x-5y-2z+5=0$.
    $\quad$
  3. a. Montrer que le point $G(7; -4; 4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $G$ sur le plan $(ABC)$.
    $\quad$
    c. En déduire que la distance du point $G$ au plan $(ABC)$ est égale à $3\sqrt{5}$.
    $\quad$
  4. a. Montrer que le triangle $ABC$ est rectangle en $A$.
    $\quad$
    b. Calculer le volume $V$ du tétraèdre $ABCG$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ est l’aire d’une base et $h$ la hauteur correspondant à cette base.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Asie – sujet 1 – 17 mai 2022

Centres étrangers – Asie – 17 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. Parmi les $5$ jetons, seuls $1$, $3$ et $5$ sont impairs.
    Donc $P_B(G)=\dfrac{3}{5}$.
    $\quad$
    b. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. $P(B)=\dfrac{4}{12}=\dfrac{1}{3}$.
    $(B,~R)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} P(G)&=P(G\cap B)+P(G\cap R)\\
    &=P(B)\times P_B(G)+P(R)\times P_R(G)\\
    &=\dfrac{1}{3}\times \dfrac{3}{5}+\dfrac{2}{3}\times 0,3 \\
    &=0,4\end{align*}$
    $\quad$
    b. On veut calculer
    $\begin{align*} P_G(B)&=\dfrac{P(G\cap B)}{P(G)} \\
    &=\dfrac{\dfrac{1}{3}\times \dfrac{3}{5}}{0,4}\\
    &=\dfrac{1}{2}\end{align*}$
    La probabilité que le joueur ait obtenu une case blanche en lançant la roue sachant qu’il a gagner la partie est égale à $\dfrac{1}{2}$.
    $\quad$
  3. $P(G)=0,4$ et $P_B(G)=0,6$ donc $P(G)\neq P_B(G)$
    Les événements $B$ et $G$ ne sont pas indépendants.
    $\quad$
  4. a. On effectue de façon indépendante $10$ expériences de Bernoulli identiques.
    $X$ est égale au nombre de parties gagnées.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,4$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X=3)&=\dbinom{10}{3}0,4^3\times 0,6^7 \\
    &\approx 0,215\end{align*}$
    La probabilité que le joueur gagne exactement trois parties sur les dix parties jouées est environ égale à $0,215$.
    $\quad$
    c. On a
    $\begin{align*} P(X\pg 4)&=1-P(X<4) \\
    &=1-P(X\pp 3) \\
    &\approx 0,618\end{align*}$
    $\quad$
  5. a. On effectue de façon indépendante $n$ expériences de Bernoulli identiques.
    On appelle $Y$ la variable aléatoire égale au nombre de parties gagnées.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,4$.
    $\begin{align*} p_n&=P(Y\pg 1) \\
    &=1-P(Y=0) \\
    &=1-0,6^n \end{align*}$
    $\quad$
    b. $\quad$
    $\begin{align*} p_n\pg 0,99&\ssi 1-0,6^n \pg 0,99 \\
    &\ssi -0,6^n \pg -0,01 \\
    &\ssi 0,6^n \pp 0,01 \\
    &\ssi n\ln(0,6) \pp \ln(0,01) \\
    &\ssi n \pg \dfrac{\ln(0,01)}{\ln(0,6)} \qquad \text{car } \ln(0,6)<0\end{align*}$
    Or $\dfrac{\ln(0,1)}{\ln(0,6)}\approx 9,02$
    Le plus petit entier naturel $n$ pour lequel la probabilité de gagner au moins une partie est supérieur ou égale à $0,99$ est donc $10$.
    $\quad$

 

Ex 2

Exercice 2

Partie A : modèle discret de la quantité médicamenteuse

  1. $\quad$
    $\begin{align*} u_1&=\left(1-\dfrac{1}{10}\right)\times u_0+0,25 \\
    &=0,9\times 1+0,25\\
    &=1,15\end{align*}$
    Au bout d’une demi-heure il y avait donc $1,15$ mg de médicament dans le sang.
    $\quad$
  2. Toutes les $30$ minutes l’organisme élimine $10\%$ de la quantité de médicament présente dans le sang. Il reste donc $90\%$ de la quantité de médicament soit $0,9u_n$.
    Il reçoit une dose supplémentaire de $0,25$ mg de la substance médicamenteuse.
    Donc $u_{n+1}=0,9u_n+0,25$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on pose $P(n):~u_n\pp u_{n+1} <5$.
    Initialisation : $u_0=1$ et $u_1=1,15$ donc $u_0\pp u_1<5$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <5 &\ssi 0,9u_n\pp 0,9u_{n+1} < 4,5 \\
    &\ssi 0,9u_n+0,25\pp 0,9u_{n+1}+0,25<4,75\end{align*}$
    Donc $u_{n+1}\pp u_{n+2} <4,75<5$ et $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n \pp u_{n+1} <5$.
    $\quad$
    b. La suite $\left(u_n\right)$ est  croissante et majorée par $5$. Par conséquent elle converge vers un réel $\ell$.
    $\quad$
  4. a. On obtient le script suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def efficace():}\\
    \quad \text{u = 1}\\
    \quad \text{n = 0}\\
    \quad \text{while u < 1.8:}\\
    \qquad \text{u = 0.9 * u + 0.25}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. On a $u_7 \approx 1,78$ et $u_8\approx 1,85$.
    Par conséquent le script renvoie la valeur $8$.
    C’est donc au bout de $4$ heures que le médicament est réellement efficace.
    $\quad$
  5. a. Soit $n\in \N$. $v_n=2,5-u_n$ donc $u_n=2,5-v_n$.
    $\begin{align*} v_{n+1}&=2,5-u_{n+1} \\
    &=2,5-0,9u_n-0,25 \\
    &=-0,9u_n+2,25 \\
    &=-0,9\left(2,5-v_n\right)+2,25 \\
    &=0,9v_n-2,25+2,25 \\
    &=0,9v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,9$ et de premier terme $v_0=1,5$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$ on a $v_n=1,5\times 0,9^n$.
    Par conséquent :
    $\begin{align*} u_n&=2,5-v_n\\
    &=2,5-1,5\times 0,9^n\end{align*}$
    $\quad$
    c. Pour tout entier naturel $n$ on a $1,5\times 0,9^n>0$ donc $u_n<2,5<3$.
    Le traitement de présente donc aucun risque pour le patient.
    $\quad$

Partie B : modèle continu de la quantité médicamenteuse

  1. $f(3,75)\approx 1,791<1,8$.
    Le médicament n’est donc pas réellement efficace au bout de $3$ h $45$ min.
    $\quad$
  2. $\quad$
    $\begin{align*} f(t)\pg 1,8 &\ssi 2,5-1,5\e^{-0,2t}\pg 1,8 \\
    &\ssi -1,5\e^{-0,2t}\pg -0,7 \\
    &\ssi \e^{-0,2t}\pp \dfrac{7}{15} \\
    &\ssi -0,2t\pp \ln\left(\dfrac{7}{15}\right) \\
    &\ssi t\pg -5\ln\left(\dfrac{7}{15}\right) \end{align*}$
    Le médicament est donc efficace au bout d’environ $3,810~7$ heures soit environ $3$ h $49$ min.
    $\quad$
  3. Selon le modèle de la partie A, le médicament était réellement efficace au bout de $4$ heures.
    Le modèle continu est donc réellement efficace plus rapidement.
    $\quad$

 

Ex 3

Exercice 3

  1. On obtient la figure suivante :
    $\quad$
  2. On a $\vect{RP}\begin{pmatrix}-1\\0\\-2\end{pmatrix}$ et $\vect{RQ}\begin{pmatrix}-1\\2\\0\end{pmatrix}$
    Donc
    $\begin{align*} RP&=\sqrt{(-1)^2+0^2+(-2)^2} \\
    &=\sqrt{5}\end{align*}$
    et
    $\begin{align*} RQ&=\sqrt{(-1)^2+2^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    Donc $RP=RQ$.
    Le triangle $RPQ$ est bien isocèle en $R$.
    $\quad$
  3. Les vecteurs $\vect{RP}$ et $\vect{RQ}$ ne sont clairement pas colinéaires (le coefficient $0$ ne se trouve à la même coordonnée). Les points $P$, $R$ et $Q$ définissent donc un plan.
    $\quad$
  4. a. D’une part
    $\begin{align*} \vec{u}.\vect{PR}&=2\times (-1)+1\times 0+(-1)\times (-2) \\
    &=-2+0+2 \\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{u}.\vect{PQ}&=2\times (-1)+1\times 2+(-1)\times 0 \\
    &=-2+2+0 \\
    &=0\end{align*}$
    Le vecteur $\vec{u}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(PQR)$.
    $\vec{u}$ est par conséquent un vecteur normal au plan $(PQR)$.
    $\quad$
    b. Ainsi une équation cartésienne du plan $(PQR)$ est de la forme $2x+y-z+d=0$.
    Or $P(0;0;1)$ appartient au plan $(PQR)$.
    Par conséquent $0+0-1+d=0\ssi d=1$.
    Une équation cartésienne du plan $(PQR)$ est $2x+y-z+1=0$.
    $\quad$
    c. Le vecteur $\vec{u}$ est un vecteur directeur de la droite $(d)$.
    Une représentation paramétrique de la droite $(d)$ est donc : $$\begin{cases} x=2t\\y=t\\z=3-t\end{cases} \qquad t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{1}{3}$ dans la représentation paramétrique de la droite $(d)$ on obtient le point de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$.
    $2\times \dfrac{2}{3}+\dfrac{1}{3}-\dfrac{8}{3}+1=-\dfrac{3}{3}+1=0$ : le point de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$ appartient donc au plan $(PQR)$.
    Le point $L\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$ est par conséquent le projeté orthogonal du point $E$ sur le plan $(PQR)$.
    $\quad$
    e. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]\dfrac{1}{3}\\[3pt]-\dfrac{1}{3}\end{pmatrix}$
    Par conséquent :
    $\begin{align*} EL&=\sqrt{\left(\dfrac{2}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{3}\right)^2} \\
    &=\sqrt{\dfrac{6}{9}} \\
    &=\dfrac{\sqrt{6}}{3}\end{align*}$
    La distance du point $E$ au plan $(PQR)$ est donc égale à $\dfrac{\sqrt{6}}{3}$.
    $\quad$
  5. Le triangle $EQR$ est, par construction, rectangle en $E$. Son aire est donc
    $\begin{align*} \mathscr{A}&=\dfrac{EQ\times ER}{2} \\
    &=\dfrac{2\times 1}{2} \\
    &=1\end{align*}$
    Ainsi, le volume du tétraèdre $EPQR$ est
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times \mathscr{A}\times EP \\
    &=\dfrac{1}{3}\times 1\times 2 \\
    &=\dfrac{2}{3}\end{align*}$$\quad$
  6. On a également $\mathscr{V}=\dfrac{1}{3}\times \mathscr{A}_{PQR}\times EL$ où $\mathscr{A}_{PQR}$ est l’aire du triangle $PQR$
    Ainsi
    $\dfrac{2}{3}=\dfrac{1}{3}\times \mathscr{A}_{PQR}\times \dfrac{\sqrt{6}}{3} \ssi \mathscr{A}_{PQR}=\dfrac{6}{\sqrt{6}}$
    Ainsi l’aire du triangle $PQR$ est égale à $\sqrt{6}$ unités d’aire.
    $\quad$

 

 

Ex 4

Exercice 4

Partie A

  1. Graphiquement $f(1)=3$ et $f'(1)$ est le coefficient directeur de la droite $(AB)$. Par conséquent $f'(1)=1$.
    $\quad$
  2. a. D’après l’énoncé, la fonction $f$ est dérivable sur $\R$.
    Pour tout réel $x$ on a $f'(x)=\dfrac{2ax}{ax^2+1}$.
    $\quad$
    b. $f(1)=3\ssi \ln(a+1)+b=3$.
    $f'(1)=1 \ssi \dfrac{2a}{a+1}=1$
    On résout donc le système
    $\begin{align*} \begin{cases} \ln(a+1)+b=3\\\dfrac{2a}{a+1}=1\end{cases} &\ssi \begin{cases} 2a=a+1 \\b=3-\ln(a+1)\end{cases} \\
    &\ssi \begin{cases} a=1\\b=3-\ln(2)\end{cases}\end{align*}$
    Par conséquent, pour tout réel $x$ on a $f(x)=\ln\left(x^2+1\right)+3-\ln(2)$.
    $\quad$

Partie B

  1. Pour tout réel $x$ on a
    $\begin{align*} f(-x)&=\ln\left((-x)^2+1\right)+3-\ln(2) \\
    &=\ln\left(x^2+1\right)+3-\ln(2) \\
    &=f(x)\end{align*}$
    Par conséquent $f$ est paire.
    $\quad$
  2. $\lim\limits_{x\to +\infty} x^2+1=+\infty$ et $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ par conséquent $\lim\limits_{x\to +\infty} \ln\left(x^2+1\right)=+\infty$
    Ainsi, $\lim\limits_{x\to +\infty} f(x)=+\infty$ et par parité $\lim\limits_{x\to -\infty} f(x)=+\infty$.
    $\quad$
  3. D’après la question A.2. on a, pour tout réel $x$, $f'(x)=\dfrac{2x}{x^2+1}$.
    Pour tout réel $x$, on a $x^2+1>0$.
    Donc $f'(x)$ est du signe de $2x$.
    Par conséquent :
    $\bullet~~f'(x)<0$ sur $]-\infty;0[$;
    $\bullet~~f'(0)=0$;
    $\bullet~~f'(x)>0$ sur $]0;\infty[$.On obtient donc le tableau de variations suivant :
    $\quad$
  4. D’après le tableau de variations, l’équation $f(x)=k$ admet deux solutions si, et seulement si, $k>3-\ln(2)$.
    Remarque : Pour le montrer rigoureusement, il faut utiliser le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires).
    $\quad$
  5. $\quad$
    $\begin{align*} f(x)=3+\ln(2)&\ssi \ln\left(x^2+1\right)+3-\ln(2)=3+\ln(2) \\
    &\ssi \ln\left(x^2+1\right)=2\ln(2)\\
    &\ssi \ln\left(x^2+1\right)=\ln(4) \\
    &\ssi x^2+1=4 \qquad \text{car la fonction $\ln$ est strictement croissante sur $]0;+\infty[$}\\
    &\ssi x^2=3 \\
    &\ssi x=\sqrt{3} \text{ ou } x=-\sqrt{3}\end{align*}$
    L’équation $f(x)=3+\ln(2)$ admet donc deux solutions $-\sqrt{3}$ et $\sqrt{3}$.
    $\quad$

Partie C

  1. Graphiquement $\mathscr{C}_f$ semble avoir deux points d’inflexion d’abscisse $-1$ et $1$.
    $\quad$
  2. Pour tout réel $x$ on a $f'(x)=\dfrac{2x}{x^2+1}$.
    La fonction $f’$ est dérivable sur $\R$ en tant que somme et quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=2\times \dfrac{x^2+1-x\times 2x}{\left(x^2+1\right)^2} \\
    &=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\end{align*}$
    $\quad$
  3. Ainsi $f\dsec(x)\pg 0 \ssi 1-x^2\pg 0 \ssi x\in [-1;1]$.
    Le plus grand intervalle sur lequel la fonction $f$ est convexe est donc $[-1;1]$.
    $\quad$

 

 

Énoncé

Exercice 1     7 points

Principaux domaines abordés : Probabilités conditionnelles et indépendance. Variables aléatoires

Lors d’une kermesse, un organisateur de jeux dispose, d’une part, d’une roue comportant quatre cases blanches et huit cases rouges et, d’autre part, d’un sac contenant cinq jetons portant les numéros $1$, $2$, $3$,  $4$ et $5$.
Le jeu consiste à faire tourner la roue, chaque case ayant la même probabilité d’être obtenue, puis à extraire un ou deux jetons du sac selon la règle suivante :

  •  si la case obtenue par la roue est blanche, alors le joueur extrait un jeton du sac;
  • si la case obtenue par la roue est rouge, alors le joueur extrait successivement et sans remise deux jetons du sac.

Le joueur gagne si le ou les jetons tirés portent tous un numéro impair.

  1. Un joueur fait une partie et on note $B$ l’évènement « la case obtenue est blanche », $R$ l’évènement « la case obtenue est rouge » et $G$ l’évènement « le joueur gagne la partie ».
    a. Donner la valeur de la probabilité conditionnelle $P_B (G)$.
    $\quad$
    b. On admettra que la probabilité de tirer successivement et sans remise deux jetons impairs est égale à $0,3$.
    Recopier et compléter l’arbre de probabilité suivant :
    $\quad$

    $\quad$
  2. a. Montrer que $P(G) = 0,4$.
    $\quad$
    b. Un joueur gagne la partie.
    Quelle est la probabilité qu’il ait obtenu une case blanche en lançant la roue ?
    $\quad$
  3. Les évènements $B$ et $G$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Un même joueur fait dix parties. Les jetons tirés sont remis dans le sac après chaque partie.
    On note $X$ la variable aléatoire égale au nombre de parties gagnées.
    a. Expliquer pourquoi $X$ suit une loi binomiale et préciser ses paramètres.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$ près, que le joueur gagne exactement trois parties sur les dix parties jouées.
    $\quad$
    c. Calculer $P(X > 4)$ arrondie à $10^{-3}$ près.
    Donner une interprétation du résultat obtenu.
    $\quad$
  5. Un joueur fait $n$ parties et on note $p_n$ la probabilité de l’évènement « le joueur gagne au moins une partie ».
    a. Montrer que $p_n = 1-0,6n$.
    $\quad$
    b. Déterminer la plus petite valeur de l’entier n pour laquelle la probabilité de gagner au moins une partie est supérieure ou égale à $0,99$.
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : Suites numériques. Algorithmique et programmation.

Un médicament est administré à un patient par voie intraveineuse.

Partie A : modèle discret de la quantité médicamenteuse

Après une première injection de $1$ mg de médicament, le patient est placé sous perfusion.
On estime que, toutes les $30$ minutes, l’organisme du patient élimine $10 \%$ de la quantité de médicament présente dans le sang et qu’il reçoit une dose supplémentaire de $0,25$ mg de la substance médicamenteuse.
On étudie l’évolution de la quantité de médicament dans le sang avec le modèle suivant : pour tout entier naturel $n$, on note $u_n$ la quantité, en mg, de médicament dans le sang du patient au bout de $n$ périodes de trente minutes. On a donc $u_0 = 1$.

  1. Calculer la quantité de médicament dans le sang au bout d’une demi-heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, $u_{n+1} = 0,9u_n +0,25$.
    $\quad$
  3. a. Montrer par récurrence sur $n$ que, pour tout entier naturel $n$, $u_n \pp u_{n+1} < 5$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  4. On estime que le médicament est réellement efficace lorsque sa quantité dans le sang du patient est supérieure ou égale à $1,8$ mg.
    a. Recopier et compléter le script écrit en langage Python suivant de manière à déterminer au bout de combien de périodes de trente minutes le médicament commence à être réellement efficace.
    $$\begin{array}{|l|}
    \hline
    \text{def efficace():}\\
    \quad\text{u = 1}\\
    \quad\text{n = 0}\\
    \quad\text{while ……:}\\
    \qquad\text{u = ……}\\
    \qquad\text{n = n + 1}\\
    \quad\text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. Quelle est la valeur renvoyée par ce script ? Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  5. Soit $\left(v_n\right)$ la suite définie, pour tout entier naturel $n$, par $v_n = 2,5-u_n$.
    a. Montrer que $\left(v_n\right)$ est une suite géométrique dont on précisera la raison et le premier terme $\left(v_0\right)$.
    $\quad$
    b. Montrer que, pour tout entier naturel $n$, $u_n = 2,5-1,5×0,9^n$.
    $\quad$
    c. Le médicament devient toxique lorsque sa quantité présente dans le sang du patient dépasse $3$ mg.
    D’après le modèle choisi, le traitement présente-t-il un risque pour le patient ?
    Justifier.
    $\quad$

Partie B : modèle continu de la quantité médicamenteuse

Après une injection initiale de $1$ mg de médicament, le patient est placé sous perfusion.
Le débit de la substance médicamenteuse administrée au patient est de $0,5$ mg par heure.
La quantité de médicament dans le sang du patient, en fonction du temps, est modélisée par la fonction $f$ , définie sur $[0 ; +\infty[$, par $$f (t) = 2,5-1,5\e^{-0,2t}$$
où $t$ désigne la durée de la perfusion exprimée en heure.
On rappelle que ce médicament est réellement efficace lorsque sa quantité dans le sang du patient est supérieure ou égale à $1,8$ mg.

  1. Le médicament est-il réellement efficace au bout de $3$ h $45$ min ?
    $\quad$
  2. Selon ce modèle, déterminer au bout de combien de temps le médicament devient réellement efficace.
    $\quad$
  3. Comparer le résultat obtenu avec celui obtenu à la question 4. b. du modèle discret de la Partie A.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés : Manipulation des vecteurs, des droites et des plans de l’espace. Orthogonalité et distances dans l’espace. Représentations paramétriques et équations cartésiennes.

Le solide $ABCDEFGH$ est un cube. On se place dans le repère orthonormé $\left(A,\vec{i},\vec{j},\vec{k}\right)$ de l’espace dans lequel les coordonnées des points $B$, $D$ et $E$ sont : $$B(3 ; 0 ; 0),~D(0 ; 3 ; 0) \text{ et } E(0 ; 0 ; 3)$$

 

On considère les points $P(0; 0; 1)$, $Q(0; 2; 3)$ et $R(1; 0; 3)$.

  1. Placer les points $P$, $Q$ et $R$ sur la figure en ANNEXE qui sera à rendre avec la copie.
    $\quad$
  2. Montrer que le triangle $PQR$ est isocèle en $R$.
    $\quad$
  3. Justifier que les points $P$, $Q$ et $R$ définissent un plan.
    $\quad$
  4. On s’intéresse à présent à la distance entre le point $E$ et le plan $(PQR)$.
    a. Montrer que le vecteur $\vec{u} (2 ; 1 ; -1)$ est normal au plan $(PQR)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(PQR)$.
    $\quad$
    c. Déterminer une représentation paramétrique de la droite $(d)$ passant par le point $E$ et orthogonale au plan $(PQR)$.
    $\quad$
    d. Montrer que le point $L\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$ est le projeté orthogonal du point $E$ sur le plan $(PQR)$.
    $\quad$
    e. Déterminer la distance entre le point $E$ et le plan $(PQR)$.
    $\quad$
  5. En choisissant le triangle $EQR$ comme base, montrer que le volume du tétraèdre $EPQR$ est $\dfrac{2}{3}$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V =\dfrac{1}{3}\times \text{aire d’une base}\times \text{hauteur correspondante}$$
    $\quad$
  6. Trouver, à l’aide des deux questions précédentes, l’aire du triangle $PQR$.
    $\quad$

ANNEXE

$\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés : Étude de fonctions. Fonction logarithme.

Soit $f$ une fonction définie et dérivable sur $\R$. On considère les points $A(1; 3)$ et $B(3; 5)$.
On donne ci-dessous $\mathscr{C}_f$ la courbe représentative de $f$ dans un repère orthogonal du plan, ainsi que la tangente $(AB)$ à la courbe $\mathscr{C}_f$ au point $A$.

Les trois parties de l’exercice peuvent être traitées de manière indépendante.

Partie A

  1. Déterminer graphiquement les valeurs de $f(1)$ et $f'(1)$.
    $\quad$
  2. La fonction $f$ est définie par l’expression $f (x) = \ln\left(ax^2+1\right)+b$, où $a$ et $b$ sont des nombres réels positifs.
    a. Déterminer l’expression de $f'(x)$.
    $\quad$
    b. Déterminer les valeurs de $a$ et $b$ à l’aide des résultats précédents.
    $\quad$

Partie B

On admet que la fonction $f$ est définie sur $\R$ par $$f(x) = \ln\left(x^2+1\right)+3-\ln(2)$$

  1. Montrer que $f$ est une fonction paire.
    $\quad$
  2. Déterminer les limites de $f$ en $+\infty$ et en $-\infty$.
    $\quad$
  3. Déterminer l’expression de $f'(x)$.
    Étudier le sens de variation de la fonction $f$ sur $\R$.
    Dresser le tableau des variations de $f$ en y faisant figurer la valeur exacte du minimum ainsi que les limites de $f$ en $-\infty$ et $+\infty$.
    $\quad$
  4. À l’aide du tableau des variations de $f$ , donner les valeurs du réel $k$ pour lesquelles l’équation $f (x) = k$ admet deux solutions.
    $\quad$
  5. Résoudre l’équation $f (x) = 3+\ln 2$.
    $\quad$

Partie C
On rappelle que la fonction $f$ est définie sur $\R$ par $f(x) = \ln\left(x^2+1\right)+3-\ln(2)$.

  1. Conjecturer, par lecture graphique, les abscisses des éventuels points d’inflexion de la courbe $\mathscr{C}_f$.
    $\quad$
  2. Montrer que, pour tout nombre réel $x$, on a : $f\dsec(x)=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}$.
    $\quad$
  3. En déduire le plus grand intervalle sur lequel la fonction $f$ est convexe.
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 19 mai 2022

Centres étrangers – Liban – 19 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient donc l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(F\cap C)&=P(F)\times P_F(C) \\
    &=0,48\times 0,165 \\
    &=0,079~2\end{align*}$
    La probabilité que la personne choisie soit une femme qui exerce une profession de cadre est égale à $0,079~2$.
    $\quad$
  3. a. $\left(F,\conj{F}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(C)&=P(C\cap F)+P\left(C\cap\conj{F}\right) \\
    &=0,079~2+P\left(\conj{F}\right)\times P_{\conj{F}}(C) \\
    &=0,079~2+0,52\times 0,215 \\
    &=0,191\end{align*}$
    La probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. D’une part $P(C)\times P(F)=0,091~68$
    D’autre part $P(C \cap F)=0,079~2$
    Donc $P(C)\times P(F)\neq P(C\cap F)$.
    Les événements $F$ et $C$ ne sont pas indépendants.
    $\quad$
  4. On a
    $\begin{align*} P_C(F)&=\dfrac{P(C\cap F)}{P(C)} \\
    &=\dfrac{0,079~2}{0,191} \\
    &\approx 0,414~7\end{align*}$.
    La probabilité que la personne choisie soit une femme sachant qu’elle exerce une profession de cadre est environ égale à $0,414~7$.
    $\quad$
  5. a. On répète $15$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de cadres au sein de l’échantillon de $15$ salariés.
    Par conséquent $X$ suit la loi binomiale de paramètres $n=15$ et $p=0,191$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=(1-0,191)^{15}+\dbinom{15}{1}0,191\times (1-0,191)^{14} \\
    &\approx 0,189~0\end{align*}$
    La probabilité que l’échantillon contienne au plus $1$ cadre est environ égale à $0,189~0$.
    $\quad$
    c. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=np\\
    &=15\times 0,191 \\
    &=2,865\end{align*}$
    $\quad$
  6. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire qui compte le nombre de cadres au sein de l’échantillon de $n$ salariés.
    Par conséquent $Y$ suit la loi binomiale de paramètres $n$ et $p=0,191$.
    $\begin{align*} P(Y\pg 1)\pg 0,99 &\ssi 1-P(X=0)\pg 0,199 \\
    &\ssi P(X=0)\pp 0,01 \\
    &\ssi 0,808^n \pp 0,01\\
    &\ssi n\ln(0,808) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,808)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,808)} \approx 21,6$.
    Il faut donc que l’échantillon contienne au moins $22$ salariés pour la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. $[AH]$ et $[ED]$ sont les diagonales du carré $ADHE$.
    Les droites $(AH)$ et $(ED)$ sont par conséquent perpendiculaires.
    $\quad$
    b. $EFGH$ est un carré donc $(EH)$ et $(HG)$ sont perpendiculaires.
    $CDHG$ est un carré donc $(GH)$ et $(DH)$ sont perpendiculaires.
    Ainsi, $(HG)$ est perpendiculaire à deux droites sécantes du plan $(EDH)$.
    Par conséquent, la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. La droite $(ED)$ est incluse dans le plan $(EDH)$. D’après la question précédente, les droites $(GH)$ et $(ED)$ sont orthogonales.
    D’après la question 1.a. les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    La droite $(ED)$ est donc orthogonale à deux droites sécantes (le point $A$ n’appartient pas à la droite $(GH)$) du plan $(AGH)$.
    La droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Dans le repère fourni on a $E(0;0;1)$ et $D(0;1;0)$.
    Par conséquent $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$.
    $\quad$
    $\vect{ED}$ est un vecteur normal au plan $(AGH)$ d’après la question précédente.
    Une équation cartésienne du plan $(AGH)$ est donc de la forme $y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan. Ainsi $d=0$.
    Une équation cartésienne du plan $(AGH)$ est $y-z=0$.
    $\quad$
  3. a. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]1\\-1\end{pmatrix}$.
    Une représentation paramétrique de la droite $(EL)$ est $\begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\end{cases} \qquad t\in \R$.
    $\quad$
    b. On résout le système
    $\begin{align*} \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\y-z=0 \end{cases} &\ssi \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\ 1+t+t=0\end{cases} \\
    &\ssi \begin{cases}t=-\dfrac{1}{2}\\ x=\dfrac{1}{3}t\\[3pt]y=\dfrac{1}{2}\\[3pt]z=\dfrac{1}{2}\end{cases}\end{align*}$
    Le point d’intersection de la droite $(EL)$ et du plan $(AGH)$ a donc pour coordonnées $\left(\dfrac{1}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    c. $\dfrac{1}{2}-\dfrac{1}{2}=0$ : le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ appartient au plan $(AGH)$.
    $\vect{KL}\begin{pmatrix}0\\-\dfrac{1}{2}\\[3pt]\dfrac{1}{2}\end{pmatrix}$.
    Par conséquent $\vect{KL}=-\dfrac{1}{2}\vect{ED}$.
    Ainsi $\vect{KL}$ est un vecteur normal au plan $(AGH)$.
    Donc $K\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ est le projeté orthogonal du point $L$ sur le plan $(AGH)$.
    $\quad$
    d. On a
    $\begin{align*} KL&=\sqrt{0^2+\left(-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^2} \\
    &=\sqrt{\dfrac{1}{2}} \\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$.
    La distance du point $L$ ai plan $(AGH)$ est donc $h=\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. On applique le théorème de Pythagore dans le triangle $AHD$ rectangle en $D$.
    Donc $AH^2=AD^2+HD^2$ ainsi $AH^2=2$ et $AH=\sqrt{2}$
    $(HG)$ est orthogonale au plan $(EDH)$ d’après la question 1.b.
    La droite $(AH)$ est incluse dans le plan $(EDH)$.
    Par conséquent les droites $(AH)$ et $(HG)$ sont perpendiculaires et le triangle $AHG$ est rectangle en $H$.
    L’aire du triangle $AHG$ est donc
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times HG}{2} \\
    &=\dfrac{\sqrt{2}\times 1}{2}\\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$
    Le volume du tétraèdre $LAGH$ est alors
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times h \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{2}}{2}\times \dfrac{\sqrt{2}}{2} \\
    &=\dfrac{1}{6}\end{align*}$.

Ex 3

Exercice 3

  1. La fonction $g$ est deux fois dérivables sur $\R$ en tant que somme de fonctions deux fois dérivables.
    Pour tout réel $x$ on a $g'(x)=1~000x^{999}+1$ et $g\dsec(x)=999~000x^{998}$
    $998$ est pair donc, pour tout réel $x$ $g\dsec(x)\pg 0$.
    La fonction $g$ est convexe sur $\R$
    Réponse b
    $\quad$
  2. D’après le graphique, $f'(0)=1$.
    Une équation de la droite $T$ est donc de la forme $y=x+b$.
    $T$ est par conséquent parallèle à la droite d’équation $y=x$.
    Réponse a
    $\quad$
  3. Pour tout entier naturel $n$ on a $-1\pp (-1)^n \pp 1$.
    Donc $-\dfrac{-1}{1+n}\pp u_n \pp \dfrac{1}{n+1}$
    Or pour tout entier naturel $n$ on a $-1 \pp -\dfrac{1}{1+n}$ et $\dfrac{1}{1+n}\pp 1$.
    Ainsi $-1\pp u_n \pp 1$.
    Réponse c
    $\quad$
  4. Pour tout entier naturel $n$ on a $v_n\times v_{n+1}<0$.
    Cela signifie donc que deux termes consécutifs de la suite $\left(v_n\right)$ sont toujours de signes contraires.
    Ainsi, tous les termes de rang pair sont du même signe.
    Par conséquent $v_{10}$ est du même signe que $v_0$
    Réponse c
    $\quad$
  5. On a $8=2w_1-4 \ssi 12=2w_1 \ssi w_1=6$
    $6=2w_0-4 \ssi 2w_0=10\ssi w_0=5$.
    Réponse 5
    $\quad$
  6. Pour tout entier naturel $n$ on pose $P(n):~a_n>0$
    Initialisation : $a_0=1>0$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $a_n>0$ et $\e^n>0$ donc $\dfrac{\e^n}{\e^n+1}a_n>0$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n$, on a $a_n>0$.
    $\quad$
    Soit $n\in \N$
    $\begin{align*} a_{n+1}-a_n&=\dfrac{\e^n}{\e^n+1}a_n-a_n \\
    &=\left(\dfrac{\e^n}{\e^n+1}-1\right)a_n \\
    &=-\dfrac{1}{\e^n+1}a_n\\
    &<0\end{align*}$
    La suite $\left(a_n\right)$ est donc strictement décroissante.
    Réponse b
    $\quad$
    Remarque : Puisqu’il s’agit d’une question d’un QCM, l’utilisation de la calculatrice est à privilégiée ici pour avoir une idée du comportement de la suite.
    $\quad$
  7. On appelle $u_n$ le nombre de cellules à la $n$-ième génération.
    Ainsi, pour tout entier naturel $n$ on a $u_n=2^n$.
    Au bout de $4$ heures il y a environ $4~000$ cellules. Or $u_{11}=2~048$ et $u_{12}=4~096$.
    Il a donc fallu $4$ heures pour obtenir à la $12$-ième génération.
    $\dfrac{4\times 60}{12}=20$.
    Le temps de génération est donc environ égal à $20$ minutes.
    Réponse c
    $\quad$

 

Ex 4

Exercice 4

Partie A

  1. On a $\lim\limits_{x\to 0^+} \e^x=1$ et $\lim\limits_{x\to 0^+} \ln(x)=-\infty$.
    Ainsi $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
  2. Pour tout réel $x\in ]0;1]$ on a
    $\begin{align*} f'(x)&=-\e^{-x}+\dfrac{1}{x} \\
    &=\dfrac{-x\e^{-x}+1}{x} \\
    &=\dfrac{1-x\e^{-x}}{x}\end{align*}$
    $\quad$
  3. La fonction exponentielle est convexe sur $\R$. Sa courbe représentative est donc au-dessus de toutes ses tangentes.
    On a $\e^0=1$. Une équation de la tangente à la courbe au point d’abscisse $0$ est par conséquent $y=x+1$.
    Ainsi, pour tout réel $x\in $\e^x\pg x+1>x$ soit $1\pg x\e^{-x}$.
    Donc pour tout réel $x\in $]0;1]$ on a $x\e^x<1$.
    Remarque : On pouvait également déterminer le tableau de variations de la fonction $g$ définie sur $]0;1]$ par $g(x)=x\e^{-x}$.
    $\quad$
    Ainsi sur $]0;1]$, $1-x\e^{-x}>0$
    Par conséquent $f'(x)>0$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;1]$.
    $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $f(1)=\e^{-1}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=0$ admet une unique solution $\ell$ sur $]0;1]$.
    $\quad$

Partie B

  1. a. On a $a_1=\e^{-1}\approx 0,37$ et $b_1=\e^{-1/10}\approx 0,90$.
    $\quad$
    b. On peut écrire
    $\begin{array}{|l|}
    \hline
    \text{de termes(n):}\\
    \quad \text{a = 1 / 10} \\
    \quad \text{b = 1} \\
    \quad \text{for k in range(0,n):}\\
    \qquad \text{c = exp(b)}\\
    \qquad \text{b = exp(a)}\\
    \qquad \text{a = c}\\
    \quad \text{return(a,b)}\\
    \hline
    \end{array}$
    Remarque : On suppose donc que la bibliothèque $\texttt{math}$ a été importée (ou au moins la fonction $\texttt{exp}$) pour que la fonction ne comporte pas d’erreur.
    $\quad$
  2. a. Pour tout $n\in \N$ on pose $P(n):~0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    Initialisation : On a $a_0=0,1$, $a_1 \approx 0,37$, $b_1\approx 0,90$ et $b_0=1$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    La fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    Par conséquent $\e^{0}>\e^{-a_n}\pg \e^{-a_{n+1}}\pg \e^{-b_{n+1}}\pg \e^{-b_n}\pg \e^{-1}$
    Soit $1>b_{n+1}\pg b_{n+2}\pg a_{n+2}\pg a_{n+1}\pg \e^{-1}>0$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout entier naturel $n$ on a $0<a_n\pp a_{n+1}\pp b_{n+1} \pp b_n \pp 1$.
    $\quad$
    b. La suite $\left(a_n\right)$ est croissante et majorée par $1$ : elle converge donc.
    La suite $\left(b_n\right)$ est décroissante et minorée par $0$ : elle converge donc.
    $\quad$
  3. a. On a $A=\e^{-B}$  par conséquent $\ln(A)=-B$ et $B=-\ln(A)$.
    Or $B=\e^{-A}$ donc $-\ln(A)=\e^{-A}$ soit $\e^{-A}+\ln(A)=0$.
    Par conséquent $f(A)=0$.
    $\quad$
    b. D’après la question précédente et la question A.4. $A=\ell$.
    On a $B=\e^{-A}$ donc $A=-\ln(B)$
    Or $A=\e^{-B}$ soit $-\ln(B)=\e^{-B}$ et donc $f(B)=0$.
    On a ainsi également $B=\ell$.
    Donc $A-B=0$.
    Remarque : On dit que les suite $\left(a_n\right)$ et $\left(b_n\right)$ sont adjacentes.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Les résultats seront arrondis si besoin à $10^{-4}$ près.
Une étude statistique réalisée dans une entreprise fournit les informations suivantes :

  • $48 \%$ des salariés sont des femmes. Parmi elles, $16,5 \%$ exercent une profession de cadre ;
  • $52 \%$ des salariés sont des hommes. Parmi eux, $21,5 \%$ exercent une profession de cadre.

On choisit une personne au hasard parmi les salariés.
On considère les événements suivants :

  • $F$ : « la personne choisie est une femme » ;
  • $C$ : « la personne choisie exerce une profession de cadre ».
  1. Représenter la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que la personne choisie soit une femme qui exerce une profession de cadre.
    $\quad$
  3. a. Démontrer que la probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. Les événements $F$ et $C$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Calculer la probabilité de $F$ sachant $C$, notée $P_C(F)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  5. On choisit au hasard un échantillon de 15 salariés. Le grand nombre de salariés dans l’entreprise permet d’assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de cadres au sein de l’échantillon de $15$ salariés.
    On rappelle que la probabilité qu’un salarié choisi au hasard soit un cadre est égale à $0,191$.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Calculer la probabilité que l’échantillon contienne au plus $1$ cadre.
    $\quad$
    c. Déterminer l’espérance de la variable aléatoire $X$.
    $\quad$
  6. Soit $n$ un entier naturel.
    On considère dans cette question un échantillon de $n$ salariés.
    Quelle doit être la valeur minimale de 𝑛𝑛 pour que la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

On considère le cube $ABCDEFGH$ de côté $1$ représenté ci-dessous.

 

On munit l’espace du repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. a. Justifier que les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    $\quad$
    b. Justifier que la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. En déduire que la droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Donner les coordonnées du vecteur $\vect{ED}$.
    Déduire de la question 1.c. qu’une équation cartésienne du plan $(AGH)$ est :
    $$y-z=0$$
    $\quad$
  3. On désigne par $L$ le point de coordonnées $\left(\dfrac{2}{3};1;0\right)$
    a. Déterminer une représentation paramétrique de la droite $(EL)$.
    $\quad$
    b. Déterminer l’intersection de la droite $(EL)$ et du plan $(AGH)$.
    $\quad$
    c. Démontrer que le projeté orthogonal du point $L$ sur le plan $(AGH)$ est le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    d. Montrer que la distance du point $L$ au plan $(AGH)$ est égale à $\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. Déterminer le volume du tétraèdre $LAGH$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule :
    $$V=\dfrac{1}{3}\times (\text{aire de la base})\times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonctions, suites

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. . Soit $g$ la fonction définie sur $\R$ par $g(x)=x^{1~000}+x$.
    On peut affirmer que :
    a. la fonction $g$ est concave sur $\R$.
    b. la fonction $g$ est convexe sur $\R$.
    c. la fonction $g$ possède exactement un point d’inflexion.
    d. la fonction $g$ possède exactement deux points d’inflexion.
    $\quad$
  2. On considère une fonction $f$ définie et dérivable sur $\R$. On note $f’$ sa fonction dérivée.
    On note $C$ la courbe représentative de $f$.
    On note $\Gamma$ la courbe représentative de $f’$.
    On a tracé ci-dessous la courbe $\boldsymbol{\Gamma}$ .

    On note $T$ la tangente à la courbe $\boldsymbol{C}$ au point d’abscisse $0$.
    On peut affirmer que la tangente $T$ est parallèle à la droite d’équation :
    a. $y=x$
    b. $y=0$
    c. $y=1$
    d. $x=0$
    $\quad$

  3. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n=\dfrac{(-1)^n}{n+1}$.
    On peut affirmer que la suite $\left(u_n\right)$ est :
    a. majorée et non minorée.
    b. minorée et non majorée.
    c. bornée.
    d. non majorée et non minorée.
    $\quad$
  4. Soit $k$ un nombre réel non nul.
    Soit $\left(v_n\right)$ une suite définie pour tout entier naturel $n$.
    On suppose que $v_0=k$ et que pour tout $n$, on a $v_n\times v_{n+1}<0$.
    On peut affirmer que $v_{10}$ est :
    a. positif.
    b. négatif.
    c. du signe de $k$.
    d. du signe de $-k$.
    $\quad$
  5. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par :
    $$w_{n+1}=2w_n-4\text{ et } w_2=8$$
    On peut affirmer que :
    a. $w_0=0$.
    b. $w_0=5$.
    c. $w_0=10$.
    d. Il n’est pas possible de calculer $w_0$.
    $\quad$
  6. On considère la suite $\left(a_n\right)$ définie pour tout entier naturel $n$ par : $$a_{n+1}=\dfrac{\e^n}{\e^n+1}a_n \text{ et } a_0=1$$
    On peut affirmer que :
    a. la suite $\left(a_n\right)$ est strictement croissante.
    b. la suite $\left(a_n\right)$ est strictement décroissante.
    c. la suite $\left(a_n\right)$ n’est pas monotone.
    d. la suite $\left(a_n\right)$ est constante.
    $\quad$
  7. Une cellule se reproduit en se divisant en deux cellules identiques, qui se
    divisent à leur tour, et ainsi de suite. On appelle temps de génération le temps nécessaire pour qu’une cellule donnée se divise en deux cellules. On a mis en culture $1$ cellule. Au bout de $4$ heures, il y a environ $4~000$ cellules.
    On peut affirmer que le temps de génération est environ égal à :
    a. moins d’une minute.
    b. $12$ minutes.
    c. $20$ minutes.
    d. $1$ heure.
    $\quad$

$\quad$

Exercice 4

Thème : Fonctions, fonction exponentielle, fonction logarithme, suites

Partie A

On considère la fonction $f$ définie pour tout réel $x$ de $]0 ; 1]$ par :$$f(x)=\e^{-x}+\ln(x)$$

  1. Calculer la limite de $f$ en $0$.
    $\quad$
  2. On admet que $f$ est dérivable sur $]0 ; 1]$. On note $f’$ sa fonction dérivée.
    Démontrer que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a :
    $$f'(x)=\dfrac{1-x\e^{-x}}{x}$$
    $\quad$
  3. Justifier que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a $x\e^{-x}<1$.
    En déduire le tableau de variation de $f$ sur $]0 ; 1]$.
    $\quad$
  4. Démontrer qu’il existe un unique réel $\ell$ appartenant à $]0 ; 1]$ tel que $f(\ell)=0$.
    $\quad$

Partie B

  1. On définit deux suites $\left(a_n\right)$ et $\left(b_n\right)$ par :
    $$\begin{cases} a_0=\dfrac{1}{10}\\[3pt]b_0=1\end{cases} \text{ et, pour tout entier naturel }n,~\begin{cases} a_{n+1}=\e^{-b_n}\\[3pt]b_{n+1}=\e^{-a_n}\end{cases}$$
    a. Calculer $a_1$ et $b_1$. On donnera des valeurs approchées à $10^{-2}$ près.
    $\quad$
    b. On considère ci-dessous la fonction termes, écrite en langage Python.
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad\text{a = 1/10}\\
    \quad\text{b = 1}\\
    \quad\text{for k in range(0,n):}\\
    \qquad\text{c = …}\\
    \qquad\text{b = …}\\
    \qquad\text{a = c}\\
    \quad\text{return(a,b)}\\
    \hline
    \end{array}$
    Recopier et compléter sans justifier le cadre ci-dessus de telle sorte que la
    fonction termes calcule les termes des suites $\left(a_n\right)$ et $\left(b_n\right)$.
    $\quad$
  2. On rappelle que la fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    a. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $$0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$$
    $\quad$
    b. En déduire que les suites $\left(a_n\right)$ et $\left(b_n\right)$ sont convergentes.
    $\quad$
  3. On note $A$ la limite de $\left(a_n\right)$ et $B$ la limite de $\left(b_n\right)$.
    On admet que $A$ et $B$ appartiennent à l’intervalle $]0 ; 1]$, et que $A = \e^{-B}$ et $B = \e^{-A}$.
    a. Démontrer que $f(A)=0$.
    $\quad$
    b. Déterminer $A-B$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Amérique du Nord – sujet 1 – 18 mai 2022

Amérique du nord – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant:
    $\quad$
    $\quad$
    b. $\left(V,\conj{V}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(R)&=P(R\cap V)+P\left(R\cap \conj{V}\right) \\
    &=P(V)\times P_V(R)+P\left(\conj{V}\right)\times P_{\conj{V}}(R)\\
    &=\dfrac{2}{3}\times \dfrac{1}{50}+\dfrac{1}{3}\times \dfrac{1}{10} \\
    &=\dfrac{7}{150}\end{align*}$
    La probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} P_R(V)&=\dfrac{P(R\cap V)}{P(R)} \\
    &=\dfrac{~\dfrac{2}{150}~}{\dfrac{7}{150}} \\
    &=\dfrac{2}{7}\end{align*}$
    La probabilité que Paul ait pris son vélo pour rejoindre la gare sachant qu’il a raté son train est égale à $\dfrac{2}{7}$.
    $\quad$
  2. a. On répète $20$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{3}$.
    $\quad$
    b.
    $\begin{align*} P(X=10)&=\dbinom{20}{10}\times \left(\dfrac{2}{3}\right)^{10}\times \left(\dfrac{1}{3}\right)^{10} \\
    &\approx 0,054\end{align*}$
    La probabilité que Paul prenne son vélo exactement $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,054$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 10)&=1-P(X\pp 9) \\
    &\approx 0,962\end{align*}$
    La probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,962$.
    d. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=20\times \dfrac{2}{3}\\
    &=\dfrac{40}{3}\end{align*}$
    En moyenne, sur un période choisie au hasard de $20$ jours, Paul prend son vélo environ $13$ jours pour se rendre à la gare.
    $\quad$
  3. L’espérance mathématique de $T$ est :
    $\begin{align*} E(T)&=10\times P(T=10)+11\times P(T=11)+\ldots+18\times P(T=18) \\
    &=13,5\end{align*}$
    En moyenne Paul met $13,5$ minutes pour se rendre à la gare en voiture.
    $\quad$

Ex 2

Exercice 2

  1. a. Pour tout entier naturel $n$ on note $P(n):~T_n\pg 20$.
    Initialisation : $T_0=180\pg 20$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} T_n\pg 20&\ssi 0,955T_n \pg 19,1 \\
    &\ssi 0,955T_n+0,9 \pg 20 \\
    &\ssi T_{n+1} \pg 20\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $T_n\pg 20$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} T_{n+1}-T_n&=0,955T_n+0,9 -T_n \\
    &=-0,045T_n+0,9 \\
    &=-0,045\left(T_n-20\right)\end{align*}$
    $\quad$
    Pour tout $n\in \N$ on a $T_n\pg 20 \ssi T_n-20\pg 0$.
    Ainsi $T_{n+1}-T_n\pp 0$.
    Par conséquent $\left(T_n\right)$ est décroissante.
    $\quad$
    c. La suite $\left(T_n\right)$ est décroissante et minorée par $20$. Elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. Soit $n\in \N$. $u_n=T_n-20\ssi T_n=u_n+20$
    $\begin{align*} u_{n+1}&=T_{n+1}-20 \\
    &=0,955T_n+0,9-20 \\
    &=0,955T_n-19,1\\
    &=0,955\left(u_n+20\right)-19,1 \\
    &=0,955u_n+19,1-19,1\\
    &=0,955u_n\end{align*}$
    Par conséquent, la suite $\left(u_n\right)$ est géométrique de raison $0,955$ et de premier terme $u_0=160$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $u_n=160\times 0,955^n$.
    Donc $T_n=u_n+20=20+160\times 0,955^n$.
    $\quad$
    c. $-1<0,955<1$ donc $\lim\limits_{n\to +\infty} 0,955^n=0$.
    Par conséquent $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    d.
    $\begin{align*} T_n\pp 120&\ssi 20+160\times 0,955^n \pp 120 \\
    &\ssi 160\times 0,955^n \pp 100 \\
    &\ssi 0,955^n \pp 0,625 \\
    &\ssi n\ln(0,955) \pp \ln(0,625) \\
    &\ssi n\pg \dfrac{\ln(0,625)}{\ln(0,955)} \end{align*}$
    Or $\dfrac{\ln(0,625)}{\ln(0,955)} \approx 10,2$.
    L’ensemble solution de $T_n\pp 120$ est l’ensemble des entiers naturels supérieurs ou égaux à $11$.
    $\quad$
  3. a. La température au centre du gâteau va décroitre jusqu’à atteindre la température ambiante.
    Il était donc prévisible que $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    b. La fonction $\texttt{temp}$ renvoie le plus petit entier naturel $n$ tel que $T_n\pp x$.
    D’après la question 2.d. la commande $\texttt{temp(120)}$ renvoie $11$.
    Cela signifie que la température au centre du gâteau devient inférieure à $120$ degré Celsius au bout de $11$ minutes.
    $\quad$

Ex 3

Exercice 3

  1. a. $\vect{JK}\begin{pmatrix} -1\\2\\0\end{pmatrix}$ et $\vect{JL}\begin{pmatrix} -4\\-2\\-3\end{pmatrix}$
    Donc
    $\begin{align*} \vect{JK}.\vect{JL}&=-1\times (-4)+2\times (-2)+0\times (-3) \\
    &=4-4\\
    &=0\end{align*}$
    Les vecteurs $\vect{JK}$ et $\vect{JL}$ sont donc orthogonaux. Le triangle $JKL$ est par conséquent rectangle en $J$.
    $\quad$
    b.
    $\begin{align*} JK&=\sqrt{(-1)^2+2^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} JL&=\sqrt{(-4)^2+(-2)^2+(-3)^2} \\
    &=\sqrt{29}\end{align*}$
    L’aire du triangle $JKL$ est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{JK\times JL}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{29}}{2} \\
    &=\dfrac{\sqrt{145}}{2} \text{ cm}^2\end{align*}$
    c. Dans le triangle $JKL$ rectangle en $J$ on a $\tan \widehat{JKL}=\dfrac{JL}{JK}$
    Soit $\tan \widehat{JKL}=\dfrac{\sqrt{29}}{\sqrt{5}}$
    Par conséquent $\widehat{JKL} \approx 67,5$°
    $\quad$
  2. a. D’une part :
    $\begin{align*}\vect{JK}.\vec{n}&=6\times (-1)+3\times 2+0\times (-10) \\
    &=-6+6\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*}\vect{JL}.\vec{n}&=6\times (-4)+3\times (-2)+(-10)\times (-3)
    &=-24-6+30\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteur non colinéaires (puisqu’orthogonaux) du plan $(JKL)$.
    $\vec{n}$ est par conséquent un vecteur normal au plan $(JKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(JKL)$ est donc de la forme $6x+3y-10z+d=0$.
    Le point $J(2;0;1)$ appartient au plan $(JKL)$.
    Par conséquent $12+0-10+d=0 \ssi d=-2$
    Une équation cartésienne du plan $(JKL)$ est $6x+3y-10z-2=0$.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $\Delta$.
    Une représentation paramétrique de $\Delta$ est donc $\begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\end{cases} \qquad ,t\in \R$.
    $\quad$
    b. On résout le système :
    $\begin{align*} \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6x+3y-10z-2=0\end{cases}&\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6(10+6t)+3(9+3t)-10(-6-10t)-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\60+36t+27+9t+60+100t-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\145t+145=0\end{cases}\\
    &\ssi \begin{cases}t=-1\\ x=4\\y=6\\z=4\end{cases}\end{align*}$
    Ainsi $H$ a pour coordonnées $(4;6;4)$.
    $\quad$
    c. $\vect{HT}\begin{pmatrix} 6\\3\\-10\end{pmatrix}$
    Donc
    $\begin{align*} HT&=\sqrt{6^2+3^2+(-10)^2} \\
    &=\sqrt{145}\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\mathscr{A}\times HT \\
    &=\dfrac{1}{3}\times \dfrac{145}{2}\times \sqrt{145}\\
    &=\dfrac{145}{6} \text{ cm}^3\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. Soit $x\in \R$
    $\begin{align*} 1-\dfrac{1-\e^x}{1+\e^x}&=\dfrac{1+\e^x-1+\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{\e^x\left(\e^{-x}+1\right)} \\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Affirmation 1 vraie
    $\quad$
  2. $\quad$
    $\begin{align*} g(x)=\dfrac{1}{2} &\ssi \dfrac{\e^x}{\e^x+1}=\dfrac{1}{2} \\
    &\ssi 2\e^x=\e^x+1 \\
    &\ssi \e^x=1 \\
    &\ssi x=0\end{align*}$
    L’équation $g(x)=\dfrac{1}{2}$ admet une unique solution : $0$.
    Affirmation 2 vraie
    $\quad$
  3. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=2x\e^{-x}-x^2\e^{-x} \\
    &=\left(2x-x^2\right)\e^{-x} \\
    &=x(2-x)\e^{-x}\end{align*}$
    Si l’axe des abscisses est tangent à la courbe $C$ en $A\left(x_A;y_A\right)$ alors $f’\left(x_A\right)=0$.
    Or $f'(x)=0 \ssi x(2-x)=0$ car la fonction exponentielle est strictement positive.
    $x(2-x)=0 \ssi x=0$ ou $x=2$.
    Cependant $f(0)=0$ et $f(2)=4\e^{-2}\neq 0$. Le point de coordonnées $(0;0)$ appartient à l’axe des abscisses mais le point de coordonnées $\left(2;4\e^{-2}\right)$ n’appartient pas à cet axe.
    L’axe des abscisses est tangent à la courbe $C$ qu’en l’origine du repère.
    Affirmation 3 vraie
    $\quad$
  4. La fonction $h$ est deux fois dérivable sur $\R$ en tant que produit de fonctions deux fois dérivables.
    Soit $x\in \R$
    $\begin{align*} h'(x)&=\e^x\left(1-x^2\right)-2x\e^x \\
    &=\e^x\left(-x^2-2x+1\right)\end{align*}$
    $\begin{align*} h\dsec(x)&=\e^x\left(-x^2-2x+1\right)+\e^{-x}(-2x-2)\\
    &=\e^x\left(-x^2-2x+1-2x-2\right) \\
    &=\e^x\left(-x^2-4x-1\right)\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$. Le signe de $h\dsec(x)$ ne dépend donc que de celui de $-x^2-4x-1$.
    Le discriminant de ce polynôme du second degré est $\Delta=12>0$.
    Ainsi l’équation $-x^2-4x-1=0$ admet $2$ solutions distinctes et $h\dsec(x)$ change deux fois de signe en s’annulant.
    La courbe représentative de la fonction $h$ admet donc deux points d’inflexion.
    Affirmation 4 fausse
    $\quad$
  5. Soit $x>0$. $\dfrac{\e^x}{\e^x+x}=\dfrac{1}{1+\dfrac{x}{\e^x}}$
    Or, par croissances comparées $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    Par conséquent $\lim\limits_{x\to +\infty} \dfrac{1}{1+\dfrac{x}{\e^x}}=1$
    Affirmation 5 fausse
    $\quad$
  6. $\quad$
    $\begin{align*} 1+\e^{2x}\pg 2\e^x &\ssi \left(\e^x\right)^2-2\e^x+1 \pg 0\\
    &\ssi \left(\e^x-1\right)^2 \pg 0\end{align*}$
    Cette dernière inégalité est vraie pour tout réel $x$.
    Affirmation 6 vraie
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Chaque chaque jour où il travaille, Paul doit se rendre à la gare pour rejoindre son lieu de travail en train. Pour cela, il prend son vélo deux fois sur trois et, si il ne prend pas son vélo, il prend sa voiture.

  1. lorsqu’il prend son vélo pour rejoindre la gare, Paul ne rate le train qu’une fois sur $50$ alors que, lorsqu’il prend sa voiture pour rejoindre la gare Paul rate son train une fois sur $10$.
    On considère une journée au hasard lors de laquelle Paul sera à la gare pour prendre le train qui le conduira au travail.
    On note :
    • $V$ l’évènement « Paul prend son vélo pour rejoindre la gare »;
    • $R$ l’évènement « Paul rate son train ».
    a. Faire un arbre pondéré résumant la situation.
    $\quad$
    b. Montrer que la probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. Paul a raté son train. Déterminer la valeur exacte de la probabilité qu’il ait pris son vélo pour rejoindre la gare.
    $\quad$
  2. On choisit au hasard un mois pendant lequel Paul s’est rendu $20$ jours à la gare pour rejoindre son lieu de travail selon les modalités décrites en préambule.
    On suppose que, pour chacun de ces $20$ jours, le choix entre le vélo et la voiture est indépendant des choix des autres jours.
    On note $X$ la variable aléatoire donnant le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    a. Déterminer la loi suivie par la variable aléatoire $X$. Préciser ses paramètres.
    $\quad$
    b. Quelle est la probabilité que Paul prenne son vélo exactement 10 jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    c. Quelle est la probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    d. En moyenne, combien de jours sur une période choisie au hasard de $20$ jours pour se rendre à la gare, Paul prend-il son vélo ? On arrondira la réponse à l’entier.
    $\quad$
  3. Dans le cas où Paul se rend à la gare en voiture, on note $T$ la variable aléatoire donnant le temps de trajet nécessaire pour se rendre à la gare. La durée du trajet est donnée en minutes, arrondie à la minute. La loi de probabilité de $T$ est donnée par le tableau ci-dessous :
    $\begin{array}{|l|c|c|c|c|c|c|c|c|c|}
    \hline
    k\text{ (en minutes)}&10&11&12&13&14&15&16&17&18\\
    \hline
    P(T=k)&0,14&0,13&0,13&0,12&0,12&0,11&0,10&0,08&0,07\\
    \hline
    \end{array}$
    Déterminer l’espérance de la variable aléatoire $T$ et interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites

Dans cet exercice, on considère la suite $\left(T_n\right)$ définie par :
$$T_0 = 180 \text{ et, pour tout entier naturel }n,~ T_{n+1} = 0,955T_n +0,9$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$, $T_n > 20$.
    $\quad$
    b. Vérifier que pour tout entier naturel $n$, $T_{n+1}-T_n = −0,045\left(T_n-20\right))$. En déduire le sens de
    variation de la suite $\left(T_n\right)$.
    $\quad$
    c. Conclure de ce qui précède que la suite $\left(T_n\right)$ est convergente. Justifier.
    $\quad$
  2. Pour tout entier naturel $n$, on pose : $u_n = T_n-20$.
    a. Montrer que la suite $\left(u_n\right)$ est une suite géométrique dont on précisera la raison.
    $\quad$
    b. En déduire que pour tout entier naturel $n$, $T_n = 20+160\times 0,955^n$.
    $\quad$
    c. Calculer la limite de la suite $\left(T_n\right)$.
    $\quad$
    d. Résoudre l’inéquation $T_n\pp 120$ d’inconnue $n$ entier naturel.
    $\quad$
  3. Dans cette partie, on s’intéresse à l’évolution de la température au centre d’un gâteau après sa sortie du four.
    On considère qu’à la sortie du four, la température au centre du gâteau est de $180$° C et celle de l’air ambiant de $20$° C.
    La loi de refroidissement de Newton permet de modéliser la température au centre du gâteau par la suite précédente $\left(T_n\right)$. Plus précisément, $T_n$ représente la température au centre du gâteau, exprimée en degré Celsius, n minutes après sa sortie du four.
    a. Expliquer pourquoi la limite de la suite $\left(T_n\right)$ déterminée à la question 2. c. était prévisible dans le contexte de l’exercice.
    $\quad$
    b. On considère la fonction Python ci-dessous :
    $$\begin{array}{|l|}
    \hline
    \text{def temp(x):}\\
    \quad \text{T = 180} \\
    \quad \text{n = 0}\\
    \quad \text{while T > x:} \\
    \qquad \text{T = 0.955 * T + 0.9}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner le résultat obtenu en exécutant la commande $\texttt{temp(120)}$.
    Interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Dans l’espace muni d’un repère orthonormé $\Oijk$ d’unité $1$ cm, on considère les points suivants :
$$J(2 ; 0 ; 1),~~ K(1 ; 2 ; 1) \text{ et } L(−2 ; −2 ; −2)$$

  1. a. Montrer que le triangle $JKL$ est rectangle en $J$.
    $\quad$
    b. Calculer la valeur exacte de l’aire du triangle $JKL$ en cm$^2$.
    $\quad$
    c. Déterminer une valeur approchée au dixième près de l’angle géométrique $\widehat{JKL}.
    $\quad$
  2. a. Démontrer que le vecteur $\vec{n}$ de coordonnées$\begin{pmatrix}6\\3\\-10\end{pmatrix}$ est un vecteur normal au plan $(JKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(JKL)$.

$\quad$
Dans la suite, $T$ désigne le point de coordonnées $(10 ; 9 ; −6)$.

  1. a. Déterminer une représentation paramétrique de la droite $\Delta$ orthogonale au plan $(JKL)$ et passant par $T$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $T$ sur le plan $(JKL)$.
    $\quad$
    c. On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{B}\times h \text{où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur correspondante}$$
    Calculer la valeur exacte du volume du tétraèdre $JKLT$ en cm$^3$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonction exponentielle

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Justifier chaque réponse.

  1. Affirmation 1 : Pour tout réel $x$ : $1-\dfrac{1-\e^x}{1+\e^x}=\dfrac{2}{1+\e^{-x}}$.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par $g(x) =
    \dfrac{\e^x}{\e^x+1}$.
    Affirmation 2 : L’équation $g(x) = \dfrac{1}{2}$ admet une unique solution dans $\R$.
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par $f(x) = x^2\e^{-x}$ et on note $\mathscr{C}$ sa courbe dans un repère orthonormé.
    Affirmation 3 : L’axe des abscisses est tangent à la courbe $\mathscr{C}$ en un seul point.
    $\quad$
  4. On considère la fonction $h$ définie sur $\R$ par $h(x)=\e^x\left(1-x^2\right)$.
    Affirmation 4 : Dans le plan muni d’un repère orthonormé, la courbe représentative de la fonction $h$ n’admet pas de point d’inflexion.
    $\quad$
  5. Affirmation 5 : $\lim\limits_{x\to +\infty} \dfrac{\e^x}{\e^x+x}=0$.
    $\quad$
  6. Affirmation 6 : Pour tout réel $x$, $1+\e^{2x}\pg 2\e^x$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 18 mai 2022

Centres étrangers – Liban – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On a
    $\begin{align*} P(J\cap C)&=P(J)\times P_J(C)\\
    &=0,2\times 0,06 \\
    &=0,012\end{align*}$
    $\quad$
  3. $\left(J,\conj{J}\right)$ forme un système complet d’événements.
    D’après la formule des probabilités totales :
    $\begin{align*} P(C)&=P(J\cap C)+P\left(\conj{J}\cap C\right) \\
    &=0,012+P\left(\conj{J}\right)P_{\conj{J}}(C)\\
    &=0,012+0,8\times 0,125 \\
    &=0,112\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_C\left(\conj{J}\right)&=\dfrac{P\left(C\cap \conj{J}\right)}{P(C)} \\
    &=\dfrac{0,8\times 0,125}{0,112} \\
    &\approx 0,893\end{align*}$
    La probabilité que le skieur ait un forfait SÉNIOR sachant qu’il a choisi l’option coupe-file est environ égale à $0,893$.
    $\quad$
  5. Un skieur ayant choisi l’option coupe-file a moins de vingt-cinq ans ou plus de vingt-cinq ans.
    Ainsi :
    $\begin{align*} P_C(J)&=1-P_C\left(\conj{J}\right) \\
    &\approx 0,107\\
    &<0,15\end{align*}$
    L’affirmation est donc vraie.
    $\quad$

Partie B

  1. $X$ suit la loi binomiale de paramètres $n=30$ et $p=0,112$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,112)^{30} \\
    &=1-0,888^{30} \\
    &\approx 0,972\end{align*}$
    La probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,972$.
    $\quad$
  3. On veut calculer :
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,888^{30}+\dbinom{30}{1}0,112^1\times 0,888^{29} \\
    &\approx 0,136\end{align*}$
    La probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file est environ égale à $0,136$.
    $\quad$
  4. L’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=np\\
    &=30\times 0,112 \\
    &=3,36\end{align*}$
    $\quad$

Ex 2

Exercice 2

  1. On appelle $v_n$ le volume d’eau, en litres, contenu dans la bouteille au bout de $n$ heures.
    On a donc, pour tout entier naturel $n$, $v_{n+1}=(1-0,15)v_n$ soit $v_{n+1}=0,85 v_n$.
    $\left(v_n\right)$ est donc une suite géométrique de raison $0,85$ et de premier terme $1$.
    Par conséquent, pour tout entier naturel $n$, $v_n=0,85^n$.
    $\begin{align*} u_n \pp 0,25&\ssi 0,85^n \pp 0,25 \\
    &\ssi n\ln(0,85)\pp \ln(0,25) \\
    &\ssi n\pg \dfrac{\ln(0,25)}{\ln(0,85)} \qquad \text{car } \ln(0,85)<0 \end{align*}$
    Or $\dfrac{\ln(0,25)}{\ln(0,85)}\approx 8,53$.
    C’est donc au bout de $9$ heures que le volume d’eau devient inférieur à un quart de litre.
    Réponse c
    $\quad$
  2. Pour tout $n\in \N$, on pose $P(n):~u_n=6$.
    Initialisation : $u_0=6$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_{n+1}&=\dfrac{1}{2} u_n+3 \\
    &=\dfrac{1}{2}\times 6+3 \\
    &=6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n, $u_n=6$.
    Réponse d
    $\quad$
  3. Soit $x\in ]0;+\infty[$
    $\begin{align*} f(2x)&=4\ln(3\times 2x) \\
    &=4\left(\ln(2)+\ln(3x)\right) \\
    &=4\ln(2)+4\ln(3x)\\
    &=\ln\left(2^4\right)+f(x)\\
    &=\ln(16)+f(x)\end{align*}$
    Réponse b
    $\quad$
  4. Pour tout réel $x>1$ on a $g(x)=\dfrac{\ln(x)}{x}\times \dfrac{x}{x-1}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$
    D’après la limite du quotient des termes de plus haut degré $\lim\limits_{x\to +\infty} \dfrac{x}{x-1}=\lim\limits_{x\to +\infty} \dfrac{x}{x}=1$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=0$ : $C_g$ admet une asymptote horizontale d’équation $y=0$.
    $\quad$
    $C_g$ ne peut avoir d’asymptote verticale qu’en $1$.
    Pour tout réel $x\in ]1;+\infty[$ on a $g(x)=\dfrac{\ln(x)-\ln(1)}{x-1}$.
    Ainsi $g(x)$ est le taux d’accroissement de la fonction $\ln$ entre $1$ et $x$.
    Donc $\lim\limits_{x\to 1^+} g(x)=\ln'(1)=\dfrac{1}{1}$.
    $C_g$ n’a pas d’asymptote verticale.
    Réponse c
    $\quad$
  5. $h$ est définie sur $]0;2]$. Par conséquent :
    $\begin{align*} h(x)=0&\ssi 1+2\ln(x)=0 \\
    &\ssi 2\ln(x)=-1 \\
    &\ssi \ln(x)=-0,5 \\
    &\ssi x=\e^{-0,5}\end{align*}$
    Or $\e^{-0,5}\in \left[\dfrac{1}{\e};2\right]$.
    Réponse b
    $\quad$
  6. D’une part
    $\begin{align*} h\left(\sqrt{\e}\right)&=\left(\sqrt{\e}\right)^2\left(1+2\ln\left(\sqrt{\e}\right)\right) \\
    &=\e\left(1+2\times \dfrac{1}{2}\ln(\e)\right) \\
    &=2\e\end{align*}$
    D’autre part
    $\begin{align*} h’\left(\sqrt{\e}\right)&=4\left(\sqrt{\e}\right)\left(1+\ln\left(\sqrt{\e}\right)\right) \\
    &=4\sqrt{e}\left(1+\dfrac{1}{2}\right)\\
    &=6\sqrt{\e}\end{align*}$
    Une équation de la tangente à $C_h$ au point d’abscisse $\sqrt{\e}$ est donc $y=6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e$
    Or
    $\begin{align*} 6\sqrt{\e}\left(x-\sqrt{\e}\right)+2\e&=6\sqrt{\e}x-6\e+2\e \\
    &=6\sqrt{\e}x-4\e \\
    &=\left(6\e^{1/2}\right).x-4\e\end{align*}$
    Réponse d
    $\quad$
  7. Pour tout réel $x\in ]0;2]$ on a
    $\begin{align*} h\dsec(x)&=4\left(1+\ln(x)\right)+4x\times \dfrac{1}{x} \\
    &=4+4\ln(x)+4 \\
    &=8+4\ln(x)\end{align*}$
    $\begin{align*} h\dsec(x)>0&\ssi 8+4\ln(x)>0 \\
    &\ssi 4\ln(x)>8 \\
    &\ssi \ln(x)>0,5 \\
    &\ssi x>\sqrt{\e}\end{align*}$.
    On a, de même, $h\dsec(x)=0 \ssi x=\sqrt{\e}$.
    $\sqrt{2}\in ]0;2]$.
    La courbe $C_h$ possède donc un unique point d’inflexion sur $]0;2]$.
    Réponse b
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. a. $\lim\limits_{x\to -\infty} 0,5x-2=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to -\infty} \e^{0,5x-2}=0$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$.
    $\quad$
    b. Pour tout réel $x$ non nul on a
    $\begin{align*} 1+0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right) &=1+x-\e^{-0,5x}\times \e^{-2} \\
    &=f(x)\end{align*}$
    $\lim\limits_{x\to +\infty} 0,5x=+\infty$ et, par croissances comparées, $\lim\limits_{X\to +\infty} \dfrac{\e^X}{X}=+\infty$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^{0,5x}}{0,5x}=+\infty$.
    Par produit des limites, $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a $f'(x)=1-0,5\e^{0,5x-2}$
    $\quad$
    b.
    $\begin{align*} f'(x)<0&\ssi 1-0,5\e^{0,5x-2}<0 \\
    &\ssi -0,5\e^{0,5x-2}<-1 \\
    &\ssi \e^{0,5x-2}>2 \\
    &\ssi 0,5x-2>\ln(2) \\
    &\ssi 0,5x>2+\ln(2) \\
    &\ssi x>4+2\ln(2)\end{align*}$
    Ainsi l’ensemble des solutions de l’inéquation $f'(x)<0$ est bien $\left]4+2\ln(2);+\infty\right[$.
    $\quad$
  3. En raisonnant de la même façon on obtient $f'(x)=0 \ssi x=4+2\ln(2)$.
    On obtient donc le tableau de variations suivant :

    $\begin{align*} f\left(4+2\ln(2)\right)&=1+4+2\ln(2)-\e^{2+\ln(2)-2} \\
    &=5+2\ln(2)-2\\
    &=3+2\ln(2)\end{align*}$
    $\quad$
  4. $4+2\ln(2)>0$.
    La fonction $f$ est donc continue (car dérivable) et strictement croissante sur $[-1;0]$.
    $f(-1)=-\e^{-2,5}<0$ et $f(0)=1-\e^{-2}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet donc une unique solution sur l’intervalle $[-1;0]$.
    $\quad$

Partie B

  1. a. Pour tout entier naturel $n$ on pose $P(n):~u_n\pp u_{n+1} \pp 4$
    Initialisation : $u_0=0$ et $u_1=2-\e^{-1,5}\approx 1,78$
    Donc $u_0\pp u_1\pp 4$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    La fonction $f$ est strictement croissante sur $\left]-\infty;4+2\ln(2)\right]$ donc sur $[0;4]$.
    $\begin{align*} u_n\pp u_{n+1} \pp 4&\Rightarrow f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(4) \\
    &\Rightarrow u_{n+1}\pp u_{n+2}\pp 5-1\end{align*}$
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$ on a $u_n \pp u_{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $4$; elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. $\ell$ est solution de l’équation $x=f(x)$
    $\begin{align*} x=f(x)&\ssi 1+x-\e^{0,5x-2}=x \\
    &\ssi 1-\e^{0,5x-2}=0 \\
    &\ssi \e^{0,5x-2}=1 \\
    &\ssi 0,5x-2=0 \\
    &\ssi 0,5x=2 \\
    &\ssi x=4\end{align*}$
    Ainsi $\ell =4$.
    $\quad$
    b. La fonction $\texttt{valeur}$ renvoie le plus petit entier naturel $n$ tel que $u_n>a$.
    Cela signifie donc le plus petit entier naturel $n$ tel que $u_n>3,99$ est $12$.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a $R(3;2;0)$ et $\vect{AB}\begin{pmatrix} -4\\4\\0\end{pmatrix}$
    $\quad$
    b. Une équation du plan $\mathscr{P}_1$ est donc de la forme $-4x+4y+d=0$.
    $R(2;2;0)$ appartient au plan $\mathscr{P}_1$ donc $-12+8+d=0 \ssi d=4$.
    Une équation de $\mathscr{P}_1$ est donc $-4x+4y+4=0$ soit $x-y-1=0$.
    $\quad$
    c. $10-9-1=0$ donc $E(10;9;8)$ appartient à $\mathscr{P}_1$.
    $\vect{EA}\begin{pmatrix} -5\\-9\\-9\end{pmatrix}$ et $\vect{EB}\begin{pmatrix} -9\\-5\\-9\end{pmatrix}$
    $\begin{align*} EA&=\sqrt{(-5)^2+(-9)^2+(-9)^2}\\
    &=\sqrt{25+81+81} \\
    &=\sqrt{187}\end{align*}$
    $\begin{align*} EB&=\sqrt{(-9)^2+(-5)^2+(-9)^2}\\
    &=\sqrt{187}\end{align*}$
    On a donc $EA=EB$.
    $\quad$
  2. a. Un vecteur normal au plan $\mathscr{P}_2$ est $\vec{n}\begin{pmatrix}1\\0\\-1\end{pmatrix}$
    $\vect{AB}$ et $\vec{n}$ ne sont pas colinéaires.
    Les plans $\mathscr{P}_1$ et $\mathscr{P}_2$ sont par conséquent sécants.
    $\quad$
    b. Soit $t\in \R$.
    $\begin{align*} (2+t)-(1+t)-1&=2+t-1-t-1 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_1$.
    $\begin{align*} (2+t)-t-2&=2+t-t-2 \\
    &=0\end{align*}$
    La droite dont une représentation paramétrique est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$ est incluses dans le plan $\mathscr{P}_2$.
    L’intersection de deux plans et une droite.
    Ainsi une représentation paramétrique de $\Delta$ est $\begin{cases} x=2+t\\y=1+t\\z=t\end{cases},~(t\in \R)$.
    $\quad$
  3. $\quad$
    $\begin{align*} \begin{cases} x=2+t\\y=1+t\\z=t\\y+z-3=0\end{cases} &\ssi  \begin{cases} x=2+t\\y=1+t\\z=t\\1+t+t-3=0\end{cases} \\
    &\ssi \begin{cases} x=2+t\\y=1+t\\z=t\\t=1\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=2\\z=1\end{cases}\end{align*}$
    La droite $\Delta$ est sécante au plan $\mathscr{P}_3$ en $\Omega(3;2;1)$.
    $\quad$
  4. a. $\Omega$ appartient au plan médiateur de $[AB]$ donc $\Omega A=\Omega B$.
    $\Omega$ appartient au plan médiateur de $[AC]$ donc $\Omega A=\Omega C$.
    $\Omega$ appartient au plan médiateur de $[AD]$ donc $\Omega A=\Omega D$.
    Ainsi $\Omega A=\Omega B=\Omega C=\Omega D$.
    $\quad$
    b. Les points $A$, $B$, $C$ et $D$ appartiennent donc à la sphère de centre $\Omega$ et de rayon $\Omega A$.
    Or
    $\begin{align*} \Omega A&=\sqrt{(5-3)^2+(0-2)^2+(-1-1)^2} \\
    &=\sqrt{4+4+4} \\
    &=2\sqrt{3}\end{align*}$
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Dans une station de ski, il existe deux types de forfait selon l’âge du skieur :

  • un forfait JUNIOR pour les personnes de moins de vingt-cinq ans ;
  • un forfait SÉNIOR pour les autres.

Par ailleurs, un usager peut choisir, en plus du forfait correspondant à son âge,
l’option coupe-file qui permet d’écourter le temps d’attente aux remontées
mécaniques.

On admet que :

  • $20\%$ des skieurs ont un forfait JUNIOR ;
  • $80\% des skieurs ont un forfait SÉNIOR ;
  • parmi les skieurs ayant un forfait JUNIOR, $6\%$ choisissent l’option coupe-file ;
  • parmi les skieurs ayant un forfait SÉNIOR, $12,5\%$ choisissent l’option coupe-file.

On interroge un skieur au hasard et on considère les événements :

  • $J$ : « le skieur a un forfait JUNIOR » ;
  • $C$ : « le skieur choisit l’option coupe-file ».

Les deux parties peuvent être traitées de manière indépendante.

Partie A

  1. Traduire la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité $P(J\cap C)$.
    $\quad$
  3. Démontrer que la probabilité que le skieur choisisse l’option coupe-file
    est égale à $0,112$.
    $\quad$
  4. Le skieur a choisi l’option coupe-file. Quelle est la probabilité qu’il s’agisse d’un skieur ayant un forfait SÉNIOR ? Arrondir le résultat à $10^{-3}$.
    $\quad$
  5. Est-il vrai que les personnes de moins de vingt-cinq ans représentent moins de $15\%$ des skieurs ayant choisi l’option coupe-file ? Expliquer.
    $\quad$

Partie B
On rappelle que la probabilité qu’un skieur choisisse l’option coupe-file est
égale à $0,112$.

On considère un échantillon de $30$ skieurs choisis au hasard.

Soit $X$ la variable aléatoire qui compte le nombre des skieurs de l’échantillon ayant choisi l’option coupe-file.

  1. On admet que la variable aléatoire $X$ suit une loi binomiale.
    Donner les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité qu’au moins un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  3. Calculer la probabilité qu’au plus un des $30$ skieurs ait choisi l’option coupe-file.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  4. Calculer l’espérance mathématique de la variable aléatoire $X$.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites, fonctions, fonction logarithme

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. Un récipient contenant initialement $1$ litre d’eau est laissé au soleil.
    Toutes les heures, le volume d’eau diminue de $15\%$.
    Au bout de quel nombre entier d’heures le volume d’eau devient-il inférieur à un quart de litre ?
    a. $2$ heures
    b. $8$ heures
    c. $9$ heures
    d. $13$ heures
    $\quad$
  2. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_{n+1}=\dfrac{1}{2}u_n+3$ et $u_0=6$. On peut affirmer que :
    a. la suite $\left(u_n\right)$ est strictement croissante.
    b. la suite $\left(u_n\right)$ est strictement décroissante.
    c. la suite $\left(u_n\right)$ n’est pas monotone.
    d. la suite $\left(u_n\right)$ est constante.
    $\quad$
  3. On considère la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=4\ln(3x)$
    Pour tout réel $x$ de l’intervalle $]0;+\infty[$ , on a :
    a. $f(2x)=f(x)+\ln(24)$
    b. $f(2x)=f(x)+\ln(16)$
    c. $f(2x)=\ln(2)+f(x)$
    d. $f(2x)=2f(x)$
    $\quad$
  4. On considère la fonction $g$ définie sur l’intervalle $]1;+\infty[$ par :
    $$g(x)\dfrac{\ln(x)}{x-1}$$
    On note $\mathcal{C}_g$ la courbe représentative de la fonction $g$ dans un repère orthogonal.
    La courbe $\mathcal{C}_g$ admet :
    a. une asymptote verticale et une asymptote horizontale.
    b. une asymptote verticale et aucune asymptote horizontale.
    c. aucune asymptote verticale et une asymptote horizontale.
    d. aucune asymptote verticale et aucune asymptote horizontale.
    $\quad$

Dans la suite de l’exercice, on considère la fonction $h$ définie sur l’intervalle $]0 ; 2]$ par : $$h(x) = x^2\left(1 + 2 \ln(x)\right)$$
On note $\mathcal{C}_h$ la courbe représentative de $h$ dans un repère du plan.
On admet que $h$ est deux fois dérivable sur l’intervalle $]0 ; 2]$.
On note $h’$ sa dérivée et $h\dsec$ sa dérivée seconde.

On admet que, pour tout réel $x$ de l’intervalle $]0 ; 2]$, on a :$$h'(x)=4x\left(1+\ln(x)\right)$$

  1. Sur l’intervalle $\left[\dfrac{1}{\e};2\right]$, la fonction $h$ s’annule :
    a. exactement $0$ fois.
    b. exactement $1$ fois.
    c. exactement $2$ fois.
    d. exactement $3$ fois.
    $\quad$
  2. Une équation de la tangente à $\mathcal{C}_h$ au point d’abscisse $\sqrt{\e}$ est :
    a. $y=\left(6\e^{\frac{1}{2}}\right).x$
    b. $y=\left(6\sqrt{\e}\right).x+2\e$
    c. $y=6\e^{\frac{x}{2}}$
    d. $y=\left(6\e^{\frac{1}{2}}\right).x-4\e$
    $\quad$
  3. Sur l’intervalle $]0 ; 2]$, le nombre de points d’inflexion de la courbe $\mathcal{C}_h$ est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. $3$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : suites, fonctions, fonction exponentielle

Partie A

On considère la fonction $f$ définie pour tout réel $x$ par : $$f(x)=1+x-\e^{0,5x-2}$$
On admet que la fonction $f$ est dérivable sur $\R$. On note $f’$ sa dérivée.

  1. a. Déterminer la limite de la fonction $f$ en $-\infty$.
    $\quad$
    b. Démontrer que, pour tout réel $x$ non nul, $f(x) = 1 + 0,5x\left(2-\dfrac{\e^{0,5x}}{0,5x}\times \e^{-2}\right)$.
    En déduire la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. a. Déterminer $f'(x)$ pour tout réel $x$.
    $\quad$
    b. Démontrer que l’ensemble des solutions de l’inéquation $f'(x)<0$ est
    l’intervalle $]4 + 2\ln(2) ; +\infty[$.
    $\quad$
  3. Déduire des questions précédentes le tableau de variation de la fonction $f$ sur $\R$.
    On fera figurer la valeur exacte de l’image de $4 + 2\ln(2)$ par $f$.
    $\quad$
  4. Montrer que l’équation $f(x) = 0$ admet une unique solution sur l’intervalle $[-1; 0]$.
    $\quad$

Partie B

On considère la suite $\left(u_n\right)$ définie par $u_0=0$ et, pour tout entier naturel $n$ ,
$$u_{n+1}=f\left(u_n\right) \text{ où } f \text{ est la fonction définie à la }\textbf{ partie A.}$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$ , on a : $$u_n\pp u_{n+1}\pp 4$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ converge. On notera $\ell$ la limite.
    $\quad$
  2. a. On rappelle que $\ell$ vérifie la relation $\ell=f(\ell)$.
    Démontrer que $\ell = 4$.
    $\quad$
    b. On considère la fonction $\texttt{valeur}$ écrite ci-dessous dans le langage Python :
    $\begin{array}{|l|}
    \hline
    \text{def valeur(a):}\\
    \quad\text{u=0}\\
    \quad\text{n=0}\\
    \quad\text{while u<=a:}\\
    \qquad\text{u=1+u-exp(0.5*u-2)}\\
    \qquad\text{n=n+1}\\
    \quad\text{return n}\\
    \hline
    \end{array}$
    L’instruction $\texttt{valeur(3.99)}$ renvoie la valeur $12$.
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $\Oijk$.
On considère les points $A(5 ; 0 ; -1)$, $B(1 ; 4 ; -1)$, $C(1 ; 0 ; 3)$, $D(5 ; 4 ; 3)$ et $E(10 ; 9 ; 8)$

  1. a. Soit $R$ le milieu du segment $[AB]$.
    Calculer les coordonnées du point $R$ ainsi que les coordonnées du vecteur $\vect{AB}$.
    $\quad$
    b. Soit $\mathcal{P}_1$ le plan passant par le point $R$ et dont $\vect{AB}$ est un vecteur normal.
    Démontrer qu’une équation cartésienne du plan $\mathcal{P}_1$ est :
    $$x-y-1=0$$
    $\quad$
    c. Démontrer que le point $E$ appartient au plan $\mathcal{P}_1$ et que $EA = EB$.
    $\quad$
  2. On considère le plan $\mathcal{P}_2$ d’équation cartésienne $x-z-2=0$.
    a. Justifier que les plans $\mathcal{P}_1$ et $\mathcal{P}_2$ sont sécants.
    $\quad$
    b. On note $\Delta$ la droite d’intersection de $\mathcal{P}_1$ et $\mathcal{P}_2$ .
    Démontrer qu’une représentation paramétrique de la droite $\Delta$ est :$$\begin{cases} x=2+t\\y=1+t\\z=t\end{cases} \quad (t\in \R)$$
    $\quad$
  3. On considère le plan $\mathcal{P}_3$ d’équation cartésienne $z+z-3=0$.
    Justifier que la droite $\Delta$ est sécante au plan $\mathcal{P}_3$ en un point $\Omega$ dont on déterminera les coordonnées.

Si $S$ et $T$ sont deux points distincts de l’espace, on rappelle que l’ensemble des points $M$ de l’espace tels que $MS = MT$ est un plan, appelé plan médiateur du segment $[ST]$.
On admet que les plans $\mathcal{P}_1$, $\mathcal{P}_2$ et $\mathcal{P}_3$ sont les plans médiateurs respectifs des segments $[AB]$, $[AC]$ et $[AD]$.

  1. a. Justifier que $\Omega A = \Omega B = \Omega C = \Omega D$.
    $\quad$
    b. En déduire que les points $A$, $B$, $C$ et $D$ appartiennent à une même sphère dont on précisera le centre et le rayon.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – 11 mai 2022

Métropole – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A : Étude du premier protocole

  1. a. Pour tout $t\in[0;10]$ on a
    $\begin{align*} f'(t)&=3\e^{-0,5t+1}+3t\times (-0,5)\e^{-0,5t+1} \\
    &=3(-0,5t+1)\e^{-0,5t+1}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $-0,5t+1$.
    Or $-0,5t+1=0 \ssi -0,5t=-1 \ssi t=2$
    et $-0,5t+1>0 \ssi -0,5t>-1 \ssi t<2$
    On obtient donc le tableau de variations suivant :$\quad$
    c. D’après le tableau de variations, la fonction $f$ atteint son maximum pour $t=2$ et celui-ci vaut $f(2)=6$.
    La quantité de médicament présente dans le sang est donc maximale au bout de $2$ h et elle vaut alors $6$ mg.
    $\quad$
  2. a. La fonction $f$ est continue et strictement croissante sur $[0;2]$.
    De plus, $f(0)=0<5$ et $f(2)=6>5$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(t)=5$ admet une unique solution $\alpha$ sur $[0;2]$.
    D’après la calculatrice $\alpha \approx 1,02$.
    $\quad$
    b. $\beta-\alpha \approx 2,44$. Le médicament est donc efficace environ $2,44$ heures soit $2$ heures et $26$ minutes.
    $\quad$

Partie B : Étude du deuxième protocole

  1. La quantité de médicament baisse de $30\%$ au bout d’une heure. Il en reste donc $70\%$ soit $0,7u_0=1,4$.
    On réinjecte $1,8$ mg
    Donc $u_1=1,4+1,8=3,2$.
    Après l’injection de la première heure, il y a donc $3,2$ mg de médicament dans le sang.
    $\quad$
  2. La quantité de médicament baisse de $30\%$ en une heure. Il est donc $70\%$ soit $0,7u_n$.
    On réinjecte $1,8$ mg.
    Donc, pour tout $n\in \N$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on note $P(n):~u_b \pp u_{n+1} <6$.
    Initialisation : $u_0=2$ et $u_1=3,2$. Donc $u_0\pp u_1<6$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <6 &\ssi 0,7u_n \pp 0,7u_{n+1} < 4,2 \\
    &\ssi 0,7u_n+1,8 \pp 0,7u_{n+1}+1,8<6 \\
    &\ssi u_{n+1} \pp u_{n+2}<6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n\pp u_{n+1} <6$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $6$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. On considère la fonction $g$ définie sur $\R$ par $g(x)=0,7x+1,8$.
    La fonction $f$ est continue sur $\R$ en tant que fonction affine et, pour tout $n\in \N$ on a $u_{n+1}=g\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $g(x)=x$
    $\begin{align*} 0,7x+1,8=x&\ssi 0,3x=1,8 \\
    &\ssi x=6\end{align*}$
    Donc $\ell=6$.
    Sur le long terme, le patient aura $6$ mg de médicament dans le sang.
    $\quad$
  4. a. Pour tout $n\in \N$
    $\begin{align*} v_{n+1}&=6-u_{n+1} \\
    &=6-0,7u_n-1,8 \\
    &=4,2-0,7u_n \\
    &=0,7\left(6-u_n\right)\\
    &=0,7v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,7$ et de premier terme $v_0=6-u_0=4$.
    $\quad$
    b. On a donc, pour tout $n\in \N$, $v_n=4\times 0,7^n$.
    Par conséquent $u_n=6-v_n=6-4\times 0,7^n$.
    $\quad$
    c. $\quad$
    $\begin{align*} u_n\pg 5,5&\ssi 6-4\times 0,7^n \pg 5,5 \\
    &\ssi -4\times 0,7^n \pg 0,5 \\
    &\ssi 0,7^n \pp 0,125 \\
    &\ssi n\ln(0,7) \pp \ln(0,125) \\
    &\ssi n \pg \dfrac{\ln(0,125)}{\ln(0,7)} \qquad \text{car } \ln(0,7)<0\end{align*}$
    $\quad$

 

Ex 2

Exercice 2

  1. a. On a $\vec{u}(2;-1;2)$.
    $\quad$
    b. Si $t=-1$ alors $x=-1$, $y=3$ et $z=0$ donc $B(-1;3;0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. $\vect{AB}(0;2;-3)$.
    Donc
    $\begin{align*} \vect{AB}.\vec{u}&=0\times 2+2\times (-1)+2\times (-3) \\
    &=-8\end{align*}$
    $\quad$
  2. a. $\vec{u}$ est donc un vecteur normal au plan $\mathscr{P}$.
    Une équation cartésienne de ce plan est par conséquent de la forme : $2x-y+2z+d=0$.
    Or $A(-1;1;3)$ appartient à $\mathscr{P}$.
    Donc $-2-1+6+d=0\ssi d=-3$.
    Une équation cartésienne de $\mathscr{P}$ est $2x-y+2z-3=0$.
    $\quad$
    b. $2\times \dfrac{7}{9}-\dfrac{19}{9}+2\times \dfrac{16}{9}-3=\dfrac{27}{9}-3=0$ : le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{P}$.
    $1+2t=\dfrac{7}{9}\ssi 2t=\dfrac{-2}{9}\ssi t=\dfrac{-1}{9}$.
    En prenant $t=-\dfrac{1}{9}$ dans l’équation de $\mathscr{D}$ on obtient $\begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}$ donc le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{D}$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$
    c. $\vect{AH}\left(\dfrac{16}{9};\dfrac{10}{9};-\dfrac{11}{9}\right)$
    Donc
    $\begin{align*} AH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{10}{9}\right)^2+\left(\dfrac{-11}{9}\right)^2} \\
    &=\dfrac{\sqrt{477}}{9} \\
    &=\dfrac{\sqrt{53}}{3}\end{align*}$
    $\quad$
  3. a. $(HB)$ est orthogonale au plan $\mathscr{P}$. Par conséquent $\vect{HB}$ et $\vec{u}$ sont colinéaires.
    Il existe donc un réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b.
    $\begin{align*} \vect{AB}.\vec{u}&=\left(\vect{AH}+\vect{HB}\right).\vec{u} \\
    &= \vect{AH}.\vec{u}+ \vect{HB}.\vec{u} \\
    &=0+k\vec{u}.\vec{u} \\
    &=k\left\|\vec{u}\right\|^2\end{align*}$
    Ainsi $kj=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. On a $\left\|\vec{u}\right\|^2=2^2+(-1)^2+2^2=9$.
    Ainsi $k=-\dfrac{8}{9}$
    $\quad$
    Soit $H(x;y;z)$
    $\vect{HB}(-1-x;3-x;-z)$.
    $\begin{align*} \vect{HB}=-\dfrac{8}{9}\vec{u}&\ssi \begin{cases} 1-x=-\dfrac{8}{9}\times 2\\3-y=-\dfrac{8}{9}\times (-1)\\-z=-\dfrac{8}{9}\times 2\end{cases} \\
    &\ssi \begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}\end{align*}$
    On retrouve donc les coordonnées du point $H$ trouvées à la question 2.b.
    $\quad$
  4. $\vect{BH}\left(\dfrac{16}{9};\dfrac{-8}{9};\dfrac{16}{9}\right)$
    Donc
    $\begin{align*} BH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{-8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2} \\
    &=\dfrac{8}{3}\end{align*}$
    On appelle $\mathscr{B}$ l’aire du triangle $ACH$.
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times BH\times \mathscr{B} &\ssi \dfrac{8}{9}&=\dfrac{1}{3}\times \dfrac{8}{3}\times \mathscr{B} \\
    &\ssi \mathscr{B}=1\end{align*}$
    L’aire du triangle $ACH$ vaut $1$ unité d’aire.
    $\quad$

 

 

Ex 3

Exercice 3

  1. a. D’après l’énoncé $P(S)=0,25$.
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    c. On a
    $\begin{align*} P(F\cap S)&=P(F)\times P_F(S) \\
    &=0,52\times 0,4\\
    &=0,208\end{align*}$
    La probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On veut calculer
    $\begin{align*} P_F(S)&=\dfrac{P(S\cap F)}{P(S)} \\
    &=\dfrac{0,208}{0,25} \\
    &=0,832\end{align*}$
    La probabilité que la personne interrogée soit une femme sachant qu’elle a suivi le stage est égale à $0,832$.
    $\quad$
    e. $\left(F,\conj{F}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales
    $\begin{align*} P(S)=P(S\cap F)+P\left(S\cap \conj{F}\right) &\ssi P\left(S\cap \conj{F}\right)=P(S)-P(S\cap F)\\
    &\ssi P\left(S\cap \conj{F}\right)=0,042\end{align*}$
    Par conséquent
    $\begin{align*} P_F(S)&=\dfrac{P\left(S\cap \conj{F}\right)}{P\left(\conj{F}\right)} \\
    &=\dfrac{0,042}{0,48} \\
    &=0,0875 \\
    &<0,1\end{align*}$
    $\quad$
  2. a. On répète indépendamment $20$ fois  la même expérience de Bernoulli. $X$ compte le nombre de salariés ayant suivi le stage.
    Donc $X$ suit la loi binomiale de paramètres $n=20$ et $p=0,25$.
    $\quad$
    b.
    $\begin{align*} P(X=5)&=\dbinom{10}{5}\times 0,25^5\times (1-0,25)^{10-5} \\
    &\approx 0,202\end{align*}$
    La probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage est environ égale à $0,202$.
    $\quad$
    c. Ce programme calcule $P(X\pp k)$.
    D’après la calculatrice $P(X\pp 5) \approx 0,617$.
    Le programme renvoie donc $0,617$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} P(X\pg 6)&=1-P(X<6) \\
    &=1-P(X\pp 5) \\
    &\approx 0,383\end{align*}$
    $\quad$
  3. $1,05\times 0,25+1,02\times 0,75=1,0275$.
    Le pourcentage moyen d’augmentation des salaires de cette entreprise est donc de $2,75\%$.
    $\quad$

Ex 4

Exercice 4

  1. D’après la limite des termes de plus haut degré
    $\begin{align*} \lim\limits_{x\to +\infty} f(x)&=\lim\limits_{x\to +\infty} \dfrac{-2x^2}{x^2} \\
    &=-2\end{align*}$
    La droite d’équation $y=-2$ est donc asymptote à la courbe représentative de la fonction $f$.
    Réponse C
    $\quad$
  2. Une primitive de $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2}+K$
    $F(0)=1 \ssi \dfrac{1}{2}+K=1 \ssi K=\dfrac{1}{2}$
    Réponse D
    $\quad$
  3. $f’$ semble être strictement croissante sur $]-\infty;4[$ et strictement décroissante sur $[4;+\infty[$.
    Donc $f$ est convexe sur $]-\infty;4]$ et concave sur $[4;+\infty[$.
    Réponse C
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$. Par conséquent, pour tout réel $x$, $f(x)>0$ sur $\R$. $f$ est la dérivée de chacune de ses primitives.
    Réponse A
    $\quad
  5. Pour tout réel $x$, $f(x)=\dfrac{2\ln(x)}{3x^2}\times \dfrac{1}{1+\dfrac{3}{x^2}}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$
    De plus $\lim\limits_{x\to +\infty}  \dfrac{1}{1+\dfrac{3}{x^2}}=0$
    Par conséquent $\lim\limits_{x\to +\infty}f(x)=0$.
    Réponse D
    $\quad$
  6. L’équation peut s’écrire $\left(\e^x\right)^2+\e^x-12=0 \ssi \begin{cases} X=\e^x\\X^2+X-12=0\end{cases}$
    $X^2+X-12=0$ a pour discriminant $\Delta=49>0$
    Ses racines sont donc $X_1=-4$ et $X_2=3$.
    Or $\e^x=-4$ n’admet pas de solution et $\e^x=3$ admet une unique solution $x=\ln(3)$.
    Réponse C
    $\quad$

 

Énoncé

Exercice 1     7 points

Thèmes : fonction exponentielle, suites

Dans le cadre d’un essai clinique, on envisage deux protocoles de traitement d’une maladie.
L’objectif de cet exercice est d’étudier, pour ces deux protocoles, l’évolution de la quantité de médicament présente dans le sang d’un patient en fonction du temps.

Les parties A et B sont indépendantes.

Partie A : Étude du premier protocole

Le premier protocole consiste à faire absorber un médicament, sous forme de comprimé, au patient.
On modélise la quantité de médicament présente dans le sang du patient, exprimée en mg, par la fonction $f$ définie sur l’intervalle $[0; 10]$ par $f(t)=3t\e^{-0,5t+1}$, où $t$ désigne le temps, exprimé en heure, écoulé depuis la prise du comprimé.

  1. a. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 10]$ et on note $f’$ sa fonction dérivée.
    Montrer que, pour tout nombre réel $t$ de $[0; 10]$, on a : $f'(t)=3(-0,5t+1)\e^{-0,5t+1}$.
    $\quad$
    b. En déduire le tableau de variations de la fonction $f$ sur l’intervalle $[0; 10]$.
    $\quad$
    c. Selon cette modélisation, au bout de combien de temps la quantité de médicament présente dans le sang du patient sera-t-elle maximale ? Quelle est alors cette quantité maximale ?
    $\quad$
  2. a. Montrer que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[0; 2]$, notée $\alpha$, dont
    on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
    On admet que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[2; 10]$, notée $\beta$, et qu’une
    valeur approchée de $\beta$ à $10^{-2}$ près est $3,46$.
    $\quad$
    b. On considère que ce traitement est efficace lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5$ mg.
    Déterminer, à la minute près, la durée d’efficacité du  médicament dans le cas de ce protocole.
    $\quad$

Partie B : Étude du deuxième protocole

Le deuxième protocole consiste à injecter initialement au patient, par piqûre intraveineuse, une dose de $2$ mg de médicament puis à réinjecter toutes les heures une dose de $1,8$ mg.

On suppose que le médicament se diffuse instantanément dans le sang et qu’il est ensuite progressivement éliminé.

On estime que lorsqu’une heure s’est écoulée après une injection, la quantité de médicament dans le sang a diminué de $30 \%$ par rapport à la quantité présente immédiatement après cette injection.

On modélise cette situation à l’aide de la suite $\left(u_n\right)$ où, pour tout entier naturel $n$, $u_n$ désigne la quantité de médicament, exprimée en mg, présente dans le sang du patient immédiatement après l’injection de la $n$-ème heure. On a donc $u_0=2$.

  1. Calculer, selon cette modélisation, la quantité $u_1$ de médicament (en mg) présente dans le sang du patient immédiatement après l’injection de la première heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pp u_{n+1} <6$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
    c. Déterminer la valeur de $\ell$. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par $v_n=6-u_n$.
    a. Montrer que la suite $\left(v_bn\right)$ est une suite géométrique de raison $0,7$ dont on précisera le premier terme.
    $\quad$
    b. Déterminer l’expression de $v_n$ en fonction de $n$, puis de $u_n$ en fonction de $𝑛$.
    $\quad$
    c. Avec ce protocole, on arrête les injections lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5,5$ mg.
    Déterminer, en détaillant les calculs, le nombre d’injections réalisées en appliquant ce protocole.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$ on considère :

  • Le point $A$ de coordonnées $(-1;1;3)$;
  • La droite $\mathscr{D}$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=2-t\\z=2+2t\end{cases} \quad ,t\in \R$.

On admet que le point $A$ n’appartient pas à la droite $\mathscr{D}$.

  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u}$ de la droite $\mathscr{D}$.
    $\quad$
    b. Montrer que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. Calculer le produit scalaire $\vect{AB}.\vec{u}$.
    $\quad$
  2. On note $\mathscr{P}$ le plan passant par le point $A$ et orthogonal à la droite $\mathscr{D}$, et on appelle $H$ le point d’intersection du plan $\mathscr{P}$ et de la droite $\mathscr{D}$. Ainsi, $H$ est le projeté orthogonal de $A$ sur la droite $\mathscr{D}$.
    a. Montrer que le plan $\mathscr{P}$ admet pour équation cartésienne : $2x-y+2z-3=0$.
    $\quad$
    b. En déduire que le point $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    c. Calculer la longueur $AH$. On donnera une valeur exacte.
    $\quad$
  3. Dans cette question, on se propose de retrouver les coordonnées du point $H$, projeté orthogonal du point $A$ sur la droite $\mathscr{D}$, par une autre méthode.On rappelle que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$ et que le vecteur $\vec{u}$ est un vecteur directeur de la droite $\mathscr{D}$.
    a. Justifier qu’il existe un nombre réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b. Montrer que $k=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. Calculer la valeur du nombre réel $k$ et retrouver les coordonnées du point $H$.
    $\quad$
  4. On considère un point $C$ appartenant au plan $\mathscr{P}$ tel que le volume du tétraèdre $ABCH$ soit égal à $\dfrac{8}{9}$.
    Calculer l’aire du triangle $ACH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : probabilités

Le directeur d’une grande entreprise a proposé à l’ensemble de ses salariés un stage de formation à l’utilisation d’un nouveau logiciel.

Ce stage a été suivi par $25 \%$ des salariés.

  1. Dans cette entreprise, $52 \%$ des salariés sont des femmes, parmi lesquelles $40 \%$ ont suivi le stage.
    On interroge au hasard un salarié de l’entreprise et on considère les événements :
    $\bullet$ $F$ : « le salarié interrogé est une femme »,
    $\bullet$ $S$ : « le salarié interrogé a suivi le stage ».
    $\conj{F}$ et $\conj{S}$ désignent les événements contraires des événements $F$ et $S$.
    a. Donner la probabilité de l’événement $S$.
    $\quad$
    b. Recopier et compléter les pointillés de l’arbre pondéré ci-dessous sur les quatre branches indiquées.$\quad$
    c. Démontrer que la probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On sait que la personne interrogée a suivi le stage. Quelle est la probabilité que ce soit une femme ?
    $\quad$
    e. Le directeur affirme que, parmi les hommes salariés de l’entreprise, moins de $10 \%$ ont suivi le stage.
    Justifier l’affirmation du directeur.
    $\quad$
  2. On note $X$ la variable aléatoire qui à un échantillon de $20$ salariés de cette entreprise choisis au hasard associe le nombre de salariés de cet échantillon ayant suivi le stage. On suppose que l’effectif des salariés de l’entreprise est suffisamment important pour assimiler ce choix à un tirage avec remise.
    a. Déterminer, en justifiant, la loi de probabilité suivie par la variable aléatoire $X$.
    $\quad$
    b. Déterminer, à $10^{-3}$ près, la probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
    c. Le programme ci-dessous, écrit en langage Python, utilise la fonction $\texttt{binomiale(i,n,p)}$ créée pour l’occasion qui renvoie la valeur de la probabilité $P(X=i)$ dans le cas où la variable aléatoire $X$ suit une loi binomiale de paramètres $n$ et $p$.
    $\begin{array}{|l|}
    \hline
    \textbf{def proba}\text{(k):}\\
    \quad \text{P = 0}\\
    \quad \text{for i in range(0 , k + 1):}\\
    \qquad \text{P = P + binomiale(i,20,0.25)}\\
    \quad \textbf{return P}\\
    \hline
    \end{array}$
    Déterminer, à $10^{-3}$ près, la valeur renvoyée par ce programme lorsque l’on saisit $\texttt{proba(5)}$ dans la console Python. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
    d. Déterminer, à $10^{-3}$ près, la probabilité qu’au  moins $6$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
  3. Cette question est indépendante des questions 1 et 2.
    Pour inciter les salariés à suivre le stage, l’entreprise avait décidé d’augmenter les salaires des salariés ayant suivi le stage de $5\ %$, contre $2\%$ d’augmentation pour les salariés n’ayant pas suivi le stage.
    Quel est le pourcentage moyen d’augmentation des salaires de cette entreprise dans ces conditions ?
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonctions numériques

Cet exercice est un questionnaire à choix multiple.
Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la réponse choisie. Aucune justification n’est  demandée.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Les six questions sont indépendantes.

  1. La courbe représentative de la fonction $f$ définie sur $\R$ par $f(x)=\dfrac{-2x^2+3x-1}{x^2+1}$ admet pour asymptote la droite d’équation :
    a. $x=-2$;
    b. $y=-1$;
    c. $y=-2$;
    d. $y=0$.
    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=x\e^{x^2}$.
    La primitive $F$ de $f$ sur $\R$ qui vérifie $F(0)=1$ est définie par :
    a. $F(x)=\dfrac{x^2}{2}\e^{x^2}$;
    b. $F(x)=\dfrac{1}{2}\e^{x^2}$;
    c. $F(x)=\left(1+2x^2\right)\e^{x^2}$;
    d. $F(x)=\dfrac{1}{2}\e^{x^2}+\dfrac{1}{2}$.
    $\quad$
  3. On donne ci-dessous la représentation graphique $\mathscr{C}_{f’}$ de la fonction dérivée $f’$ d’une fonction $f$ définie sur ℝ.
    On peut affirmer que la fonction $f$ est :
    a. concave sur $]0; +\infty[$ ;
    b. convexe sur $]0; +\infty[$ ;
    c. convexe sur $[0; 2]$ ;
    d. convexe sur $[2; +\infty[$.
    $\quad$
  4. Parmi les primitives de la fonction $f$ définie sur $\R$ par $f(x)=3\e^{-x^2}+2$:
    a. toutes sont croissantes sur $\R$ ;
    b. toutes sont décroissantes sur $\R$ ;
    c. certaines sont croissantes sur $\R$ et d’autres décroissantes sur $\R$ ;
    d. toutes sont croissantes sur $]−\infty; 0]$ et décroissantes sur $[0; +\infty[$.
    $\quad$
  5. La limite en $+\infty$ de la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=\dfrac{2\ln(x)}{3x^2+1}$ est égale à :
    a. $\dfrac{2}{3}$ ;
    b. $+\infty$ ;
    c. $-\infty$ ;
    d. $0$.
    $\quad$
  6. L’équation $\e^{2x}+\e^x-12=0$ admet dans $\R$ :
    a. trois solutions ;
    b. deux solutions ;
    c. une seule solution ;
    d. aucune solution.
    $\quad$

 

Bac – Spécialité mathématiques – Métropole – sujet 2 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(S\cap I)&=p(S)\times p_S(I) \\
    &=0,08\times 0,9\\
    &=0,072\end{align*}$
    La probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. $\left(S,\conj{S}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(I)&=p(S)p_S(I)+p\left(\conj{S}\right)p_{\conj{S}}(I) \\
    &=0,08\times 0,9+0,92\times 0,01 \\
    &=0,0812\end{align*}$
    La probabilité que le message soit classé indésirable est $0,0812$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} p_I(S)&=\dfrac{p(S)\times p_S(I)}{p(I)} \\
    &=\dfrac{0,08\times 0,9}{0,0812} \\
    &\approx 0,89\end{align*}$
    La probabilité que le message soit du spam sachant qu’il est classé comme indésirable est environ égale à $0,89$.
    $\quad$
  3. a. On effectue $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $S$ et $\conj{S}$.
    Ainsi $Z$ suit la loi binomiale de paramètres $n=50$ et $p=0,08$.
    $\quad$
    b. On a :
    $\begin{align*} p(Z\pg 2)&=1-p(Z=0)-p(Z=1) \\
    &=1-0,92^{50}-\dbinom{50}{1}0,08\times 0,92^{49} \\
    &=1-0,92^{50}-50\times 0,08\times 0,92^{49} \\
    &\approx 0,92\end{align*}$
    La probabilité qu’au moins deux courriels choisis soient du spam est environ égale à $0,92$.
    $\quad$

 

Ex 2

Exercice 2 (5 points)

  1. Si $t=-2$ on obtient alors $\begin{cases} x=-3\\y=-4\\z=6\end{cases}$
    Le point $N(-3;-4;6)$ appartient donc à la droite $\Delta$.
    Réponse B
    $\quad$
  2. $\vect{AB}$ a pour coordonnées $\begin{pmatrix} 2-1\\1-0\\0-2\end{pmatrix}$ soit $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse C
    $\quad$
  3. La droite $(AB)$ passe par le point $B(2;1;0)$ et a pour vecteur directeur $\vect{AB}\begin{pmatrix} 1\\1\\-2\end{pmatrix}$ mais également le vecteur $-\vect{AB}\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Ainsi, une représentation paramétrique de $(AB)$ est $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases}\quad, t\in \R$.
    Réponse B
    $\quad$
  4. Un vecteur directeur de $\Delta$ est $\vec{n}\begin{pmatrix}2\\1\\-1\end{pmatrix}$
    Ainsi une équation cartésienne de ce plan est de la forme $2x+y-z+d=0$.
    Le point $C(0;1;2)$ appartient à ce plan.
    Donc $0+1-2+d=0 \ssi d=1$.
    Une équation cartésienne du plan est $2x+y-z+1=0$.
    Réponse B
    $\quad$
  5. On a
    $\begin{align*} \vect{AD}&=\vect{AO}+\vect{OD} \\
    &=\vect{AO}+3\vect{OA}-\vect{OB}-\vect{OC} \\
    &=2\vect{OA}-\vect{OB}-\vect{OC} \\
    &=\vect{BO}+\vect{OA}+\vect{CO}+\vect{OA} \\
    &=\vect{BA}+\vect{CA}\end{align*}$
    Ainsi les vecteurs $\vect{AD}$, $\vect{AB}$ et $\vect{AC}$ sont coplanaires.
    Réponse A
    $\quad$

 

 

Ex 3

Exercice 3 (6 points)

Partie 1

  1. $\lim\limits_{x\to -\infty} -2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to -\infty} -\e^{-2x}=-\infty$
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$
    $\lim\limits_{x\to +\infty} -2x=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to +\infty} -\e^{-2x}=0$
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. La fonction $f$ est dérivable sur $\R$ en tant que somme et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1-(-2)\e^{-2x} \\
    &=1+2\e^{-2x}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $\R$.
    On obtient le tableau de variation suivant :
    $\quad$

    $\quad$
  3. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\R$.
    De plus $\lim\limits_{x\to -\infty} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $\R$.
    D’après la calculatrice $\alpha \approx 0,43$.
    $\quad$
  4. La fonction $f$ est strictement croissante sur $\R$ et s’annule en $\alpha$.
    Donc :
    – $f(x)<0$ sur $]-\infty;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. a. La fonction $t\mapsto t^2+\e^{-2t}$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$. Cette fonction est de plus positive en tant que somme de fonctions positives.
    La fonction $h$ est donc dérivable sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} h'(t)&=\dfrac{2t-2\e^{-2t}}{2\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{t-\e^{-t}}{\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{h(t)}{\sqrt{t^2+\e^{-2t}}}\end{align*}$
    $\quad$
    b. $h'(x)$ a donc le même signe que $f(x)$ pour tout réel $x$.
    D’après la question I.4. on a donc :
    – $h'(x)<0$ sur $]-\infty;\alpha[$;
    – $h'(\alpha)=0$;
    – $h(x)>0$ sur $]\alpha;+\infty[$.
    Ainsi $h$ admet un minimum en $\alpha$.
    Le point $A\left(\alpha,g(\alpha)\right)$, c’est-à-dire $A\left(\alpha,\e^{-\alpha}\right)$, est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    $\quad$
  2. a. Le coefficient directeur de la tangente $T$ est $g'(\alpha)=-\e^{-\alpha}$.
    $\quad$
    b. Le produit des deux coefficients directeurs est :
    $\begin{align*} -\e^{-\alpha}\times \dfrac{\e^{-\alpha}}{\alpha}&=-\dfrac{\e^{-2\alpha}}{\alpha} \\
    &=-\dfrac{\alpha}{\alpha} \quad \text{car }f(\alpha)=0 \ssi \e^{-2\alpha}=\alpha  \\
    &=-1\end{align*}$
    Les droites $(OA)$ et $T$ sont donc perpendiculaires.
    $\quad$

$\quad$

Ex A

Exercice A (5 points)

  1. On a $u_1=\dfrac{3\times 16+2\times 5}{5}=11,6$.
    et $v_1=\dfrac{16+5}{2}=10,5$
    $\quad$
  2. a. Soit $n\in \N$.
    $\begin{align*} w_{n+1}&=u_{n+1}-v_{n+1} \\
    &=\dfrac{3u_n+2v_n}{5}-\dfrac{u_n+v_n}{2} \\
    &=\dfrac{6u_n+4v_n-5u_n-5v_n}{10} \\
    &=\dfrac{u_n-v_n}{10} \\
    &=0,1 w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $0,1$ et de premier terme $w_0=u_0-v_0=11$.
    Ainsi, pour tout $n\in \N$ on a $w_n=11\times 0,1^n$.
    $\quad$
    b. Pour tout $n\in \N$ on a $w_n\pg 0$ en tant que produit de facteurs positifs.
    De plus $-1<0,1<1$ donc $\lim\limits_{n\to +\infty} w_n=0$.
    $\quad$
  3. a. Soit $n\in \N$. On a
    $\begin{align*} u_{n+1}-u_n&=\dfrac{3u_n+2v_n}{5}-u_n \\
    &=\dfrac{3u_n+2v_n-5u_n}{5} \\
    &=\dfrac{-2u_n+2v_n}{5} \\
    &=-\dfrac{2}{5} \times \left(u_n-v_n\right) \\
    &=-0,4w_n\end{align*}$
    $\quad$
    b. $w_n\pg 0$ et $u_{n+1}-u_n=-0,4w_n$ pour tout $n\in \N$.
    Ainsi $u_{n+1}-u_n \pp 0$ pour tout $n\in \N$.
    La suite $\left(u_n\right)$ est donc décroissante.
    On admet que la suite $\left(v_n\right)$ est croissante et on sait que $v_0=5$.
    Ainsi, pour tout $n\in \N$ on a $v_n\pg v_0$ soit $v_n\pg 5$.
    $\quad$
    c. Initialisation : On a $u_0=16$ donc $u_0\pg 5$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$.
    $\begin{align*} u_{n+1}&=\dfrac{3u_n+2v_n}{5} \\
    &\pg \dfrac{3\times 5+2\times 5}{5} \\
    &\pg 5\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout $n\in \N$ on a $u_n \pg 5$.
    $\quad$
    La suite $\left(u_n\right)$ est donc décroissante et minorée par $5$. Elle est par conséquent convergente.
    $\quad$
  4. a. Pour tout $n\in \N$ on a $w_n=u_n-v_n$ et $\lim\limits_{n\to +\infty} w_n=0$.
    Or $\lim\limits_{n\to +\infty} u_n-v_n=\ell-\ell’$
    Ainsi $\ell-\ell’=0 \ssi \ell=\ell’$.
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} c_{n+1}&=5u_{n+1}+4v_{n+1} \\
    &=3u_n+2v_n+2\left(u_n+v_n\right) \\
    &=3u_n+2v_n+2u_n+2v_n\\
    &=5u_n+4v_n\\
    &=w_n\end{align*}$
    La suite $\left(c_n\right)$ est donc constante.
    Or $c_0=5u_0+4v_0=100$.
    Ainsi, pour tout $n\in \N$ on a $c_n=100$.
    $\quad$
    c. Or $\lim\limits_{n\to +\infty} c_n=5\ell+4\ell’$ soit $\lim\limits_{n\to +\infty} c_n=9\ell$ puisque $\ell=\ell’$.
    Par conséquent $9\ell=100 \ssi \ell=\dfrac{100}{9}$.
    $\quad$

Remarque : On dit que les suites $\left(u_n\right)$ et $\left(v_n\right)$ sont adjacentes.

Ex B

Exercice B (5 points)

Partie 1

  1. $f(x)=0\ssi 2\ln(x)-1=0 \ssi \ln(x)=\dfrac{1}{2}\ssi x=\e^{1/2}$.
    Ainsi l’équation $f(x)=0$ possède une unique solution $\alpha=\e^{1/2}\approx 1,65$.
    $\quad$
  2. Graphiquement :
    – $f(x)<0$ sur $]0;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$
    $\quad$

Partie II

  1. a. Pour tout $x>0$ on a $g(x)=\ln(x)\left(\ln(x)-1\right)$
    Or $\lim\limits_{x\to 0^-} \ln(x)=-\infty$ donc $\lim\limits_{x\to 0^-} \ln(x)-1=-\infty$.
    Ainsi $\lim\limits_{x\to 0^-} g(x)=+\infty$.
    $\quad$
    b. $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} \ln(x)-1=+\infty$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    $\quad$
  2. La fonction $g$ est dérivable sur $]0;+\infty[$ comme produit et somme de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} g'(x)&=2\dfrac{1}{x}\times \ln(x)-\dfrac{1}{x} \\
    &=\dfrac{2\ln(x)-1}{x} \\
    &=f(x)\end{align*}$
    $\quad$
  3. On obtient le tableau de variations suivant :
    $\quad$

    On a en effet $\alpha=\e^{1/2}$ donc $g(\alpha)=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}$
    $\quad$
  4. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $]0;\alpha[$.
    De plus $\lim\limits_{x\to 0^+} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]0;\alpha[$.
    $\quad$
    La fonction $g$ est continue (car dérivable) et strictement croissante sur $]\alpha;+\infty[$.
    De plus $\lim\limits_{x\to +\infty} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]\alpha;+\infty[$.
    $\quad$
    De plus $g(\alpha)\neq m$.
    L’équation $g(x)=m$ possède donc exactement deux solutions sur $\R$ pour tout $m>-0,25$.
    $\quad$
  5. $g(x)=0 \ssi \ln(x)\left(\ln(x)-1\right)=0 \ssi \ln(x)=0$ ou $\ln(x)=1$
    Ainsi $g(x)=0 \ssi x=1$ ou $x=\e$
    Les solutions de l’équation $g(x)=0$ sont donc $1$ et $\e$.
    $\quad$

 

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Une entreprise reçoit quotidiennement de nombreux courriels (courriers électroniques).
Parmi ces courriels, $8 \%$ sont du « spam », c’est-à-dire des courriers à intention publicitaire, voire malveillante, qu’il est souhaitable de ne pas ouvrir.
On choisit au hasard un courriel reçu par l’entreprise.
Les propriétés du logiciel de messagerie utilisé dans l’entreprise permettent d’affirmer que :

  • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que c’est un spam est égale à $0,9$.
    • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que ce n’est pas un spam est égale à $0,01$.

On note :

  • $S$ l’évènement « le courriel choisi est un spam »;
  • $I$ l’évènement « le courriel choisi est classé comme indésirable par le logiciel de messagerie ».
  • $\conj{S}$ et $\conj{I}$ les évènements contraires de $S$ et $I$ respectivement.
  1. Modéliser la situation étudiée par un arbre pondéré, sur lequel on fera apparaître les probabilités associées à chaque branche.
    $\quad$
  2. a. Démontrer que la probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. Calculer la probabilité que le message choisi soit classé indésirable.
    $\quad$
    c. Le message choisi est classé comme indésirable. Quelle est la probabilité que ce soit effectivement un message de spam ? On donnera un résultat arrondi au centième.
    $\quad$
  3. On choisit au hasard $50$ courriels parmi ceux reçus par l’entreprise. On admet que ce choix se ramène à un tirage au hasard avec remise de $50$ courriels parmi l’ensemble des courriels reçus par l’entreprise.
    On appelle $Z$ la variable aléatoire dénombrant les courriels de spam parmi les $50$ choisis.
    a. Quelle est la loi de probabilité suivie par la variable aléatoire $Z$, et quels sont ses paramètres ?
    $\quad$
    b. Quelle est la probabilité que, parmi les $50$ courriels choisis, deux au moins soient du spam ? On donnera un résultat arrondi au centième.
    $\quad$

$\quad$

Exercice 2     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points $A(1; 0; 2)$, $B(2; 1; 0)$, $C(0; 1; 2)$ et la droite $\Delta$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=-2+t\\z=4-t\end{cases} \quad,t\in \R$.

  1. Parmi les points suivants, lequel appartient à la droite $\Delta$?
    Réponse A : $M(2 ; 1 ; -1)$;
    Réponse B : $N(-3 ; -4 ; 6)$;
    Réponse C : $P(-3 ; -4 ; 2)$;
    Réponse D : $Q(-5 ; -5 ; 1)$.
    $\quad$
  2. Le vecteur $\vect{AB}$ admet pour coordonnées :
    Réponse A : $\begin{pmatrix} 1,5\\0,5\\1\end{pmatrix}$
    Réponse B : $\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Réponse C : $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse D : $\begin{pmatrix} 3\\1\\2\end{pmatrix}$
    $\quad$
  3. Une représentation paramétrique de la droite $(AB)$ est :
    Réponse A : $\begin{cases} x=1+2t\\y=t\\z=2\end{cases} \quad,t\in\R$
    Réponse B : $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases} \quad,t\in\R$
    Réponse C : $\begin{cases} x=2+t\\y=1+t\\z=2t\end{cases} \quad,t\in\R$
    Réponse D : $\begin{cases} x=1+t\\y=1+t\\z=2-2t\end{cases} \quad,t\in\R$
    $\quad$
  4. Une équation cartésienne du plan passant par le point $C$ et orthogonal à la droite $\Delta$ est :
    Réponse A : $x-2y +4z -6 = 0$;
    Réponse B : $2x + y – z +1 = 0$;
    Réponse C : $2x + y – z -1 = 0$;
    Réponse D : $y +2z -5 = 0$.
    $\quad$
  5. On considère le point $D$ défini par la relation vectorielle $\vect{OD}=3\vect{OA}-\vect{OB}-\vect{OC}$.
    Réponse A : $\vect{AD}$, $\vect{AB}$, $\vect{AC}$ sont coplanaires;
    Réponse B : $\vect{AD} =\vect{BC}$;
    Réponse C : $D$ a pour coordonnées $(3 ; -1 ; -1)$;
    Réponse D : les points $A$, $B$, $C$ et $D$ sont alignés.
    $\quad$

$\quad$

Exercice 3     6 points

Partie I

On considère la fonction $f$ définie sur $\R$ par $$f (x) = x -\e^{-2x}$$
On appelle $\Gamma$ la courbe représentative de la fonction $f$ dans un repère orthonormé $\Oij$.

  1. Déterminer les limites de la fonction $f$ en $-\infty$ et en $+\infty$.
    $\quad$
  2. Étudier le sens de variation de la fonction $f$ sur $\R$ et dresser son tableau de variation.
    $\quad$
  3. Montrer que l’équation $f (x) = 0$ admet une unique solution $\alpha$ sur $\R$, dont on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
  4. Déduire des questions précédentes le signe de $f(x)$ suivant les valeurs de $x$.
    $\quad$

 

Partie II

Dans le repère orthonormé $\Oij$, on appelle $\mathscr{C}$ la courbe représentative de la fonction $g$ définie sur $\R$ par : $$g(x) = \e^{-x}$$
La courbe $\mathscr{C}$ et la courbe $\Gamma$ (qui représente la fonction $f$ de la Partie I) sont tracées sur le graphique donné en annexe qui est à compléter et à rendre avec la copie.
Le but de cette partie est de déterminer le point de la courbe $\mathscr{C}$ le plus proche de l’origine $O$ du repère et d’étudier la tangente à $\mathscr{C}$ en ce point.

  1. Pour tout nombre réel $t$, on note $M$ le point de coordonnées $\left(t,\e^{-t}\right)$ de la courbe $\mathscr{C}$.
    On considère la fonction $h$ qui, au nombre réel $t$, associe la distance $OM$.
    On a donc : $h(t) = OM$, c’est-à-dire : $$h(t) =\sqrt{t^2+\e^{-2t}}$$
    a. Montrer que, pour tout nombre réel $t$, $$h'(t) =\dfrac{f(t)}{\sqrt{t^2+\e^{-2t}}}$$
    où $f$ désigne la fonction étudiée dans la Partie I.
    $\quad$
    b. Démontrer que le point $A$ de coordonnées $\left(\alpha ; \e^{-\alpha}\right)$ est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    Placer ce point sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$
  2. On appelle $T$ la tangente en $A$ à la courbe $\mathscr{C}$.
    a. Exprimer en fonction de $\alpha$ le coefficient directeur de la tangente $T$.
    On rappelle que le coefficient directeur de la droite $(OA)$ est égal à $\dfrac{\e^{-\alpha}}{\alpha}$.
    On rappelle également le résultat suivant qui pourra être utilisé sans démonstration :
    Dans un repère orthonormé du plan, deux droites $D$ et $D’$ de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si, et seulement si le produit $mm’$ est égal à $-1$.
    $\quad$
    b. Démontrer que la droite $(OA)$ et la tangente $T$ sont perpendiculaires.
    Tracer ces droites sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$

ANNNEXE

$\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.

Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Suites numériques; raisonnement par récurrence.

On considère les suites $\left(u_n\right)$ et $\left(u_n\right)$ définies par : $$u_0 = 16 ; v_0 = 5 ;$$
et pour tout entier naturel $n$ : $$\begin{cases} u_{n+1}=\dfrac{3u_n+2v_n}{5}\\v_{n+1}=\dfrac{u_n+v_n}{2}\end{cases}$$

  1. Calculer $u_1$ et $v_1$.
    $\quad$
  2. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par : $w_n = u_n-v_n$.
    a. Démontrer que la suite $\left(w_n\right)$ est géométrique de raison $0,1$.
    En déduire, pour tout entier naturel $n$, l’expression de $w_n$ en fonction de $n$.
    $\quad$
    b. Préciser le signe de la suite $\left(w_n\right)$ et la limite de cette suite.
    $\quad$
  3. a. Démontrer que, pour tout entier naturel $n$, on a : $u_{n+1}-u_n = -0,4w_n$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est croissante. On admet ce
    résultat, et on remarque qu’on a alors : pour tout entier naturel $n$, $vn \pg v_0 = 5$.
    $\quad$
    c. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pg 5$.
    En déduire que la suite $\left(u_n\right)$ est convergente. On appelle $\ell$ la limite de $\left(u_n\right)$.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est convergente. On admet ce
    résultat, et on appelle $\ell’$ la limite de $\left(v_n\right)$.
    $\quad$
  4. a. Démontrer que $\ell=\ell’$.
    $\quad$
    b. On considère la suite $\left(c_n\right)$ définie pour tout entier naturel $n$ par : $c_n = 5u_n +4v_n$.
    Démontrer que la suite $\left(c_n\right)$ est constante, c’est-à-dire que pour tout entier naturel $n$, on a : $c_{n+1} = c_n$.
    En déduire que, pour tout entier naturel $n$ , $c_n = 100$.
    $\quad$
    c. Déterminer la valeur commune des limites $\ell$ et $\ell’$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme, limites, dérivation.

Partie 1

Le graphique ci-dessous donne la représentation graphique dans un repère orthonormé de la fonction $f$ définie sur l’intervalle $]0 ; +\infty[$ par : $$f (x) =\dfrac{2\ln(x)-1}{x}$$

 

  1. Déterminer par le calcul l’unique solution $\alpha$ de l’équation $f(x) = 0$.
    On donnera la valeur exacte de $\alpha$ ainsi que la valeur arrondie au centième.
    $\quad$
  2. Préciser, par lecture graphique, le signe de $f(x)$ lorsque $x$ varie dans l’intervalle $]0 ; +\infty[$.
    $\quad$

Partie II

On considère la fonction $g$ définie sur l’intervalle $]0 ; +\infty[$ par : $$g(x) = \left[\ln(x)\right]^2-\ln(x)$$

  1. a. Déterminer la limite de la fonction $g$ en $0$.
    $\quad$
    b. Déterminer la limite de la fonction $g$ en $+\infty$.
    $\quad$
  2. On note $g’$ la fonction dérivée de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $g'(x)=f(x)$, où $f$ désigne la fonction définie dans la partie I.
    $\quad$
  3. Dresser le tableau de variations de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    On fera figurer dans ce tableau les limites de la fonction $g$ en $0$ et en $+\infty$, ainsi que la valeur du minimum de $g$ sur $]0 ; +\infty[$.
    $\quad$
  4. Démontrer que, pour tout nombre réel $m > -0,25$, l’équation $g(x) = m$ admet exactement deux solutions.
    $\quad$
  5. Déterminer par le calcul les deux solutions de l’équation $g(x) = 0$.
    $\quad$

$\quad$