E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la
lettre correspondante à la réponse choisie.

Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des
recherches au brouillon pour aider à déterminer votre réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question
sans réponse n’apporte ni ne retire de point.

Question 1

On considère la loi de probabilité de la variable aléatoire $X$ donnée par le tableau ci-dessous :

$$\begin{array}{|c|c|c|c|c|c|}
\hline
k&-5&0&10&20&50\\
\hline
P(X=k)&0,71&0,03&0,01&0,05&0,2\\
\hline
\end{array}$$
L’espérance de $X$ est :

a. $15$
b. $0,2$
c. $7,55$
d. $17$

$\quad$

Correction Question 1

L’espérance de $X$ est :

$\begin{align*} E(X)&=\small{-5\times 0,71+0\times 0,03+10\times 0,01+20\times 0,05+50\times 0,2} \\
&=7,55\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On se place dans un repère orthonormé.
Le cercle de centre A( -2 ; 4) et de rayon 9 a pour équation :

a. $(x+2)^2+(y-4)^2=81$
b. $(x-2)^2+(y+4)^2=81$
c. $(x+2)^2+(y-4)^2=9$
d. $(x-2)^2+(y+4)^2=9$

$\quad$

Correction Question 2

Une équation du cercle est $\left(x-(-2)\right)^2+(y-4)^2=9^2$ soit $(x+2)^2+(y-4)^2=81$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

Soit $f$ la fonction définie par $f(x)=ax^2+bx+c$ où $a$, $b$ et $c$ sont des réels.

On considère dans un repère la courbe représentative de $f$ tracée ci-dessous.

On appelle $\Delta$ son discriminant.

On peut affirmer que :

a. $a>0$ ou $c<0$
b. $c$ et $\Delta$ sont du même signe
c. $a<0$ et $c<0$
d. $a<0$ et $\Delta<0$

$\quad$

Correction Question 3

D’après le graphique $a<0$ (la fonction $f$ admet un maximum) et $\Delta>0$ (il y a deux racines)
Les deux racines $x_1$ et $x_2$ sont de signes différents.
Or $ax_1x_2=c$ donc $c>0$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la suite $\left(U_n\right)$ définie par $U_0=-2$ et $U_{n+1}=2U_n-5$.
Un algorithme permettant de calculer la somme $S=U_0+U_1+\ldots+U_{36}$ est :

$\begin{array}{llll}
\textbf{a.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=0}\\
\text{Pour i de 1 à 37}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}&\textbf{b.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=0}\\
\text{Pour i de 1 à 36}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}\\\\
\textbf{c.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=-2}\\
\text{Pour i de 1 à 37}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\text{Fin Pour}\\
\hline\end{array}&\textbf{d.}&\begin{array}{|l|}
\hline
\text{U=-2}\\
\text{S=-2}\\
\text{Pour i de 1 à 36}\\
\hspace{0.5cm}\text{U$\leftarrow$2U-5}\\
\hspace{0.5cm}\text{S$\leftarrow$S+U}\\
\text{Fin Pour}\\
\hline\end{array}\end{array}$

$\quad$

Correction Question 4

Si la variable $\text{U}$ est transformée avant la variable $\text{S}$ alors $\text{S}$ doit être initialisée à $-2$.
Dans l’algorithme c., quand $\text{i}=1$, la variable $S$ prend la valeur $u_0+u_0$ au lieu de $u_0+u_1$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

La suite $\left(U_n\right)$ définie par $U_0=-2$ et $U_{n+1}=2U_n-5$ est :

a. arithmétique mais pas géométrique
b. géométrique mais pas arithmétique
c. ni arithmétique, ni géométrique
d. à la fois arithmétique et géométrique

$\quad$

Correction Question 5

On $U_0=-2$
$\begin{align*} U_1&=2U_0-5\\
&=2\times (-2)-5 \\
&=-9\end{align*}$
$\begin{align*} U_2&=2U_1-5\\
&=2\times (-9)-5\\
&=-23\end{align*}$

Ainsi :

  • $U_1-U_0=-7$ et $U_2-U_1=-14$
    Ces différences ne sont pas égales : la suite n’est pas arithmétique
  • $\dfrac{U_1}{U_0}=\dfrac{9}{2}$ et $\dfrac{U_2}{U_1}=\dfrac{23}{9}$
    Ces quotients ne sont pas égaux : la suite n’est pas géométrique

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Un apiculteur souhaite étendre son activité de production de miel à une nouvelle région.
Au printemps 2019, il achète $300$ colonies d’abeilles qu’il installe dans cette région.
Il consulte les services spécialisés de la région et s’attend à perdre $8\%$ des colonies chaque hiver. Pour maintenir son activité et la développer, il prévoit d’installer $50$ nouvelles colonies chaque printemps, à partir de l’année suivante.

  1. On donne le programme suivant écrit en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def algo( ) :}\\
    \hspace{1cm} \text{C = 300}\\
    \hspace{1cm} \text{N = 0}\\
    \hspace{1cm} \text{while C < 400 :}\\
    \hspace{1.5cm} \text{C = C*0.92+50}\\
    \hspace{1.5cm} \text{N = N+1}\\
    \hspace{1cm} \text{return (N)}\\
    \hline
    \end{array}$$
    a. Recopier et compléter en ajoutant des colonnes, le tableau ci-dessous qui
    reproduit l’avancement du programme pas à pas :
    Les valeurs seront arrondies à l’entier le plus proche.
    $$\begin{array}{|c|c|c|c|c}
    \hline
    \text{C}&300&326&\ldots\ldots&\phantom{\ldots\ldots}\\
    \hline
    \text{« C < 400 » ?}&\text{oui}&\text{oui}&\ldots\ldots&\phantom{\ldots\ldots}\\
    \hline
    \end{array}$$
    $\quad$
    b. Quelle est la valeur de $\text{N}$ renvoyée par le programme ?
    Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

Le nombre de colonies est modélisée par une suite. On note $C_n$ une estimation du nombre de colonies au printemps de l’année 2019 $+ 𝑛$ .

Ainsi $C_0= 300$ est le nombre de colonies au printemps 2019.

On admet que pour tout entier naturel $n$, on a : $$C_{n+1}=0,92C_n+50$$

  1. La suite $\left(C_n\right)$ est-elle arithmétique? La suite $\left(C_n\right)$ est-elle géométrique?
    $\quad$
  2. On admet que $C_n=625-325\times 0,92^n$ pour tout entier naturel $n$.
    L’apiculteur pourra-t-il atteindre les $700$ colonies?
    $\quad$

$\quad$

Correction Exercice

  1. a. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|}
    \hline
    \text{C}&300&326&350&372&392&411\\
    \hline
    \text{« C < 400 » ?}&\text{oui}&\text{oui}&\text{oui}&\text{oui}&\text{oui}&\text{non}\\
    \hline
    \end{array}$$
    $\quad$
    b. Le programme renvoie la valeur $5$.
    Cela signifie que l’apiculteur doit attendre $5$ ans pour avoir au moins $400$ colonies d’abeilles.
    $\quad$
  2. On a $C_0=300$
    $\begin{align*} C_1&=0,92C_0+50\\
    &=0,92\times 300+50\\
    &=326\end{align*}$
    $\begin{align*} C_2&=0,92C_1+50\\
    &=0,92\times 326+50\\
    &=349,92\end{align*}$
    Ainsi $C_1-C_0=26$ et $C_2-C_1=23,92$.
    Ces différences ne sont pas égales : la suite $\left(C_n\right)$ n’est pas arithmétique.
    $\dfrac{C_1}{C_0}\approx 1,087$ et $\dfrac{C_2}{C_1}\approx 1,073$.
    Ces quotients ne sont pas égaux : la suite $\left(C_n\right)$ n’est pas géométrique.
    $\quad$
  3. Pour tout entier naturel $n$ on a $325\times 0,92^n>0$.
    Donc $C_n<625$.
    L’apiculteur ne pourra pas atteindre $700$ colonies.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

On considère la suite $\left(u_n\right)$ définie par $u_0=100$ et pour tout entier naturel $n$, $u_{n+1}=u_n-\dfrac{13}{100}u_n$.
Quelle est la nature de la suite $\left(u_n\right)$?

a. géométrique de raison $1$
b. arithmétique de raison $-\dfrac{13}{100}$
c. géométrique de raison $^1$ et arithmétique de raison $-\dfrac{13}{100}$
d. géométrique de raison $0,87$

Correction Question 1

Pour tout entier naturel $n$ on a :
$\begin{align*} u_{n+1}&=u_n-\dfrac{13}{100}u_n\\
&=0,87u_n\end{align*}$
La suite $\left(u_n\right)$ est donc géométrique de raison $0,87$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 2

On considère la variable aléatoire $X$ qui prend les valeurs $x_i$ pour $i$ entier naturel allant de $1$ à $5$. La loi de probabilité incomplète de la variable aléatoire $X$ est donnée ci-dessous : $$\begin{array}{|c|c|c|c|c|c|}
\hline
X=x_i&-6& -3& 0& 3& x_5\\
\hline
P\left(X=x_i\right)& 0,2& 0,1& 0,2& 0,4& 0,1\\
\hline
\end{array}$$
L’espérance de la variable aléatoire $X$ est égale à $0,7$.
Quelle est la valeur $x_5$ prise par la variable aléatoire $X$?

a. $6$
b. $1$
c. $10$
d. $100$

$\quad$

Correction Question 2

On a :
$\begin{align*} E(X)=0,7&\ssi -6\times 0,2-3\times 0,1+0+3\times 0,4+0,1x_5=0,7 \\
&\ssi-0,3+0,1x_5=0,7\\
&\ssi 0,1x_5=1 \\
&\ssi x_5=10\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

Soit $f$ la fonction dérivable définie sur $\left]-\dfrac{7}{3};+\infty\right[$ par $f(x)=\dfrac{2x+3}{3x+7}$ et $f’$ sa fonction dérivée.

a. $f'(x)=\dfrac{2}{3}$
b. $f'(x)=\dfrac{23}{(3x+7)^2}$
c. $f'(x)=\dfrac{5}{(3x+7)^2}$
d. $f'(x)=\dfrac{5}{3x+7}$

$\quad$

Correction Question 3

Pour tout réel $x\in \left]-\dfrac{7}{3};+\infty\right[$ on a
$\begin{align*} f'(x)&=\dfrac{2(3x+7)-3(2x+3)}{(3x+7)^2} \\
&=\dfrac{6x+14-6x-9}{(3x+7)^2} \\
&=\dfrac{5}{(3x+7)^2}\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

De 2017 à 2018, le prix d’un article a augmenté de $10 \%$. En 2019, ce même article a retrouvé son prix de 2018. Quelle a été l’évolution du prix entre 2018 et 2019 ?

a. une baisse de $10 \%$
b. une baisse de plus de $10 \%$
c. on ne peut pas savoir
d. une baisse de moins de $10 \%$

$\quad$

Correction Question 4

On appelle $x$ le pourcentage de diminution appliqué au prix entre 2018 et 2019.
On a ainsi
$\begin{align*} \left(1+\dfrac{10}{100}\right)\times \left(1-\dfrac{x}{100}\right)=1 &\ssi 1,01\left(1-\dfrac{x}{100}\right)=1 \\
&\ssi 1-\dfrac{x}{100}=\dfrac{1}{1,01}\\
&\ssi -\dfrac{x}{100}=\dfrac{1}{1,01}-1\\
&\ssi x=-100\left(\dfrac{1}{1,01}-1\right)\end{align*}$
Ainsi $x\approx 0,99$

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

Soit $\left(u_n\right)$ la suite définie par $u_0=4$ et pour tout entier naturel $n$ par $u_{n+1}=3u_n-5$. On souhaite qu’à la fin de l’exécution de l’algorithme, la valeur contenue dans la variable $u$ soit celle de $u_5$ . Quel algorithme doit-on choisir ?

$\begin{array}{llll}
\textbf{a.}&\begin{array}{|l|}\hline
u=4\\n=0\\\text{For $k$ in range $(5)$ :}\\
\hspace{0.5cm} u=3*n-5\\\hspace{0.5cm}n=n+1\\\hline\end{array}
&\textbf{b.}&\begin{array}{|l|}\hline
u=4\\n=0\\\text{For $k$ in range $(5)$ :}\\
\hspace{0.5cm} u=3*u_n-5\\\hspace{0.5cm}n=n+1\\\hline\end{array}\\\\
\textbf{c.}&\begin{array}{|l|}\hline
u=4\\\text{For $k$ in range $(5)$ :}\\
\hspace{0.5cm} u=3*u-5\\\hline\end{array}
&\textbf{d.}&\begin{array}{|l|}\hline
u=4\\n=0\\\text{While $\pp 5$ :}\\
\hspace{0.5cm} u=3*u-5\\\hspace{0.7cm}n=n+1\\\hline\end{array}\end{array}$

$\quad$

Correction Question 5

Algorithme a : il faudrait avoir $u=3*u-5$
Algorithme b : $u_n$ n’a pas de sens en python
Algorithme d : dans $\text{While }\pp 5$ il manque une variable avant le $\pp$.

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

L’inéquation $x^2+x+2>0$ :

a. n’a pas de solution
b. a une seule solution
c. a pour ensemble de solution l’intervalle $[1 ; 2]$
d. a pour solution l’ensemble des nombres réels

$\quad$

Correction Question 1

Le discriminant du polynôme du second degré est :
$\begin{align*} \Delta&=1^2-4\times 1\times 1\\
&=-3\\
&<0\end{align*}$

Le coefficient principal est $a=1>0$.
Par conséquent, tous les réels sont solution de l’inéquation $x^2+x+2>0$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 2

Soient $\vec{u}$ et $\vec{v}$ deux vecteurs tels que $\norme{u}=3$, $\norme{v}=2$ et $\vec{u}.\vec{v}=-1$ alors $\left\|\vec{u}+\vec{v}\right\|^2$ est égal à :

a. $11$
b. $13$
c. $15$
d. $25$

$\quad$

Correction Question 2

On a :
$\begin{align*} \vec{u}.\vec{v}&=\dfrac{1}{2}\left(\left\|\vec{u}+\vec{v}\right\|^2-\norme{u}^2-\norme{v}^2\right)\\
\ssi~& -1=\dfrac{1}{2} \left(\left\|\vec{u}+\vec{v}\right\|^2-9-4\right)\\
\ssi~&-2=\left\|\vec{u}+\vec{v}\right\|^2-13\\
\ssi~&\left\|\vec{u}+\vec{v}\right\|^2=15\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 3

Soient $A$ et $B$ deux événements d’un univers tels que $P_A(B) = 0,2$ et $P(A) = 0,5$.
Alors la probabilité $P(A\cap B)$ est égale à :

a. $0,4$
b. $0,1$
c. $0,25$
d. $0,7$

$\quad$

Correction Question 3

On a :
$\begin{align*} P_A(B)=\dfrac{P(A\cap B)}{P(A)}&\ssi 0,2=\dfrac{P(A\cap B)}{0,5} \\
&\ssi P(A\cap B)=0,1\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $\left(u_n\right)$ une suite arithmétique de terme initial $u_0=2$ et de raison $3$.
La somme $S$ définie par $S=u_0+u_1+\ldots+u_{12}$ est égale à :

a. $45$
b. $222$
c. $260$
d. $301$

Correction Question 4

Pour tout entier naturel $n$ on a donc $u_n=2+3n$

On a :
$\begin{align*} S&=u_0+u_1+\ldots+u_{12} \\
&=(2+3\times 0)+(2+3\times 1)+\ldots +(2+3\times 12) \\
&=2\times 13+3(1+2+\ldots+12)\\
&=26+3\times \dfrac{12\times 13}{2} \\
&=260\end{align*}$

Réponse C

Remarque : Si en cours tu as vu la formule donnant la somme des termes d’une suite arithmétique, tu peux l’utiliser ici:
$\begin{align*} S&=u_0+u_1+ \ldots+u_{12}\\
&=13\times \dfrac{u_0+u_{12}}{2}\\
&=13\times \dfrac{2+38}{2}\\
&=260\end{align*}$

$\quad$

[collapse]

$\quad$

Question 5

Soit $f$ la fonction définie sur l’ensemble des nombres réels par $f(x)=(2x-5)^3$.
Une expression de la dérivée de $f$ est :

a. $3(2x-5)^2$
b. $6(2x-5)^2$
c. $2(2x-5)^2$
d. $2^3$

$\quad$

Correction Question 5

On appelle $g$ la fonction définie sur $\R$ par $g(x)=x^3$.
La fonction $g$ est dérivable sur $\R$ et, pour tout réel $x$, on a $f(x)=g(2x-5)$ et $g'(x)=3x^2$.
Donc $f$ est également dérivable sur $\R$ et, pour tout réel $x$, on a :
$\begin{align*} f'(x)&=2g'(2x-5)\\
&=2\times 3(2x-5)^2\\
&=6(2x-5)^2\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque question, une seule des quatre réponses proposées est exacte. Une bonne réponse rapporte un point. Une mauvaise réponse, une réponse multiple ou l’absence de réponse ne rapporte ni n’enlève aucun point.
Relevez sur votre copie le numéro de la question ainsi que la lettre correspondant à la réponse choisie. Aucune justification n’est demandée.

Question 1

Quelle est la forme factorisée de $f(x)=0,5(x-2)^2-8$?

a. $0,5x^2-2x-6$
b. $0,5(x-6)(x+2)$
c. $0,5(x+10)(x-6)$
d. $0,5(x-10)(x+6)$

$\quad$

Correction Question 1

$\begin{align*} f(x)&=0,5(x-2)^2-8 \\
&=0,5\left[(x-2)^2-16\right]\\
&=0,5\left[(x-2)^2-4^2\right]\\
&=0,5\left[(x-2)-4\right]\left[(x-2)+4\right] \\
&=0,5(x-6)(x+2)\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

$\left(u_n\right)$ est une suite arithmétique de raison $r = 0,5$ telle que $u_{10} = -4$. Quelle est la valeur du terme $u_2$ ?

a. $8$
b. $0$
c. $-10$
d. $-8$

$\quad$

Correction Question 2

On a $u_{10}=u_2+8r$
Donc $u_2=u_{10}-8r$ soit $u_2=-8$

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Soit la fonction $f$ définie pour tout $x\neq -2$ par : $f(x)=\dfrac{2x-1}{x+2}$.
Parmi les expressions suivantes, laquelle définit la dérivée $f’$ de la fonction $f$ sur $\R\backslash \lbrace -2\rbrace$ ?

a. $f'(x)=-\dfrac{5}{(x+2)^2}$
b. $f'(x)=\dfrac{5}{(x+2)^2}$
c. $f'(x)=\dfrac{3}{(x+2)^2}$
d. $f'(x)=2$

$\quad$

Correction Question 3

$f$ est dérivable sur $]-\infty;-2[\cup]-2;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
Pour tout réel $x \neq -2$ on a :
$\begin{align*} f'(x)&=\dfrac{2\times(x+2)-1\times(2x-1)}{(x+2)^2} \\
&=\dfrac{2x+4-2x+1}{(x+2)^2} \\
&=\dfrac{5}{(x+2)^2}\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On se place dans un repère orthonormé $\Oij$. Laquelle de ces équations est une équation cartésienne de la droite $\Delta$ de vecteur directeur $\vec{u}\begin{pmatrix}-1\\2\end{pmatrix}$ et passant par le point $A(-1;3)$?

a. $2x-y+1=0$
b. $-x+2y-7=0$
c. $x+2y+1=0$
d. $-2x-2y+1=0$

$\quad$

Correction Question 4

$\vec{u}\begin{pmatrix}-1\\2\end{pmatrix}$ est un vecteur directeur de $\Delta$.
Une équation de $\Delta$ est donc de la forme $2x+y+c=0$
Le point $A(-1;3)$ appartient à $\Delta$.
Donc $^2\times (-1)+3+c=0 \ssi c=-1$.
Une équation de $\Delta$ est donc $2x+y-1=0$.
En multipliant les deux membres par $-1$ on obtient l’équation $-2x-y+1=0$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

On se place dans un repère orthonormé $\Oij$. Parmi ces propositions, quelle est l’équation cartésienne du cercle de centre $A(2 ; 4)$ et de rayon $3$ ?

a. $(x-2)^2+(y-4)^2=3$
b. $(x+2)^2+(y+4)^2=9$
c. $x^2+y^2-4x-8y+11=0$
d. $x^2+y^2+11=0$

$\quad$

Correction Question 5

Une équation du cercle est :
$\begin{align*} &(x-2)^2+(y-4)^2=3^2 \\
\ssi~&x^2-4x+4+y^2-8y+16=9 \\
\ssi~&x^2-4x+y^2-8y+11=0\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Aujourd’hui les chardons (une plante vivace) ont envahi $300$ m² des champs d’une région.
Chaque semaine, la surface envahie augmente de $5 \%$ par le développement des racines, auquel s’ajoutent $15$ m² suite à la dissémination des graines.
Pour tout entier naturel $n$, on note $u_n$ la surface envahie par les chardons, en m$^2$, après $n$ semaines ; on a donc $u_0 = 300$ m$^2$.

  1. a. Calculer $u_1$ et $u_2$.
    $\quad$
    b. Montrer que la suite $\left(u_n\right)$ ainsi définie, n’est ni arithmétique ni géométrique.
    $\quad$
    On admet dans la suite de l’exercice que, pour tout entier naturel $n$, $u_{n+1} = 1,05u_n + 15$.
  2. On considère la suite $\left(v_n\right)$, définie pour tout entier naturel $n$, par : $v_n = u_n + 300$.
    a. Calculer $v_0$, puis montrer que la suite $\left(v_n\right)$ est géométrique de raison $q= 1,05$.
    $\quad$
    b. Pour tout entier naturel $n$, exprimer $v_n$ en fonction de $n$, puis montrer que $u_n = 600 \times 1,05^n-300$.
    $\quad$
  3. Est-il correct d’affirmer que la surface envahie par les chardons aura doublé au bout de $8$ semaines ? Justifier la réponse.
    $\quad$

$\quad$

Correction Exercice

  1. a. On a :
    $\begin{align*} u_1&=\left(1+\dfrac{5}{100}\right)\times u_0+15\\
    &=1,05\times 300+15\\
    &=330\end{align*}$
    et
    $\begin{align*} u_2&=\left(1+\dfrac{5}{100}\right)\times u_1+15\\
    &=1,05\times 330+15\\
    &=361,5\end{align*}$
    $\quad$
    b. On a $u_1-u_0=30$ et $u_2-u_1=31,5$.
    Les différences ne sont pas égales : la suite $\left(u_n\right)$ n’est pas arithmétique.
    $\dfrac{u_1}{u_0}=1,1$ et $\dfrac{u_2}{u_1}\approx 1,092$
    Les quotients ne sont pas égaux : la suite $\left(u_n\right)$ n’est pas géométrique.
    $\quad$
  2. a. On a :
    $\begin{align*} v_0&=u_0+300\\
    &=300+300\\
    &=600\end{align*}$
    Pour tout entier naturel $n$ on a $v_n=u_n+300\ssi u_n=v_n-300$
    $\begin{align*} v_{n+1}&=u_{n+1}+300\\
    &=1,02u_n+15+300\\
    &=1,05\left(v_n-300\right)+315\\
    &=1,05v_n-315+315\\
    &=1,05v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $1,05$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $v_n=600\times 1,05^n$.
    Par conséquent :
    $\begin{align*} u_n&=v_n-300\\
    &=600\times 1,05^n-300\end{align*}$
    $\quad$
  3. On a :
    $\begin{align*} u_8&=600\times 1,05^8-300 \\
    &\approx 586,47\end{align*}$
    Par conséquent $u_8<2\times u_0$.
    L’affirmation est donc fausse.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les cinq questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondant à la réponse choisie. Aucune justification n’est demandée.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Lors d’une même expérience aléatoire, deux événements $A$ et $B$ vérifient : $$P(A)=0,4 \quad;\quad P(B)=0,6\quad;\quad P\left(A\cap \conj{B}\right)=0,3$$
Alors :

a. $P(A\cap B)=0,1$
b. $P(A\cap B)=0,24$
c. $P(A\cup B)=1$
d. $P(A\cup B)=0,7$

$\quad$

Correction Question 1

$B$ et $\conj{B}$ forment un système complet d’événements fini.
D’après la formule des probabilités totales on a :
$\begin{align*} &P(A)=P(A\cap B)+P\left(A\cap \conj{B}\right) \\
\ssi~&0,4=P(A\cap B)+0,3\\
\ssi~&P(A\cap B)=0,1\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

On considère la fonction $f$ définie sur $\R$ par $f(x)=x^2-3x+4$ . L’abscisse du minimum de $f$ est :

a. $-\dfrac{3}{2}$
b. $\dfrac{2}{3}$
c. $\dfrac{3}{2}$
d. $1$

$\quad$

Correction Question 2

$f$ est une fonction du second degré dont le coefficient principal est $a=1>0$.
La fonction possède donc un minimum dont l’abscisse est :
$\begin{align*} \alpha&=-\dfrac{b}{2a} \\
&=-\dfrac{-3}{2} \\
&=\dfrac{3}{2}\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Soit $\left(u_n\right)$ une suite arithmétique telle que $u_5=26$ et $u_9=8$. La raison de $\left(u_n\right)$ vaut :

a. $-18$
b. $\dfrac{8}{26}$
c. $4,5$
d. $-4,5$

$\quad$

Correction Question 3

$\left(u_n\right)$ est une suite arithmétique de raison $r$.
On a donc
$\begin{align*} u_9=u_5+4r&\ssi 8=26+4r\\
&\ssi -18=4r\\
&\ssi r=-4,5\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère l’algorithme suivant, écrit en langage usuel :
$$\begin{array}{l}
\text{Suite(N)}\\
\hspace{1cm} \text{A}\leftarrow 10\\
\hspace{1cm} \text{Pour k de 1 à N}\\
\hspace{2cm} \text{A}\leftarrow \text{2*A-4}\\
\hspace{1cm} \text{Fin Pour}\\
\hspace{1cm} \text{Renvoyer A}\end{array}$$
Pour la valeur $N=4$ le résultat affiché sera :

a. $4$
b. $100$
c. $52$
d. $196$

$\quad$

Correction Question 4

Voici les différentes valeurs prises par les variables $\text{A}$ et $\text{k}$.
$$\begin{array}{|c|c|c|c|c|c|}
\hline
\text{k}&&1&2&3&4\\
\hline
\text{A}&10&16&28&52&100\\
\hline
\end{array}$$

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

On considère un rectangle $ABCD$ tel que $AB=3$ et $AD=2$.

Alors le produit scalaire $\vect{AC}.\vect{DB}$ vaut :

a. $0$
b. $5$
c. $6$
d. $-6$

$\quad$

Correction Question 5

$\begin{align*} \vect{AC}.\vect{DB}&=\left(\vect{AB}+\vect{BC}\right).\left(\vect{DA}+\vect{AB}\right) \\
&=\vect{AB}.\vect{DA}+\vect{AB}.\vect{AB}+\vect{BC}.\vect{DA}+\vect{BC}.\vect{AB} \\
&=0+AB^2-BC^2+0 \qquad (*)\\
&=9-4\\
&=5\end{align*}$

$(*)$ car $\vect{BC}$ et $\vect{DA}$ sont colinéaires de sens contraire.

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2-Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

En 2019, le nombre d’abonnés à une page de réseau social d’un musicien était de $6~000$.
On suppose que chaque année, il obtient $750$ abonnés supplémentaires.
On désigne par $u_n$ le nombre d’abonnés en 2019$+n$ pour tout entier naturel $n$.

  1. Calculer le nombre d’abonnés en 2020 et 2021.
    $\quad$
  2. Exprimer $u_{n+1}$ en fonction de $u_n$.
    $\quad$
  3. Quelle est la nature de la suite $\left(u_n\right)$ ?
    $\quad$
  4. En déduire une expression de $u_n$ en fonction de $n$.
    $\quad$
  5. En quelle année le nombre d’abonnés aura triplé par rapport à l’année 2019 ?
    $\quad$

$\quad$


$\quad$

Correction Exercice

  1. En 2020, il y aura $6~000+750=6~750$ abonnés.
    En 2021, il y aura $6~750+750=7~500$ abonnés.
    $\quad$
  2. D’après l’énoncé, pour tout entier naturel $n$ on a $u_{n+1}=u_n+750$.
    $\quad$
  3. La suite $\left(u_n\right)$ est donc une suite arithmétique de raison $750$ e de premier terme $u_0=6~000$.
    $\quad$
  4. Ainsi, pour tout entier naturel $n$, on a :
    $u_n=6~000+750n$
    $\quad$
  5. On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} u_n \pg 3\times 6~000 &\ssi 6~000+750n\pg 18~000 \\
    &\ssi 750n\pg 12~000 \\
    &\ssi n \pg 16\end{align*}$
    C’est donc en 2035 que le nombre d’abonnés aura triplé par rapport à l’année 2019.
    $\quad$

[collapse]

Les sujets proviennent de la banque nationale de sujets sous licence

Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Soit la suite $\left(u_n\right)$ de premier terme $u_0= 400$ vérifiant la relation, pour tout entier naturel $n$, $$u_{n+1} = 0,9u_n + 60$$
Soit la suite géométrique $\left(u_n\right)$ de premier terme $v_0= -200$ et de raison $0,9$.

  1. Calculer $u_2$ et $v_2$.
    $\quad$
  2. Calculer la somme des $20$ premiers termes de la suite $\left(v_n\right)$.
    $\quad$
  3. La suite $\left(u_n\right)$ est-elle arithmétique ? La suite $\left(u_n\right)$ est-elle géométrique ?
    $\quad$
  4. Recopier et compléter la fonction Suite suivante écrite en Python qui permet de calculer la somme $S$ des $20$ premiers termes de la suite $\left(u_n\right)$.
    $$\begin{array}{|l|}
    \hline
    \text{def Suite( ) :}\\
    \hspace{1cm} \text{U = 400}\\
    \hspace{1cm} \text{S = 0}\\
    \hspace{1cm} \text{for i in range(20) :} \hspace{2cm}\\
    \hspace{2cm} \text{S = } \ldots\ldots\ldots\\
    \hspace{2cm} \text{U = } \ldots\ldots\ldots\\
    \hspace{1cm} \text{return(}\ldots)\\
    \hline
    \end{array}$$
    Le sujet original contenait une erreur dans le programme. Elle a été corrigée ici.
    $\quad$
  5. On admet que $u_n=v_n+600$. En déduire $u_{20}$.
    $\quad$

$\quad$

$\quad$

Correction Exercice

  1. On a
    $\begin{align*}u_1&=0,9u_0+60\\
    &=0,9\times 400+60\\
    &=420\end{align*}$
    et
    $\begin{align*}u_2&=0,9u_1+60\\
    &=0,9\times 420+60\\
    &=438\end{align*}$
    $\quad$
    La suite $\left(v_n\right)$ est géométrique de raison $0,9$ et de premier terme $v_0=-200$.
    Pour tout entier naturel $n$ on a donc $v_n=-200\times 0,9^n$.
    Ainsi :
    $\begin{align*}v_2&=-200\times 0,9^2 \\
    &=-162\end{align*}$
    $\quad$
  2. La somme des $20$ premiers termes de la suite $\left(v_n\right)$ est :
    $\begin{align*} S_{20}&=v_0+v_1+\ldots+v_{19} \\
    &=-200\times \dfrac{1-0,9^{20}}{1-0,9} \\
    &=-2~000\left(1-0,9^{20}\right)\end{align*}$
    $\quad$
  3. On a $u_1-u_0=20$ et $u_2-u_1=18$
    $20\neq 18$ : La suite $\left(u_n\right)$ n’est pas arithmétique.
    On a $\dfrac{u_1}{u_0}=1,05$ et $\dfrac{u_2}{u_1}\approx 1,04$
    Les quotients sont différents : La suite $\left(u_n\right)$ n’est pas géométrique.
    $\quad$
  4. On obtient le code suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def Suite( ) :}\\
    \hspace{1cm} \text{U = 400}\\
    \hspace{1cm} \text{S = 0}\\
    \hspace{1cm} \text{for i in range(20) :} \hspace{2cm}\\
    \hspace{2cm} \text{S = S + U } \\
    \hspace{2cm} \text{U = 0,9 * U + 60} \\
    \hspace{1cm} \text{return(S)}\\
    \hline
    \end{array}$$
    $\quad$
  5. On a donc :
    $\begin{align*} u_{20}&=v_{20}+600 \\
    &=-200\times 0,9^{20}+600\end{align*}$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Partie A :

$\left(U_n\right)$ est une suite géométrique de premier terme $U_0= 25~000$ et de raison $0,94$.

$\left(V_n\right)$ est une suite définie par : $V_n = 50 ( 104 + 25 n)$ pour tout entier naturel $n$.

  1. Déterminer une forme explicite de la suite $\left(U_n\right)$.
    $\quad$
  2. Calculer la somme des sept premiers termes de la suite $\left(U_n\right)$.
    $\quad$
  3. Comparer les termes $U_0$ et $V_0$ puis $U_{20}$ et $V_{20}$.
    $\quad$
  4. Déterminer le plus petit entier naturel $n$ tel que $U_n<V_n$.
    $\quad$

Partie B :

Un concessionnaire de voitures propose des voitures équipées d’un moteur diesel ou d’un moteur essence.
Durant sa première année d’existence en 1995, il a vendu $25~000$ véhicules avec un moteur diesel et $5~200$ véhicules avec un moteur essence.
Ses ventes de voitures avec un moteur diesel ont diminué de 6 % chaque année, alors que ses ventes de voitures avec un moteur essence ont augmenté de $1~250$ unités tous les ans.

En quelle année les ventes de voitures avec un moteur essence ont elles dépassé les ventes de voitures avec un moteur diesel ?

$\quad$


$\quad$

Correction Exercice

  1. $\left(U_n\right)$ est une suite géométrique de premier terme $U_0= 25~000$ et de raison $0,94$.
    Donc, pour tout entier naturel $n$, on a $U_n=25~000\times 0,94^n$.
    $\quad$
  2. La somme des sept premiers termes de la suite $\left(U_n\right)$ est :
    $\begin{align*} S&=U_0+U_1+\ldots+U_7 \\
    &=25~000\times \dfrac{1-0,94^7}{1-0,94} \\
    &=146~467,669~1\end{align*}$
    $\quad$
  3. On a $U_0=25~000$ et $V_0=5~200$
    Donc $U_0>V_0$
    $\quad$
    $U_{20}=25~000\times 0,94^{20} \approx 7252,66$
    $V_{20}=30~200$
    Donc $U_{20}<V_{20}$
    $\quad$
  4. Voici les premières valeurs (arrondies) des suites $\left(U_n\right)$ et $\left(V_n\right)$.
    $$\begin{array}{|c|c|c|}
    \hline
    n &U_n& V_n\\
    \hline
    0 &25~000& 5~200\\
    \hline
    1& 23~500& 6~450\\
    \hline
    2& 22~090& 7~700\\
    \hline
    3& 20~764,6& 8~950\\
    \hline
    4& 19~518,724& 10~200\\
    \hline
    5& 18~347,600~56& 11~450\\
    \hline
    6& 17~246,744~53& 12~700\\
    \hline
    7& 16~211,939~85& 13~950\\
    \hline
    8& 15~239,223~46& 15~200\\
    \hline
    9& 14~324,870~06& 16~450\\
    \hline
    \end{array}$$
    Le plus petit entier naturel $n$ tel que $U_n<V_n$ est donc $9$.
    $\quad$

Partie B

Le nombre de voitures avec un moteur diesel diminue chaque année de $6\%$. Ce nombre est donc multiplié, chaque année, par $0,94$.
Ainsi la suite $\left(U_n\right)$ de la partie A représente le nombre de voitures avec un moteur diesel vendues l’année 1995$+n$.

Le nombre de véhicules avec un moteur essence vendu l’année 1995$+n$ est représenté par la suite $\left(W_n\right)$. Il s’agit d’une suite arithmétique de raison $1~250$ et de premier terme $5~200$.
Ainsi, pour tout entier naturel $n$, on a :
$\begin{align*} W_n&=5~200+1~250n\\
&=50(104+25n)\\
&=V_n\end{align*}$

D’après la question A.4. $U_n<V_n$ pour $n\pg 9$.
C’est donc à partir de l’année 2004 que les ventes de voitures avec un moteur essence ont elles dépassé les ventes de voitures avec un moteur diesel.

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence