E3C2-Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

On considère la fonction définie sur $\R$ par $f(x)=-x^2-x+6$. On admet que l’une des quatre courbes ci-dessous représente la fonction $f$. Laquelle?

$\quad$

Correction Question 1

Le coefficient principal de cette fonction du second degré est $a=-1<0$.
On exclut donc les propositions a. et b.
L’abscisse du sommet de la parabole est :
$\begin{align*} x_S&=-\dfrac{b}{2a} \\
&=-\dfrac{-1}{-2}\\
&=-\dfrac{1}{2}\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On pose pour tout réel $x$ : $A(x)=\e^{2x}$. On a alors, pour tout $x\in \R$ :

a. $A(x)=2\e^x$
b. $A(x)=\e^{x^2}$
c. $A(x)=\e^x+\e^2$
d. $A(x)=\left(\e^x\right)^2$

$\quad$

Correction Question 2

Pour tout réel $x$ on a $\left(\e^x\right)^2=\e^{2x}$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Le plan est muni d’un repère orthonormé.
Les droites d’équations $2x+y+1=0$ et $3x-2y+5=0$

a. sont sécantes en $A(1 ; 1)$.
b. sont sécantes en $B(1 ; -1)$.
c. sont sécantes en $C(-1 ; 1)$.
d. ne sont pas sécantes.

$\quad$

Correction Question 3

Un vecteur directeur de la droite d’équation $2x+y+1=0$ est $\vec{u}\begin{pmatrix}-1\\2\end{pmatrix}$.
Un vecteur directeur de la droite d’équation $3x-2y+5=0$ est $\vec{v}\begin{pmatrix}2\\3\end{pmatrix}$.
Ces deux vecteurs ne sont clairement pas colinéaires. Les droites sont donc sécantes.

On a $2\times (-1)+1+1=0$ et $3\times (-1)-2\times 1+5=0$
Le point $C(-1;1)$ appartient donc aux deux droites.

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Le plan est muni d’un repère orthonormé.
Les droites d’équations $x+3y-5=0$ et $3x-y+6=0$ sont :

a. pependiculaires.
b. sécantes non perpendiculaires.
c. parallèles.
d. confondues.

$\quad$

Correction Question 4

Un vecteur directeur de la droite d’équation $x+3y-5=0$ est $\vec{u}\begin{pmatrix}-3\\1\end{pmatrix}$.
Un vecteur directeur de la droite d’équation $3x-y+6=0$ est $\vec{v}\begin{pmatrix}1\\3\end{pmatrix}$.

Or :
$\begin{align*} \vec{u}.\vec{v}&=-3\times 1+1\times 3\\
&=0\end{align*}$
Les deux vecteurs sont orthogonaux.
Par conséquent les droites sont perpendiculaires.

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction Python ci-dessous :
$$\begin{array}{|l|}
\hline
\text{def suite(n) :}\\
\hspace{0.5cm}\text{u=2}\\
\hspace{0.5cm}\text{k=0}\\
\hspace{0.5cm}\text{while k<n :}\\
\hspace{1cm}\text{u=u+k}\\
\hspace{1cm}\text{k=k+1}\\
\hspace{0.5cm}\text{return u}\\
\hline
\end{array}$$
Quelle valeur renvoie l’appel $\text{suite(5)}$?

a. $5$
b. $8$
c. $12$
d. $17$

$\quad$

Correction Question 5

Voici les différentes valeurs prises par les variables $u$ et $k$.
$\begin{array}{|c|c|c|c|c|c|c|}
\hline
u&2&2&3&5&8&12\\
\hline
k&0&1&2&3&4&5\\
\hline
\end{array}$

L’appel $\text{suite(5)}$ renvoie donc la valeur $12$.

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On considère la fonction $f$ définie sur $[0;+\infty[$ par $f(x)=\dfrac{\e^x}{1+x}$.
On note $C_f$ la représentation graphique de $f$ dans un repère du plan.

  1. Déterminer les coordonnées du point $A$, point d’intersection de la courbe $C_f$ avec l’axe des ordonnées.
    $\quad$
  2. La courbe $C_f$ coupe-t-elle l’axe des abscisses ? Justifier la réponse.
    $\quad$
  3. On note $f’$ la dérivée de la fonction $f$ sur $[0; +\infty[$. Montrer que, pour tout réel $x$ de l’intervalle $[0;+\infty[$, $f'(x)=\dfrac{x\e^x}{(1+x)^2}$.
    $\quad$
  4. Étudier le signe de $f'(x)$ sur $[0; +\infty[$. En déduire le sens de variation de $f$ sur $[0; +\infty[$.
    $\quad$
  5. On note $T$ la tangente à $C_f$ au point $A$ d’abscisse $1,6$. La tangente $T$ passe-telle par l’origine du repère ? Justifier la réponse.
    $\quad$

$\quad$

Correction Exercice

  1. L’abscisse du point $A$ est $0$.
    $\begin{align*} f(0)&=\dfrac{e^0}{1+0} \\
    &=\dfrac{1}{1}\\
    &=1\end{align*}$
    Le point $A$ a donc pour coordonnées $(0;1)$.
    $\quad$
  2. La fonction exponentielle est strictement positive.
    Et pour tout réel $x\pg 0$ on a $1+x>0$.
    Par conséquent $f(x)>0$.
    La courbe $\mathscr{C_f}$ ne coupe donc pas l’axe des abscisses.
    $\quad$
  3. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $[0;+\infty[$.
    Ainsi, pour tout réel $x \pg 0$ :
    $\begin{align*} f'(x)&=\dfrac{\e^x(1+x)-1\times \e^x}{(1+x)^2} \\
    &=\dfrac{(1+x-1)\e^x}{(1+x)^2} \\
    &=\dfrac{x\e^x}{(1+x)^2}\end{align*}$
    $\quad$
  4. Sur $[0;+\infty[$ on a $x\pg 0$, $\e^x>0$ et $1+x>0$
    Donc $f'(x)\pg 0$.
    La fonction $f$ est donc strictement croissante sur $[0;+\infty[$.
    $\quad$
  5. Une équation de $T$ est de la forme $y=f'(1,6)(x-1,6)+f(1,6)$
    Or $f(1,6)=\dfrac{\e^{1,6}}{2,6}$ et $f'(1,6)=\dfrac{1,6\e^{1,6}}{2,6^2}$
    Ainsi une équation de $T$ est $y=\dfrac{1,6\e^{1,6}}{2,6^2}(x-1,6)+\dfrac{\e^{1,6}}{2,6}$
    Soit $y=\dfrac{1,6\e^{1,6}}{2,6^2}x+\dfrac{0,04\e^{1,6}}{6,76}$
    L’ordonnée à l’origine de la droite $T$ n’est donc pas nulle.
    La droite $T$ ne passe par conséquent pas par l’origine du repère.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Dans cet exercice, pour tout évènement $A$, on note $\conj{A}$ son évènement contraire, $P(A)$ sa probabilité et, si $B$ est un évènement de probabilité non nulle, $P_B(A)$ la probabilité conditionnelle de $A$ sachant $B$.

Une entreprise a fabriqué en un mois $1~500$ chaudières, dont $900$ chaudières à cheminée et $600$ chaudières à ventouse.
On a constaté, dans ce lot, que :

  • $1 \%$ des chaudières à cheminées ont un défaut
  • $6 \%$ des chaudières à ventouses ont un défaut.

On prélève au hasard le numéro de série d’une chaudière de la production de ce
mois.
On considère les évènements suivants :

  • $C$ : « Le numéro de série est celui d’une chaudière à cheminée »
  • $V$ : « Le numéro de série est celui d’une chaudière à ventouse »
  • $D$ : « Le numéro de série est celui d’une chaudière défectueuse »
  1. Recopier et compléter sur la copie le tableau à double entrée suivant :
    $$\begin{array}{|l|l|l|l|}
    \hline
    &\begin{array}{l}\text{nombre de}\\\text{chaudières à}\\\text{cheminée}\end{array}&\begin{array}{l}\text{nombre de}\\\text{chaudières à}\\\text{ventouse}\end{array}&\text{Total}\\
    \hline
    \begin{array}{l}\text{nombre de chaudières}\\\text{défectueuses}\end{array}&&&\\
    \hline
    \begin{array}{l}\text{nombre de chaudières}\\\text{non défectueuses}\end{array}&&&\\
    \hline
    \text{Total}&900&600&1~500\\
    \hline\end{array}$$
    $\quad$
  2. Recopier et compléter l’arbre pondéré suivant :
    $\quad$
  3. Calculer la probabilité que le numéro de série soit celui d’une chaudière défectueuse.
    $\quad$
  4. Déterminer $P_D(V)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  5. Les évènements $D$ et $V$ sont-ils indépendants ?
    $\quad$

$\quad$

Correction Exercice

  1. On obtient le tableau suivant :
    $$\begin{array}{|l|l|l|l|}
    \hline
    &\begin{array}{l}\text{nombre de}\\\text{chaudières à}\\\text{cheminée}\end{array}&\begin{array}{l}\text{nombre de}\\\text{chaudières à}\\\text{ventouse}\end{array}&\text{Total}\\
    \hline
    \begin{array}{l}\text{nombre de chaudières}\\\text{défectueuses}\end{array}&9&36&45\\
    \hline
    \begin{array}{l}\text{nombre de chaudières}\\\text{non défectueuses}\end{array}&891&564&1~455\\
    \hline
    \text{Total}&900&600&1~500\\
    \hline\end{array}$$
    En effet $\dfrac{1}{100}\times 900=9$ et $\dfrac{6}{100}\times 600=36$
    Les autres valeurs s’obtiennent par différence.
    $\quad$
  2. On obtient l’arbre pondéré suivant :

    $\quad$
  3. $C$ et $\conj{C}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(D)&=P(C\cap D)+P(V\cap D) \\
    &=0,6\times 0,01+0,4\times 0,06\\
    &=0,03\end{align*}$
    La probabilité que le numéro de série soit celui d’une chaudière défectueuse est égale à $0,03$.
    $\quad$
  4. On a :
    $\begin{align*} P_D(V)&=\dfrac{P(D\cap V)}{P(D)} \\
    &=\dfrac{0,4\times 0,06}{0,03}\\
    &=0,8\end{align*}$
    La probabilité que la chaudière soit à ventouse sachant qu’elle est défectueuse est égale à $0,8$.
    $\quad$
  5. On a P(V)=0,4$ et P_D(V)=0,8$.
    Ces probabilités étant différentes, les événements $V$ et $D$ ne sont donc pas indépendants.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2-Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Un jeu vidéo fait évoluer un personnage sur un parcours semé d’obstacles.
Au début du parcours, ce personnage est doté de $1~000$ pions noirs dans son sac et il n’a pas de pion blanc.
Le nombre de pions noirs diminue au cours du jeu.
Le personnage gagne 10 pions blancs par minute jouée.
Chaque partie est chronométrée et dure 45 minutes. Au bout des 45 minutes, la partie s’arrête et le joueur a gagné si le nombre de pions blancs gagnés est supérieur ou égal au nombre de pions noirs du sac.

  1. Étude de l’évolution du nombre de pions blancs
    On note $u_n$ le nombre de pions blancs obtenus au bout de $n$ minutes de jeu.
    Ainsi $u_0 = 0$.
    Déterminer la nature de la suite $\left(u_n\right)$ et en déduire, pour tout entier $n$, l’expression de $u_n$ en fonction de $n$.
    $\quad$
  2. Étude de l’évolution du nombre de pions blancs
    Lucas estime qu’au cours d’une partie, le nombre de ses pions noirs diminue de $2 \%$ par minute. Il voudrait savoir si cette évolution est suffisante pour gagner, ou s’il doit poursuivre son entrainement.
    On note $v_n$ le nombre de pions noirs restant à la $n$-ième minute.
    Ainsi $v_0 = 1~000$.
    a. Justifier que $v_1 = 980$.
    $\quad$
    b. Déterminer la nature de la suite $\left(v_n\right)$ et en déduire, pour tout entier $n$, l’expression de $v$ en fonction de $n$.
    $\quad$
  3. On a calculé les premiers termes des suites $\left(u_n\right)$ et $\left(v_n\right)$ à l’aide d’un tableur. La feuille de calcul est donnée ci-dessous.
    Les termes de la suite $\left(v_n\right)$ ont été arrondis à l’unité.
    Lucas peut-il gagner la partie ?

    $\quad$

$\quad$

Correction Exercice

  1. Pour tout entier naturel $n$ on a donc $u_{n+1}=u_n+10$.
    La suite $\left(u_n\right)$ est donc arithmétique de raison $10$ et de premier terme $u_0=0$.
    Ainsi, pour tout entier naturel $n$, on a $u_n=10n$.
    $\quad$
  2. a. On a :
    $\begin{align*} v_1&=\left(1-\dfrac{2}{100}\right)v_0 \\
    &=0,98\times 1~000\\
    &=0,980\end{align*}$
    $\quad$
    b. La suite $\left(v_n\right)$ est donc géométrique de raison $0,98$ et de premier terme $v_0=1~000$.
    Pour tout entier naturel $n$ on a donc $v_n=1~000\times 0,98^n$.
    $\quad$
  3. On a donc $u_{45}=450$ et $v_{45}=419$
    Au bout de $45$ minutes, le nombre de pions blancs est bien supérieur au nombre de pions noirs.
    Lucas peut donc gagner la partie.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence