E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Pour tout entier naturel $n$, on définit la suite $\left(u_n\right)$ par $u_n=3\times \dfrac{10^n}{2^{n+1}}$.
La suite $\left(u_n\right)$ est une suite :

a.arithmétique de raison $3$.
b. géométrique de raison $3$.
c. arithmétique de raison $5$.
d. géométrique de raison $5$.

$\quad$

Correction Question 1

Pour tout entier naturel $n$ on a :
$\begin{align*} u_n&=3\times\dfrac{10^n}{2^{n+1}} \\
&=\dfrac{3}{2}\times\dfrac{10^n}{2^n} \\
&=\dfrac{3}{2}\times 5^n\end{align*}$
La suite $\left(u_n\right)$ est donc géométrique de raison $5$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 2

Dans un repère orthonormé$\Oij$ du plan, on considère les points $A(-2; 1)$ et $B(2; 4)$.
La droite $\Delta$ passe par le point $C(-1; 1)$ et admet le vecteur $\vect{AB}$ pour vecteur normal.
La droite $\Delta$ admet pour équation cartésienne :

a. $3x-4y+7=0$
b. $4x+3y+1=0$
c. $3x-4y-1=0$
d. $4x+3y+7=0$

$\quad$

Correction Question 2

On a $\vect{AB}\begin{pmatrix}4\\3\end{pmatrix}$. Une équation de la droite $\Delta$ est donc de la forme $4x+3y+c=0$.
Le point $C(-1;1)$ appartient à cette droite. Ainsi :
$-4+3+c=0 \ssi c=1$
Une équation de la droite $\Delta$ est donc $4x+3y+1=0$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans l’intervalle $\left[0;\dfrac{\pi}{2}\right]$, l’unique solution de l’équation $2\cos(x+\pi)+1=0$ est :

a. $\dfrac{\pi}{3}$
b. $-\dfrac{5\pi}{3}$
c. $\dfrac{\pi}{6}$
d. $\dfrac{2\pi}{3}$

$\quad$

Correction Question 3

$\begin{align*} 2\cos(x+\pi)+1=0&\ssi -2\cos(x)+1=0\\
&\ssi \cos(x)=\dfrac{1}{2}\end{align*}$

Donc, dans l’intervalle $\left[0;\dfrac{\pi}{2}\right]$, la solution est $\dfrac{\pi}{3}$.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie et dérivable sur $\R$ par $f(x)=\dfrac{\e^x}{1+\e^x}$.
La fonction dérivée $f’$ de la fonction $f$ est définie par :

a. $f'(x)=\dfrac{\e}{1+\e}$
b. $f'(x)=\dfrac{\e^x}{\left(1+\e^x\right)^2}$
c. $f'(x)=1$
d. $f'(x)=\dfrac{-\e^x}{\left(1+\e^x\right)^2}$

$\quad$

Correction Question 4

Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=\dfrac{\e^x\left(1+\e^x\right)-\e^x\times \e^x}{\left(1+\e^x\right)^2} \\
&=\dfrac{\e^x}{\left(1+\e^x\right)^2}\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction $f$ définie sur $\R$ par : $f(x)=-0,5(x+2)^2+4,5$.
On peut affirmer que :

a. Le tableau de variations de la fonction $f$ est donné ci-dessous:

b.
La courbe représentative de la fonction $f$ admet un sommet de coordonnées $(4,5; -2)$.
c. Le signe de $f(x)$ est donné ci-dessous :

d. La fonction $f$ admet un minimum en $-2$ égal à $4,5$

$\quad$

Correction Question 5

On a $f(x)=-0,5\left(x-(-2)\right)^2+4,5$
Le coefficient principal est $a=-0,5<0$. La fonction $f$ admet donc un maximum dont l’abscisse est $-2$. On exclut donc les réponses a.b., et d.

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Une fleuriste met en vente quatre sortes de bouquets dont les tarifs et la composition sont indiqués dans le tableau ci-dessous : $$\begin{array}{|l|l|}
\hline
\text{Bouquet de tulipes orange : }10,50 \text{ €}&\text{Bouquet de roses orange : }23,50 \text{ €}\\
\hline
\text{Bouquet de tulipes blanches : }11,60 \text{ €}&\text{Bouquet de roses blanches :} 25,50 \text{ €}\\
\hline
\end{array}$$

  • $72 \%$ des bouquets mis en vente ne contiennent que des roses.
  • Les autres bouquets mis en vente ne contiennent que des tulipes.
  • $20 \%$ des bouquets de tulipe mis en vente ne contiennent que des tulipes orange.
  • $36 \%$ des bouquets mis en vente ne contiennent que des roses blanches.

Un client achète au hasard un bouquet parmi ceux mis en vente par la fleuriste. On note :

  • $R$ l’événement : « Le bouquet acheté par ce client est composé de roses. »
  • $B$ l’événement : « Le bouquet acheté par ce client est composé de fleurs blanches. »

Les événements contraires des événements $R$ et $B$ sont notés respectivement $\conj{R}$ et $\conj{B}$.

  1. a. Donner, sans justifier, la probabilité $P(R\cap B)$.
    $\quad$
    b. Recopier et compléter le plus possible l’arbre de probabilité ci-dessous en traduisant uniquement les données de l’énoncé.

    $\quad$
    c. Montrer que $P(B) = 0,584$.
    $\quad$
  2. On note $X$ la variable aléatoire qui donne le prix d’un bouquet acheté par un client.
    a. Recopier et compléter le tableau ci-dessous donnant, pour chaque valeur $x_i$ de $X$, la probabilité de l’événement $\left\{X=x_i\right\}$. Justifier.
    $$\begin{array}{|c|c|c|c|c|}
    \hline
    x_i&&&&\\
    \hline
    P\left(X=x_i\right)&\phantom{12345}&\phantom{12345}&\phantom{12345}&\phantom{12345}\\
    \hline
    \end{array}$$
    $\quad$
    b. Calculer l’espérance de la variable aléatoire $X$. On arrondira le résultat au centième.
    $\quad$

$\quad$

Correction Exercice

  1. a.$36 \%$ des bouquets mis en vente ne contiennent que des roses blanches.
    Donc $P(R\cap B)=0,36$
    $\quad$
    b. On obtient l’arbre pondéré suivant :

    $\quad$
    c. $R$ et $\conj{R}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(B)&=P(R\cap B)+P\left(\conj{R}\cap B\right)\\
    &=0,36+0,28\times 0,8\\
    &=0,584\end{align*}$
    $\quad$
  2. a. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|}
    \hline
    x_i&10,5&11,6&23,5&25,5\\
    \hline
    P\left(X=x_i\right)&0,056&0,224&0,36&0,36\\
    \hline
    \end{array}$$
    En effet :
    $\begin{align*} P(X=25,5)&=P(R\cap B)\\
    &=0,36\end{align*}$
    $\begin{align*} P(X=10,5)&=P\left(\conj{R}\cap \conj{B}\right)\\
    &=0,28\times 0,2 \\
    &=0,056\end{align*}$
    $\begin{align*} P(X=11,6)&=P\left(\conj{R}\cap B\right)\\
    &=0,28\times 0,8 \\
    &=0,224\end{align*}$
    $\begin{align*} P(X=23,5)&=1-\left(0,056+0,224+0,36\right)\\
    &=0,36\end{align*}$
    $\quad$
    b. L’espérance de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=10,5\times 0,056+11,6\times 0,224+23,5\times 0,36+25,5\times 0,36 \\
    &\approx 20,83\end{align*}$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

Soit $f$ la fonction définie sur l’intervalle $[0; 10]$ par : $f(x)=60x\e^{-0,5x}$.
La fonction dérivée de la fonction $f$ est notée $f’$.

  1. Démontrer que, pour tout réel $x$, $f'(x)=-30(x-2)\e^{-0,5x}$.
    $\quad$
  2. Déterminer le signe de $f'(x)$ sur l’intervalle $[0 ; 10]$.
    $\quad$
  3. Établir le tableau de variation de la fonction $f$ sur l’intervalle $[0 ; 10]$.
    On indiquera dans ce tableau les valeurs exactes des extremums.
    $\quad$
  4. Quelles sont les coordonnées du point en lequel la tangente à la courbe représentative de la fonction $f$ est parallèle à l’axe des abscisses ?
    $\quad$
  5. Déterminer l’équation réduite de la tangente à la courbe représentative de la fonction $f$ au point d’abscisse $0$.
    $\quad$

$\quad$

Correction Exercice

  1. L fonction $f$ est dérivable sur l’intervalle $[0;10]$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x\in[0;10]$ on a :
    $\begin{align*} f'(x)&=60\e^{-0,5x}+60x\times \left(-0,5\e^{-0,5x}\right)\\
    &=(60-30x)\e^{-0,5x}\\
    &=-30(x-2)\e^{-0,5x}\end{align*}$
    $\quad$
  2. La fonction exponentielle est strictement positive sur $\R$. Le signe de $f'(x)$ ne dépend donc que de celui de $-30(x-2)$.
    Or $-30(x-2)=0 \ssi x-2=0 \ssi x=2$
    et $-30(x-2)>0\ssi x-2<0 \ssi x<2$
    Par conséquent :
    $\bullet$ $f'(x)>0$ sur $[0;2[$;
    $\bullet$ $f'(2)=0$;
    $\bullet$ $f'(x)<0$ sur $]2;10]$.
    $\quad$
  3. On obtient ainsi le tableau de variations suivant :

    $\quad$
  4. $f'(x)=0 \ssi x=2$
    La tangente à la courbe représentative de la fonction $f$ est parallèle à l’axe des abscisses au point de coordonnées $\left(2;120\e^{-1}\right)$.
    $\quad$
  5. Une équation de cette tangente est de la forme $y=f'(0)(x-0)+f(0)$
    Or $f'(0)=60$ et $f(0)=0$.
    Une équation de cette tangente est donc $y=60x$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Le 1$\ier$ janvier 2019, le propriétaire d’un appartement a fixé à $650$ euros le montant des loyers mensuels pour l’année 2019. Chaque 1$\ier$ janvier, le propriétaire augmente de $1,52 \%$
le loyer mensuel.
On modélise l’évolution du montant des loyers mensuels par une suite $\left(u_n\right)$. L’arrondi à l’unité du terme $u_n$ représente le montant, en euros, du loyer mensuel fixé le 1$\ier$ janvier de l’année (2019 $+ n$), pour $n$ entier naturel. Ainsi $u_0 = 650$ euros.

  1. a. Calculer le montant du loyer mensuel fixé le 1$\ier$ janvier 2020.
    $\quad$
    b. Quelle est la nature de la suite $\left(u_n\right)$ ? Préciser sa raison et son premier terme.
    $\quad$
    c. Calculer le montant du loyer mensuel qui, selon ce modèle, sera fixé pour l’année 2027.
    $\quad$
  2. Pour calculer la somme totale des loyers perçus par le propriétaire durant les années 2019 à 2019$+\text{A}$, on utilise la fonction ci-dessous, écrite en langage Python.
    $$\begin{array}{|cl|}
    \hline
    1& \textbf{def somme(A):}\\
    2& \hspace{1cm}\textbf{S=0}\\
    3& \hspace{1cm}\textbf{n=0}\\
    4& \hspace{1cm}\textbf{while n<=A:}\\
    5& \hspace{2cm}\textbf{S=S+7800*1.0152**n}\\
    6& \hspace{2cm}\textbf{n = n + 1}\\
    7& \hspace{1cm}\textbf{return S}\\
    \hline
    \end{array}$$
    L’exécution de ce programme pour quelques valeurs de $\text{A}$ donne les résultats ci-dessous :
    $$\begin{array}{l}
    \text{>>> somme}\textcolor{brown}{(}\textcolor{Emerald}{0}\textcolor{brown}{)}\\
    \textcolor{Emerald}{7800.0}\\
    \text{>>> somme}\textcolor{brown}{(}\textcolor{Emerald}{1}\textcolor{brown}{)}\\
    \textcolor{Emerald}{15718.560000000001}\\
    \text{>>> somme}\textcolor{brown}{(}\textcolor{Emerald}{2}\textcolor{brown}{)}\\
    \textcolor{Emerald}{23757.482112000005}\\
    \text{>>> somme}\textcolor{brown}{(}\textcolor{Emerald}{3}\textcolor{brown}{)}\\
    \textcolor{Emerald}{31918.595840102407}\\
    \text{>>> somme}\textcolor{brown}{(}\textcolor{Emerald}{8}\textcolor{brown}{)}\\
    \textcolor{Emerald}{74623.04180934158}
    \end{array}$$
    a. Interpréter, dans le contexte de l’exercice, le résultat obtenu lors de l’appel $\text{somme(1)}$.
    $\quad$
    b. Déterminer la somme totale des loyers perçus par le propriétaire durant les années 2022 à 2027 incluses. On arrondira le résultat à l’unité.
    $\quad$

$\quad$

Correction Exercice

  1. a. Au 1$\ier$ janvier 2020, le loyer est de $650\times \left(1+\dfrac{1,52}{100}\right)=659,88$ euros.
    $\quad$
    b. Pour tout entier naturel $n$ on a :
    $\begin{align*} u_{n+1}=u_n\times \left(1+\dfrac{1,52}{100}\right) \\
    &=1,0152u_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,0152$ et de premier terme $u_0=650$.
    $\quad$
    c. Pour tout entier naturel $n$ on a donc $u_n=650\times 1,0152^n$.
    En 2027, on a $n=8$.
    $u_8=650\times 1,0152^8\approx 733,38$
    En 2027, le loyer sera, selon ce modère, environ égal à $733,38$ euros.
    $\quad$
  2. a. Il s’agit de la somme totale des loyers perçus en 2019 et 2020.
    $\quad$
    b. En 2022, on a $n=3$ et en 2027 on a $n=8$.
    Ainsi la somme totale des loyers perçus par le propriétaire durant les années 2022 à 2027 est :
    $\begin{align*} S&=\text{somme(8)}-\text{somme(2)} \\
    &=74623.04180934158-23757.482112000005\\
    &\approx 50~866\end{align*}$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence