E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des affirmations proposées est exacte.
Indiquer pour chaque question sur la copie la lettre  correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Soit $c$ un nombre réel strictement supérieur à $1$. Sur l’ensemble des nombres réels, la fonction polynôme $f$ définie par $f(x)=x^2+2x+c$.

a. change de signe exactement $2$ fois
b. change de signe exactement une fois
c. est toujours positive
d. est toujours négative

$\quad$

Correction Question 1

$c>1$ donc $1-c<0$

Le discriminant du polynôme du second degré est :
$\begin{align*} \Delta&=2^2-4\times 1\times c\\
&=4(1-c)\\
&<0\end{align*}$

Le coefficient principal est $a=1>0$.

Ainsi $f(x)>0$ sur $\R$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Si $x$ est un nombre réel appartenant à l’intervalle $[-\pi ; 0]$ tel que $\cos x =\dfrac{3}{5}$, alors $\sin x$ a pour valeur

a. $\dfrac{4}{5}$
b. $-\dfrac{4}{5}$
c. $-\dfrac{2}{5}$
d. On ne peut pas savoir

$\quad$

Correction Question 2

$x$ appartient à l’intervalle $[-\pi ; 0]$ donc $\sin x\pp 0$.
Pour tout réel $x$ on a $\cos^2 x+\sin^2 x=1$
Donc $\dfrac{9}{25}+\sin^2 x=1 \ssi \sin^2x=\dfrac{16}{25}$
Ainsi $\sin x=\dfrac{4}{5}$  ou $\sin x=-\dfrac{4}{5}$
Puisque $\sin x\pp 0$ on a $\sin x=-\dfrac{4}{5}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Le quadrilatère $ABCD$ est un carré. On a :

a. $\vect{AB}.\vect{AD}=0$
b. $\vect{AB}.\vect{AC}=0$
c. $\vect{AB}.\vect{AB}=0$
d. $\vect{AB}.\vect{DC}=0$

$\quad$

Correction Question 3

$ABCD$ est un carré. Les droites $(AB)$ et $(AD)$ sont donc perpendiculaires.
Par conséquent $\vect{AB}.\vect{AD}=0$.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

La droite d’équation $2x-y+1=0$coupe l’axe des abscisses au point $A$ de coordonnées :

a.  $A(0 ; 1)$
b. $A\left(\dfrac{1}{2};0\right)$
c.  $A(0 ; -1)$
d. $A\left(-\dfrac{1}{2};0\right)$

$\quad$

Correction Question 4

On veut résoudre l’équation $2x-0+1=0 \ssi x=-\dfrac{1}{2}$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

Pour tout réel $x$, $\dfrac{\e^x}{\e^{-x}}$ est égal à

a. $-1$
b. $\e^{-2x}$
c. $\left(\e^x\right)^2$
d. $\e^0$

$\quad$

Correction Question 5

Pour tout réel $x$ on a :
$\begin{align*} \dfrac{\e^x}{\e^{-x}}&=\e^{x-(-x)}\\
&=\e^{2x}\\
&=\left(\e^x\right)^2\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Un biologiste étudie une population de bactéries dans un milieu fermé. À l’instant initial, il y a $10~000$ bactéries et la population augmente de $15\%$ par heure.
On modélise la situation par une suite $\left(u_n\right)$ pour laquelle, pour tout entier naturel $n$, $u_n$ représente une estimation du nombre de bactéries au bout de $n$ heures.
On a donc $u_0=10~000$.

  1. Expliquer pourquoi la suite $\left(u_n\right)$ vérifie pour tout entier naturel $n$ : $$u_n=10~000\times 1,15^n$$
    $\quad$
  2. Quelle est la nature de la suite $\left(u_n\right)$. On précisera le premier terme et la raison.
    $\quad$
  3. Combien y aura-t-il de bactéries au bout de $10$ heures ?
    $\quad$
  4. On considère la fonction suivante définie en langage Python.
    $$\begin{array}{|l|}
    \hline
    \text{def bacteries(N) :}\\
    \hspace{1cm}\text{u=10000}\\
    \hspace{1cm}\text{for i in range(N) :}\\
    \hspace{2cm}\text{u=u*1.15}\\
    \hspace{1cm}\text{return u }\\
    \hline
    \end{array}$$
    On a appelé cette fonction en donnant différentes valeurs au paramètre $n$ et l’on a dressé le tableau suivant.
    $$\begin{array}{|c|c|c|c|c|}
    \hline
    n& 10& 100& 1~ 000& 10~ 000\\
    \hline
    \text{bacteries}(n)& 40~455& 1,2 \times 10^{10}& 4,99 \times 10^{64}& 3,052 \times 10^{307 }\\
    \hline
    \end{array}$$
    Quelle interprétation peut-on donner de ces résultats dans le contexte de l’exercice ?
    $\quad$
  5. Lorsque la population atteint $200~000$ bactéries, le biologiste répand un désinfectant afin de tester son efficacité. Une heure plus tard, il reste $4~000$ bactéries. Quel est le pourcentage de diminution du nombre de bactéries?
    $\quad$

$\quad$

Correction Exercice

  1. Pour tout entier naturel $n$ on a :
    $\begin{align*} u_{n+1}&=\left(1+\dfrac{15}{100}\right)\times u_n\\
    &=1,15u_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $1,15$ et de premier terme $u_0=10~000$.
    Ainsi, pour tout entier naturel $n$ on a $u_n=10~000\times 1,15^n$.
    $\quad$
  2. voir question précédente
    $\quad$
  3. On a $u_{10}=10~000\times 1,15^{10}\approx 40~456$
    Au bout de $10$ heures il y aura $40~456$ bactéries.
    $\quad$
  4. Le nombre de bactéries semble tendre vers $+\infty$ quand le nombre d’heures tend vers $+\infty$.
    $\quad$
  5. $\dfrac{4~000}{200~000}=0,02$
    Le pourcentage de diminution du nombre de bactéries est donc égal à $98\%$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Claire joue régulièrement à un jeu de simulation de tournois de judo en ligne. Les adversaires qu’elle combat sont générés automatiquement de manière aléatoire selon le niveau atteint dans le jeu.
Elle a atteint le niveau le plus élevé, celui de la ceinture noire. Les scores relevés par le jeu montrent qu’elle gagne dans $45\%$ des cas si son adversaire est ceinture noire et dans $70\%$ si son adversaire n’est pas ceinture noire.
Claire commence un tournoi et un premier adversaire est généré par le jeu. A ce niveau la probabilité d’affronter un adversaire ayant une ceinture noire est $0,6$.
On note :

  • $N$ l’événement : « l’adversaire est ceinture noire » ;
  • $G$ l’événement : « Claire gagne le combat ».
  1. Recopier et compléter l’arbre pondéré ci-dessous modélisant cette situation.

    $\quad$

  2. Calculer la probabilité que l’adversaire soit ceinture noire et que Claire gagne son tournoi.
    $\quad$
  3. Montrer que la probabilité que Claire gagne son combat est $0,55$.
    $\quad$
  4. Claire vient de perdre un combat. Quelle est la probabilité que le combat ait été contre une ceinture noire ?
    $\quad$
  5. On considère dans cette question que la probabilité que Claire gagne est $0,55$. Elle fait deux combats successifs.
    On note $X$ la variable qui compte le nombre de victoires.
    Donner la loi de probabilité de $X$.
    $\quad$

$\quad$

Correction Exercice

  1. On obtient l’arbre pondéré suivant :

    $\quad$
  2. On veut calculer :
    $\begin{align*} P(N\cap G)&=P(N)\times P_N(G)\\
    &=0,6\times 0,45\\
    &=0,27\end{align*}$
    La probabilité que l’adversaire soit ceinture noire et que Claire gagne son tournoi est égale à $0,27$.
    $\quad$
  3. $N$ et $\conj{N}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(G)&=P(N\cap G)+P\left(\conj{N}\cap G\right) \\
    &=0,27+0,4\times 0,7\\
    &=0,55\end{align*}$
    La probabilité que Claire gagne son combat est $0,55$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_{\conj{G}}(N)&=\dfrac{P\left(\conj{G}\cap N\right)}{P\left(\conj{G}\right)} \\
    &=\dfrac{0,6\times 0,55}{1-0,55}\\
    &=\dfrac{11}{15}\end{align*}$
    La probabilité que le combat ait été contre une ceinture noire sachant qu’il a été perdu est égale à $\dfrac{11}{15}$.
    $\quad$
  5. $X$ peut prendre les valeurs $0$, $1$ et $2$.
    $\begin{align*}P(X=2)&=0,55^2\\
    &=0,302~5\end{align*}$
    $\begin{align*}P(X=0)&=0,45^2\\
    &=0,202~5\end{align*}$
    $\begin{align*}P(X=1)&=1-\left(P(X=0)+P(X=2)\right)\\
    &=0,495\end{align*}$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On modélise la valeur de vente (en milliers d’euros) d’une voiture électrique en fonction du nombre $x$ d’années à partir de sa mise sur le marché par la fonction $f$ définie sur l’intervalle
$[0 ; 10]$ par $$f(x)=35\e^{-0,22x}$$

  1. Calculer $f(0)$. Quel est le prix de vente de cette voiture au moment de la mise sur le marché ?
    $\quad$
  2. Donner une valeur approchée du prix de vente au bout de $5$ ans et $6$ mois.
    $\quad$
  3. On admet que la fonction $f$ est dérivable et on note $f’$ sa fonction dérivée. Montrer que pour tout $x$ appartenant à $[0 ; 10]$, $$f'(x)=-7,7\e^{-0,22x}$$
    $\quad$
  4. Dresser le tableau de variation de la fonction $f$.
    $\quad$
  5. Un client souhaite revendre sa voiture dès que celle-ci aura un prix de vente inférieur à $10~000$ euros. Après combien de mois après avoir acheté sa voiture pourra-t-il la revendre ?
    $\quad$

$\quad$

Correction Exercice

  1. $f(0)=35\e^0=35$.
    Au moment de la mise sur le marché le prix de la voiture est de $35~000$ euros.
    $\quad$
  2. On a $f(5,5)=35\e^{-1,21}\approx 10,437$.
    Le prix de vente au bout de $5$ ans et $6$ mois serait d’environ $10~437$ euros.
    $\quad$
  3. Pour tout réel $x$ appartenant à l’intervalle $[0;10]$ on a :
    $\begin{align*} f'(x)&=35\times (-0,22)\e^{-0,22x}\\
    &=-7,7\e^{-0,22x}\end{align*}$
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$.
    Par conséquent $f'(x)<0$ sur l’intervalle $[0;10]$.
    On obtient alors le tableau de variations suivant :

    $\quad$
  5. On a $f(5,6)\approx 10,21$ et $f(5,7)\approx 9,99$.
    Or $5,7$ ans $=5$ ans et $8,4$ mois.
    C’est donc à partir de $5$ ans et $9$ mois qu’il pourra revendre sa voiture.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence