E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Une fonction du second degré $f$ a pour forme canonique valable pour tout réel $x$ : $f(x)=3(x+2)^2+5$.
Concernant son discriminant :

a. on peut dire qu’il est nul
b. on peut dire qu’il est strictement positif
c. on peut dire qu’il est strictement négatif
d. on ne peut rien dire sur son signe

$\quad$

Correction Question 1

Pour tout réel $x$ on a donc $f(x)\pg 5$.
Donc l’équation $f(x)=0$ n’admet pas de solution réelle.
Son discriminant est donc strictement négatif.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Un vecteur directeur de la droite d’équation $2x+3y+5=0$ est :

a. $\vec{u}(2;3)$
b. $\vec{u}(-3;2)$
c. $\vec{u}(3;2)$
d. $\vec{u}(-2;3)$

$\quad$

Correction Question 2

Un vecteur directeur d’une droite dont une équation cartésienne est $ax+by+c=0$ est $\vec{u}(-b;a)$.

Un vecteur directeur de la droite d’équation $2x+3y+5=0$ est $\vec{u}(-3;2)$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans un repère orthonormé du plan, on considère les points $A(3; -1)$, $B( 4 ; 2)$ et $C (1 ; 1)$.
Le produit scalaire $\vect{AB}.\vect{AC}$ est égal à :

a. $-4$
b. $2$
c. $4$
d. $8$

$\quad$

Correction Question 3

On a $\vec{AB}(1;3)$ et $\vec{AC}(-2;2)$.
Ainsi :
$\begin{align*} \vect{AB}.\vect{AC}&=1\times (-2)+3\times 2 \\
&=-2+6\\
&=4\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $g$ la fonction définie sur l’ensemble des nombres réels par $g(x)=(2x+1)\e^x$.
Pour tout réel $x$, $g'(x)$ est égal à :

a. $2\e^x$
b. $2x\e^x$
c. $(2x+2)\e^x$
d. $(2x+3)\e^x$

$\quad$

Correction Question 4

La fonction $g$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} g'(x)&=2\e^x+(2x+1)\e^x \\
&=(2+2x+1)\e^x \\
&=(2x+3)\e^x\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

Pour tout réel $x$, $\sin(x+\pi)$ est égal à :

a. $\cos x$
b. $\sin x$
c. $-\cos x$
d. $-\sin x$

$\quad$

Correction Question 5

Pour tout réel $x$ on a $\sin(x+\pi)=-\sin x$.

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Suites – 2020

Suites

E3C2 – 1ère

Durant l’été, une piscine extérieure perd chaque semaine $4 \%$ de son volume d’eau par évaporation. On étudie ici un bassin qui contient $80$ m$^3$ après son remplissage.

  1. Montrer par un calcul que ce bassin contient $76,8$ m$^3$ d’eau une semaine après son remplissage.
    $\quad$
  2. On ne rajoute pas d’eau dans le bassin et l’eau continue à s’évaporer. On modélise le volume d’eau contenue dans la piscine par une suite $\left(V_n\right)$ : pour tout entier naturel $n$, on note $V_n$ la quantité d’eau en m$^3$ contenue dans la piscine $n$ semaines après son remplissage. Ainsi $V_0=80$.
    a. Justifier que pour tout entier naturel $n$, $V_{n+1} = 0,96V_n$ et préciser la nature de la suite $\left(V_n\right)$ ainsi définie.
    $\quad$
    b. Donner une expression de $V_n$ en fonction de $n$.
    $\quad$
    c. Quelle quantité d’eau contient le bassin au bout de $7$ semaines ?
    $\quad$
  3. Pour compenser en partie les pertes d’eau provoquées par l’évaporation, on décide de rajouter $2$ m d’eau chaque semaine dans le bassin. On souhaite déterminer au bout de
    combien de semaines, le volume d’eau contenu dans la piscine devient inférieur à $70$ m$^3$.
    Compléter la fonction Python suivante afin que l’appel $\text{nombreJour(70)}$ renvoie le nombre de semaines à partir duquel le volume d’eau de la piscine sera inférieur à $70$ m$^3$.
    $$\begin{array}{|l|}
    \hline
    \text{def nombreJour(U) :}\\
    \hspace{0.5cm}\text{N=0}\\
    \hspace{0.5cm}\text{V=80}\\
    \hspace{0.5cm}\text{while $\ldots$ >= $\ldots$ :}\\
    \hspace{1cm}\text{N=N+1}\\
    \hspace{1cm}\text{V=$\ldots\ldots\ldots$}\\
    \hspace{0.5cm}\text{return $\ldots$}\\
    \hline
    \end{array}$$
    $\quad$

$\quad$

Correction Exercice

  1. Une semaine après son remplissage,le volume d’eau, en m$^3$, contenu dans le bassin est :
    $\begin{align*} V&=\left(1-\dfrac{4}{100}\right)\times 80\\
    &=0,96\times 80\\
    &=76,8\end{align*}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on a :
    $\begin{align*} V_{n+1}&=\left(1-\dfrac{4}{100}\right) V_n\\
    &=0,96V_n\end{align*}$
    La suite $\left(V_n\right)$ est donc géométrique de raison $0,96$ et de premier terme $V_0=80$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$, on a $V_n=80\times 0,96^n$.
    $\quad$
    c. $V_7=80\times 0,96^7 \approx 60,12$.
    Au bout de $7$ semaines, le bassin contient $60,12$ m$^3$ d’eau.
    $\quad$
  3. On obtient le programme suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def nombreJour(U) :}\\
    \hspace{0.5cm}\text{N=0}\\
    \hspace{0.5cm}\text{V=80}\\
    \hspace{0.5cm}\text{while V >= 70 :}\\
    \hspace{1cm}\text{N=N+1}\\
    \hspace{1cm}\text{V=0.96*V}\\
    \hspace{0.5cm}\text{return N}\\
    \hline
    \end{array}$$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Probabilités – 2020

Probabilités

E3C2 – 1ère

Une petite entreprise de textile commercialise des nappes et des lots de serviettes assorties.
Un client achète au plus une nappe et au plus un lot de serviettes.
En consultant le fichier des ventes de l’entreprise, on constate que :

  • $20\%$ des clients achètent une nappe ;
  • Parmi les clients ayant acheté une nappe, $70 \%$ ont acheté un lot de serviettes ;
  • Parmi les clients n’ayant pas acheté de nappe, $10 \%$ ont tout de même acheté un lot de serviettes.

On choisit au hasard un client de cette entreprise.
Pour tout événement $A$, on note $\conj{A}$ l’événement contraire de $A$ et $P(A)$ la probabilité de l’événement $A$.
On note les événements suivants :

  • $N$ « le client achète une nappe » ;
  • $S$ « le client achète un lot de serviettes »
  1. Reproduire sur la copie et compléter l’arbre pondéré ci-dessous décrivant la situation.
    $\quad$
  2. Calculer la probabilité que le client achète une nappe et un lot de serviettes.
    $\quad$
  3. Montrer que la probabilité de l’événement $S$ est égale à $0,22$.
    $\quad$
  4. Calculer la probabilité que le client achète une nappe sachant qu’il a acheté une serviette.
    $\quad$
  5. Une nappe est vendue $45$ € et un lot de serviettes $25$ €.
    On appelle $D$ la variable aléatoire donnant la dépense effectuée par un client.
    Calculer l’espérance mathématique de $D$ et donner une interprétation de ce nombre dans le contexte de l’exercice.
    $\quad$

$\quad$

Correction Exercice

  1. On obtient l’arbre pondéré suivant :

    $\quad$
  2. On veut calculer :
    $\begin{align*} P(N\cap S)&=P(N)\times P_N(S)\\
    &=0,2\times 0,7\\
    &=0,14\end{align*}$
    La probabilité que le client achète une nappe et un lot de serviettes est égale à $0,14$.
    $\quad$
  3. $N$ et $\conj{N}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(S)&=P(N\cap S)+P\left(\conj{N}\cap S\right) \\
    &=0,14+0,8\times 0,1\\
    &=0,22\end{align*}$
    La probabilité de l’événement $S$ est égale à $0,22$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_S(N)&=\dfrac{P(S\cap N)}{P(S)}\\
    &=\dfrac{0,14}{0,22}\\
    &=\dfrac{7}{11}\end{align*}$
    La probabilité que le client achète une nappe sachant qu’il a acheté une serviette est égale à $\dfrac{7}{11}$.
    $\quad$
  5. $D$ prend les valeurs $0$, $25$, $45$, $70$.
    $\begin{align*} P(D=0)&=P\left(\conj{N}\cap \conj{S}\right) \\
    &=0,8\times 0,9\\
    &=0,72\end{align*}$
    $\begin{align*} P(D=25)&=P\left(\conj{N}\cap S\right) \\
    &=0,8\times 0,1\\
    &=0,08\end{align*}$
    $\begin{align*} P(D=45)&=P\left(N\cap \conj{S}\right) \\
    &=0,2\times 0,3\\
    &=0,06\end{align*}$
    $\begin{align*} P(D=70)&=P\left(N\cap S\right) \\
    &=0,2\times 0,7\\
    &=0,14\end{align*}$
    L’espérance mathématique de $D$ est donc :
    $\begin{align*} E(D)&=\small{0\times P(D=0)+25\times P(D=25)+45\times P(D=45)+70\times P(D=70)}\\
    &=25\times 0,08+45\times 0,06+70\times 0,14\\
    &=14,5\end{align*}$
    En moyenne un client dépense $14,5$ €.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – Fonctions – 2020

Fonctions

E3C2 – 1ère

On considère la fonction $P$ définie sur l’intervalle $[0 ; 5]$ par $P(t)=100t\e^{-t}$.

  1. Calculer $P(0)$ et $P(5)$ (on arrondira à l’unité).
    $\quad$
  2. À l’aide d’un logiciel de calcul formel, on a obtenu une expression de la dérivée de la fonction $P$ : pour tout réel $t$ de l’intervalle $[0 ; 5]$, $P'(t)=100(1-t)\e^{-t}$.
    a. Utiliser cette expression pour étudier le signe de $P'(t)$ sur l’intervalle $[0 ; 5]$.
    $\quad$
    b. En déduire le tableau de variations de la fonction $P$ sur l’intervalle $[0 ; 5]$.
    $\quad$
    c. Pour quelle valeur de $t$ la fonction $P$ admet-elle un maximum ? Quelle est la valeur de ce maximum ? (on arrondira à l’unité).
    $\quad$
  3. Une station pompe l’eau d’une rivière pour la transformer ensuite en eau potable. Lors d’un épisode de pollution, il faut interrompre le pompage en attendant que la vague de pollution soit évacuée par le courant. On étudie ici un épisode de pollution ayant duré $5$ heures environ.
    La concentration en polluant, exprimée en milligrammes par litre (mg/L) est modélisée par la fonction $P$ définie précédemment, où $t$ est le temps écoulé depuis le début de l’alerte, exprimé en heures.
    On donne ci-dessous la représentation graphique de la fonction $P$ dans le plan muni d’un repère orthogonal.

    Les normes en vigueur indiquent que ce polluant devient dangereux pour la santé si sa concentration dépasse $5$ mg/L.
    Lors d’un épisode déclaré de pollution dans la rivière et après arrêt du pompage, à partir de combien d’heures peut-on considérer que la pollution ne représente plus de danger pour la santé?
    $\quad$

$\quad$

Correction Exercice

  1. On a $P(0)=0$ et $P(5)=500\e^{-5}\approx 3$.
    $\quad$
  2. a. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $P'(t)$ ne dépend donc que de celui de $1-t$.
    $1-t=0\ssi t=1$ et $1-t>0 \ssi t<1$.
    Ainsi :
    $\bullet$ $P'(t)>0$ sur $[0;1[$;
    $\bullet$ $P'(1)=0$;
    $\bullet$ $P'(t)<0$ sur $[1;5[$.
    $\quad$
    b. On obtient le tableaux de variations suivant :

    $\quad$
    c. D’après le tableau de variations, la fonction $P$ atteint son maximum en $1$. Ce maximum vaut $100\e^{-1}\approx 37$.
    $\quad$
  3. On constate graphiquement que $P(x)<5$ à partir d’environ $4,5$.
    On peut donc considérer que la pollution ne représente plus de danger pour la santé au bout de $4$h $30$ min.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence