E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Mettre sous la forme d’une fraction irréductible $\dfrac{3}{4}-\dfrac{7}{5}$.
    $\quad$
    Correction Question 1

    $\begin{align*}\dfrac{3}{4}-\dfrac{7}{5}&=\dfrac{15}{20}-\dfrac{28}{20} \\
    &=-\dfrac{13}{20}\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  2. Donner l’écriture scientifique de $0,045~6$.
    $\quad$
    Correction Question 2

    $0,045~6=4,56\times 10^{-2}$
    $\quad$

    [collapse]

    $\quad$
  3. Compléter l’égalité $10^{-5}\times \ldots\ldots =10^8$.
    $\quad$
    Correction Question 3

    $10^{-5}\times 10^{13}=10^{8}$ car $-5+13=8$.
    $\quad$

    [collapse]

    $\quad$
  4. Développer l’expression $7x^2(4x-6)$.
    $\quad$
    Correction Question 4

    $7x^2(4x-6)=28x^3-42x$
    $\quad$

    [collapse]

    $\quad$
  5. Factoriser l’expression $(5x-3)(3x+1)+4x(5x-3)$.
    $\quad$
    Correction Question 5

    $\begin{align*} (5x-3)(3x+1)+4x(5x-3)&=(5x-3)\left[(3x+1)+4x\right] \\
    &=(5x-3)(7x+1)\end{align*}$
    $\quad$

    [collapse]

    $\quad$

    $\quad$

  6. Résoudre dans $\R$ l’équation $(2x-5)(-x+7) = 0$.
    $\quad$
    Correction Question 6

    Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    Donc $2x-5=0\ssi 2x=5 \ssi x=\dfrac{5}{2}$ ou $-x+7=0\ssi x=7$.
    Les solutions de l’équation sont donc $\dfrac{5}{2}$ et $7$.
    $\quad$

    [collapse]

    $\quad$
  7. Si $\dfrac{a}{b}=\dfrac{c}{d}$ alors $d=$
    $\quad$
    Correction Question 7

    $\dfrac{a}{b}=\dfrac{c}{d} \ssi ad=bc \ssi d=\dfrac{bc}{a}$
    $\quad$

    [collapse]

    $\quad$
  8. Calculer $40\%$ de $70$ €.
    $\quad$
    Correction Question 8

    $\dfrac{40}{100}\times 70=\dfrac{2~800}{100}=28$.
    $40\%$ de $70$ € représente donc $28$ €.
    $\quad$

    [collapse]

    $\quad$
  9. Un article est passé de $40$ € à $50$ €.
    Quel est le taux d’évolution en pourcentage de cet article ?
    $\quad$
    Correction Question 9

    On a $\dfrac{50-40}{40}=\dfrac{10}{40}=0,25$
    Le taux d’évolution est donc égal à $25\%$.
    $\quad$

    [collapse]

    $\quad$
  10. On a représenté une droite D dans le repère ci-dessous.

    Compléter par lecture graphique.
    L’équation réduite de la droite $D$ est : ………………………………….
    $\quad$
    Correction Question 10

    L’ordonnée à l’origine est $-3$.
    Pour chaque déplacement de $1$ unité vers la droite on descend de $3$ unités : le coefficient directeur est donc $-3$.
    L’équation réduite de $D$ est donc $y=-3x-3$.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise de recyclage peut produire au maximum $10$ tonnes de plastique recyclé par an. Elle revend la totalité de ce plastique recyclé au prix unitaire de $700$ € la tonne.
On rappelle que :

  • le coût moyen correspondant à la production de $x$ tonnes de plastique recyclé est défini par $C_M(x) = \dfrac{C_T(x)}{x}$, où $C_T(x)$ est le coût total pour la production de $x$ tonnes de plastique recyclé.
  • le coût marginal, noté $C_m(x)$, est le coût induit par la production d’une tonne de plastique recyclé supplémentaire lorsqu’on en a déjà produit $x$ tonnes.

Les courbes représentant les coûts moyen et marginal (en euro) en fonction de la quantité de plastique recyclé produite (en tonne) ainsi que le segment horizontal représentant le prix de vente unitaire sont tracés dans le repère donné en annexe à rendre avec la copie.
Répondre sur la copie aux questions suivantes avec la précision permise par le graphique.

  1. Déterminer le coût moyen issu de la production de $7$ tonnes de plastique recyclé et en déduire le coût total correspondant.
    $\quad$
  2. Quelle est la quantité de plastique recyclé que doit produire l’entreprise pour que le coût moyen soit minimal ? Donner ce coût moyen minimal et en déduire le coût total correspondant.
    $\quad$
  3. Donner le coût induit par la production d’une tonne supplémentaire lorsque l’entreprise a déjà produit $7$ tonnes de plastique recyclé.
    $\quad$

On considère que l’entreprise réalise des bénéfices lorsque le prix de vente unitaire est strictement supérieur au coût moyen.

  1. Déterminer graphiquement la quantité de plastique recyclé que doit produire et vendre l’entreprise pour réaliser des bénéfices.
    $\quad$

On admet que les bénéfices de l’entreprise sont maximum lorsque le coût marginal est égal au prix de vente unitaire.

  1. Déterminer graphiquement la quantité de plastique recyclé que doit produire et vendre l’entreprise pour que les bénéfices soient maximaux.
    $\quad$

Annexe 

$\quad$

$\quad$

Correction Exercice

  1. D’après le graphique, le coût moyen issu de la production de $7$ tonnes de plastique recyclé est de $500$ €.
    Le coût total est donc alors $500\times 7=3~500$ €.
    $\quad$
  2. D’après le graphique, le coût moyen est minimal quand l’entreprise recycle $5$ tonnes de plastique.
    Ce coût minimal est de $400$ €.
    $\quad$
  3. On veut déterminer $C_m(7)$.
    Graphiquement on lit $C_m(7)\approx 1~100$.
    Le coût induit par la production d’une tonne supplémentaire lorsque
    l’entreprise a déjà produit $7$ tonnes de plastique recyclé est environ égal à $1~100$ €.
    $\quad$
  4. Graphiquement, on lit que l’entreprise réalise des bénéfices lorsqu’elle recycle entre $2$ et $9$ tonnes de plastique.
    $\quad$
  5. Graphiquement, on lit que l’entreprise doit produire et vendre $6$ tonnes de plastique pour que les bénéfices soient maximaux.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Un artisan produit des vases en terre cuite. Sa capacité de production est limitée à $60$ vases.
Le coût de production, en euros, dépend du nombre de vases produits.
Ce coût de production peut être modélisé par la fonction $C$ définie sur l’intervalle $[0 ; 60]$ par $$C(x)=x^2-10x+500$$

Un vase est vendu $50$ €. Les recettes, qui dépendent du nombre de vases produits et vendus, sont modélisées par une fonction $R$ définie sur l’intervalle $[0 ; 60]$.

  1. Calculer le coût et la recette réalisés lorsque l’artisan produit et vend $50$ vases.
    $\quad$
  2. Exprimer $R(𝑥)$ en fonction de $x$.
    $\quad$
  3. Le résultat, en euro, réalisé par l’artisan est modélisé par la fonction $B$ définie sur l’intervalle $[0 ; 60]$ par $B(x) = R(x)-C(x)$.
    a. Vérifier que $B(𝑥) = -(𝑥-10)(x-50)$.
    $\quad$
    b. Déterminer le nombre de vases à produire et à vendre pour que l’artisan réalise des bénéfices (c’est-à-dire pour que le résultat $B(x)$ soit positif).
    $\quad$
  4. On note $B’$ la fonction dérivée de la fonction $B$ sur l’intervalle $[0 ; 60]$.
    a. Déterminer $B'(x)$.
    $\quad$
    b. Dresser le tableau de variations de la fonction $B$ sur l’intervalle $[0 ; 60]$ et en déduire le nombre de vases à vendre pour réaliser un bénéfice maximum.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} C(50)&=50^2-10\times 50+500 \\
    &=2~500\end{align*}$
    et $R(50)=50\times 50=2~500$.
    Le coût de fabrication de $50$ vases est de $2~500$ € et la recette réalisée est également de $2~500$ €.
    $\quad$
  2. Pour tout $x\in [0;60]$ on a $R(x)=50x$.
    $\quad$
  3. a. Pour tout $x\in [0;60]$ on a d’une part :
    $\begin{align*} B(x)&=R(x)-C(x) \\
    &=50x-x^2+10x-500 \\
    &=-x^2+60x-500\end{align*}$
    D’autre part :
    $\begin{align*} -(x-10)(x-50)&=-\left(x^2-50x-10x+500\right)\\
    &=-\left(x^2-60x+500\right)\\
    &=-x^2+60x-500\end{align*}$
    Par conséquent $B(x)=-(x-10)(x-50)$.
    $\quad$
    b. $B(x)$ est un polynôme du second degré dont les racines sont $10$ et $50$ et le coefficient principal $a=-1$.
    Par conséquent $B(x)\pg 0$ sur l’intervalle $[10;50]$.
    Il faut donc produire entre $10$ et $50$ vases pour réaliser des bénéfices.
    $\quad$
  4. a. Pour tout $x\in [0;50]$ on a $B(x)=-x^2+60x-500$
    Donc : $B'(x)=-2x+60$.
    $\quad$
    b. $B'(x)=0 \ssi -2x+60=0 \ssi -2x=-60 \ssi x=30$
    $B'(x)>0 \ssi -2x+60>0\ssi -2x>-60 \ssi x<30$
    On obtient donc le tableau de variations suivant :

    On en déduit donc qu’il faut vendre $30$ vases pour réaliser un bénéfice maximum.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Probabilités – Janvier 2020

E3C – Probabilités

Séries technologiques

Une équipe de rugby est composée de $35$ joueurs qui se répartissent en $21$ joueurs avant et $14$ joueurs arrière.
On dénombre $15$ joueurs avant qui pèsent plus de $100$ kg, alors que c’est le cas de seulement $3$ joueurs arrière.

  1. Recopier et compléter le tableau d’effectifs donné ci-dessous.
    $$\begin{array}{|c|c|c|c|}
    \hline
    \rule[-8pt]{0pt}{20pt}&~\textbf{Joueur avant}~&~\textbf{Joueur arrière}~&\phantom{12345}\textbf{Total}\phantom{12345}\\
    \hline
    \textbf{Plus de $\boldsymbol{100}$ kg}&\rule[-8pt]{0pt}{20pt}&&\\
    \hline
    \begin{array}{c}\textbf{Strictement moins}\\\textbf{de $\boldsymbol{100}$ kg}\end{array}&&&\\
    \hline
    \textbf{Total}&\rule[-8pt]{0pt}{20pt}&&\\
    \hline
    \end{array}$$
    $\quad$

Un joueur de cette équipe de rugby est choisi au hasard.
On appelle $A$ l’événement « le joueur est un joueur avant » et $B$ l’événement « le joueur pèse plus de $100$ kg ».
Les résultats seront arrondis à $10^{-3}$ près.

  1. Déterminer la probabilité de l’événement $A$ puis de l’événement $B$.
    $\quad$
  2. Calculer $P(A \cap B)$ et interpréter dans le contexte de l’exercice.
    $\quad$
  3. Le joueur choisi est un joueur avant.
    Déterminer la probabilité qu’il pèse plus de $100$ kg.
    $\quad$
  4. Calculer $P_B(A)$ et interpréter dans le contexte de l’exercice.
    $\quad$

$\quad$

Correction Exercice

  1. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    \rule[-8pt]{0pt}{20pt}&~\textbf{Joueur avant}~&~\textbf{Joueur arrière}~&\phantom{12345}\textbf{Total}\phantom{12345}\\
    \hline
    \textbf{Plus de $\boldsymbol{100}$ kg}&\rule[-8pt]{0pt}{20pt}15&3&18\\
    \hline
    \begin{array}{c}\textbf{Strictement moins}\\\textbf{de $\boldsymbol{100}$ kg}\end{array}&6&11&17\\
    \hline
    \textbf{Total}&\rule[-8pt]{0pt}{20pt}21&14&35\\
    \hline
    \end{array}$$
    $\quad$
  2. $P(A)=\dfrac{21}{35}=0,6$
    $P(B)=\dfrac{18}{35}\approx 0,514$
    $\quad$
  3. $P(A\cap B)=\dfrac{15}{35}=\dfrac{3}{7}\approx 0,429$
    La probabilité que le joueur soit un joueur avant de plus de $100$ kg est environ égale à $0,429$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_A(B)&=\dfrac{P(A\cap B)}{P(A)} \\
    &=\dfrac{\dfrac{15}{35}}{~~\dfrac{21}{35}~~} \\
    &=\dfrac{15}{21} \\
    &=\dfrac{5}{7} \\
    &\approx 0,714\end{align*}$
    La probabilité que le joueur pèse plus de $100$ kg sachant que c’est un joueur avant est environ égale à $0,714$.
    $\quad$
  5. On a :
    $\begin{align*} P_B(A)&=\dfrac{P(A\cap B)}{P(B)} \\
    &=\dfrac{\dfrac{15}{35}}{~~\dfrac{18}{35}~~} \\
    &=\dfrac{15}{18}\\
    &=\dfrac{5}{6} \\
    &\approx 0,833\end{align*}$
    La probabilité que le joueur soit un joueur avant sachant qu’il pèse plus de $100$ kg est environ égale à $ 0,833$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence