E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Calculer la masse correspondant à $\dfrac{2}{3}$ de $240$ grammes.
    $\quad$
    Correction Question 1

    $\dfrac{2}{3} \times 240 = 2\times 80=160$.
    Cela correspond donc à $160$ g.
    $\quad$

    [collapse]

    $\quad$
  2. Compléter : « augmenter de $0,3 \%$ revient à multiplier par …… »
    $\quad$
    Correction Question 2

    Cela revient à multiplier par $1+\dfrac{0,3}{100}=1,003$.
    $\quad$

    [collapse]

    $\quad$
  3. Compléter : « diminuer de …… $\%$ revient à multiplier par $0,86$ »
    $\quad$
    Correction Question 3

    $0,86=1-0,14$
    Donc « diminuer de $14\%$ revient à multiplier par $0,86$ »
    $\quad$

    [collapse]

    $\quad$
  4. Des mesures annuelles ont été relevées dans le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    \text{années}&2015&2016&2017\\
    \hline
    \text{mesures}&&5,00&4,00\\
    \hline
    \end{array}$$
    a. Déterminer le taux d’évolution des mesures entre 2016 et 2017.
    $\quad$
    Correction Question 4.a.

    On a $\dfrac{4,00-5,00}{5,00}=-0,2$
    Il s’agit donc d’une baisse de $20\%$.
    $\quad$

    [collapse]

    $\quad$
    b. Sachant que le taux de 2015 à 2016 est $+25 \%$, calculer la mesure en 2015.
    $\quad$
    Correction Question 4.b.

    On appelle $x$ la mesure en 2015.
    On a donc $x\left(1+\dfrac{25}{100}\right)=5,00$
    Soit $1,25x=5,00$ et par conséquent $x=\dfrac{5,00}{1,25}=4,00$
    $\quad$.

    [collapse]

    $\quad$

    $\quad$

  5. Déterminer le taux global d’une hausse de $10 \%$ suivie d’une baisse de $20 \%$.
    $\quad$
    Correction Question 5

    Le coefficient multiplicateur global est :
    $\begin{align*} m&=\left(1+\dfrac{10}{100}\right)\left(1-\dfrac{20}{100}\right) \\
    &=1,1\times 0,8 \\
    &=0,88\\
    &=1-0,12\end{align*}$
    Il s’agit donc d’une baisse de $12\%$ soit un taux globale de $-12\%$.
    $\quad$

    [collapse]

    $\quad$
  6. Résoudre $2x-(2-x)=7$.
    $\quad$
    Correction Question 6

    $2x-(2-x)=7\ssi 2x-2+x=7 \ssi 3x=9\ssi x=3$
    La solution de l’équation est $3$.
    $\quad$

    [collapse]

    $\quad$
  7. Résoudre $(x+3)^2-8=0$.
    $\quad$
    Correction Question 7

    $(x+3)^2-8=0 \ssi x^2+6x+9-8=0\ssi
    x^2+6x+1=0$
    Le discriminant est $\Delta=36-4=32>0$
    Les solutions sont donc $\dfrac{-6-\sqrt{32}}{2}$ et $\dfrac{-6+\sqrt{32}}{2}$.
    $\quad$
    Autre méthode
    $(x+3)^2-8=0 \ssi (x+3)^2=8 \ssi x+3=\sqrt{8}$ ou $x+3=-\sqrt{8}$ $\ssi x=-3+\sqrt{8}$ ou $x=-3-\sqrt{8}$
    $\quad$

    [collapse]

    $\quad$
  8. Etudier le signe de $f(x)=4+3x$.
    $\quad$
    Correction Question 8

    $4+3x=0 \ssi 3x=-4 \ssi x=-\dfrac{4}{3}$
    $4+3x>0 \ssi 3x>-4 \ssi x>-\dfrac{4}{3}$
    Ainsi :
    – sur $\left]-\infty;-\dfrac{4}{3}\right[$ on a $f(x)<0$;
    – $f\left(-\dfrac{4}{3}\right)=0$;
    – sur $\left]-\dfrac{4}{3};+\infty\right[$ on a $f(x)>0$.
    $\quad$

    [collapse]

    $\quad$
  9. Etudier le signe de $h(x)=2x(5-2x)$.
    $\quad$
    Correction Question 9

    Un produit de facteurs est nul si, et seulement si, un de ses facteurs au moins est nul.
    $2x=0 \ssi x=0$
    $5-2x=0 \ssi -2x=-5 \ssi x=\dfrac{5}{2}$
    De plus $h(x)=10x-4x^2$
    $h$ est une fonction du second degré dont le coefficient principal est $a=-4<0$.
    Par conséquent :
    – sur $]-\infty;0[\cup\left]\dfrac{5}{2};+\infty\right[$ on a $h(x)<0$;
    – $h(0)=0$ et $h\left(\dfrac{5}{2}\right)=0$;
    – sur $\left]0;\dfrac{5}{2}\right[$ on a $h(x)>0$.
    $\quad$
    Remarque : On pouvait également réaliser un tableau de signes pour répondre à la question.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une chaîne de montage est constituée d’un tapis roulant et d’un plateau mobile verticalement sur lequel est placée une masse $m$.
On modélise la hauteur du plateau (en centimètres), à l’instant $t$ (en secondes) par la fonction $f$ définie sur $[0; 25]$ par : $f(t)=165-0,15t^2$.

 

  1. Calculer la hauteur du plateau au départ, c’est-à-dire à l’instant $t=0$ seconde.
    $\quad$
  2. a. Quelle est la nature de la courbe représentative de la fonction $f$ dans un repère orthonormé?
    $\quad$
    b. Déterminer la hauteur maximale du plateau et le temps auquel cette hauteur maximale est atteinte.
    $\quad$
  3. La hauteur du tapis roulant est $95$ cm. Déterminer à quel temps $t$, à $0,1$ seconde près, le plateau est à hauteur du tapis.
    $\quad$
  4. Sur le graphique donné en annexe on a placé les points $A$ et $B$ de la courbe représentative de la fonction $f$ d’abscisses respectives $25$ et $20$.
    Déterminer la pente de la droite $(AB)$.
    $\quad$

Annexe

 

$\quad$

$\quad$

Correction Exercice

  1. On a $f(0)=165$.
    Le plateau est situé à $165$ cm de haut au départ.
    $\quad$
  2. a. $f$ est une fonction du second degré. Elle est donc représentée par une parabole.
    $\quad$
    b. Le coefficient principal de la fonction $f$ est $a=-0,15<0$.
    Ainsi $f$ admet un maximum en $t_0=-\dfrac{b}{2a}=0$.
    La hauteur maximale du plateau est donc de $165$ cm. Elle est atteinte à l’instant $t=0$ seconde.
    $\quad$
  3. On veut résoudre l’équation :
    $\begin{align*} f(t)=95&\ssi 165-0,15t^2=95 \\
    &\ssi -0,15t^2=-70 \\
    &\ssi t^2=\dfrac{70}{0,15}\end{align*}$
    Puisque $t\in [0;25]$ alors la solution de l’équation est $\sqrt{\dfrac{70}{0,15}} \approx 21,6$.
    Le plateau est à la hauteur du tapis environ à l’instant $t=21,6$ seconde.
    $\quad$
  4. Graphiquement le point A a pour coordonnées $(25;71)$ et $B$ a pour coordonnées $(20;105)$.
    Ainsi la pente de la droite $(AB)$ est $\dfrac{105-71}{20-25}=-6,8$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Probabilités – Janvier 2020

E3C – Probabilités

Séries technologiques

L’annexe est à rendre avec la copie

Pour contacter une compagnie d’assurance, deux possibilités sont offertes : par mail ou par téléphone. Le responsable du pôle relation client décide de réaliser une enquête afin de savoir si les clients qui contactent la compagnie sont satisfaits.
À l’issue de l’enquête, réalisée auprès de 1000 clients qui ont contacté l’agence, les résultats sont les suivants :

  • $370$ ont envoyé un mail à l’agence,
  • parmi ceux-ci, $90 \%$ se sont déclarés satisfaits du traitement de leur demande,
  • parmi les clients qui ont téléphoné, $20 \%$ ont déclaré qu’ils n’étaient pas satisfaits de l’accueil.

On interroge au hasard un client. On considère les évènements suivants :

  • $M$ : Le client a contacté l’agence par mail,
  • $S$ : Le client est satisfait.

Les probabilités seront arrondies à $10^{-4}$, si nécessaire.

  1. Donner la valeur des probabilités: $P(M)$, $P_M(S)$ et $P_{\conj{M}}(S)$.
    $\quad$
  2. Compléter le tableau représentant la situation donnée en annexe.
    $\quad$
  3. Calculer la probabilité que le client ait envoyé un mail et qu’il ait été satisfait.
    $\quad$
  4. Le responsable a pour objectif qu’il y ait moins de $10\%$ des clients non satisfaits par le contact qu’ils ont eu. Cet objectif est-il atteint ?
    $\quad$
  5. Sachant que le client a été satisfait, quelle est la probabilité qu’il ait contacté l’agence par mail ?
    $\quad$

Annexe

$$\begin{array}{|c|c|c|c|}
\hline
&\begin{array}{l}\textbf{Contact par}\\\textbf{mail}\\
\boldsymbol{(M)}\end{array}&\begin{array}{l}\textbf{Contact par}\\\textbf{téléphone}\\
\boldsymbol{\left(\conj{M}\right)}\end{array}&\textbf{Total}\\
\hline
\textbf{Satisfait }\boldsymbol{(S)}\rule[-7pt]{0pt}{20pt}&&&\\
\hline
\textbf{Insatisfait }\boldsymbol{\left(\conj{S}\right)}\rule[-7pt]{0pt}{20pt}&&&\\
\hline
\textbf{Total}\rule[-7pt]{0pt}{20pt}&&&\phantom{1234}\boldsymbol{1~000}\phantom{1234}\\
\hline
\end{array}$$

$\quad$

$\quad$

Correction Exercice

  1. On a $P(M)=\dfrac{370}{1~000}=0,37$, $P_M(S)=0,9$ et  $P_{\conj{M}}(S)=1-0,2=0,8$.
    $\quad$
  2. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|}
    \hline
    &\begin{array}{l}\textbf{Contact par}\\\textbf{mail}\\
    \boldsymbol{(M)}\end{array}&\begin{array}{l}\textbf{Contact par}\\\textbf{téléphone}\\
    \boldsymbol{\left(\conj{M}\right)}\end{array}&\textbf{Total}\\
    \hline
    \textbf{Satisfait }\boldsymbol{(S)}\rule[-7pt]{0pt}{20pt}&333&504&837\\
    \hline
    \textbf{Insatisfait }\boldsymbol{\left(\conj{S}\right)}\rule[-7pt]{0pt}{20pt}&37&126&163\\
    \hline
    \textbf{Total}\rule[-7pt]{0pt}{20pt}&370&630&\phantom{1234}\boldsymbol{1~000}\phantom{1234}\\
    \hline
    \end{array}$$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P(M\cap S)&=\dfrac{333}{1~000} \\
    &=0,333\end{align*}$
    La probabilité que le client ait envoyé un mail et qu’il ait été satisfait est égale à $0,333$.
    $\quad$
  4. On a $P\left(\conj{S}\right)=\dfrac{163}{1~000}>0,1$.
    L’objectif n’est donc pas atteint.
    $\quad$
  5. On veut calculer :
    $\begin{align*} P_S(M)&=\dfrac{333}{837}\\
    &\approx 0,397~8\end{align*}$
    La probabilité que le client ait contacté l’agence par mail sachant qu’il a été satisfait est environ égale à $0,397~8$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

L’annexe est à rendre avec la copie

Soit la fonction $f$ définie pour tout réel $x$ par : $f(x)=0,1+0,9x^2-x^3$.

  1. Justifier que pour tout réel $x$, $f'(x)=x(1,8-3x)$.
    $\quad$
  2. a. Calculer $f(1)$ et $f'(1)$.
    $\quad$
    b. En déduire une équation de la tangente à la courbe de $f$ au point d’abscisse $1$.
    $\quad$
  3. La représentation graphique de la fonction $f$ est donnée en annexe.
    a. Donner les variations de la fonction $f$ par lecture graphique.
    $\quad$
    b. En utilisant les résultats de la question 2., construire sur ce graphique la tangente à la courbe de la fonction $f$ au point d’abscisse $1$.
    $\quad$

Annexe

$\quad$

$\quad$

Correction Exercice

  1. Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=0,9\times 2x-3x^2 \\
    &=1,8x-3x^2\\
    &=x(1,8-3x)\end{align*}$
    $\quad$
  2. a. On a $f(1)=0,1+0,9-1=0$
    $f'(1)=1\times (1,8-3)=-1,2$
    $\quad$
    b. Une équation de la tangente à la courbe représentant la fonction $f$ au point d’abscisse $1$ est de la forme $y=f'(1)(x-1)+f(1)$
    C’est-à-dire $y=-1,2(x-1)$ ou $y=-1,2x+1,2$.
    $\quad$
  3. a. Graphiquement, il semblerait que la fonction $f$ soit :
    – strictement décroissante sur $]-\infty;0]$;
    – strictement croissante sur $[0;0;6]$
    – strictement décroissante sur $[0,6;+\infty[$.
    $\quad$
    b. Une équation de cette tangente est $y=-1,2x+1,2$
    Si $x=0$ alors $y=1,2$
    Si $x=1$ alors $y=0$
    Cette droite passe donc par les points de coordonnées $(0;1,2)$ et $(1;0)$.

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence