E3C – Séries technologiques – Automatismes – EC2

E3C – Automatismes

Séries technologiques

  1. Le nombre d’adhérents d’un club de sport est passé de 250 en 2018 à 210 en 2019.
    Déterminer le taux d’évolution du nombre d’adhérents entre 2018 et 2019.
    $\quad$
    Correction Question 1

    $\dfrac{210-250}{250}=\dfrac{-40}{250}=-\dfrac{4}{25}=-\dfrac{16}{100}$
    Le taux d’évolution du nombre d’adhérents est donc de $-16\%$.
    $\quad$

    [collapse]

    $\quad$
  2. Développer $(x-3)(2x+5)$
    $\quad$
    Correction Question 2

    $\begin{align*} (x-3)(2x+5)&=2x^2+5x-6x-15\\
    &=2x^2-x-15\end{align*}$
    $\quad$

    [collapse]

    $\quad$

On considère la fonction affine $g$ définie sur $\R$ par $g(x)=3x-6$.

  1. Calculer $g\left(\dfrac{2}{7}\right)$.
    $\quad$
    Correction Question 3

    $\begin{align*} g\left(\dfrac{2}{7}\right)&=3\times \dfrac{2}{7}-6\\
    &=\dfrac{6}{7}-\dfrac{42}{7}\\
    &=-\dfrac{36}{7}\end{align*}$

    [collapse]

    $\quad$
  2. Déterminer l’antécédent de $2$ par la fonction $g$.
    $\quad$
    Correction Question 4

    On veut résoudre l’équation :
    $\begin{align*} 3x-6=2&\ssi 3x=8 \\
    &\ssi x=\dfrac{8}{3}\end{align*}$
    L’antécédent de $2$ par la fonction $g$ est $\dfrac{8}{3}$.
    $\quad$

    [collapse]

    $\quad$
  3. Donner le tableau de signes de $g$ sur $\R$.
    $\quad$
    Correction Question 5

    $3x-6=0 \ssi 3x=6 \ssi x=2$ et $3x-6>0\ssi 3x>6\ssi x>2$
    On obtient le tableau de signes suivant :

    $\quad$

    [collapse]

    $\quad$

    $\quad$

On a tracé dans le repère ci-dessous une droite $D$ et $C_f$, la courbe représentative d’une fonction $f$ définie sur $[-1;6]$. Répondre aux
questions suivantes par lecture graphique :

  1. Donner le tableau de signes de la fonction 𝑓 sur l’intervalle $[-1;6]$.
    $\quad$
    Correction Question 6

    D’après le graphique on obtient le tableau de signes suivant :$\quad$

    [collapse]

    $\quad$
  2. Déterminer $f(3)$.
    $\quad$
    Correction Question 7

    Graphiquement $f(3)=6$.
    $\quad$

    [collapse]

    $\quad$
  3. Résoudre $f(x)=6$.
    $\quad$
    Correction Question 8

    Deux points de la courbe $C_f$ ont pour ordonnées $6$ : celui d’abscisse $3$ et celui d’abscisse $5$.
    Les solutions de l’équation sont donc $3$ et $5$.
    $\quad$

    [collapse]

    $\quad$
  4. Résoudre $f(x)\pg 3$.
    $\quad$
    Correction Question 9

    D’après le graphique, $f(x)\pg 3$ pour tout $x\pg 2$.
    L’ensemble solution est donc $[2;6]$.
    $\quad$

    [collapse]

    $\quad$
  5. Donner une équation de la droite $D$.
    $\quad$
    Correction Question 10

    L’ordonnée à l’origine est $4$.
    Pour un déplacement d’une unité vers la droite on descend de $2$ unités. Le coefficient directeur est donc $-2$.
    Une équation de la droite $D$ est par conséquent $y=-2x+4$.
    $\quad$

    [collapse]

    $\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Fonctions – EC2

E3C – Fonctions

Séries technologiques

La glycémie est la concentration massique exprimée en gramme par litre (g.L$^{-1}$) de sucre dans le sang. Le diabète se caractérise par une hyperglycémie chronique, c’est-à-dire un excès de sucre dans le sang et donc une glycémie trop élevée.

Une glycémie est normale lorsqu’elle est comprise entre $0,7$ g.L$^{-1}$$ et $1,1$ g.L$^{-1}$ à jeun et lorsqu’elle est inférieure à $1,4$ g.L$^{-1}$, une heure et trente minutes après un repas.
Lorsque l’on suspecte un diabète, on pratique un test de tolérance au glucose.
Lorsqu’il est à jeun, le patient ingère $75$ g de glucose au temps $t= 0$ ($t$ est exprimé en heure).

Pour tout réel $t$ de l’intervalle $[0;3]$, la glycémie du patient, exprimée en g.L$^{-1}$, $t$ heures après l’ingestion, est modélisée par la fonction $f$ définie sur $[0;3]$ par : $$f(t)=0,3t^3-1,8t^2+2,7t+0,8$$

  1. Que fait la glycémie du patient à jeun?
    $\quad$
  2. a. On note $f’$ la fonction dérivée de la fonction $f$. Montrer que pour tout réel $t$ appartenant à $[0;3]$, $$f'(t)=0,9(t-1)(t-3)$$
    $\quad$
    b. Étudier le signe de $f'(t)$ sur $[0;3]$ et en déduire le tableau de variations de la fonction $f$ sur l’intervalle $[0;3]$.
    $\quad$
  3. a. Au bout de combien d’heures la glycémie du patient est-elle maximale et que vaut-elle ?
    $\quad$
    b. Peut-on suspecter un diabète chez le patient ? Expliquer.
    $\quad$

$\quad$

Correction Exercice

  1. $f(0)=0,8$.
    La glycémie du patient à jeun vaut $0,8$ g.L$^{-1}$.
    $\quad$
  2. a. Pour tout $t\in [0;3]$ on a :
    $\begin{align*} f'(t)&=0,3\times 3t^2-1,8\times 2t+2,7 \\
    &=0,9t^2-3,6t+2,7\end{align*}$
    Or :
    $\begin{align*} 0,9(t-1)(t-3)&=0,9\left(t^2-3t-t+3\right) \\
    &=0,9\left(t^2-4t+3\right) \\
    &=0,9t^3-3,6t^2+2,7\\
    &=f'(t)\end{align*}$
    $\quad$
    b. $t-1=0\ssi t=1$ et $t-1>0 \ssi t>1$
    $t-3=0\ssi t=3$ et $t-3>0\ssi t>3$
    On obtient le tableau de signes et de variations suivant :


    $\quad$

  3. a. D’après le tableau de variations de la fonction $f$ la glycémie est maximale au bout d’une heure et vaut $2$ g.L$^{-1}$.
    $\quad$
    b. $f(1,5)=1,8125>1,4$
    On peut donc suspecter un diabète chez le patient.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Quelle est la fraction irréductible égale à $\dfrac{1}{7}-\dfrac{2}{3}$?
    $\quad$
    Correction Question 1

    $\dfrac{1}{7}-\dfrac{2}{3}=\dfrac{3}{21}-\dfrac{14}{21}=-\dfrac{11}{21}$.
    $\quad$

    [collapse]

    $\quad$
  2. Un objet coûte $25$ €. Son prix baisse de $20\%$. Quel est son nouveau prix?
    $\quad$
    Correction Question 2

    $25\times \left(1-\dfrac{20}{100}\right)=\dfrac{100}{4}\times \dfrac{80}{100}=20$.
    Le nouveau prix est $20$ €.
    $\quad$

    [collapse]

    $\quad$
  3. Ecrire le nombre suivant sous la forme $a^n$ avec $a,n \in \N$.
    $$5^6\times \left(4^3\right)^2$$
    $\quad$
    Correction Question 3

    $5^6\times \left(4^3\right)^2=5^6\times 4^6=20^6$
    $\quad$

    [collapse]

    $\quad$
  4. Donner un ordre de grandeur de $$101\times 99$$
    $\quad$
    Correction Question 4

    Un ordre de grandeur de $101\times 99$ est $100\times 100=10~000$.
    $\quad$

    [collapse]

    $\quad$
  5. Résoudre dans $\R$ l’équation d’inconnue $x$ suivante : $$3x^2-1=48$$
    $\quad$
    Correction Question 5

    $3x^2-1=48 \ssi 3x^2=49 \ssi x^2=\dfrac{49}{3}$.
    Les solutions sont donc $-\dfrac{\sqrt{49}}{\sqrt{3}}$ soit $-\dfrac{7}{\sqrt{3}}$ et $\dfrac{7}{\sqrt{3}}$.
    $\quad$

    [collapse]

    $\quad$

    $\quad$

  6. Résoudre dans $\R$ l’inéquation d’inconnue $x$ suivante : $$-2x+1\pp 3$$
    $\quad$
    Correction Question 6

    $-2x+1\pp 3 \ssi -2x \pp 2 \ssi x\pg -1$
    L’ensemble solution est $[-1;+\infty[$.
    $\quad$

    [collapse]

    $\quad$
  7. Factoriser $9x^2-30x+25$
    $\quad$
    Correction Question 7

    $9x^2-30x+25=(3x)^2-2\times 3x\times 5+5^2=(3x-5)^2$
    $\quad$

    [collapse]

    $\quad$
  8. Soit $f$ la fonction définie sur $\R$ par $f(x)=(-x+1)(-2x+4)$.
    Déterminer le tableau de signes de $f(x)$.
    $\quad$
    Correction Question 8

    $-x+1=0 \ssi x=1$ et $-x+1>0 \ssi x<1$
    $-2x+4=0 \ssi -2x=-4 \ssi x=2$ et $-2x+4>0 \ssi -2x>-4 \ssi x<2$
    On obtient donc le tableau de signes suivant :$\quad$

    [collapse]

    $\quad$
  9. $\quad$

    En utilisant la courbe représentative de la fonction $f$ définie sur $[-3;2]$ donnée ci-dessous, résoudre l’inéquation $f(x)\pg 0$.
    $\quad$

    Correction Question 9

    L’ensemble des solutions de l’inéquation $f(x)\pg 0$ est $[-2;1]$.
    $\quad$

    [collapse]

    $\quad$
  10. Par lecture graphique donner l’équation réduite de la droite d représentée ci-dessus.
    $\quad$
    Correction Question 10

    L’équation réduite de la droite $d$ est : $y=-\dfrac{1}{2}x-1$.
    $\quad$

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Dans un repère du plan, on donne $A(2; 4)$ et $B(6; 16)$.
    Déterminer une équation de la droite $(AB)$.
    $\quad$
    Correction Question 1

    $A$ et $B$ n’ont pas la même abscisse.
    Une équation de cette droite est donc de la forme $y=mx+p$.
    Le coefficient directeur est $m=\dfrac{16-4}{6-2}=3$.
    Une équation de la droite $(AB)$ est donc de la forme $y=3x+p$.
    Or $A(2;4)$ appartient à la droite $(AB)$.
    Par conséquent $4=3\times 2+p$. Donc $p=-2$.
    $\quad$

    [collapse]

    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=2x^2-x+3$. On note $C_f$ sa courbe représentative dans un repère du plan.
    Déterminer l’ordonnée du point de $C_f$ ayant pour abscisse $-3$.
    $\quad$
    Correction Question 2

    $f(-3)=2(-3)^2-(-3)+3=18+3+3=24$.
    Le point de $C_f$ ayant pour abscisse $-3$ a pour ordonnée $24$.
    $\quad$

    [collapse]

    $\quad$
  3. Factoriser l’expression $4(x+2)+(x+2)^2$.
    $\quad$
    Correction Question 3

    $\begin{align*} 4(x+2)+(x+2)^2&=(x+2)\left[4+(x+2)\right]\\
    &=(x+2)(x+6)\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  4. Soit $g$ la fonction définie par $g(x)=-3x+7$.
    Déterminer l’antécédent de $-11$ par $g$.
    $\quad$
    Correction Question 4

    On veut résoudre l’équation
    $\begin{align*} g(x)=-11&\ssi -3x+7=-11 \\
    &\ssi -3x=-18\\
    &\ssi x=6\end{align*}$
    L’antécédent cherché est donc $6$.
    $\quad$

    [collapse]

    $\quad$
  5. Après une baisse de $20\%$ un produit coûte $200$ €. Quel était son prix initial?
    $\quad$
    Correction Question 5

    On appelle $P$ son prix initial.
    On a donc :
    $\begin{align*} P\times \left(1-\dfrac{20}{100}\right)=200 &\ssi 0,8P=200\\
    &\ssi P=\dfrac{200}{0,8} \\
    &\ssi P = 250\end{align*}$
    Remarque : diviser par $0,8$ revient à diviser par $4$ puis à multiplier par $5$.
    Le produit coûtait donc initialement $250$ €.
    $\quad$

    [collapse]

    $\quad$$\quad$
  6. Calculer $\dfrac{10+10^3}{10}$
    $\quad$
    Correction Question 6

    $\dfrac{10+10^3}{10}=1+10^2=101$
    $\quad$

    [collapse]

    $\quad$
  7. Résoudre l’équation $x^2=25$
    $\quad$
    Correction Question 7

    Les solutions de l’équation sont $-5$ et $5$.
    $\quad$

    [collapse]

    $\quad$
  8. La formule de l’IMC (indice de masse corporelle; noté $I$) est $I=\dfrac{m}{t^2}$ où $m$ est la masse en kilogramme et $t$ la taille en mètre.
    Exprimer $t$ en fonction de $m$ et de $I$.
    $\quad$
    Correction Question 8

    On a donc $t^2=\dfrac{m}{I}$ soit, puisque $t$ est positif, $t=\sqrt{\dfrac{m}{I}}$.
    $\quad$

    [collapse]

    $\quad$
  9. Compléter le tableau de signe de l’expression $(x-1)(x+3)$.
    $\quad$
    Correction Question 9

    $x-1=0 \ssi x=1$ et $x-1>0 \ssi x>1$
    $x+3=0 \ssi x=-3$ et $x+3>0 \ssi x>-3$
    On obtient donc le tableau de signes suivant :

    $\quad$

    [collapse]

    $\quad$
  10. Par lecture graphique, dresser le tableau de variation de la fonction $h$ définie sur $[-6; 6]$ et représentée ci-dessous dans un repère du plan :

    $\quad$

    $\quad$
    Correction Question 10

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence