Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – mars 2021

Centres étrangers – mars 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\e^{-2x}+x\times \left(-2\e^{-2x}\right)\\
    &=(1-2x)\e^{-2x}\end{align*}$
    La fonction $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f\dsec(x)&=-2\e^{-2x}+(1-2x)\times \left(-2\e^{-2x}\right)\\
    &=\left(-2-2(1-2x)\right)\e^{-2x} \\
    &=(-4+4x)\e^{-2x} \\
    &=4(x-1)\e^{-2x}\end{align*}$
    Réponse b
    $\quad$
  2. Le nombre de combinaisons possibles est :
    $\begin{align*} N&=\dbinom{12}{3} \\
    &=220\end{align*}$
    Réponse c
    $\quad$
  3. $f'(x)>0$ sur $[2;5]$.
    Réponse b
    $\quad$
  4. On appelle $A$ l’événement « La puce possède le défaut A » et $B$ l’événement « La puce possède le défaut B ».
    Ainsi $p(A)=0,028$, $p(B)=0,022$ et $p\left(\conj{A\cup B}\right)=0,954$.
    Par conséquent $p(A\cup B)=1-0,954=0,046$.
    Or
    $\begin{align*} p(A\cap B)&=p(A)+p(B)-p(A\cap B) \\
    &=0,028+0,022-0,046\\
    &=0,004\end{align*}$
    Réponse b
    $\quad$
  5. La fonction $f$ est strictement croissante sur $]-\infty;-1]$ donc $f’$ est positive sur cet intervalle.
    Réponse b
    $\quad$

Ex 2

Exercice 2

Partie A

  1. On obtient l’arbre pondéré suivant :

    $\quad$

  2. On a
    $\begin{align*} P(R\cap J)&=P(R)\times P_R(J) \\
    &=0,17\times 0,32\\
    &=0,0544\end{align*}$
    $\quad$
  3. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} &P(J)=P(R)\times P_R(J)+P\left(\conj{R}\cap J\right) \\
    \ssi&0,11=0,0544+P\left(\conj{R}\cap J\right) \\
    \ssi&0,0556=P\left(\conj{R}\cap J\right) \end{align*}$
    La probabilité que la personne interrogée soit un jeune de 18 à 24 ans n’utilisant pas régulièrement les transports en commun est $0,056$ à $10^{-3}$ près.
    $\quad$
  4. Ainsi :
    $\begin{align*} P_{\conj{R}}(J)&=\dfrac{P\left(\conj{R}\cap J\right) }{P\left(\conj{R}\right)} \\
    &\approx \dfrac{0,056}{1-0,17} \\
    &\approx 0,067\end{align*}$
    La proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun est environ égale à $0,067$.
    $\quad$

Partie B

  1. On réalise $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues $R$ et $\conj{R}$.
    Ainsi $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,17$.
    $\quad$
  2. On a
    $\begin{align*} P(X=5)&=\dbinom{50}{5}\times 0,17^5 \times 0,83^{45} \\
    &\approx 0,069\end{align*}$
    La probabilité d’avoir $5$ personnes utilisant les transports en commun parmi les $50$ interrogées est environ égale à $0,069$.
    $\quad$
  3. D’après la calculatrice $P(X\pp 13)\approx 0,964>0,95$
    L’affirmation est donc vraie.
    $\quad$
  4. L’espérance de $X$ est $E(X)=np=8,5$.
    Il y a donc en moyenne $8,5$ personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. On a
    $\begin{align*} a_1&=0,85\times 5~000+450 \\
    &=4~700\end{align*}$
    $\quad$
  2. Soit $n\in \N$.
    Chaque mois, depuis la mise en place de cette mesure, les dirigeants de l’entreprise constatent que $85 \%$ de ceux qui avaient choisi le télétravail le mois précédent choisissent de continuer. Cela représente donc $0,85a_n$.
    Chaque mois, $450$ collaborateurs supplémentaires choisissent le télétravail.
    Par conséquent $a_{n+1}=0,85a_n+450$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on a $v_n=a_n-3~000 \ssi a_n=v_n+3~000$.
    $\begin{align*} v_{n+1}&=a_{n+1}-3~000\\
    &=0,85a_n+450-3~000\\
    &=0,85a_n-2~550\\
    &=0,85\left(v_n+3~000\right)-2~550 \\
    &=0,85v_n+2~550-2~550\\
    &=0,85v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,85$ et de premier terme $v_0=200-3~000=-2~800$.
    $\quad$
    b. Pour tout entier naturel $n$, $v_n=-2~800\times 0,85^n$.
    $\quad$
    c. Par conséquent, pour tout entier naturel $n$ on a
    \begin{align*} a_n&=v_n+3~000 \\
    &=-2~800\times 0,85^n+3~000\end{align*}$
    $\quad$
  4. On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} a_n>2~500 &\ssi -2~800\times 0,85^n+3~000>2~500 \\
    &\ssi -2~800 \times 0,85^n >-500 \\
    &\ssi 0,85^n <\dfrac{5}{28} \\
    &\ssi n\ln(0,85)<\ln\left(\dfrac{5}{28}\right) \\
    &\ssi n > \dfrac{\ln\left(\dfrac{5}{28}\right)}{\ln(0,85)} \end{align*}$
    Or $\dfrac{\ln\left(\dfrac{5}{28}\right)}{\ln(0,85)} \approx 10,6$
    C’est donc au bout du $11$ème mois que le nombre de télétravailleurs sera strictement supérieur à $2~500$, après la mise en place de cette mesure dans l’entreprise.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout réel $x>0$
    $\begin{align*} f'(x)&=\dfrac{5(x+2)-(5x+4)}{(x+2)^2} \\
    &=\dfrac{5x+10-5x-4}{(x+2)^2} \\
    &=\dfrac{6}{(x+2)^2} \\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. a. Initialisation : $u_0=1$ et $u_1=3$
    Ainsi $0\pp u_0 \pp u_1 \pp 4$ et la propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    Donc $0\pp u_n \pp u_{n+1} \pp 4$
    La fonction $f$ est strictement croissante sur $[0;+\infty[$.
    Par conséquent $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(4)$
    Soit $0\pp 2 \pp u_{n+1} \pp u_{n+2} \pp 4$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp u_n\pp _{n+1} \pp 4$.
    $\quad$
    b. La suite $\left(u_n\right)$ est donc croissante et majorée par $4$. Elle converge.
    $\quad$
  3. $-1< \dfrac{1}{2}<1$ donc $\lim\limits_{n\to +\infty} 3\times \left(\dfrac{1}{2}\right)^n=0$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} 4-u_n=0$ soit $\lim\limits_{n\to +\infty} u_n=4$.
    Sur le long terme, $4~000$ collaborateurs seront satisfaits par cette mesure.
    $\quad$

Ex A

Exercice A

  1. $\vect{AB}\begin{pmatrix} 1\\0\\2\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}-2\\5\\1\end{pmatrix}$
    Par conséquent $\vect{AB}.\vect{AC}=-2+0+2=0$.
    Ces deux vecteurs sont donc orthogonaux et le triangle $ABC$ est rectangle en $A$.
    $\quad$
  2. a. $\vec{n}.\vect{AB}=2+0-2=0$ et $\vec{n}.\vect{AC}=-4+5-1=0$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$. Il est par conséquent normal au plan $(ABC)$.
    $\quad$
    b. Une équation cartésienne du plan $(ABC)$ est donc de la forme $2x+y-z+d=0$.
    Le point $A$ appartient au plan $(ABC)$
    Par conséquent $4-1+d=0 \ssi d=-3$.
    Une équation cartésienne du plan $(ABC)$ est donc $2x+y-z-3=0$.
    $\quad$
    c. $2\times 0+1-4-3=-6\neq 0$.
    Le point $S$ n’appartient donc pas au plan $(ABC)$.
    Les points $A$, $B$, $C$ et $S$ ne sont, par conséquent, pas coplanaires.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $(d)$.
    Une représentation paramétrique de la droite $(d)$ est donc $\begin{cases} x=2t\\y=1+t\\z=4-t\end{cases} \quad t\in \R$.
    $\quad$
    b. $2\times 2\times 2+2-3-3=0$ : le point de coordonnées $(2;2;3)$ appartient au plan $(ABC)$
    En prenant $t=1$ dans la représentation paramétrique de $(d)$ on retrouve le point de coordonnées $(2;2;3)$. Il appartient ainsi à la droite $(d)$.
    Les coordonnées du point $H$ sont donc $(2;2;3)$.
    $\quad$
  4. Aire de la base :
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2}\\
    &=\dfrac{\sqrt{1^2+0^2+2^2}\times \sqrt{(-2)^2+5^2+1^2}}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{30}}{2} \\
    &=\dfrac{\sqrt{150}}{2}\end{align*}$
    Hauteur :
    $\begin{align*} SH&=\sqrt{2^2+(2-1)^2+(3-4)$2} \\
    &=\sqrt{6}\end{align*}$
    Le volume du tétraèdre est donc
    $\begin{align*} V&=\dfrac{\dfrac{\sqrt{150}}{2}\times \sqrt{6}}{3}\\
    &=5\end{align*}$
    $\quad$
  5. a. $SA\begin{pmatrix}2\\-2\\-4\end{pmatrix}$
    $\begin{align*} SA&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    $\quad$
    b. $SB\begin{pmatrix}3\\-2\\-2\end{pmatrix}$
    D’une part $\vect{SA}.\vect{SB}=6+4+8=18$;
    D’autre part $\vect{SA}.\vect{SB}=SA\times SB\times \cos\widehat{ASB}$

    Donc $\sqrt{24}\times \sqrt{17} \cos\widehat{ASB}=18$
    D’où $ \cos\widehat{ASB}=\dfrac{18}{\sqrt{408}}$
    Donc $ \widehat{ASB} \approx 27,0$°
    $\quad$

 

Ex B

Exercice B

Partie A

  1. Pour tout réel $x$ on a
    $\begin{align*} g'(x)&=2\times \left(-\dfrac{1}{3}\e^{\frac{-1}{3}x}\right)+\dfrac{2}{3} \\
    &=-\dfrac{2}{3}\e^{\frac{-1}{3}x}+\dfrac{2}{3}\end{align*}$
    $\quad$
  2. On a $g'(x)=\dfrac{2}{3}\left(1-\e^{\frac{-1}{3}x}\right)$
    Ainsi $g'(x)=0 \ssi 1-\e^{\frac{-1}{3}x}=0 \ssi \dfrac{-1}{3}x=0 \ssi x=0$
    $g'(x)>0 \ssi 1-\e^{\frac{-1}{3}x}>0 \ssi \e^{\frac{-1}{3}x}<1 \ssi x<0$
    La fonction $g$ est donc strictement croissante sur $]-\infty;0]$ et strictement décroissante sur $[0;+\infty[$.
    $\quad$
  3. Or $g(0)=2-2=0$.
    Ainsi $g(x)<0$ pour tout réel $x$ non nul et $g(0)=0$.
    $\quad$

Partie B

  1. $3y’+y=0 \ssi y’=-\dfrac{1}{3}y$
    Les solutions de cette équation sont donc les fonctions $f$ définies sur $\R$ par $f(x)=K\e^{\frac{-1}{3}x}$ où $K\in \R$.
    $\quad$
  2. On veut que $f(0)=2$ soit $K=2$.
    Par conséquent la fonction $f$ est définie sur $\R$ par $f(x)=2\e^{\frac{-1}{3}x}$.
    $\quad$
  3. a. Pour tout réel $x$ on a $f'(x)=-\dfrac{2}{3}\e^{\frac{-1}{3}x}$.
    Ainsi $f'(0)=-\dfrac{2}{3}$ et $f(0)=2$.
    Une équation de $\left(\Delta_0\right)$ est donc $y=-\dfrac{2}{3}x+2$.
    $\quad$
    b. Pour tout réel $x$ on a
    $\begin{align*} f(x)-\left(-\dfrac{2}{3}x+2\right) &=g(x) \\
    &\pp 0\end{align*}$
    La courbe $\mathcal{C}_f$ est donc toujours située sous la droite $\left(\Delta_0\right)$.
    $\quad$

Partie B

  1. Une équation de $\left(\Delta_a\right)$ est $y=-\dfrac{2}{3}\e^{\frac{-a}{3}}(x-a)+2\e^{\frac{-a}{3}}$
    Soit $y=2\e^{\frac{-a}{3}}\left(-\dfrac{1}{3}(x-a)+1\right)$.
    L’abscisse du point d’intersection de cette droite avec l’axe des abscisses vérifie donc
    $-\dfrac{1}{3}(x-a)+1=0\ssi x-a=3 \ssi x=a+3$.
    La tangente $\left(\Delta_a\right)$ coupe l’axe des abscisses au point $P$ d’abscisse $a+3$.
    $\quad$
  2. La droite $\left(\Delta_{-2}\right)$ coupe donc l’axe des abscisses au point d’abscisse $1$.
    Ainsi la droite $\left(\Delta_{-2}\right)$ passe par le point $B$ et le point de coordonnées $(1;0)$.
    $\quad$

 

Énoncé

Exercice 1     5 points

Ceci est un questionnaire à choix multiples (QCM). Pour chacune des questions, une
seule des quatre affirmations est exacte. Le candidat recopiera sur sa copie le numéro de la question et la réponse correspondante. Aucune justification n’est demandée.

Une réponse exacte rapporte un point, une réponse fausse ou une absence de réponse
ne rapporte ni n’enlève aucun point.

  1. On considère la fonction définie sur $\R$ par $f(x)=x\e^{-2x}$. On note $f\dsec$ la dérivée seconde de la fonction $f$.
    Quel que soit le réel $x$, $f\dsec(x)$ est égal à :
    a. $(1-2x)\e^{-2x}$
    b. $4(x-1)\e^{-2x}$
    c. $4\e^{-2x}$
    d. $(x+2)\e^{-2x}$
    $\quad$
  2. Un élève de première générale choisit trois spécialités parmi les douze proposées.
    Le nombre de combinaisons possibles est :
    a. $1~728$
    b. $1~320$
    c. $220$
    d. $33$
    $\quad$
  3. On donne ci-dessous la représentation graphique de $f’$ fonction dérivée d’une fonction $f$ définie sur $[0 ; 7]$.


    Le tableau de variations de $f$ sur l’intervalle $[0;7]$ est :


    $\quad$

  4. Une entreprise fabrique des cartes à puces. Chaque puce peut présenter deux défauts notés A et B.
    Une étude statistique montre que $2,8 \%$ des puces ont le défaut A, $2,2 \%$ des puces ont le défaut B et, heureusement, $95,4 \%$ des puces n’ont aucun des deux défauts.
    La probabilité qu’une puce prélevée au hasard ait les deux défauts est :
    a. $0,05$
    b. $0,004$
    c. $0,046$
    d. On ne peut pas le savoir
    $\quad$
  5. On se donne une fonction $f$, supposée dérivable sur $\R$, et on note $f’$ sa fonction dérivée.
    On donne ci-dessous le tableau de variation de $f$ :

    D’après ce tableau de variation :
    a. $f’$ est positive sur $\R$
    b. $f’$ est positive sur $]-\infty;-1[$
    c. $f’$ est négative sur $\R$
    d. $f’$ est positive sur $[-1;+\infty[$.
    $\quad$

$\quad$

Exercice 2     5 points

Dans tout cet exercice, les probabilités seront arrondies, si nécessaire, à $10^{-3}$.

D’après une étude, les utilisateurs réguliers de transports en commun représentent $17 \%$ de la population française. Parmi ces utilisateurs réguliers, $32 \%$ sont des jeunes âgés de 18 à 24 ans.

(Source : TNS-Sofres)

Partie A

On interroge une personne au hasard et on note :

  • $R$ l’événement : « La personne interrogée utilise régulièrement les transports en commun ».
  • $J$ l’événement : « La personne interrogée est âgée de 18 à 24 ans ».
  1. Représentez la situation à l’aide de cet arbre pondéré, que vous recopierez sur votre copie, en y reportant les données de l’énoncé.

    $\quad$

  2. Calculer la probabilité $P(R\cap J)$.
    $\quad$
  3. D’après cette même étude, les jeunes de 18 à 24 ans représentent $11 \%$ de la
    population française.
    Montrer que la probabilité que la personne interrogée soit un jeune de 18 à 24 ans n’utilisant pas régulièrement les transports en commun est $0,056$ à $10^{-3}$ près.
    $\quad$
  4. En déduire la proportion de jeunes de 18 à 24 ans parmi les utilisateurs non réguliers des transports en commun.
    $\quad$

Partie B :

Lors d’un recensement sur la population française, un recenseur interroge au hasard $50$ personnes en une journée sur leur pratique des transports en commun.
La population française est suffisamment importante pour assimiler ce recensement à un tirage avec remise.

Soit $X$ la variable aléatoire dénombrant les personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées.

  1. Déterminer, en justifiant, la loi de $X$ et préciser ses paramètres.
    $\quad$
  2. Calculer $P(X=5)$ et interpréter le résultat.
    $\quad$
  3. Le recenseur indique qu’il y a plus de $95 \%$ de chance pour que, parmi les $50$ personnes interrogées, moins de $13$ d’entre elles utilisent régulièrement les transports en commun.
    Cette affirmation est-elle vraie ? Justifier votre réponse.
    $\quad$
  4. Quel est le nombre moyen de personnes utilisant régulièrement les transports en commun parmi les $50$ personnes interrogées ?
    $\quad$

$\quad$

Exercice 3     5 points

En mai 2020, une entreprise fait le choix de développer le télétravail afin de s’inscrire dans une démarche écoresponsable.
Elle propose alors à ses $5~000$ collaborateurs en France de choisir entre le télétravail et le travail au sein des locaux de l’entreprise.
En mai 2020, seuls $200$ d’entre eux ont choisi le télétravail.
Chaque mois, depuis la mise en place de cette mesure, les dirigeants de l’entreprise constatent que $85 \%$ de ceux qui avaient choisi le télétravail le mois précédent choisissent de continuer, et que, chaque mois, $450$ collaborateurs supplémentaires choisissent le télétravail.

On modélise le nombre de collaborateurs de cette entreprise en télétravail par la suite $\left(a_n\right)$.

Le terme $a_n$ désigne ainsi une estimation du nombre de collaborateurs en télétravail le $n$-ième mois après le mois de mai 2020. Ainsi $a_0=200$.

Partie A :

  1. Calculer $a_1$.
    $\quad$
  2. Justifier que pour tout entier naturel $n$, $$a_{n+1}=0,85a_n+450$$
    $\quad$
  3. On considère la suite $\left(v_n\right)$ définie pour tout entier naturel $n$ par : $$v_n=a_n-3~000$$
    a. Démontrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $0,85$.
    $\quad$
    b. Exprimer $v_n$ en fonction de $n$ pour tout entier naturel $n$.
    $\quad$
    c. En déduire que, pour tout entier naturel $n$, $$a_n=-2~800\times 0,85^n+3~0000$$
    $\quad$
  4. Déterminer le nombre de mois au bout duquel le nombre de télétravailleurs sera strictement supérieur à $2~500$, après la mise en place de cette mesure dans l’entreprise.
    $\quad$

Partie B :

Afin d’évaluer l’impact de cette mesure sur son personnel, les dirigeants de l’entreprise sont parvenus à modéliser le nombre de collaborateurs satisfaits par ce dispositif à l’aide de la suite $\left(u_n\right)$ définie par $u_0 = 1$ et, pour tout entier naturel $n$, $$u_{n+1}=\dfrac{5u_n+4}{u_n+2}$$
où $u_n$ désigne le nombre de milliers de collaborateurs satisfaits par cette nouvelle mesure au bout de 푛 mois après le mois de mai 2020.

  1. Démontrer que la fonction $f$ définie pour tout $x\in [0;+\infty[$ par $f(x)=\dfrac{5x+4}{x+2}$ est strictement croissante sur $[0;+\infty[$.
    $\quad$
  2. a. Démontrer par récurrence que pour tout entier naturel $n$, $$0\pp u_n\pp u_{n+1} \pp 4$$
    $\quad$
    b. Justifier que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  3. On admet que pour tout entier naturel $$0\pp 4-u_n\pp 3\times \left(\dfrac{1}{2}\right)^n$$
    En déduire la limite de la suite $\left(u_n\right)$ et l’interpréter dans le contexte de la modélisation.
    $\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Exercice A

Géométrie dans l’espace

Dans un repère orthonormé de l’espace, on considère les points suivants : $$A(2;-1;0) ; B(3;-1;2) ; C(0;4;1) \text{ et } S(0;1;4)$$

  1. Montrer que le triangle $ABC$ est rectangle en $A$
    $\quad$
  2. a. Montrer que le vecteur$\vec{n}\begin{pmatrix} 2\\1\\-1\end{pmatrix}$ est orthogonal au plan $(ABC)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(ABC)$.
    $\quad$
    c. Montrer que les points $A$, $B$, $C$ et $S$ ne sont pas coplanaires.
    $\quad$
  3. Soit $(d)$ la droite orthogonale au plan $(ABC)$ passant par $S$. Elle coupe le plan
    $(ABC)$ en $H$.
    a. Déterminer une représentation paramétrique de la droite $(d)$.
    $\quad$
    b. Montrer que les coordonnées du point $H$ sont $H(2;2;3)$.
    $\quad$
  4. On rappelle que le volume $V$ d’un tétraèdre est $V =  \dfrac{\text{Aire de la base $\times$ hauteur}}{3}$.
    Calculer le volume du tétraèdre $SABC$.
    $\quad$
  5. a. Calculer la longueur $SA$.
    $\quad$
    b. On indique que $SB=\sqrt{17}$.
    En déduire une mesure de l’angle $\widehat{ASB}$ approchée au dixième de degré.
    $\quad$

$\quad$

Exercice B

Équations différentielles

Partie A :

Soit $g$ la fonction définie sur $\R$ par : $$g(x)=2\e^{\frac{-1}{3}x}+\dfrac{2}{3}x-2$$

  1. On admet que la fonction $g$ est dérivable sur $\R$ et on note $g’$ sa fonction dérivée. Montrer que, pour tout réel $x$ :$$g'(x)=\dfrac{-2}{3}\e^{\frac{-1}{3}x}+\dfrac{2}{3}$$
    $\quad$
  2. En déduire le sens de variations de la fonction $g$ sur $\R$.
    $\quad$
  3. Déterminer le signe de $g(x)$, pour tout $x$ réel.
    $\quad$

Partie B

  1. On considère l’équation différentielle $$(E): \quad 3y’+y=0$$
    Résoudre l’équation différentielle $(E)$.
    $\quad$
  2. Déterminer la solution particulière dont la courbe représentative, dans un repère du plan, passe par le point $M(0;2)$.
    $\quad$
  3. Soit $f$ la fonction définie sur $\R$ par : $$f(x)=2\e^{-\dfrac{1}{3}x}$$
    et $\mathcal{C}_f$ sa courbe représentative.
    a. Montrer que la tangente $\left(\Delta_0\right)$ à la courbe $\mathcal{C}_f$ au point $M(0;2)$ admet une équation de la forme : $$y=-\dfrac{2}{3}x+2$$
    $\quad$
    b. Étudier, sur $\R$, la position de cette courbe $\mathcal{C}_f$ par rapport à la tangente $\left(\Delta_0\right)$.
    $\quad$

Partie C :

  1. Soit $A$ le point de la courbe $\mathcal{C}_f$ d’abscisse $a$, $a$ réel quelconque.
    Montrer que la tangente $\left(\Delta_0\right)$ à la courbe $\mathcal{C}_f$ au point $a$ coupe l’axe des abscisses en un point $P$ d’abscisse $a+3$.
    $\quad$
  2. Expliquer la construction de la tangente $\left(\Delta_{-2}\right)$ à la courbe $\mathcal{C}_f$ au point $B$ d’abscisse $-2$.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 2 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Question 1 :  Si $t=5$ alors $\begin{cases} x=-4+3\times 5\\y=6-3\times 5\\z=8-6\times 5\end{cases} \ssi \begin{cases} x=11\\y=-9\\z=-22\end{cases}$
Réponse b
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est $\vec{u}\begin{pmatrix} 3\\-3\\-6\end{pmatrix}$.
Réponse c
$\quad$

Question 3 : Un vecteur directeur de la droite $\mathcal{D}$ est $\vect{AB}\begin{pmatrix}-2\\2\\4\end{pmatrix}$.
On constate que $\vect{AB}=-\dfrac{3}{2}\vect{u_3}$.
Les deux droites sont donc parallèles.
En prenant $t=2$ on constate que le point $B$ appartient à la droite $\mathcal{D}’$.
Les deux droites sont donc confondues.
Réponse d
$\quad$

Question 4 : Un vecteur normal au plan $\mathcal{P}$ est $\vec{n}\begin{pmatrix}1\\m\\-2\end{pmatrix}$
La droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$
$\ssi$ $\vec{n}$ et $\vect{AB}$ sont orthogonaux
$\ssi \vec{n}.\vect{AB}=0$\\
$\ssi -2+2m-8=0$
$\ssi 2m=10$
$\ssi m=5$
Réponse c
$\quad$

Ex 2

Exercice 2

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
    b. On veut calculer :
    $\begin{align*} p(M\cap T)&=p(M)\times p_M(T)\\
    &=0,4\times 0,9\\
    &=0,36\end{align*}$
    La probabilité que le chat soit porteur de la maladie et que son test soit positif est égal à $0,36$.
    $\quad$
    c. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(M)\times p_M(T)+p\left(\conj{M}\right)\times p_{\conj{M}}(T)\\
    &=0,36+0,6\times 0,15\\
    &=0,45\end{align*}$
    La probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} p_T(M)&=\dfrac{p(T\cap M)}{p(T)} \\
    &=\dfrac{0,36}{0,45} \\
    &=0,8\end{align*}$
    La probabilité que le chat soit porteur de la maladie sachant que le test est positif est égale à $0,8$.
    $\quad$

  2. a. On effectue $20$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,45$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} p(X=5)&=\dbinom{20}{5}0,45^5\times 0,55^{15} \\
    &\approx 0,036\end{align*}$
    La probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif est environ égale à $0,036$.
    $\quad$
    c. On veut calculer $p(X\pp 8) \approx 0,414$ d’après la calculatrice.
    La probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif est environ égale à $0,414$.
    $\quad$
    d. $E(X)=np=9$.
    En moyenne, $9$ chats présentent un test positif dans un échantillon de $20$ chats.
    $\quad$
  3. a. On effectue $n$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $T$ et $\conj{T}$.
    La variable $Y$ donnant le nombre de chats présentant un test positif suit donc la loi binomiale de paramètre $n$ et $p=0,45$.
    Ainsi :
    $\begin{align*} p_n&=p(Y\pg 1) \\
    &=1-p(Y=0)\\
    &=1-0,55^n\end{align*}$
    $\quad$
    b. Le programme renvoie le plus petit entier naturel $n$ tel que $p_n\pg 0,99$.
    $\quad$
    c.
    $\begin{align*}
    p_n\pg 0,99 &\ssi 1-0,55^n \pg 0,99 \\
    &\ssi -0,55^n \pg -0,01 \\
    &\ssi 0,55^n \pp 0,01 \\
    &\ssi n\ln(0,55) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,55)}\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,55)}\approx7,7$
    Le programme renverra donc la valeur $8$.
    $\quad$

Ex 3

Exercice 3

  1. Il semblerait que $\dfrac{4}{u_n}=n+4$.
    $\quad$
  2. Initialisation : On a $u_0=1>0$.
    La propriété est donc vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose la propriété vraie au rang $n$.
    Ainsi $4u_n >0$ et $u_n+4>4>0$.
    Par conséquent $u_{n+1}>0$ en tant que quotient de nombres strictement positifs.
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, on a $u_n >0$.
    $\quad$
  3. Pour tout $n\in \N$.
    $\begin{align*}
    u_{n+1}-u_n&=\dfrac{4u_n}{u_n+4}-u_n\\
    &=\dfrac{4u_n-\left(u_n^2+4u_n\right)}{u_n+4}\\
    &=\dfrac{-u_n^2}{u_n+4}\\
    &<0\end{align*}$
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
  4. La suite $\left(u_n\right)$ est donc décroissante et minorée par $0$. Elle est par conséquent convergente.
    $\quad$
  5. Soit $n\in \N$
    $\begin{align*} v_{n+1}-v_n&=\dfrac{4}{~~\dfrac{4u_n}{u_n+4}~~}-\dfrac{4}{u_n} \\
    &=\dfrac{4\left(u_n+4\right)}{4u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n+4}{u_n}-\dfrac{4}{u_n}\\
    &=\dfrac{u_n}{u_n}\\
    &=1\end{align*}$
    La suite $\left(v_n\right)$ est donc arithmétique de raison $1$ et de premier terme $v_0=4$.
    Ainsi, pour tout entier naturel $n$, on a $v_n=4+n$.
    $\quad$
  6. Pour tout entier naturel $n$ on a donc
    $\begin{align*} v_n=\dfrac{4}{u_n}&\ssi 4+n=\dfrac{4}{u_n} \\
    &\ssi u_n=\dfrac{4}{4+n}\end{align*}$
    Or $\lim\limits_{n\to +\infty} 4+n=0$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$

 

 

Ex A

Exercice A

Partie I

  1. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$ donc $\lim\limits_{x\to +\infty} h(x)=1$.
    $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} x^2=0^+$ donc $\lim\limits_{x\to 0^+} \dfrac{\ln(x)}{x^2}=-\infty$ et $\lim\limits_{x\to 0^+} h(x)=-\infty$
    $\quad$
  2. Pour tout réel $x>0$ on a
    $\begin{align*} h'(x)&=\dfrac{\dfrac{1}{x}\times x^2-2x\ln(x)}{x^4} \\
    &=\dfrac{x-2x\ln(x)}{x^4} \\
    &=\dfrac{1-2\ln(x)}{x^3}\end{align*}$
    $\quad$
  3. Le signe de $h'(x)$ sur $]0;+\infty[$ ne dépend donc que de celui de $1-2\ln(x)$.
    Or $1-2\ln(x)=0 \ssi \ln(x)=\dfrac{1}{2} \ssi x=\e^{1/2}$
    Et $1-2\ln(x)>0 \ssi -2\ln(x)>-1\ssi \ln(x)<\dfrac{1}{2} \ssi x<\e^{1/2}$
    Ainsi $h'(x) >0$ sur $\left]0;\e^{1/2}\right[$ et $h'(x)<0$ sur $\left]\e^{1/2};+\infty\right[$.
    La fonction $h$ est donc strictement croissante sur $\left]0;\e^{1/2}\right[$ et strictement décroissante sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
  4. La fonction $h$ est continue (car dérivable) et strictement croissante sur $\left]0;\e^{1/2}\right[$.
    De plus $\lim\limits_{x\to 0^+} h(x)=-\infty$ et $h\left(\e^{1/2}\right)=1+\dfrac{1}{2\e}>0$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ possède une solution sur l’intervalle $\left]0;\e^{1/2}\right[$.
    $\quad$
    La fonction $h$ est strictement décroissante sur $\left]\e^{1/2};+\infty\right[$ et $\lim\limits_{x\to +\infty} h(x)=0$.
    Par conséquent $h(x)>0$ sur $\left]\e^{1/2};+\infty\right[$.
    $\quad$
    Ainsi l’équation $h(x)=0$ possède une unique solution $\alpha$ solution sur $]0;+\infty$.
    $\quad$
    $h\left(\dfrac{1}{2}\right) \approx -1,8<0$ et $h(1)=1>0$
    Par conséquent $h\left(\dfrac{1}{2}\right)<h(\alpha)<h(1)$.
    La fonction $h$ est strictement croissante sur $\left]0;\e^{1/2}\right[$. Donc $\dfrac{1}{2} <\alpha <1$.
    $\quad$
  5. D’après les question 3. et 4. :
    $\bullet$ $h(x)<0$ sur $]0;\alpha[$;
    $\bullet$ $h(\alpha)=0$;
    $\bullet$ $h(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. Pour tout $x>0$ on a
    $\begin{align*} f_1(x)-f_2(x)&=x-1-\dfrac{\ln(x)}{x^2}-\left(x-2-\dfrac{2\ln(x)}{x^2} \right)\\
    &=x-1-\dfrac{\ln(x)}{x^2}-x+2+\dfrac{2\ln(x)}{x^2} \\
    &=1+\dfrac{\ln(x)}{x^2}\\
    &=h(x)\end{align*}$
    $\quad$
  2. L’équation $h(x)=0$ possède une unique solution $\alpha$ sur $]0;+\infty[$.
    Les courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ n’ont donc qu’un seul point d’intersection d’abscisse $\alpha$
    $h(\alpha)=0 \ssi \dfrac{\ln(\alpha}{\alpha^2}=-1$
    Ainsi $f_1(\alpha)=\alpha-1-\dfrac{\ln(\alpha}{\alpha^2}=\alpha$.
    Le point d’intersection des courbes $\mathcal{C}_1$ et $\mathcal{C}_2$ a donc pour coordonnées $(\alpha;\alpha)$.
    D’après la question I.5., $\mathcal{C}_1$ est au-dessous de $\mathcal{C}_2$ sur $]0;+\alpha[$ et au-dessus de $\mathcal{C}_2$ sur $]\alpha;+\infty[$.
    $\quad$

Ex B

Partie I

  1. La fonction $f$ semble strictement croissante sur $]-\infty;-1]$ et strictement décroissante sur $[-1;+\infty[$.
    $\quad$
  2. La fonction $f$ semble concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$
    $\quad$

Partie II

  1. Pour tout réel $x$ on a
    $\begin{align*} f(x)&=(x+2)\e^{-x} \\
    &=x\e^{-x}+2\e^{-x} \\
    &=\dfrac{x}{\e^x}+2\e^{-x}\end{align*}$
    $\quad$
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    De plus $\lim\limits_{x\to +\infty} \e^{-x}=0$ donc $\lim\limits_{x\to +\infty} f(x)=0$.
    La droite d’équation $y=0$ est donc asymptote à la courbe $\mathcal{C}$ en $+\infty$.
    $\quad$
  2. a. Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1\times \e^{-x}+(x+2)\times \left(-\e^{-x}\right) \\
    &=(1-x-2)\e^{-x} \\
    &=(-x-1)\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$. Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0 \ssi -x>1 \ssi x<-1$.
    On obtient ainsi le tableau de variations suivant :


    $\quad$
    c. La fonction $f$ est continue (car dérivable) et strictement croissante sur $[-2;-1]$.
    De plus $f(-2) = 0<2$ et $f(-1)=\e>2$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=2$ possède une unique solution $\alpha$.
    D’après la calculatrice $\alpha \approx -1,6$.
    $\quad$

  3. $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=-\e^{-x}-(-x-1)\e^{-x} \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    La fonction exponentielle étant strictement positive sur $\R$, le signe de $f\dsec(x)$ ne dépend que de celui de $x$.
    Ainsi :
    $\bullet$ $f\dsec(x)<0$ sur $]-\infty;0[$;
    $\bullet$ $f\dsec(0)=0$;
    $\bullet$ $f\dsec(x)>0$ sur $]0;+\infty[$.
    La fonction $f$ est donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$.
    Le point $A$, d’abscisse $0$, est un point d’inflexion pour la courbe $\mathcal{C}$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

L’espace est rapporté à un repère orthonormé $\Oijk$.
On considère :

  • La droite $\mathcal{D}$ passant par les points $A(1 ; 1 ;-2)$ et $B(-1 ; 3 ; 2)$.
  • La droite $\mathcal{D}’$ de représentation paramétrique : $\left\{\begin{array}{l}x=-4+3 t \\ y=6-3 t \\ z=8-6 t\end{array}\right. \quad \text { avec } t \in \R $.
  • Le plan $\mathcal{P}$ d’équation cartésienne $x+m y-2 z+8=0$ où $m$ est un nombre réel.

Question 1 : Parmi les points suivants, lequel appartient à la droite $\mathcal{D}’$ ?
a. $M_{1}(-1 ; 3 ;-2)$
b. $M_{2}(11 ;-9 ;-22)$
c. $M_{3}(-7 ; 9 ; 2)$
d. $M_{4}(-2 ; 3 ; 4)$
$\quad$

Question 2 : Un vecteur directeur de la droite $\mathcal{D}’$ est:
a. $\vect{u_{1}}\begin{pmatrix}-4 \\ 6 \\ 8\end{pmatrix}$
b. $\vect{u_{2}}\begin{pmatrix}3 \\ 3 \\ 6\end{pmatrix}$
c. $\vect{u_{3}}\begin{pmatrix}3 \\ -3 \\ -6\end{pmatrix}$
d. $\vect{u_{4}}\begin{pmatrix}-1 \\ 3 \\ 2\end{pmatrix}$
$\quad$

Question 3 : Les droites $\mathcal{D}$ et $\mathcal{D}’$ sont:
a. sécantes
b. strictement parallèles
c. non coplanaires
d. confondues
$\quad$

Question 4 : La valeur du réel $m$ pour laquelle la droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$ est:
a. $m=-1$
b. $m=1$
c. $m=5$
d. $m=-2$
$\quad$

$\quad$

Exercice 2 6 points

Dans cet exercice, les résultats des probabilités demandées seront, si nécessaire, arrondis au millième.
La leucose féline est une maladie touchant les chats; elle est provoquée par un virus. Dans un grand centre vétérinaire, on estime à $40 \%$ la proportion de chats porteurs de la maladie. On réalise un test de dépistage de la maladie parmi les chats présents dans ce centre vétérinaire. Ce test possède les caractéristiques suivantes.

  • Lorsque le chat est porteur de la maladie, son test est positif dans $90 \%$ des cas.
  • Lorsque le chat n’est pas porteur de la maladie, son test est négatif dans $85 \%$ des cas.

On choisit un chat au hasard dans le centre vétérinaire et on considère les événements suivants:

  • $M$ : « Le chat est porteur de la maladie » ;
  • $T$ : « Le test du chat est positif » ;
  • $\conj{M}$ et $\conj{T}$ désignent les événements contraires des événements $M$ et $T$ respectivement.
  1. a. Traduire la situation par un arbre pondéré.
    $\quad$
    b. Calculer la probabilité que le chat soit porteur de la maladie et que son test soit positif.
    $\quad$
    c. Montrer que la probabilité que le test du chat soit positif est égale à $0,45$.
    $\quad$
    d. On choisit un chat parmi ceux dont le test est positif. Calculer la probabilité qu’il soit porteur de la maladie.
    $\quad$
  2. On choisit dans le centre vétérinaire un échantillon de $20$ chats au hasard. On admet que l’on peut assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de chats présentant un test positif dans l’échantillon choisi.
    a. Déterminer, en justifiant, la loi suivie par la variable aléatoire $X$.
    $\quad$
    b. Calculer la probabilité qu’il y ait dans l’échantillon exactement $5$ chats présentant un test positif.
    $\quad$
    c. Calculer la probabilité qu’il y ait dans l’échantillon au plus $8$ chats présentant un test positif.
    $\quad$
    d. Déterminer l’espérance de la variable aléatoire $X$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  3. Dans cette question, on choisit un échantillon de $n$ chats dans le centre, qu’on assimile encore à un tirage avec remise. On note $p_{n}$ la probabilité qu’il y ait au moins un chat présentant un test positif dans cet échantillon.
    a. Montrer que $p_{n}=1-0,55^{n}$.
    $\quad$
    b. Décrire le rôle du programme ci-dessous écrit en langage Python, dans lequel la variable $\text{n}$ est un entier naturel et la variable $\text{P}$ un. nombre réel.
    $$\begin{array}{|l|}
    \hline
    \hspace {1cm} \textbf{def seuil} ():\\
    \hspace {1.5 cm} \text{n = 0} \\
    \hspace {1.5 cm} \text{P = 0}\\
    \hspace {1.5 cm} \textbf {while }\text{P < 0.99:} \\
    \hspace {2 cm}\text{n = n + 1}\\
    \hspace {2 cm}\text{P = 1 – 0.55**n}\\
    \hspace {1.5 cm}\textbf{return }\text{n}\\
    \hline
    \end{array}$$
    $\quad$
    c. Déterminer, en précisant la méthode employée, la valeur renvoyée par ce programme.
    $\quad$

$\quad$

Exercice 3     5 points

On considère la suite $\left(u_{n}\right)$ définie par $: u_{0}=1$ et, pour tout entier naturel $n$,
$$u_{n+1}=\dfrac{4 u_{n}}{u_{n}+4}$$

  1. La copie d’écran ci-dessous présente les valeurs, calculées à l’aide d’un tableur, des termes de la suite $\left(u_{n}\right)$ pour $n$ variant de $0$ à $12$, ainsi que celles du quotient $\dfrac{4}{u_{n}}$ (avec, pour les valeurs de $u_{n}$, affichage de deux chiffres pour les parties décimales).
    $$\begin{array}{|c|c|c|}
    \hline n & u_{n} & \dfrac{4}{u_{n}} \\
    \hline 0 & 1,00 & 4 \\
    \hline 1 & 0,80 & 5 \\
    \hline 2 & 0,67 & 6 \\
    \hline 3 & 0,57 & 7 \\
    \hline 4 & 0,50 & 8 \\
    \hline 5 & 0,44 & 9 \\
    \hline 6 & 0,40 & 10 \\
    \hline 7 & 0,36 & 11 \\
    \hline 8 & 0,33 & 12 \\
    \hline 9 & 0,31 & 13 \\
    \hline 10 & 0,29 & 14 \\
    \hline 11 & 0,27 & 15 \\
    \hline 12 & 0,25 & 16 \\
    \hline
    \end{array}$$
    À l’aide de ces valeurs, conjecturer l’expression de $\dfrac{4}{u_{n}}$ en fonction de $n$.
    $\quad$
    Le but de cet exercice est de démontrer cette conjecture (question 5.), et d’en déduire la limite de la suite $\left(u_{n}\right)$ (question 6.).
    $\quad$
  2. Démontrer par récurrence que, pour tout entier naturel $n$, on a $: u_{n}>0$.
    $\quad$
  3. Démontrer que la suite $\left(u_{n}\right)$ est décroissante.
    $\quad$
  4. Que peut-on conclure des questions 2. et 3. concernant la suite $\left(u_{n}\right)$ ?
    $\quad$
  5. On considère la suite $\left(v_{n}\right)$ définie pour tout entier naturel $n$ par : $v_{n}=\dfrac{4}{u_{n}}$.
    Démontrer que $\left(v_{n}\right)$ est une suite arithmétique. Préciser sa raison et son premier terme.
    En déduire, pour tout entier naturel $n$, l’expression de $v_{n}$ en fonction de $n$.
    $\quad$
  6. Déterminer, pour tout entier naturel $n$, l’expression de $u_{n}$ en fonction de $n$.
    En déduire la limite de la suite $\left(u_{n}\right)$.
    $\quad$

$\quad$

EXERCICE au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués dans un encadré.

$\quad$

Exercice A

Principaux domaines abordés:

  • Fonction logarithme;
  • dérivation.

Partie I

On désigne par $h$ la fonction définie sur l’intervalle $] 0 ;+\infty[$ par :
$$h(x)=1+\dfrac{\ln (x)}{x^{2}}$$
On admet que la fonction $h$ est dérivable sur $] 0 ;+\infty[$ et on note $h’$ sa fonction dérivée.

  1. Déterminez les limites de $h$ en $0$ et en $+\infty$.
    $\quad$
  2. Montrer que, pour tout nombre réel $x$ de $] 0 ;+\infty[$, h'(x)=\dfrac{1-2 \ln (x)}{x^{3}}$.
    $\quad$
  3. En déduire les variations de la fonction $h$ sur l’intervalle $]0 ;+\infty[$
    $\quad$
  4. Montrer que l’équation $h(x)=0$ admet une solution unique $\alpha$ appartenant à $] 0 ;+\infty[$ et vérifier que : $\dfrac{1}{2}<\alpha<1$.
    $\quad$
  5. Déterminer le signe de $h(x)$ pour $x$ appartenant à $] 0 ;+\infty[$.
    $\quad$

 

Partie II

On désigne par $f_{1}$ et $f_{2}$ les fonctions définies sur $] 0 ;+\infty[$ par :
$$
f_{1}(x)=x-1-\dfrac{\ln (x)}{x^{2}} \text { et } \quad f_{2}(x)=x-2-\dfrac{2 \ln (x)}{x^{2}}$$
On note $\mathcal{C}_{1}$ et $\mathcal{C}_{2}$ les représentations graphiques respectives de $f_{1}$ et $f_{2}$ dans un repère $\Oij$.

  1. Montrer que, pour tout nombre réel $x$ appartenant à $] 0 ;+\infty[$, on a :
    $$f_{1}(x)-f_{2}(x)=h(x)$$
    $\quad$
  2. Déduire des résultats de la Partie I la position relative des courbes $\mathcal{C}_{1}$ et $\mathcal{C}_{2} .$ On justifiera que leur unique point d’intersection a pour coordonnées $(\alpha ; \alpha)$.
    On rappelle que $\alpha$ est l’unique solution de l’équation $h(x)=0$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction exponentielle;
  • dérivation;
  • convexité.

PARTIE I

On donne ci-dessous, dans le plan rapporté à un repère orthonormé, la courbe représentant la fonction dérivée $f’$ d’une fonction $f$ dérivable sur $\R$. À l’aide de cette courbe, conjecturer, en justifiant les réponses:

  1. Le sens de variation de la fonction $f$ sur $\R$.
    $\quad$
  2. La convexité de la fonction $f$ sur $\R$.
    $\quad$

$\quad$

PARTIE II

On admet que la fonction $f$ mentionnée dans la Partie I est définie sur $\R$ par : $$f(x)=(x+2) \e^{-x}$$
On note $\mathcal{C}$ la courbe représentative de $f$ dans un repère orthonormé $\Oij$.
On admet que la fonction $f$ est deux fois dérivable sur $\R$, et on note $f’$ et $f\dsec$ les fonctions dérivées première et seconde de $f$ respectivement.

  1. Montrer que, pour tout nombre réel $x$, $$
    f(x)=\dfrac{x}{\e^{x}}+2 \e^{-x}$$
    En déduire la limite de $f$ en $+\infty$.
    Justifier que la courbe $\mathcal{C}$ admet une asymptote que l’on précisera. On admet que $\lim\limits_{x \to -\infty} f(x)=-\infty$.
    $\quad$
  2. a. Montrer que, pour tout nombre réel $x, f'(x)=(-x-1) \e^{-x}$.
    $\quad$
    b. Étudier les variations sur $\R$ de la fonction $f$ et dresser son tableau de variations.
    $\quad$
    c. Montrer que l’équation $f(x)=2$ admet une unique solution $\alpha$ sur l’intervalle $[-2 ;-1]$ dont on donnera une valeur approchée à $10^{-1}$ près.
    $\quad$
  3. Déterminer, pour tout nombre réel $x$, l’expression de $f\dsec(x)$ et étudier la convexité de la fonction $f$. Que représente pour la courbe $\mathcal{C}$ son point $A$ d’abscisse $0$ ?
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 1 – juin 2021

Métropole – juin 2021

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $f$ est dérivable sur $]0;+\infty [$ puisque $f\dsec$ existe.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=\dfrac{2\e^{2x}\times x-\e^{2x}}{x^2} \\
    &=\dfrac{(2x-1)\e^{2x}}{x^2}\end{align*}$
    Réponse c
    $\quad$
  2. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $2x-1$.
    Or $2x-1>0 \ssi x>\dfrac{1}{2}$
    Par conséquent $f$ est strictement décroissante sur $\left]0;\dfrac{1}{2}\right]$ et strictement croissante sur $\left[\dfrac{1}{2};+\infty\right[$.
    Elle admet donc un minimum en $\dfrac{1}{2}$.
    $\quad$
    Remarque : On pouvait répondre à cette question en traçant la courbe représentant la fonction sur la calculatrice.
    $\quad$
    Réponse c
    $\quad$
  3. Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\e^{2x}}{x}=+\infty$
    Réponse a
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $2x^2-2x+1$.
    Son discriminant est :
    $\Delta=(-2)^2-2\times 4\times 1=-4<0$.
    Le coefficient principal est $a=2>0$.
    Par conséquent $f\dsec(x)>0$ sur $]0;+\infty[$ et $f$ est convexe sur $]0;+\infty[$.
    Réponse b
    $\quad$

Ex 2

Exercice 2

PARTIE I

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(D\cap T)&=p(D)\times p_D(T)\\
    &=0,05\times 0,98\\
    &=0,049\end{align*}$
    La probabilité qu’une pièce choisie au hasard dans la production de la
    chaîne soit défectueuse et présente un test positif est égale à $0,049$.
    $\quad$
    b. $D$ et $\conj{D}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    p(T)&=p(D)\times p_D(T)+p\left(\conj{D}\right)\times p_{\conj{D}}(T)\\
    &=0,05\times 0,98+0,95\times 0,03\\
    &=0,077~5\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} p_T(D)&=\dfrac{p(T\cap D)}{p(T)} \\
    &=\dfrac{0,049}{0,077~5}\\
    &\approx 0,63\end{align*}$
    La valeur prédictive positive de ce test est environ égale à $0,63<0,95$.
    Ce test n’est donc pas efficace.
    $\quad$

PARTIE II

  1. On effectue $20$ tirages aléatoires, indépendants et identiques. À chaque tirage il n’y a que deux issues : $D$ et $\conj{D}$.
    $X$ suit donc la loi binomiale de paramètre $n=20$ et $p=0,05$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} p(X\pg 1)&=1-p(X=0) \\
    &=1-0,95^{20} \\
    &\approx 0,64\end{align*}$
    La probabilité pour que cet échantillon contienne au moins une pièce défectueuse est environ égale à $0,64$.
    $\quad$
  3. L’espérance est $E(X)=20 \times 0,05=1$.
    Cela signifie qu’en moyenne il y a une pièce défectueuse par échantillon de $20$ pièces.
    $\quad$

Ex 3

Exercice 3

I – Premier modèle

$1,3-(-19)=20,3$. Cela signifie qu’à chaque minute la température augmente de $2,03$ °C.
Au bout de $25$ minutes, selon ce modèle, la température des gâteaux serait donc de $-19+25\times 2,03=31,75$ °C.
La température ambiante est de $25$ °C. Les gâteaux ne peuvent pas avoir une température supérieure à la température ambiante.
Ce modèle n’est donc pas pertinent.
$\quad$

II – Second modèle 

  1. Pour tout entier naturel $n$ on a :
    $\begin{align*} T_{n+1}&=T_n-0,06\left(T_n-25\right) \\
    &=T_n-0,06T_n+1,5\\
    &=0,94T_n+1,5\end{align*}$
    $\quad$
  2. On a donc $T_1=0,94\times (-19)+1,5\approx -16,4$
    $T_2=0,94 \times T_1+1,5 \approx -13,9$
    $\quad$
  3. Initialisation : Si $n=0$ alors $T_0=-19 \pp 25$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    $\begin{align*} T_{n+1}&=0,94T_n+1,5\\
    &\pp 0,94 \times 25+1,5 \\
    &\pp 25\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, on a $T_n\pp 25$.
    $\quad$
  4. Pour tout entier naturel $n$, $T_{n+1}-T_n=-0,06\times \left(T_n-25\right)$
    Or $T_n-25 \pp 0$. Donc $T_{n+1}-T_n\pg 0$.
    La suite $\left(T_n\right)$ est par conséquent croissante.
    $\quad$
  5. La suite $\left(T_n\right)$ est croissante et majorée par $25$. Elle est donc convergente.
    $\quad$
  6. a. Pour tout entier naturel $n$ on a
    $\begin{align*} U_{n+1}&=T_{n+1}-25 \\
    &=0,94T_n+1,5-25 \\
    &=0,94T_n-23,5 \\
    &=0,94\left(U_n+25\right)-23,5 \\
    &=0,94U_n+23,5-23,5\\
    &=0,94U_n\end{align*}$
    La suite $\left(U_n\right)$ est donc géométrique de raison $0,94$ et de premier terme $U_0=T_0-25=-44$.
    $\quad$
    b. Pour tout entier naturel $n$ on a donc $U_n=-44 \times 0,94^n$.
    Donc $T_n=U_n+25=-44\times 0,94^n+25$.
    $\quad$
    c. $-1<0,94<1$ donc $\lim\limits_{n\to +\infty} 0,94^n =0$
    Par conséquent $\lim\limits_{n\to +\infty} T_n=25$.
    $\quad$
  7. a. On a $T_{30}\approx 18$.
    La température des gâteaux est donc environ égale à $18$ °C au bout d’une demi-heure.
    $\quad$
    b. À l’aide de la calculatrice on trouve que $T_{17} \approx 9,6$ et $T_{18} \approx 10,6$. De plus la suite $\left(T_n\right)$ est croissante.
    Cécile doit donc attendre entre $17$ et $18$ minutes pour déguster son gâteau.
    $\quad$
    c. On obtient le programme suivant :
    $$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = -19} \\
    \hspace{1.5cm} \textbf{while } \text{T < 10} : \hspace{1cm} \\
    \hspace{2cm} \text{T = 0.94 * T + 1.5}  \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$
    $\quad$

 

 

Ex A

Exercice A

  1. La droite $d$ a pour vecteur directeur le vecteur $\vec{u}$ et passe par le point $0$.
    Une représentation paramétrique de la droite $d$ est donc $\begin{cases} x=t\\y=t\\z=0\end{cases} \quad, t\in \R$.
    $\quad$
  2. a. On a
    $\begin{align*} AM^2&=(t-1)^2+(t-3)^2+2^2 \\
    &=t^2-2t+1+t^2-6t+9+4\\
    &=2t^2-8t+14\end{align*}$
    $\quad$
    b. Le coefficient principal de l’expression du second degré $2t^2-8t+14$ est $2>0$.
    Elle admet donc un minimum atteint pour $t=\dfrac{8}{2\times 2}=2$.
    Ainsi le point $M_0(2;2;0)$ est le point de la droite $d$ pour lequel $AM^2$ est minimal et donc pour lequel la distance $AM$ est minimale.
    $\quad$
  3. $\vect{AM_0}\begin{pmatrix} 1\\-1\\2\end{pmatrix}$
    Donc $\vect{AM_0}.\vec{u}=1-1+0=0$
    Ces deux vecteurs sont donc orthogonaux et les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. Le vecteur $\vec{u}$ est orthogonal au plan d’équation $z=0$. Les points $A’$ et $M_0$ appartiennent à ce plan. Par conséquent $\vec{u}.\vect{A’M_0}=0$.
    Le vecteur $\vec{u}$ est donc orthogonal aux vecteurs (non colinéaires) $\vect{A’M_0}$ et $\vect{AM_0}$.
    La droite $d$ est par conséquent orthogonale au plan $\left(AA’M_0\right)$.
    $M_0$ appartient à la droite $d$, droite qui passe par le point $O$..
    Le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$.
    $\quad$
  5. On a $AA’=2$ et $M_0A’=\sqrt{(2-1)^2+(2-3)^2+0^2}=\sqrt{2}$.
    De plus $OM_0=\sqrt{2^2+2^2}=\sqrt{8}$
    Ainsi le volume de la pyramide $OM_0A’A$ est :
    $\begin{align*} V&=\dfrac{1}{3}\times \dfrac{2\times \sqrt{2}}{2}\times \sqrt{8} \\
    &=\dfrac{4}{3}\end{align*}$
    $\quad$

Ex B

Exercice B

  1. Pour tout réel $x$ on a :
    $\begin{align*} u'(x)&=2x\e^x+x^2\times \e^x \\
    &=2x\e^x+u(x)\end{align*}$
    Par conséquent $u$ est une solution particulière de $(E)$.
    $\quad$
  2. a. Si $f $est solution de l’équation différentielle $(E)$ alors $g$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$ et
    $\begin{align*} g'(x)&=f'(x)-u'(x) \\
    &=f(x)+2x\e^x-\left(u(x)+2x\e^x\right) \\
    &=f(x)+2x\e^x-u(x)-2x\e^x\\
    &=f(x)-u(x)\\
    &=g(x) \end{align*}$
    $g$ est donc solution de l’équation différentielle $y’=y$.
    $\quad$
    b. Une solution de l’équation $y’=y$ est la fonction $g$ définie sur $\R$ par $g(x)=\e^x$.
    Ainsi, pour tout réel $x$,
    $\begin{align*} f(x)&=g(x)+u(x) \\
    &=\e^x+x^2\e^x\end{align*}$
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. et b. Pour tout réel $x$, on a d’après les calculs faits à la question 1.,  $u'(x)=(2+x)x\e^x$.
    Or $2+x=0 \ssi x=-2$ et $2+x>0 \ssi x>-2$.
    La fonction exponentielle est strictement positive sur $\R$.
    On obtient donc le tableau de signes et de variations suivant :
    $\quad$
    c. $u’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $u'(x)=2x\e^x+x^2\e^x$ donc
    $\begin{align*} u\dsec(x)&=2\e^x+2x\e^x+2x\e^x +x^2\e^x \\
    &=\left(2+4x+x^2\right)\e^x \end{align*}$
    Le signe de $u\dsec(x)$ ne dépend que de celui de $x^2+4x+2$.
    Son discriminant est $\Delta=4^2-2\times 4=8>0$.
    Ses racines sont donc $x_1=\dfrac{-4-\sqrt{8}}{2}=-2-\sqrt{2}$ et $x_2=-2+\sqrt{2}$.
    Le coefficient principal est $a=1>0$.
    Par conséquent $u\dsec(x)<0$ sur $\left]-2-\sqrt{2};-2+\sqrt{2}\right[$.
    Le plus grand intervalle sur lequel la fonction $u$ est concave est $\left[-2-\sqrt{2};-2+\sqrt{2}\right]$.
    $\quad$

 

Énoncé

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

Soit $f$ la fonction définie pour tout nombre réel $x$ de l’intervalle $]0 ;+\infty[$ par:
$$f(x)=\dfrac{\e^{2 x}}{x}$$
On donne l’expression de la dérivée seconde $f\dsec$ de $f$, définie sur l’intervalle $] 0 ;+\infty[$ par:
$$f\dsec(x)=\dfrac{2 \e^{2 x}\left(2 x^{2}-2 x+1\right)}{x^{3}}$$

  1. La fonction $f’$, dérivée de $f$, est définie sur l’intervalle $] 0 ;+\infty[$ par ;
    a. $f'(x)=2 e^{2 x}$
    b. $f'(x)=\dfrac{\e^{2 x}(x-1)}{x^{2}}$
    c. $f'(x)=\dfrac{\e^{2 x}(2 x-1)}{x^{2}}$
    d. $f'(x)=\dfrac{\e^{2 x}(1+2 x)}{x^{2}}$
    $\quad$
  2. La fonction $f$ :
    a. est décroissante sur $] 0 ;+\infty[$
    b. est monotone sur $] 0 ;+\infty[$
    c. admet un minimum en $\dfrac{1}{2}$
    d. admet un maximum en $\dfrac{1}{2}$
    $\quad$
  3. La fonction $f$ admet pour limite en $+\infty$ :
    a. $+\infty$
    b. $0$
    c. $1$
    d. $\e^{2 x}$
    $\quad$
  4. La fonction $f$ :
    a. est concave sur $] 0$; $+\infty[$
    b. est convexe sur $] 0 ;+\infty[$
    c. est concave sur $\left] 0 ; \dfrac{1}{2}\right]$
    d. est représentée par une courbe admettant un point d’inflexion
    $\quad$

$\quad$

Exercice 2     5 points

Une chaîne de fabrication produit des pièces mécaniques. On estime que $5\%$ des pièces produites par cette chaîne sont défectueuses.

Un ingénieur a mis au point un test à appliquer aux pièces. Ce test a deux résultats possibles: « positif » ou bien « négatif ».

On applique ce test à une pièce choisie au hasard dans la production de la chaîne.

On note $p(E)$ la probabilité d’un événement $E$.

On considère les événements suivants:

  •  $D$ : « la pièce est défectueuse »;
  •  $T$ : « la pièce présente un test positif »;
  •  $\conj{D}$ et $\conj{T}$ désignent respectivement les évènements contraires de $D$ et $T$.

Compte tenu des caractéristiques du test, on sait que :

  • La probabilité qu’une pièce présente un test positif sachant qu’elle défectueuse est égale à $0,98$ ;
  • La probabilité qu’une pièce présente un test négatif sachant qu’elle n’est pas défectueuse est égale à $0,97$ .

Les parties I et II peuvent être traitées de façon indépendante.

PARTIE I

  1. Traduire la situation à l’aide d’un arbre pondéré.
    $\quad$
  2. a. Déterminer la probabilité qu’une pièce choisie au hasard dans la production de la chaîne soit défectueuse et présente un test positif.
    $\quad$
    b. Démontrer que : $p(T)=0,077~5$.
    $\quad$
  3. On appelle valeur prédictive positive du test la probabilité qu’une pièce soit défectueuse sachant que le test est positif. On considère que pour être efficace, un test doit avoir une valeur prédictive positive supérieure à $0,95$ . Calculer la valeur prédictive positive de ce test et préciser s’il est efficace.
    $\quad$

PARTIE II

On choisit un échantillon de $20$ pièces dans la production de la chaîne, en assimilant ce choix à un tirage avec remise. On note $X$ la variable aléatoire qui donne le nombre de pièces défectueuses dans cet échantillon. On rappelle que: $p(D)=0,05$.

  1. Justifier que $X$ suit une loi binomiale et déterminer les paramètres de cette loi.
    $\quad$
  2. Calculer la probabilité que cet échantillon contienne au moins une pièce défectueuse. On donnera un résultat arrondi au centième.
    $\quad$
  3. Calculer l’espérance de la variable aléatoire $X$ et interpréter le résultat obtenu.
    $\quad$

$\quad$

Exercice 6     6 points

Cécile a invite des amis à déjeuner sur sa terrasse. Elle a prévu en dessert un assortiment de gâteaux individuels qu’elle a achetés surgelés.

Elle sort les gâteaux du congélateur à $-19$ °C et les apporte sur la terrasse ou la température ambiante est de $25$ °C.

Au bout de $10$ minutes la température des gâteaux est de $1,3$ °C.

I – Premier modèle

On suppose que la vitesse de décongélation est constante, c’est-à-dire que l’augmentation de la température des gâteaux est la même minute après minute.

Selon ce modèle, déterminer quelle serait la température des gâteaux $25$ minutes après leur sortie du congélateur.

Ce modèle semble-t-il pertinent?
$\quad$

II – Second modèle

On note $T_{n}$ la température des gâteaux, en degré Celsius, au bout de $n$ minutes après leur sortie du congélateur; ainsi $T_{0}=-19$.

On admet que pour modéliser L’évolution de la température, an doit avoir la relation suivante:
pour tout entier naturel $n$, $T_{n+1}-T_{n}=-0,06 \times\left(T_{n}-25\right)$.

  1. Justifier que, pour tout entier naturel $n$, on a: $T_{n+1}=0,94 T_{n}+1,5$.
    $\quad$
  2. Calculer $T_{1}$ et $T_{2}$. On donnera des valeurs arrondies au dixième.
    $\quad$
  3. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $T_{n} \pp 25$. En revenant a la situation étudiée, ce résultat était-il prévisible?
    $\quad$
  4. Etudier le sens de variation de la suite $\left(T_{n}\right)$.
    $\quad$
  5. Démontrer que la suite $\left(T_{n}\right)$ est convergente.
    $\quad$
  6. On pose, pour tout entier naturel $n, U_{n}=T_{n}-25$.
    a. Montrer que la suite $\left(U_{n}\right)$ est une suite géométrique dont on précisera la raison et le premier terme $U_{0}$.
    $\quad$
    b. En déduire que pour tout entier naturel $n, T_{n}=-44 \times 0,94^{n}+25$.
    $\quad$
    c. En déduire la limite de la suite $\left(T_{n}\right)$. Interpréter ce résultat dans le contexte de la situation étudiée.
    $\quad$
  7. a. Le fabricant conseille de consommer les gâteaux au bout d’une demi-heure a température ambiante après leur sortie du congélateur. Quelle est alors la température atteinte par les gâteaux? On donnera une valeur arrondie à l’entier le plus proche.
    $\quad$
    b. Cécile est une habituée de ces gâteaux, qu’elle aime déguster lorsqu’ils sont encore frais, a la température de $10$ °C. Donner un encadrement entre deux entiers consécutifs du temps en minutes après lequel Cécile doit déguster son gâteau.
    $\quad$
    c. Le programme suivant, écrit en langage Python, doit renvoyer après son exécution la plus petite valeur de l’entier $n$ pour laquelle $T_{n} \pg  10$.$$\begin{array}{|l|}
    \hline
    \hspace{1cm} \textbf{def seuil}(): \\
    \hspace{1.5cm} \text{n = 0} \\
    \hspace{1.5cm} \text{T = } \ldots\ldots \\
    \hspace{1.5cm} \textbf{while } \text{T }\ldots\ldots : \hspace{1cm} \\
    \hspace{2cm} \text{T = } \ldots\ldots \\
    \hspace{2cm} \text{n = n + 1}\\
    \hspace{1.5cm} \textbf{return } n \\
    \hline
    \end{array}$$Recopier ce programme sur la copie et compléter les lignes incomplètes afin que le programme renvoie la valeur attendue.
    $\quad$

$\quad$

Exercice au chois du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.
II indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer le choix, les principaux domaines abordés sont indiqués en début de chaque exercice.

Exercice A

Principaux domaines abordés:

  • Géométrie de l’espace rapporté à un repère orthonormé;
  • orthogonalité dans l’espace.

Dans un repère $Oikj$ on considère :

  • le point $A$ de coordonnées $(1 ; 3 ; 2)$,
  • le vecteur $\vec{u}$ de coordonnées $\begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}$,
  • la droite $d$ passant par l’origine $O$ du repère et admettant pour vecteur directeur $\vec{u}$.

 

Le but de cet exercice est de déterminer le point de $d$ le plus proche du point $A$ et d’étudier quelques propriétés de ce point.

On pourra s’appuyer sur la figure ci-contre pour raisonner au fur et à mesure des questions.

  1. Déterminer une représentation paramétrique de la droite $d$.
    $\quad$
  2. Soit $t$ un nombre réel quelconque, et $M$ un point de la droite $d$, le point $M$ ayant pour coordonnées $(t ; t ; 0)$.
    a. On note $AM$ la distance entre les points $A$ et $M$. Démontrer que :$$AM^2=2 t^{2}-8 t+14$$
    $\quad$
    b. Démontrer que le point $M_0$ de coordonnées $(2 ; 2 ; 0)$ est le point de la droite $d$ pour lequel la distance $AM$ est minimale. On admettra que la distance $AM$ est minimale lorsque son carré $AM^2$ est minimal.
    $\quad$
  3. Démontrer que les droites $\left(AM_0\right)$ et $d$ sont orthogonales.
    $\quad$
  4. On appelle $A’$ le projeté orthogonal du point $A$ sur le plan d’équation cartésienne $z=0$. Le point $A’$ admet donc pour coordonnées $(1 ; 3 ; 0)$.
    Démontrer que le point $M_0$ est le point du plan $\left(AA’M_0\right)$ le plus proche du point $O$, origine du repère.
    $\quad$
  5. Calculer le volume de la pyramide $OM_0A’A$.
    On rappelle que le volume d’une pyramide est donné par: $V=\dfrac{1}{3} \mathcal{B} h$, où $\mathcal{B}$ est l’aire d’une base et $h$ est la hauteur de la pyramide correspondant à cette base.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés:

  • Équations différentielles;
  • fonction exponentielle.

On considère l’équation différentielle $(E): y’=y+2 x \e^{x}$.

On cherche l’ensemble des fonctions définies et dérivables sur l’ensemble $\R$ des nombres réels qui sont solutions de cette équation.

  1. Soit $u$ la fonction définie sur $\R$ par $u(x)=x^{2} \e^{x}$. On admet que $u$ est dérivable et on note $u’$ sa fonction dérivée. Démontrer que $u$ est une solution particulière de $(E)$.
    $\quad$
  2. Soit $f$ une fonction définie et dérivable sur $\R$. On note $g$ la fonction définie sur $\R$ par :$$g(x)=f(x)-u(x)$$
    a. Démontrer que si la fonction $f$ est solution de l’équation différentielle $(E)$ alors la fonction $g$ est solution de l’équation différentielle : $y’=y$. On admet que la réciproque de cette propriété est également vraie.
    $\quad$
    b. À l’aide de la résolution de l’équation différentielle $y’=y$, résoudre l’équation différentielle $(E)$.
    $\quad$
  3. Étude de la fonction $\boldsymbol{u}$
    a. Étudier le signe de $u'(x)$ pour $x$ variant dans $\R$.
    $\quad$
    b. Dresser le tableau de variations de la fonction $u$ sur $\R$ (les limites ne sont pas demandées).
    $\quad$
    c. Déterminer le plus grand intervalle sur lequel la fonction $u$ est concave.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Amérique du Nord – mai 2021

Amérique du Nord – Mars 2021

Spécialité maths – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$
  2. $\left(D,\conj{D}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    P(T)&=P(D)\times P_D(T)+P\left(\conj{D}\right)\times P_{\conj{D}}(T)\\
    &=0,08\times 0,98+0,92\times 0,005\\
    &=0,083\end{align*}$
    $\quad$
  3. a. On veut calculer
    $\begin{align*} P_T(D)&=\dfrac{P(T\cap D)}{P(T)}\\
    &=\dfrac{0,08\times 0,98}{0,083}\\
    &\approx 0,945\end{align*}$
    La probabilité qu’un athlète soit dopé sachant qu’il présente un test positif est environ égale à $0,945$.
    $\quad$
    b. $0,945<0,95$. Le test proposé par le laboratoire ne sera donc pas commercialisé.
    $\quad$

Partie B

  1. a. On effectue $5$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : « le test est positif », de probabilité $0,103$ et « le test est négatif ».
    La variable aléatoire $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,103$.
    $\quad$
    b. Ainsi, $E(X)=np=0,515$.
    En moyenne, sur $5$ athlètes testés, environ $0,5$ est positif. Cela peut se traduire par sur $10$ athlètes testés, environ $1$ est positif.
    $\quad$
    c. On veut calculer
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,103)^5 \\
    &\approx 0,419\end{align*}$
    La probabilité qu’au moins un des $5$ athlètes contrôlés présente un test positif est environ égale à $0,419$.
    $\quad$
  2. On appelle $n$ le nombre d’athlètes contrôlés et note $Y$ la variable aléatoire égale au nombre d’athlètes présentant un test
    positif parmi les $n$ athlètes contrôlés. Pour les mêmes raisons qu’à la question 1. $Y$ suit la loi binomiale de paramètres $n$ et $p=0,103$.
    On veut
    $\begin{align*} P(Y\pg 1)\pg 0,75& \ssi 1-P(Y=0)\pg 0,75 \\
    &\ssi 1-(1-0,103)^n \pg 0,75 \\
    &\ssi 0,897^n \pp 0,25\\
    &\ssi n\ln(0,897) \pp \ln(0,25) \qquad \text{($\ln$ est strictement décroissante sur $\R$)}\\
    &\ssi n\pg \dfrac{\ln(0,25)}{\ln(0,897)}\end{align*}$
    Or $\dfrac{\ln(0,25)}{\ln(0,897)}\approx 12,75$
    Il faut donc contrôler au minimum $13$ personnes pour que la probabilité de l’événement « au moins un athlète contrôlé présente un test positif » soit supérieure ou égale à $0,75$.
    $\quad$

 

Ex 2

Exercice 2

  1. $u_1=0,75\times 0,6\times (1-0,15\times 0,6)=0,409~5$
    Il y avait donc $410$ individus sur l’île au début de l’année 2021.
    $u_2=0,75\times 0,409~5\times (1-0,15\times 0,409~5)\approx 0,288$
    Il y avait donc $288$ individus sur l’île au début de l’année 2021.
    $\quad$
  2. La fonction $f$ est dérivable sur $[0;1]$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout $x\in [0;1]$ on a
    $\begin{align*} f'(x)&=0,75(1-0,15x)-0,75x\times 0,15 \\
    &=0,75-0,225x\end{align*}$
    Or $0,75-0,225x>0 \ssi 0,75>0,225x\ssi \dfrac{10}{3}>x$
    Par conséquent $f'(x)>0$ sur $[0;1]$.
    La fonction $f$ est donc strictement croissante sur $[0;1]$.
    $\quad$
    On obtient le tableau de variations suivant :
    $\quad$
  3. On a
    $\begin{align*} f(x)=x&\ssi 0,75x(1-0,15x)=x \\
    &\ssi 0,75x(1-0,15x)-x=0 \\
    &\ssi x\left(0,75(1-0,15x)-1\right)=0\\
    &\ssi x(0,75-0,112~5x-1)=0\\
    &\ssi x(-0,25-0,112~5x)=0\\
    &\ssi x=0 \text{ ou } -0,25-0,112~5x=0 \\
    &\ssi x=0 \text{ ou } x=-\dfrac{20}{9} \end{align*}$
    Or $-\dfrac{20}{9} \notin [0;1]$
    $0$ est donc la seule solution appartenant à $[0;1]$ de l’équation $f(x)=x$.
    $\quad$
  4. a. Initialisation : $u_0=0,6$ et $u_1=0,409~5$.
    Par conséquent $0\pp u_1 \pp u_0\pp 1$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    Donc $0\pp u_{n+1} \pp u_n \pp 1$.
    La fonction $f$ est strictement croissante sur $[0;1]$. Par conséquent :
    $f(0) \pp f\left(u_{n+1}\right) \pp f\left(u_n\right) \pp f(1)$
    soit
    $0 \pp u_{n+2} \pp u_{n+1} \pp 0,637~5 \pp 1$.
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp u_{n+1} \pp u_n \pp 1$.
    $\quad$
    b. La suite $\left(u_n\right)$ est donc décroissante et minorée par $0$. Elle converge par conséquent vers un réel $\ell$.
    $\quad$
    c. La fonction $f$ est continue (car dérivable) sur $[0;1]$. $\ell$ est donc solution de l’équation $f(x)=x$.
    D’après la question 3. $\ell =0$.
    $\quad$
  5. a. La suite $\left(u_n\right)$ converge vers $0$. Selon ce modèle, le biologiste a effectivement raison.
    $\quad$
    b. La fonction menace() renvoie la valeur $11$.
    Cela signifie donc qu’il faut $11$ ans pour que l’espèce soit menacée d’extinction sur cette île selon le modèle étudié.
    $\quad$

Ex 3

Exercice 3

  1. Les points $K$ et $H$ appartiennent au plan $(AED)$. Pour qu’une droite passant par $A$ soit parallèle à la droite $(KH)$ il faut que tous ses points appartiennent au plan $(AED)$. Or $I$ n’appartient pas à ce plan.
    Les droites $(AI)$ et $(KH)$ ne sont donc pas parallèles.
    $\quad$
  2. a. $I$ a pour coordonnées $(0,5;0;1)$ et $J$ a pour coordonnées $(1;0,5;0)$.
    $\quad$
    b. Ainsi $\vect{IJ}\begin{pmatrix}0,5\\0,5\\-1\end{pmatrix}$, $\vect{AE}\begin{pmatrix}0\\0\\1\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}1\\1\\0\end{pmatrix}$
    On constate donc que $\vect{AC}=2\vect{AI}+2\vect{AE}$.
    Cela signifie que les vecteurs $\vect{AC}$, $\vect{AI}$ et $\vect{AE}$ sont coplanaires.
    $\quad$
  3. Un vecteur directeur de $d_1$ est $\vec{u_1}\begin{pmatrix}1\\-2\\3\end{pmatrix}$ et un vecteur directeur de $d_2$ est $\vec{u_2}\begin{pmatrix}1\\1\\2\end{pmatrix}$.
    $\dfrac{1}{1}\neq \dfrac{1}{-2}$ : par conséquent les vecteurs $\vec{u_1}$ et $\vec{u_2}$ ne sont pas colinéaires et les droites $d_1$ et $d_2$ ne sont pas parallèles.
    $\quad$
  4. Un vecteur normal au plan $P$ est $\vec{n}\begin{pmatrix}1\\3\\-2\end{pmatrix}$.
    $\vec{n}.\vec{u_2}=1+3-4=0$.
    Les vecteurs $\vec{n}$ et $\vec{u_2}$ sont donc orthogonaux.
    La droite $d_2$ est par conséquent parallèle au plan $P$.
    $\quad$
  5. $4+3\times 0-2\times 3+2=4-6+2=0$ donc $L$ appartient au plan $P$.
    $\vect{LM}\begin{pmatrix} 1\\3\\-2\end{pmatrix}=\vec{n}$.
    $\vect{LM}$ est donc normal au plan $P$.
    Par conséquent $L$ est le projeté orthogonal du point $M$ sur le plan $P$.
    $\quad$

Ex A

Exercice A

Affirmation 1 fausse:
Si $a=0$ et $b=0$ alors  :

  • $\left(\e^{a+b}\right)^2=\left(\e^0\right)^2=1^2=1$
  • $\e^{2a}+\e^{2b}=\e^0+\e^0=1+1=2$

Donc $\left(\e^{a+b}\right)^2\neq \e^{2a}+\e^{2b}$ si $a=0$ et $b=0$.

$\quad$

Affirmation 2 vraie:
La fonction $f$ est dérivable sur $\R$ en tant que somme et produit de fonctions dérivables sur $\R$.
Par conséquent, pour tout réel $x$ :
$\begin{align*} f'(x)&=-\e^x+(3-x)\e^x\\
&=(-1+3-x)\e^x\\
&=(2-x)\e^x\end{align*}$
Par conséquent $f'(0)=2$ et $f(0)=-2+3=1$
Une équation de la tangente au point $A$ à la courbe représentative de la fonction $f$ est $y=f'(0)x+f(0)$ soit $y=2x+1$.

$\quad$

Affirmation 3 fausse:
Pour tout réel $x$ $\e^{2x}-\e^{x}+\dfrac{3}{x}=\e^x\left(\e^x-1\right)+\dfrac{3}{x}$.
Or $\lim\limits_{x\to +\infty} \e^x=+\infty$ et $\lim\limits_{x\to +\infty} \dfrac{3}{x}=0$
Par conséquent $\lim\limits_{x\to +\infty} \left(\e^x-1\right)=+\infty$ et $\lim\limits_{x\to +\infty} \e^x\left(\e^x-1\right)+\dfrac{3}{x}=+\infty$

$\quad$

Affirmation 4 vraie:
On considère la fonction $f$ définie sur $[0;2]$ par $f(x)=1-x+\e^{-x}$.
$f$ est dérivable sur $[0;2]$ en tant que somme de fonctions dérivables sur cet intervalle.
Pour tout réel $x\in[0;2]$, $f'(x)=-1-\e^{-x}<0$ car la fonction exponentielle est strictement positive sur $\R$.
La fonction $f$ est continue (car dérivable) et strictement décroissante sur $[0;2]$.
De plus $f(0)=2>0$ et $f(2)=-1+\e^{-2}\approx -0,86<0$
D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ possède une unique solution.

$\quad$

Affirmation 5 vraie:
La fonction $g$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
Pour tout réel $x$, $g'(x)=2x-5+\e^x$.
La fonction $g$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
Pour tout réel $x$, $g\dsec(x)=2+\e^x>0$. car la fonction exponentielle est strictement positive.
Ainsi $g$ est convexe sur $\R$.

$\quad$

Ex B

Exercice B

  1. Le point $A(1;4)$ appartient à $C_f$ donc $f(1)=4$.
    La courbe $C_f$ admet une tangente horizontale au point $A(1;4)$. Donc $f'(1)=0$.
    $\quad$
  2. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables sur $]0;+\infty[$ dont le dénominateur ne s’annule pas.
    Pour tout réel $x>0$ on a
    $\begin{align*} f'(x)&=\dfrac{\dfrac{b}{x}\times x-\left(a+b\ln(x)\right)}{x^2} \\
    &=\dfrac{b-a-b\ln(x)}{x^2}\end{align*}$
    $\quad$
  3. En utilisant l’expression algébrique de $f(x)$ fournie et la réponse à la question précédente on a $f(1)=a$ et $f'(1)=b-a$.
    Par conséquent $\begin{cases} a=4\\b-a=0\end{cases} \ssi \begin{cases} a=4\\b=4\end{cases}$.
    $\quad$
  4. $\lim\limits_{x\to 0^+} 4+4\ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$
    Donc $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
    Pour tout réel $x>0$,
    $f(x)=\dfrac{4}{x}+4\times \dfrac{\ln(x)}{x}$.
    Or $\lim\limits_{x\to +\infty} \dfrac{4}{x}=0$ et, par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    Donc $\lim\limits_{x\to +\infty} f(x)=0$.
    $\quad$
  5. On a donc, d’après l’expression de $f'(x)$ trouvée à la question 2. $f'(x)=\dfrac{-4\ln(x)}{x^2}$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $-\ln(x)$.
    Or $-\ln(x)=0 \ssi x=1$ et $-\ln(x)>0 \ssi x<1$.
    On obtient ainsi le tableau suivant :
    $\quad$
  6. Pour tout réel $x>0$ on a $f'(x)=-\dfrac{4\ln(x)}{x^2}$.
    $f’$ est donc dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout réel $x>0$ :
    $\begin{align*} f\dsec(x)&=-\dfrac{\dfrac{4}{x}\times x^2-4\ln(x)\times 2x}{x^4} \\
    &=-\dfrac{4x-8x\ln(x)}{x^4}\\
    &=\dfrac{-4+8\ln(x)}{x^3}\end{align*}$
    $\quad$
  7. Sur $]0;+\infty[$, le signe de $f\dsec(x)$ ne dépend que de celui de $-4+8\ln(x)$.
    Or $-4+8\ln(x)=0\ssi \ln(x)=\dfrac{1}{2} \ssi x=\e^{1/2}$
    et $-4+8\ln(x)>0 \ssi \ln(x)>\dfrac{1}{2} \ssi x>\e^{1/2}$
    Ainsi $f\dsec{x}$ s’annule en changeant de signe en $\e^{1/2}$.
    De plus $f\left(\e^{1/2}\right)=\dfrac{4+4\times \dfrac{1}{2}}{\e^{1/2}}=6\e^{-1/2}$
    Ainsi $f$ possède un unique point d’inflexion $B$ de coordonnées $\left(\e^{1/2};6\e^{-1/2}\right)$.
    $\quad$

 

Énoncé

Exercice 1     5 points

Les probabilités demandées dans cet exercice seront arrondies à $10^{-3}$.

Un laboratoire pharmaceutique vient d’élaborer un nouveau test anti-dopage.

Partie A

Une étude sur ce nouveau test donne les résultats suivants :

  • si un athlète est dopé, la probabilité que le résultat du test soit positif est $0,98$ (sensibilité du test) ;
  • si un athlète n’est pas dopé, la probabilité que le résultat du test soit négatif est $0,995$ (spécificité du test).

On fait subir le test à un athlète sélectionné au hasard au sein des participants à une compétition d’athlétisme. On
note $D$ l’événement « l’athlète est dopé » et $T$ l’événement « le test est positif ». On admet que la probabilité de l’événement $D$ est égale à $0,08$.

  1. Traduire la situation sous la forme d’un arbre pondéré.
    $\quad$
  2. Démontrer que $P(T)= 0,083$.
    $\quad$
  3. a. Sachant qu’un athlète présente un test positif, quelle est la probabilité qu’il soit dopé ?
    $\quad$
    b. Le laboratoire décide de commercialiser le test si la probabilité de l’événement « un athlète présentant un
    test positif est dopé » est supérieure ou égale à $0,95$.
    Le test proposé par le laboratoire sera-t-il commercialisé ? Justifier.
    $\quad$

$\quad$

Partie B

Dans une compétition sportive, on admet que la probabilité qu’un athlète contrôlé présente un test positif est $0,103$.

  1. Dans cette question 1., on suppose que les organisateurs décident de contrôler 5 athlètes au hasard parmi les
    athlètes de cette compétition. On note $X$ la variable aléatoire égale au nombre d’athlètes présentant un test
    positif parmi les $5$ athlètes contrôlés.
    a. Donner la loi suivie par la variable aléatoire $X$. Préciser ses paramètres.
    $\quad$
    b. Calculer l’espérance $E(X)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$
    c. Quelle est la probabilité qu’au moins un des $5$ athlètes contrôlés présente un test positif ?
    $\quad$
  2. Combien d’athlètes faut-il contrôler au minimum pour que la probabilité de l’événement « au moins un athlète
    contrôlé présente un test positif » soit supérieure ou égale à $0,75$ ? Justifier.
    $\quad$

$\quad$

Exercice 2     5 points

Un biologiste s’intéresse à l’évolution de la population d’une espèce animale sur une île du Pacifique.
Au début de l’année 2020, cette population comptait $600$ individus. On considère que l’espèce sera menacée d’extinction sur cette île si sa population devient inférieure ou égale à $20$ individus.

Le biologiste modélise le nombre d’individus par la suite $\left(u_n\right)$ définie par : $$\begin{cases} u_0&=0,6\\u_{n+1}&=0,75u_n\left(1-0,15u_n\right)\end{cases}$$

où pour tout entier naturel $n$, $u_n$ désigne le nombre d’individus, en milliers, au début de l’année 2020 $+n$.

  1. Estimer, selon ce modèle, le nombre d’individus présents sur l’île au début de l’année 2021 puis au début
    de l’année 2022.
    $\quad$

Soit $f$ la fonction définie sur l’intervalle $[0;1]$ par $f(x)=0,75x(1-0,15x)$.

  1. Montrer que la fonction $f$ est croissante sur l’intervalle $[0;1]$ et dresser son tableau de variations.
    $\quad$
  2. Résoudre dans l’intervalle $[0;1]$ l’équation $f(x)=x$.
    $\quad$

On remarquera pour la suite de l’exercice que, pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$.

  1. a. Démontrer par récurrence que pour tout entier naturel $n$, $0 \pp u_{n+1} \pp u_n \pp 1$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    c. Déterminer la limite $\ell$ de la suite $\left(u_n\right)$.
    $\quad$
  2. Le biologiste a l’intuition que l’espèce sera tôt ou tard menacée d’extinction.
    a. Justifier que, selon ce modèle, le biologiste a raison.
    $\quad$
    b. Le biologiste a programmé en langage Python la fonction menace() ci-dessous :
    $$\begin{array}{|l|}
    \hline
    \text{def menace():}\\
    \quad \text{u = 0.6}\\
    \quad \text{n = 0}\\
    \quad \text{while u > 0.02:}\\
    \qquad \text{u = 0.75 * u * (1 – 0.15 * u)}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner la valeur numérique renvoyée lorsqu’on appelle la fonction menace().
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     5 points

Les questions 1. à 5. de cet exercice peuvent être traitées de façon indépendante.

On considère un cube $ABCDEFGH$. Le point $I$ est le milieu du segment $[EF]$, le point $J$ est le milieu du segment $[BC]$ et le point $K$ est le milieu du segment $[AE]$.

 

  1.  Les droites $(AI)$ et $(KH)$ sont-elles parallèles ? Justifier votre réponse.
    $\quad$

Dans la suite, on se place dans le repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$.

  1. a. Donner les coordonnées des points $I$ et $J$.
    $\quad$
    b. Montrer que les vecteurs $\vect{IJ}$ , $\vect{AE}$ et $\vect{AC}$ sont coplanaires.
    $\quad$

On considère le plan $P$ d’équation $x+3y-2z+2=0$ ainsi que les droites $d_1$ et $d_2$ définies par les représentations paramétriques ci-dessous : $$d_1:\begin{cases} x=3+t\\y=8-2t\\z=-2+3t\end{cases}, t\in \R \quad \text{et} \quad d_2:\begin{cases} x=4+t\\y=1+t\\z=8+2t\end{cases}, t\in \R$$.

  1. Les droites $d_1$ et $d_2$ sont-elles parallèles ? Justifier votre réponse.
    $\quad$
  2. Montrer que la droite $d_2$ est parallèle au plan $P$.
    $\quad$
  3. Montrer que le point $L(4;0;3)$ est le projeté orthogonal du point $M(5;3;1)$ sur le plan $P$.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)
Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Exercice A

Principaux domaines abordés :

  • Fonction exponentielle
  • Convexité

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. On justifiera chaque réponse.

Affirmation 1 : Pour tous réels $a$ et $b$, $\left(\e^{a+b}\right)^2=\e^{2a}+\e^{2b}$.
$\quad$

Affirmation 2 : Dans le plan muni d’un repère, la tangente au point $A$ d’abscisse $0$ à la courbe représentative de
la fonction $f$ définie sur $\R$ par $f(x)=-2+(3-x)\e^x$
admet pour équation réduite $y=2x+1$.
$\quad$

Affirmation 3 : $\lim\limits_{x\to +\infty} \e^{2x}-\e^x+\dfrac{3}{x}=0$.
$\quad$

Affirmation 4 : L’équation $1-x+\e^{-x}=0$ admet une seule solution appartenant à l’intervalle $[0 ; 2]$.
$\quad$

Affirmation 5 : La fonction $g$ définie sur $\R$ par $g(x)=x^2-5x+\e^x$ est convexe.
$\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction logarithme népérien
  • Convexité

Dans le plan muni d’un repère, on considère ci-dessous la courbe $C_f$ représentative d’une fonction $f$, deux fois
dérivable sur l’intervalle $]0;+\infty[$. La courbe $C_f$ admet une tangente horizontale $T$ au point $A(1;4)$.

  1.  Préciser les valeurs $f(1)$ et $f'(1)$.
    $\quad$

On admet que la fonction $f$ est définie pour tout réel $x$ de l’intervalle $]0;+\infty[$ par : $$f(x)=\dfrac{a+b\ln(x)}{x}$$
où $a$ et $b$ sont deux nombres réels.

  1. Démontrer que, pour tout réel $x$ strictement positif, on a : $$f'(x)=\dfrac{b-a-b\ln(x)}{x^2}$$
    $\quad$
  2. En déduire les valeurs des réels $a$ et $b$.
    $\quad$

Dans la suite de l’exercice, on admet que la fonction $f$ est définie pour tout réel $x$ de l’intervalle $]0;+\infty[$ par :^$$f(x)=\dfrac{4+4\ln(x)}{x}$$

  1. Déterminer les limites de $f$ en $0$ et en $+\infty$.
    $\quad$
  2. Déterminer le tableau de variations de $f$ sur l’intervalle $]0;+\infty[$.
    $\quad$
  3. Démontrer que, pour tout réel $x$ strictement positif, on a : $$f\dsec(x)=\dfrac{-4+8\ln(x)}{x^3}$$
    $\quad$
  4. Montrer que la courbe $C_f$ possède un unique point d’inflexion $B$ dont on précisera les coordonnées.
    $\quad$

$\quad$