E3C – Séries technologiques – Fonctions – EC2

E3C – Fonctions

Séries technologiques

Soit $r$ la fonction définie sur $[0;110]$ par $r(x)=-0,5x^2+55x$.
On donne un tableau de valeurs de $r$:
$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
x&0&10&20&30&40&50&60&70&80&90&100&110\\
\hline
r(x)&0&500&900&1200&1400&1500&1500&1400&1200&900&500&0\\
\hline
\end{array}$$

  1. a. Quelles sont les racines de $r(x)$?
    $\quad$
    b. En déduire la forme factorisée de $r(x)$.
    $\quad$
  2. a. Donner l’allure de la portion de parabole qui représente la fonction $r$.
    Justifier.
    b. Déterminer les coordonnées du sommet de la portion de parabole.
    $\quad$
  3. En déduire le tableau de variations de $r$.
    $\quad$

$\quad$

Correction Exercice

  1. a. D’après le tableau $r(0)=0$ et $r(110)=0$.
    $r$ est une fonction du second degré qui s’annule en deux réels distincts.
    Les deux racines de $r$ sont donc $0$ et $110$.
    $\quad$
    b. Par conséquent, pour tout réel $x$ appartenant à $[0;110]$ on a :
    $r(x)=-0,5x(x-110)$.
    $\quad$
  2. a. Le coefficient principal de la fonction du second degré $r$ est $a=-0,5<0$. La fonction $r$ est donc d’abord croissante puis décroissante.
    On obtient donc l’allure suivante :$\quad$
    b. L’abscisse du sommet est $x=-\dfrac{b}{2a}=\dfrac{55}{1}=55$.
    $r(55)=1~512,5$
    Le sommet de la portion de parabole a donc pour coordonnées $(55;1~512,5)$.
    $\quad$
  3. On obtient donc le tableau de variations suivant :
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – EC2

E3C – Fonctions

Séries technologiques

La glycémie est la concentration massique exprimée en gramme par litre (g.L$^{-1}$) de sucre dans le sang. Le diabète se caractérise par une hyperglycémie chronique, c’est-à-dire un excès de sucre dans le sang et donc une glycémie trop élevée.

Une glycémie est normale lorsqu’elle est comprise entre $0,7$ g.L$^{-1}$$ et $1,1$ g.L$^{-1}$ à jeun et lorsqu’elle est inférieure à $1,4$ g.L$^{-1}$, une heure et trente minutes après un repas.
Lorsque l’on suspecte un diabète, on pratique un test de tolérance au glucose.
Lorsqu’il est à jeun, le patient ingère $75$ g de glucose au temps $t= 0$ ($t$ est exprimé en heure).

Pour tout réel $t$ de l’intervalle $[0;3]$, la glycémie du patient, exprimée en g.L$^{-1}$, $t$ heures après l’ingestion, est modélisée par la fonction $f$ définie sur $[0;3]$ par : $$f(t)=0,3t^3-1,8t^2+2,7t+0,8$$

  1. Que fait la glycémie du patient à jeun?
    $\quad$
  2. a. On note $f’$ la fonction dérivée de la fonction $f$. Montrer que pour tout réel $t$ appartenant à $[0;3]$, $$f'(t)=0,9(t-1)(t-3)$$
    $\quad$
    b. Étudier le signe de $f'(t)$ sur $[0;3]$ et en déduire le tableau de variations de la fonction $f$ sur l’intervalle $[0;3]$.
    $\quad$
  3. a. Au bout de combien d’heures la glycémie du patient est-elle maximale et que vaut-elle ?
    $\quad$
    b. Peut-on suspecter un diabète chez le patient ? Expliquer.
    $\quad$

$\quad$

Correction Exercice

  1. $f(0)=0,8$.
    La glycémie du patient à jeun vaut $0,8$ g.L$^{-1}$.
    $\quad$
  2. a. Pour tout $t\in [0;3]$ on a :
    $\begin{align*} f'(t)&=0,3\times 3t^2-1,8\times 2t+2,7 \\
    &=0,9t^2-3,6t+2,7\end{align*}$
    Or :
    $\begin{align*} 0,9(t-1)(t-3)&=0,9\left(t^2-3t-t+3\right) \\
    &=0,9\left(t^2-4t+3\right) \\
    &=0,9t^3-3,6t^2+2,7\\
    &=f'(t)\end{align*}$
    $\quad$
    b. $t-1=0\ssi t=1$ et $t-1>0 \ssi t>1$
    $t-3=0\ssi t=3$ et $t-3>0\ssi t>3$
    On obtient le tableau de signes et de variations suivant :


    $\quad$

  3. a. D’après le tableau de variations de la fonction $f$ la glycémie est maximale au bout d’une heure et vaut $2$ g.L$^{-1}$.
    $\quad$
    b. $f(1,5)=1,8125>1,4$
    On peut donc suspecter un diabète chez le patient.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

L’annexe est à rendre avec la copie

Soit la fonction $f$ définie pour tout réel $x$ par : $f(x)=0,1+0,9x^2-x^3$.

  1. Justifier que pour tout réel $x$, $f'(x)=x(1,8-3x)$.
    $\quad$
  2. a. Calculer $f(1)$ et $f'(1)$.
    $\quad$
    b. En déduire une équation de la tangente à la courbe de $f$ au point d’abscisse $1$.
    $\quad$
  3. La représentation graphique de la fonction $f$ est donnée en annexe.
    a. Donner les variations de la fonction $f$ par lecture graphique.
    $\quad$
    b. En utilisant les résultats de la question 2., construire sur ce graphique la tangente à la courbe de la fonction $f$ au point d’abscisse $1$.
    $\quad$

Annexe

$\quad$

$\quad$

Correction Exercice

  1. Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=0,9\times 2x-3x^2 \\
    &=1,8x-3x^2\\
    &=x(1,8-3x)\end{align*}$
    $\quad$
  2. a. On a $f(1)=0,1+0,9-1=0$
    $f'(1)=1\times (1,8-3)=-1,2$
    $\quad$
    b. Une équation de la tangente à la courbe représentant la fonction $f$ au point d’abscisse $1$ est de la forme $y=f'(1)(x-1)+f(1)$
    C’est-à-dire $y=-1,2(x-1)$ ou $y=-1,2x+1,2$.
    $\quad$
  3. a. Graphiquement, il semblerait que la fonction $f$ soit :
    – strictement décroissante sur $]-\infty;0]$;
    – strictement croissante sur $[0;0;6]$
    – strictement décroissante sur $[0,6;+\infty[$.
    $\quad$
    b. Une équation de cette tangente est $y=-1,2x+1,2$
    Si $x=0$ alors $y=1,2$
    Si $x=1$ alors $y=0$
    Cette droite passe donc par les points de coordonnées $(0;1,2)$ et $(1;0)$.

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Un artisan produit des vases en terre cuite. Sa capacité de production est limitée à $60$ vases.
Le coût de production, en euros, dépend du nombre de vases produits.
Ce coût de production peut être modélisé par la fonction $C$ définie sur l’intervalle $[0 ; 60]$ par $$C(x)=x^2-10x+500$$

Un vase est vendu $50$ €. Les recettes, qui dépendent du nombre de vases produits et vendus, sont modélisées par une fonction $R$ définie sur l’intervalle $[0 ; 60]$.

  1. Calculer le coût et la recette réalisés lorsque l’artisan produit et vend $50$ vases.
    $\quad$
  2. Exprimer $R(?)$ en fonction de $x$.
    $\quad$
  3. Le résultat, en euro, réalisé par l’artisan est modélisé par la fonction $B$ définie sur l’intervalle $[0 ; 60]$ par $B(x) = R(x)-C(x)$.
    a. Vérifier que $B(?) = -(?-10)(x-50)$.
    $\quad$
    b. Déterminer le nombre de vases à produire et à vendre pour que l’artisan réalise des bénéfices (c’est-à-dire pour que le résultat $B(x)$ soit positif).
    $\quad$
  4. On note $B’$ la fonction dérivée de la fonction $B$ sur l’intervalle $[0 ; 60]$.
    a. Déterminer $B'(x)$.
    $\quad$
    b. Dresser le tableau de variations de la fonction $B$ sur l’intervalle $[0 ; 60]$ et en déduire le nombre de vases à vendre pour réaliser un bénéfice maximum.
    $\quad$

$\quad$

Correction Exercice

  1. On a :
    $\begin{align*} C(50)&=50^2-10\times 50+500 \\
    &=2~500\end{align*}$
    et $R(50)=50\times 50=2~500$.
    Le coût de fabrication de $50$ vases est de $2~500$ € et la recette réalisée est également de $2~500$ €.
    $\quad$
  2. Pour tout $x\in [0;60]$ on a $R(x)=50x$.
    $\quad$
  3. a. Pour tout $x\in [0;60]$ on a d’une part :
    $\begin{align*} B(x)&=R(x)-C(x) \\
    &=50x-x^2+10x-500 \\
    &=-x^2+60x-500\end{align*}$
    D’autre part :
    $\begin{align*} -(x-10)(x-50)&=-\left(x^2-50x-10x+500\right)\\
    &=-\left(x^2-60x+500\right)\\
    &=-x^2+60x-500\end{align*}$
    Par conséquent $B(x)=-(x-10)(x-50)$.
    $\quad$
    b. $B(x)$ est un polynôme du second degré dont les racines sont $10$ et $50$ et le coefficient principal $a=-1$.
    Par conséquent $B(x)\pg 0$ sur l’intervalle $[10;50]$.
    Il faut donc produire entre $10$ et $50$ vases pour réaliser des bénéfices.
    $\quad$
  4. a. Pour tout $x\in [0;50]$ on a $B(x)=-x^2+60x-500$
    Donc : $B'(x)=-2x+60$.
    $\quad$
    b. $B'(x)=0 \ssi -2x+60=0 \ssi -2x=-60 \ssi x=30$
    $B'(x)>0 \ssi -2x+60>0\ssi -2x>-60 \ssi x<30$
    On obtient donc le tableau de variations suivant :

    On en déduit donc qu’il faut vendre $30$ vases pour réaliser un bénéfice maximum.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Un architecte a conçu un bassin aquatique comportant trois marches.
Le contour du bassin, représenté ci-contre dans une « vue du dessus », est constitué d’un demi-cercle de diamètre $[TO]$, de deux segments $[OV]$ et $[VW]$ et d’une courbe $\mathcal{C}$, reliant $T$ à $W$.
Les parties grisées figurent l’emplacement des trois marches.

La situation est représentée en annexe dans le repère orthonormal $(O,I ,J)$, dans lequel :

  • $V$, $W$ et $T$ sont les points de coordonnées respectives $(6,0)$, $(6,4)$ et $(0,8)$
  • $\mathcal{C}$ est la courbe représentative de la fonction $f$ définie sur $[0 ; 6]$ par $$f(x)=\dfrac{1}{27}x^3-\dfrac{1}{3}x^2+8$$
  1. On note $f’$ la dérivée de $f$. Montrer que pour tout réel $x$ de $[0;6]$, $f'(x) =\dfrac{1}{9}x(x-6)$.
    $\quad$
  2. En déduire les variations de la fonction $f$ sur l’intervalle $[0 ; 6]$.
    $\quad$
  3. Déterminer les coefficients directeurs des tangentes à la courbe $\mathcal{C}$ aux points d’abscisse $0$ et $6$. Que pouvez-vous en déduire graphiquement ?
    $\quad$
  4. Déterminer l’équation réduite de la tangente $\mathcal{D}$ à la courbe $\mathcal{C}$ au point d’abscisse $3$.
    $\quad$
  5. Tracer dans le repère orthonormal $(O,I ,J)$, fourni en annexe (à remettre avec la copie) les tangentes à la courbe $\mathcal{C}$ respectivement au point $T$, au point $W$ et au point d’abscisse $3$ puis tracer l’allure de la courbe $\mathcal{C}$.
    $\quad$

Annexe

$\quad$

$\quad$

Correction Exercice

  1. Pour tout réel $x\in[0;6]$ on a :
    $\begin{align*} f'(x)&=\dfrac{1}{27}\times 3x^2-\dfrac{1}{3}\times 2x \\
    &=\dfrac{1}{9}x^2-\dfrac{2}{3}x\\
    &=\dfrac{1}{9}x(x-6)\end{align*}$
    $\quad$
  2. Pour tout $x\in[0;6]$ on a donc $x\pg 0$ et $x-6\pp 0$. Ainsi $f'(x)\pp 0$.
    La fonction $f$ est donc décroissante sur l’intervalle $[0;6]$.
    $\quad$
  3. $f'(0)=0$ et $f'(6)=0$.
    Ainsi les coefficients directeurs des tangentes à la courbe $\mathcal{C}$ aux points d’abscisse $0$ et $6$ sont tous les deux nuls.
    Ces tangentes sont par conséquent parallèles à l’axe des abscisses.
    $\quad$
  4. On a $f'(3)=-1$ et $f(3)=6$.
    Ainsi une équation de $\mathscr{D}$ est $y=-1(x-3)+6$ soit $y=-x+9$.
    $\quad$
  5. On obtient le graphique suivant :$\quad$

 

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Automatismes – Janvier 2020

E3C – Automatismes

Séries technologiques

  1. Dans un repère du plan, on donne $A(2; 4)$ et $B(6; 16)$.
    Déterminer une équation de la droite $(AB)$.
    $\quad$
    Correction Question 1

    $A$ et $B$ n’ont pas la même abscisse.
    Une équation de cette droite est donc de la forme $y=mx+p$.
    Le coefficient directeur est $m=\dfrac{16-4}{6-2}=3$.
    Une équation de la droite $(AB)$ est donc de la forme $y=3x+p$.
    Or $A(2;4)$ appartient à la droite $(AB)$.
    Par conséquent $4=3\times 2+p$. Donc $p=-2$.
    $\quad$

    [collapse]

    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=2x^2-x+3$. On note $C_f$ sa courbe représentative dans un repère du plan.
    Déterminer l’ordonnée du point de $C_f$ ayant pour abscisse $-3$.
    $\quad$
    Correction Question 2

    $f(-3)=2(-3)^2-(-3)+3=18+3+3=24$.
    Le point de $C_f$ ayant pour abscisse $-3$ a pour ordonnée $24$.
    $\quad$

    [collapse]

    $\quad$
  3. Factoriser l’expression $4(x+2)+(x+2)^2$.
    $\quad$
    Correction Question 3

    $\begin{align*} 4(x+2)+(x+2)^2&=(x+2)\left[4+(x+2)\right]\\
    &=(x+2)(x+6)\end{align*}$
    $\quad$

    [collapse]

    $\quad$
  4. Soit $g$ la fonction définie par $g(x)=-3x+7$.
    Déterminer l’antécédent de $-11$ par $g$.
    $\quad$
    Correction Question 4

    On veut résoudre l’équation
    $\begin{align*} g(x)=-11&\ssi -3x+7=-11 \\
    &\ssi -3x=-18\\
    &\ssi x=6\end{align*}$
    L’antécédent cherché est donc $6$.
    $\quad$

    [collapse]

    $\quad$
  5. Après une baisse de $20\%$ un produit coûte $200$ €. Quel était son prix initial?
    $\quad$
    Correction Question 5

    On appelle $P$ son prix initial.
    On a donc :
    $\begin{align*} P\times \left(1-\dfrac{20}{100}\right)=200 &\ssi 0,8P=200\\
    &\ssi P=\dfrac{200}{0,8} \\
    &\ssi P = 250\end{align*}$
    Remarque : diviser par $0,8$ revient à diviser par $4$ puis à multiplier par $5$.
    Le produit coûtait donc initialement $250$ €.
    $\quad$

    [collapse]

    $\quad$$\quad$
  6. Calculer $\dfrac{10+10^3}{10}$
    $\quad$
    Correction Question 6

    $\dfrac{10+10^3}{10}=1+10^2=101$
    $\quad$

    [collapse]

    $\quad$
  7. Résoudre l’équation $x^2=25$
    $\quad$
    Correction Question 7

    Les solutions de l’équation sont $-5$ et $5$.
    $\quad$

    [collapse]

    $\quad$
  8. La formule de l’IMC (indice de masse corporelle; noté $I$) est $I=\dfrac{m}{t^2}$ où $m$ est la masse en kilogramme et $t$ la taille en mètre.
    Exprimer $t$ en fonction de $m$ et de $I$.
    $\quad$
    Correction Question 8

    On a donc $t^2=\dfrac{m}{I}$ soit, puisque $t$ est positif, $t=\sqrt{\dfrac{m}{I}}$.
    $\quad$

    [collapse]

    $\quad$
  9. Compléter le tableau de signe de l’expression $(x-1)(x+3)$.
    $\quad$
    Correction Question 9

    $x-1=0 \ssi x=1$ et $x-1>0 \ssi x>1$
    $x+3=0 \ssi x=-3$ et $x+3>0 \ssi x>-3$
    On obtient donc le tableau de signes suivant :

    $\quad$

    [collapse]

    $\quad$
  10. Par lecture graphique, dresser le tableau de variation de la fonction $h$ définie sur $[-6; 6]$ et représentée ci-dessous dans un repère du plan :

    $\quad$

    $\quad$
    Correction Question 10

    [collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

On veut construire une cuve métallique sans couvercle, à partir d’une plaque carrée de $3$ mètres de côté À chaque coin de la plaque métallique, on découpe un carré de côté $x$ mètres, où $x$ est un nombre réel appartenant à l’intervalle $[0 ; 1,5]$. En pliant et en soudant, on obtient une cuve sans couvercle de volume $V(x)$ exprimé en m$^3$.

  1. a. Montrer que l’aire du carré $ABCD$ représenté sur la figure ci-dessus peut s’écrire sous la forme $(3-2x)^2$.
    $\quad$
    b. Montrer que le volume $V(x)$ de la cuve, exprimé en m$^3$, peut s’écrire sous la forme $V(x)=4x^3-12x^2+9x$.
    $\quad$
  2. On note $V’$ la fonction dérivée de $V$.
    a. Calculer $V'(x)$ puis vérifier que $V'(0,5) = 0$ et $V'(1,5)= 0$.
    $\quad$
    b. En déduire les variations de $V$ sur l’intervalle $[0 ; 1,5]$.
    $\quad$
    c. Pour quelle valeur de $x$ le volume de la cuve est-il maximal ?
    $\quad$

$\quad$

Correction Exercice

  1. a. On a $AB=(3-x-x)=(3-2x)$.
    Par conséquent l’aire du carré $ABCD$ est égale à $(3-2x)^2$.
    $\quad$
    b. Le volume de la cuve est :
    $\begin{align*} V(x)=x\times (3-2x)^2 \\
    &=x\left(9-2\times 3\times 2x+(2x)^2\right)\\
    &=x\left(9-12x+4x^2\right)\\
    &=4x^3-12x^2+9x\end{align*}$
    $\quad$
  2. a. On a :
    $\begin{align*} V'(x)&=4\times 3x^2-12\times 2x+9 \\
    &=12x^2-24x+9\end{align*}$
    Ainsi :
    $\begin{align*} V'(0,5)&=12\times 0,5^2-24\times 0,5+9\\
    &=3-12+9\\
    &=0\end{align*}$
    et
    $\begin{align*} V'(1,5)&=12\times 1,5^2-24\times 1,5+9\\
    &=27-36+9\\
    &=0\end{align*}$
    $\quad$
    b. $V'(x)$ est un polynôme du second degré dont le coefficient principal est $a=12>0$ et dont les racines sont $0,5$ et $1,5$.
    Ainsi $V'(x)<0$ sur $]0,5;1,5[$ et $V'(x)>0$ sur $[0;0,5[$
    La fonction $V$ est donc croissante sur l’intervalle $[0;0,5]$ et décroissante sur l’intervalle $[0,5;1,5]$.
    Elle atteint ainsi son maximum en $0,5$.
    Le volume de la cuve est donc maximal quand $x=0,5$.
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Le but de cet exercice est d’étudier et de tracer la fonction $f$ définie, pour tout $x$ de l’intervalle $[-1 ; 10]$, par $f(x) = -0,1x^2+1,05x+1,15$.

  1. Compléter le tableau de valeurs fourni en annexe.
    $\quad$
  2. On note $f’$ la fonction dérivée de $f$. Pour tout $x$ de l’intervalle $[-1 ; 10]$, justifier que l’expression de $f'(x)$ est donnée par : $f'(x)=-0,2x+1,05$.
    $\quad$
  3. Etudier le signe de $f'(x)$ sur l’intervalle $[-1 ; 10]$.
    En déduire le tableau de variations de la fonction $f$ sur $[-1 ; 10]$.
    $\quad$
  4. Déterminer la valeur de $f'(-1)$ puis en déduire une équation de la tangente $T$ à la courbe représentative de $f$ au point d’abscisse $-1$.
    $\quad$
  5. Dans le repère fourni en annexe, tracer $T$ puis la courbe représentative de la fonction $f$ en utilisant les résultats des questions précédentes.
    $\quad$

Annexes

$$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
x&-1&0&1&2&3&4&6&8&10\\
\hline
f(x)&0&&2,1&2,85&&3,75&&&1,65\\
\hline
\end{array}$$

$\quad$


$\quad$

Correction Exercice

  1. On obtient le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
    \hline
    x&-1&0&1&2&3&4&6&8&10\\
    \hline
    f(x)&0&1,15&2,1&2,85&3,4&3,75&3,85&3,15&1,65\\
    \hline
    \end{array}$$
    $\quad$
  2. Pour tout $x$ de l’intervalle $[-1;10]$ on a
    $\begin{align*} f'(x)&=-0,1\times 2x+1,05 \\
    &=-0,2x+1,05\end{align*}$
    $\quad$
  3. $f'(x)=0 \ssi -0,2x+1,05=0 \ssi -0,2x=-1,05 \ssi x=5,25$
    $f'(x)>0 \ssi -0,2x+1,05>0 \ssi -0,2x>-1,05 \ssi x<5,25$
    On obtient alors le tableau de variations suivant :
    $\quad$
  4. On a $f'(-1)=1,25$
    Une équation de la tangente $T$ est donc $y=1,25\left(x-(-1)\right)+0$ soit $y=1,25(x+1)$.
    $\quad$
  5. On obtient donc le graphique suivant :

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

On a observé sur $5$ ans que la note sur $20$, notée $f(x)$, d’un service au bout de $x$ année(s) est donnée par $f(x)=x^3-6x^2+9x$.
Par exemple, puisque $f(4,5)=4,5^3-6\times 4,5^2+9\times 4,5=10,125$, le service obtient au bout de $4$ ans et demi la notre de $10,125$ sur $20$.

  1. a. Quelle note le service obtient-il au bout d’une année ?
    $\quad$
    b. Justifier que le service donne pleine satisfaction au bout des $5$ années.
    $\quad$
  2. a. Calculer $f'(x)$ sous forme développée.
    $\quad$
    b. Montrer que $f'(x)=3(x-1)(x-3)$.
    $\quad$
    c. Dresser, sans justifier, le tableau de variations de $f$ sur l’intervalle $[0;5]$.
    $\quad$

$\quad$

Correction Exercice

  1. a. On a $f(1)=1-6+9=4$.
    Le service obtient au bout d’une année la note de $4$ sur $20$.
    $\quad$
    b. $f(5)=5^3-6\times 5^2+9\times 5=20$.
    Le service donne pleine satisfaction au bout des $5$ années.
    $\quad$
  2. a. Pour tout réel $x$ positif on a :
    $\begin{align*} f'(x)&=3x^2-6\times 2x+9x\\
    &=3x^2-12x+9x\end{align*}$
    $\quad$
    b. Pour tout réel $x$ positif on a :
    $\begin{align*} 3(x-1)(x-3)&=3\left(x^2-3x-x+3\right)\\
    &=3\left(x^2-4x+3\right)\\
    &=3x^2-12x+9\\
    &=f'(x)\end{align*}$
    $\quad$
    c. On a $x-1=0 \ssi x=1$ et $x-1>0 \ssi x>1$
    $x-3=0 \ssi x=3$ et $x-3>0 \ssi x>3$
    On obtient donc le tableau de variations suivant :

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence 

E3C – Séries technologiques – Fonctions – Janvier 2020

E3C – Fonctions

Séries technologiques

Une entreprise reconditionne des téléphones portables. Cette entreprise reconditionne entre $1~000$ et $6~000$ téléphones portables par mois. On note $x$ le nombre de téléphones sur un mois. Le bénéfice $B$ en euro réalisé par la vente de $x$ téléphones reconditionnés est donné par la fonction $B$ représentée ci-après.

On admet que $B(x) = -0,003x^2+30x-48~000$.

  1. . La courbe ci-dessous est la représentation graphique de la fonction $B$ sur l’intervalle $[1~000 ; 6~000]$.

    a. Pourquoi peut-on dire que cette courbe est portée par une parabole ? Justifier.
    $\quad$
    b. Déterminer graphiquement une valeur approchée du bénéfice maximal.
    $\quad$
  2. a. On désigne par $B’$ la fonction dérivée de la fonction $B$. Calculer $B'(x)$.
    $\quad$
    b. En déduire le tableau de variation de la fonction $B$ sur l’intervalle $[1~000 ; 6~000]$.
    $\quad$
    c. Recopier sur votre copie la fonction donnée ci-dessous et compléter la ligne $10$ de cette fonction afin qu’elle retourne la valeur exprimée en euros du bénéfice maximal.
    $\quad$

$$\begin{array}{|c|l|}
\hline
1 &\text{def beneficemax():}\\
\hline
2 &\hspace{1cm}\text{x=1 000}\\
\hline
4 &\hspace{1cm}\text{B = – 0.003*x**2+30*x -48 000}\\
\hline
5 &\hspace{1cm}\text{M = B}\\
\hline
6 &\hspace{1cm}\text{for x in range(1001, 6001):}\\
\hline
8 &\hspace{2cm}\text{B = – 0.003*x**2+30*x -48 000}\\
\hline
9 &\hspace{2cm}\text{if B>M :}\\
\hline
10 &\hspace{3cm}\text{M=$\ldots$}\\
\hline
12 &\hspace{1cm}\text{return M}\\
\hline
\end{array}$$

$\quad$

$\quad$

Correction Exercice

  1. a. La fonction $B$ est une fonction du second degré. Sa courbe représentative est donc portée par une parabole.
    $\quad$
    b. Graphiquement, le bénéfice maximal est environ égal à $27~000$€.
    $\quad$
  2. a. On a
    $\begin{align*} B'(x)&=-0,003\times 2x+30 \\
    &=-0,006x+30\end{align*}$
    $\quad$
    b. $-0,006x+30=0 \ssi -0,006x=-30 \ssi x=5~000$
    $-0,006x+30>0  \ssi -0,006x>-30 \ssi x<5~000$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
    c. On obtient le code programme suivant :
    $$\begin{array}{|c|l|}
    \hline
    1 &\text{def beneficemax():}\\
    \hline
    2 &\hspace{1cm}\text{x=1 000}\\
    \hline
    4 &\hspace{1cm}\text{B = – 0.003*x**2+30*x -48 000}\\
    \hline
    5 &\hspace{1cm}\text{M = B}\\
    \hline
    6 &\hspace{1cm}\text{for x in range(1001, 6001):}\\
    \hline
    8 &\hspace{2cm}\text{B = – 0.003*x**2+30*x -48 000}\\
    \hline
    9 &\hspace{2cm}\text{if B>M :}\\
    \hline
    10 &\hspace{3cm}\text{M=B}\\
    \hline
    12 &\hspace{1cm}\text{return M}\\
    \hline
    \end{array}$$
    $\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence