Bac – Spécialité mathématiques – Nouvelle Calédonie- sujet 2 – 27 octobre 2022

Nouvelle Calédonie – 27 octobre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
    b. On a
    $\begin{align*} p\left(\conj{D}\cap R\right)&=p\left(\conj{D}\right)\times p_{\conj{D}}(R) \\
    &=\dfrac{3}{4}\times 0,35 \\
    &=0,262~5\end{align*}$
    $\quad$
    c. $\left(D,\conj{D}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(R)&=p(R\cap D)+ p\left(\conj{D}\cap R\right) \\
    &=p(D)\times p_D(R)+0,262~5 \\
    &=\dfrac{1}{4}\times 0,6+0,262~5 \\
    &=0,412~5\end{align*}$
    La probabilité que Stéphanie réussisse un tir est bien égale à $0,412~5$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} p_R\left(\conj{D}\right)&=\dfrac{p\left(R\cap \conj{D}\right)}{p(R)} \\
    &=\dfrac{0,262~5}{0,412~5} \\
    &\approx 0,64\end{align*}$
    La probabilité qu’il s’agisse d’un tir à trois points si Stéphanie réussit un tir est environ égale à $0,64$.
    $\quad$
  2. a. On répète $10$ fois de façon indépendantes la même expérience de Bernoulli de paramètre $0,35$.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,35$.
    $\quad$
    b. L’espérance de $X$ est :
    $\begin{align*} E(X)&=10\times 0,35 \\
    &=3,5\end{align*}$
    Sur $100$ tirs à trois points elle en réussit donc en moyenne $35$.
    $\quad$
    c. On veut calculer $P(X\pp 6)\approx 0,97$.
    La probabilité que Stéphanie rate $4$ tirs ou plus est environ égale à $0,97$.
    $\quad$
    d. On veut calculer $P(X\pg 6)=1-P(X\pp 5)\approx 0,09$.
    La probabilité que Stéphanie rate au plus $4$ tirs est environ égale à $0,09$.
    $\quad$
  3. On note $Y$ la variable aléatoire qui compte le nombre de tirs réussis.
    On répète $n$ fois de façon indépendantes la même expérience de Bernoulli de paramètre $0,35$.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,35$
    On veut déterminer le plus plus petit entier naturel $n$ tel que :
    $\begin{align*} p(Y\pg 1)\pg 0,99 &\ssi 1-P(X=0)\pg 0,99 \\
    &\ssi P(X=0) \pp 0,01 \\
    &\ssi 0,65^n \pp 0,01 \\
    &\ssi n\ln(0,65) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,65)}\quad \text{car } \ln(0,65)>0\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,65)}\approx 10,69$.
    La plus petite valeur de $n$ telle que la probabilité que Stéphanie réussisse au moins un tir parmi les $n$ tirs soit supérieure ou égale à $0,99$ est donc $11$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. La fonction $f$ est dérivable sur $]0;+\infty[$ par hypothèse.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=\ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)+1-1\\
    &=\ln(x)\end{align*}$
    $\quad$
    b. On a $f(\e)=-2$ et $f'(\e)=1$.
    Une équation de la tangente $T$ est donc $y=1\times (x-\e)-2$ soit $y=x-\e-2$.
    $\quad$
    c. Par hypothèse la fonction $f$ est deux fois dérivables sur $]0;+\infty[$.
    Par conséquent, pour tout réel $x>0$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    d. La fonction $f$ est convexe sur $]0;+\infty[$. La courbe $\mathscr{C}_f$ est donc au-dessus de toutes ses tangentes.
    Ainsi $\mathscr{C}_f$ est au-dessus de $T$.
    $\quad$
  2. a. Par croissances comparées $\lim\limits_{x\to 0} x\ln(x)=0$. Donc $\lim\limits_{x\to 0} f(x)=-2$.
    $\quad$
    b. Pour tout réel $x>0$ on a $f(x)=x\left(\ln(x)-1-\dfrac{2}{x}\right)$.
    Or $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} \dfrac{1}{x}=0$.
    Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
  3. $\ln(x)=0\ssi x=1$ et $\ln(x)>0 \ssi x>1$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  4. a. Pour tout réel $x\in ]0;1]$ on a, d’après la question précédente, $f(x)<-2$. L’équation $f(x)=0$ n’admet donc aucune solution sur l’intervalle $]0;1]$.
    La fonction $f$ est continue (car dérivable) et strictement croissante sur l’intervalle $[1;+\infty[$.
    $f(1)=-3<0$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur l’intervalle $[1;+\infty[$.
    Ainsi l’équation $f(x)=0$ admet une unique solution sur $]0;+\infty[$.
    $\quad$
    b. $f(4,3)\approx -0,03<0$ et $f(4,4)\approx 0,12>0$.
    Donc $f(4,3)<f(\alpha)<f(4,4)$.
    La fonction $f$ est strictement croissante sur l’intervalle $[4,3;4;4]$.
    Par conséquent $4,3<\alpha<4,4$.
    Ainsi $\alpha\in ]4,3;4,4[$.
    $\quad$
    c. D’après les questions précédentes :
    $\bullet$ $f(x)<0$ sur $]0;\alpha[$;
    $\bullet$ $f(\alpha)=0$;
    $\bullet$ $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$
  5. $\texttt{seuil(0.01)}$ renvoie la valeur $4,32$.
    Il s’agit d’une valeur approchée à $10^{-2}$ près de $\alpha$.
    $\quad$

 

Ex 3

Exercice 3

  1. On a $B(6;4;0)$, $E(0;4;4)$, $F(6;4;4)$ et $G(6;0;4)$.
    $\quad$
  2. Le volume du toit est
    $\begin{align*}V_{pyramide}&=\dfrac{1}{3}\times 6\times 4\times (6-4) \\
    &=16\end{align*}$
    Le volume de $EFGHS$ est donc égale à $16$ u.v.
    Le volume du parallélépipède est :
    $\begin{align*} V_{parallélépipède}&=6\times 4\times 4\\
    &=96\end{align*}$
    Le volume de la maison est donc $V=16+96=112$ u.v.
    $\dfrac{16}{112}=\dfrac{1}{7}$
    Le volume de la pyramide $EFGHS$ représente bien le septième du volume total de la maison.
    $\quad$
  3. a. On a $\vect{EF}\begin{pmatrix} 6\\0\\0\end{pmatrix}$ et $\vect{ES}\begin{pmatrix}3\\-2\\2\end{pmatrix}$.
    Ces deux vecteurs sont clairement non colinéaires.
    Ainsi $\vec{n}.\vect{EF}=0+0+0=0$ et $\vec{n}.\vect{ES}=0-2+2=0$.
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(EFS)$. Il est, par conséquent, normal au plan $(EFS)$.
    $\quad$
    b. Une équation cartésienne du plan $(EFS)$ est donc de la forme $y+z+d=0$.
    Le point $E(0;4;4)$ appartient au plan $(EFS)$.
    Donc $4+4+d=0 \ssi d=-8$.
    Une équation cartésienne du plan $(EFS)$ est donc $y+z-8=0$.
    $\quad$
  4. a. La droite $(PQ)$ est dirigée par $\vec{k}$ et passe par $Q(2;3;5,5)$.
    Une représentation paramétrique de la droite $(PQ)$ est donc $$\begin{cases} x=2\\y=3\\z=5,5+t\end{cases} \qquad t\in \R$$
    $\quad$
    b. Le point $P$ est le point d’intersection de la droite $(PQ)$ et du plan $(EFS)$. Déterminons les coordonnées de ce point à l’aide du système :
    $\begin{align*}\begin{cases} y+z-8=0 \\x=2\\y=3\\z=5,5+t\end{cases} &\ssi \begin{cases}x=2\\y=3\\z=5,5+t\\3+5,5+t-8=0\end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\t=-0,5\\z=5\end{cases}\end{align*}$
    Ainsi $P$ a pour coordonnées $(2;3;5)$.
    $\quad$
    c. On a alors $\vect{PQ}\begin{pmatrix}0\\0\\0,5\end{pmatrix}$.
    Ainsi $PQ=0,5$.
    $\quad$
  5. Un vecteur directeur de $\Delta$ est $\vec{u}\begin{pmatrix} 6\\-4\\4\end{pmatrix}$
    $\vec{k}$ et $\vec{u}$ ne sont pas colinéaires. Les droites $(PQ)$ et $\Delta$ ne sont donc pas parallèles.
    Déterminons si elles sont sécantes.
    $\begin{align*} \begin{cases} x=2\\y=3\\z=5,5+t\\x=-4+6s\\y=7-4s\\z=2+4s\end{cases}&\ssi \begin{cases} x=2\\y=3\\z=5,5+t\\-4+6s=2\\7-4s=3\\z=2+4s\end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\s=1\\z=2+4s\\z=5,5+t \end{cases} \\
    &\ssi \begin{cases} x=2\\y=3\\z=6\\s=1\\t=0,5\end{cases}\end{align*}$
    Les droites $(PQ)$ et $\Delta$ sont donc sécantes. Leur point d’intersection a pour coordonnées $(2;3;6)$.
    L’oiseau passe donc $0,5$ unité au-dessus de l’antenne. Par conséquent, il ne la percute pas.
    $\quad$

 

Ex 4

Exercice 4

  1. Pour tout $n\in \N$ on a $-1\pp (-1)^n \pp 1$ donc $-\dfrac{1}{n+1}\pp u_n \pp \dfrac{1}{n+1}$.
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{n+1}=0$.
    D’après le théorème des gendarmes $\lim\limits_{n\to +\infty} u_n=0$.
    Réponse D
    $\quad$
  2. On a :
    $\begin{align*} w_0&=\e^{-2\ln(a)}+2 \\
    &=a^{-2}+2 \\
    &=\dfrac{1}{a^2}+2\end{align*}$
    Réponse A
    $\quad$
  3. La suite $\left(v_n\right)$ est décroissante.
    Pour tout $n\in \N$
    $\begin{align*} v_n\pp v_{n+1} &\ssi -2v_n\pg -2v_{n+1} \\
    &\ssi \e^{-2v_n}\pg \e^{-2v_{n+1}} \\
    &\ssi w_n\pg w_{n+1}\end{align*}$
    La suite $\left(w_n\right)$ est donc décroissante.
    La fonction exponentielle est strictement positive. Par conséquent, pour tout $n\in \N$, $\e^{-2v_n}>0$ et $w_n>2$.
    Réponse B
    $\quad$
  4. Montrons que la bonne réponse est la B.
    Il suffisait ici de calculer les premiers termes de chacune des $5$ suites pour déterminer que seule la proposition convenait.
    $-\dfrac{2}{3^0}+4=2$ ce qui correspond bien à $a_0=2$.
    $\begin{align*} -\dfrac{2}{3^{n+1}}+4&=\dfrac{1}{3}\times \dfrac{-2}{3^n}+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4-4\right)+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4\right)-\dfrac{4}{3}+4 \\
    &=\dfrac{1}{3}\left(-\dfrac{2}{3^n}+4\right)+\dfrac{8}{3}\end{align*}$
    On retrouve bien la relation de récurrence $a_{n+1}=\dfrac{1}{3}a_n+\dfrac{8}{3}$.
    Réponse B
    $\quad$
  5. Pour tout $n\in \N$ on a $b_{n+1}-b_n=\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)$.
    Or $\left(b_n\right)^2+3>2$ donc $\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)<0$.
    La suite $\left(b_n\right)$ est par conséquent décroissante.
    Réponse B
    $\quad$
  6. $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$ donc $\lim\limits_{x\to 0^+} g(x)=+\infty$.
    La droite d’équation $x=0$ est asymptote à la courbe $\mathscr{C}_g$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    La courbe $\mathscr{C}_g$ ne possède pas d’asymptote horizontale.
    Réponse B
    $\quad$
  7. On considère la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2+1}$
    $F$ est dérivable sur $\R$ en tant que composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} F'(x)&=\dfrac{1}{2}\times 2x\e^{x^2+1} \\
    &=f(x)\end{align*}$
    Réponse D
    $\quad$
    Remarque : On pouvait également déterminer, à vue, une primitive de $f$. En effet, pour tout réel $x$, on a
    $\begin{align*}f(x)&=x\e^{x^2+1} \\
    &=\dfrac{1}{2}\times 2x\e^{x^2+1}\end{align*}$
    Ainsi $f(x)$ est de la forme $\dfrac{1}{2}u'(x)\e^{u(x)}$ où $u(x)=x^2+1$.
    Une primitive de $f$ est donc la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{u(x)}$ soit $F(x)=\dfrac{1}{2}\e^{x^2+1}$.
    $\quad$

 

Énoncé

Le sujet propose 4 exercices.
Le candidat choisit 3 exercices parmi les 4 et ne doit traiter que ces 3 exercices.

Exercice 1     7 points

Principaux domaines abordés : probabilités

Au basket-ball, il existe deux sortes de tir :

  • les tirs à deux points.
    Ils sont réalisés près du panier et rapportent deux points s’ils sont réussis.
  • les tirs à trois points.
    Ils sont réalisés loin du panier et rapportent trois points s’ils sont réussis.

Stéphanie s’entraîne au tir. On dispose des données suivantes :

  • Un quart de ses tirs sont des tirs à deux points. Parmi eux, $60 \%$ sont réussis.
  • Trois quarts de ses tirs sont des tirs à trois points. Parmi eux, $35\%$ sont réussis.
  1. Stéphanie réalise un tir.
    On considère les évènements suivants :
    $D$ : « Il s’agit d’un tir à deux points ».
    $R$ : « le tir est réussi ».
    a. Représenter la situation à l’aide d’un arbre de probabilités.
    $\quad$
    b. Calculer la probabilité $p\left(\conj{D} \cap R\right)$.
    $\quad$
    c. Démontrer que la probabilité que Stéphanie réussisse un tir est égale à $0,412~5$.
    $\quad$
    d. Stéphanie réussit un tir. Calculer la probabilité qu’il s’agisse d’un tir à trois points.
    Arrondir le résultat au centième.
    $\quad$
  2. Stéphanie réalise à présent une série de $10$ tirs à trois points.
    On note $X$ la variable aléatoire qui compte le nombre de tirs réussis.
    On considère que les tirs sont indépendants. On rappelle que la probabilité que Stéphanie réussisse un tir à trois points est égale à $0,35$.
    a. Justifier que $X$ suit une loi binomiale. Préciser ses paramètres.
    $\quad$
    b. Calculer l’espérance de $X$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
    c. Déterminer la probabilité que Stéphanie rate $4$ tirs ou plus. Arrondir le résultat au centième.
    $\quad$
    d. Déterminer la probabilité que Stéphanie rate au plus $4$ tirs. Arrondir le résultat au centième.
    $\quad$
  3. Soit $n$ un entier naturel non nul.
    Stéphanie souhaite réaliser une série de $n$ tirs à trois points.
    On considère que les tirs sont indépendants. On rappelle que la probabilité qu’elle réussisse un tir à trois points est égale à $0,35$.
    Déterminer la valeur minimale de $n$ pour que la probabilité que Stéphanie réussisse au moins un tir parmi les n tirs soit supérieure ou égale à $0,99$.
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : fonctions, fonction logarithme.

Soit $f$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par :
$$f(x) = x\ln(x)-x-2$$
On admet que la fonction $f$ est deux fois dérivable sur $]0 ; +\infty[$.
On note $f’$ sa dérivée, $f\dsec$ sa dérivée seconde et $\mathscr{C}_f$ sa courbe représentative dans un repère.

  1. a. Démontrer que, pour tout $x$ appartenant à $]0 ; +\infty[$, on a $f'(x) = \ln(x)$.
    $\quad$
    b. Déterminer une équation de la tangente $T$ à la courbe $\mathscr{C}_f$ au point d’abscisse $x =\e$.
    $\quad$
    c. Justifier que la fonction $f$ est convexe sur l’intervalle $]0 ; +\infty[$.
    $\quad$
    d. En déduire la position relative de la courbe $\mathscr{C}_f$ et de la tangente $T$.
    $\quad$
  2. a. Calculer la limite de la fonction $f$ en $0$.
    $\quad$
    b. Démontrer que la limite de la fonction $f$ en $+\infty$ est égale à $+\infty$.
    $\quad$
  3. Dresser le tableau de variations de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  4. a. Démontrer que l’équation $f (x) = 0$ admet une unique solution dans l’intervalle $]0 ; +\infty[$. On note $\alpha$ cette solution.
    $\quad$
    b. Justifier que le réel $\alpha$ appartient à l’intervalle $]4,3; 4,4[$.
    $\quad$
    c. En déduire le signe de la fonction $f$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
  5. On considère la fonction $\texttt{seuil}$ suivante écrite dans le langage Python :
    On rappelle que la fonction $\texttt{log}$ du module $\texttt{math}$ (que l’on suppose importé) désigne
    la fonction logarithme népérien $\ln$.$$\begin{array}{|l|}
    \hline
    \text{def seuil(pas) :}\\
    \quad  \text{x=4.3}\\
    \quad  \text{while x*log (x) – x – 2 < 0:}\\
    \qquad  \text{x=x+pas}\\
    \quad  \text{return x}\\
    \hline
    \end{array}$$
    Quelle est la valeur renvoyée à l’appel de la fonction $\texttt{seuil(0.01)}$?
    Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés : géométrie dans l’espace

Une maison est modélisée par un parallélépipède rectangle $ABCDEFGH$ surmonté d’une pyramide $EFGHS$.
On a $DC = 6$, $DA = DH = 4$.
Soit les points $I$, $J$ et $K$ tels que $\vect{DI}=\dfrac{1}{6}\vect{DC}$, $\vect{DJ}=\dfrac{1}{4}\vect{DA}$, $\vect{DK}=\dfrac{1}{4}\vect{DH}$.
On note $\vec{i}=\vect{DI}$, $\vec{j}=\vect{DJ}$, $\vec{k}=\vect{DK}$.
On se place dans le repère orthonormé $\left(D;\vec{i},\vec{j},\vec{k}\right)$.
On admet que le point $S$ a pour coordonnées $(3; 2; 6)$.

  1. Donner, sans justifier, les coordonnées des points $B$, $E$, $F$ et $G$.
    $\quad$
  2. Démontrer que le volume de la pyramide $EFGHS$ représente le septième du volume total de la maison.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V =\dfrac{1}{3}\times \text{(aire de la base)}\times \text{hauteur}$$
    $\quad$
  3. a. Démontrer que le vecteur $\vec{n}$ de coordonnées $\begin{pmatrix}0\\1\\1\end{pmatrix}$ est normal au plan $(EFS)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(EFS)$ est $y +z-8 = 0$.
    $\quad$
  4. On installe une antenne sur le toit, représentée par le  segment $[PQ]$. On dispose des
    données suivantes :
    $\bullet$ le point $P$ appartient au plan $(EFS)$;
    $\bullet$ le point $Q$ a pour coordonnées $(2; 3; 5,5)$;
    $\bullet$ la droite $(PQ)$ est dirigée par le vecteur $\vec{k}$.
    a. Justifier qu’une représentation paramétrique de la droite $(PQ)$ est :
    $$\begin{cases}x=2\\y = 3\\z = 5,5+t\end{cases} \quad (t \in \R)$$
    b. En déduire les coordonnées du point $P$.
    $\quad$
    c. En déduire la longueur $PQ$ de l’antenne.
    $\quad$
  5. Un oiseau vole en suivant une trajectoire modélisée par la droite $\Delta$ dont une représentation paramétrique est : $$\begin{cases} x=-4+6s\\y=7-4s\\z=2+4s\end{cases} \quad (s\in \R)$$
    Déterminer la position relative des droites $(PQ)$ et $\Delta$.
    L’oiseau va-t-il percuter l’antenne représentée par le segment $[PQ]$?
    $\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés : : suites, fonctions, primitives

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée

  1. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $$u_n=\dfrac{(-1)^n}{n+1}$$
    On peut affirmer que :
    a. la suite $\left(u_n\right)$ diverge vers $+\infty$.
    b. la suite $\left(u_n\right)$ diverge vers $-\infty$.
    c. la suite $\left(u_n\right)$ n’a pas de limite.
    d. la suite $\left(u_n\right)$ converge.
    $\quad$

Dans les questions 2 et 3, on considère deux suites $\left(v_n\right)$ et $\left(w_n\right)$ vérifiant la relation : $$w_n=\e^{-2v_n}+2$$

  1. . Soit $a$ un nombre réel strictement positif. On a $v_0 = \ln(a)$.
    a. $w_0=\dfrac{1}{a^2}+2$
    b. $w_0=\dfrac{1}{a^2+2}$
    c. $w_0=-2a+2$
    d. $w_0=\dfrac{1}{-2a}+2$
    $\quad$
  2. On sait que la suite $\left(v_n\right)$ est croissante. On peut affirmer que la suite $\left(w_n\right)$ est :
    a. décroissante et majorée par $3$.
    b. décroissante et minorée par $2$.
    c. croissante et majorée par $3$.
    d. croissante et minorée par $2$.
    $\quad$
  3. On considère la suite $\left(a_n\right)$ ainsi définie : $$a_0=2 \text{ et, pour tout entier naturel }n,~~a_{n+1}=\dfrac{1}{3}a_n+\dfrac{8}{3}$$
    Pour tout entier naturel $n$, on a :
    a. $a_n=4\times \left(\dfrac{1}{3}\right)^n-2$
    b. $a_n=-\dfrac{2}{3^n}+4$
    c. $a_n=4-\left(\dfrac{1}{3}\right)^n$
    d. $a_n=2\times \left(\dfrac{1}{3}\right)^n+\dfrac{8n}{3}$
    $\quad$
  4. On considère une suite $\left(b_n\right)$ telle que, pour tout entier naturel $n$, on a : $$b_{n+1}=b_n+\ln\left(\dfrac{2}{\left(b_n\right)^2+3}\right)$$
    On peut affirmer que :
    a. la suite $\left(b_n\right)$ est croissante.
    b. la suite $\left(b_n\right)$ est décroissante.
    c. la suite $\left(b_n\right)$ n’est pas monotone.
    d. le sens de variation de la suite $\left(b_n\right)$ dépend de $b_0$.
    $\quad$
  5. On considère la fonction $g$ définie sur l’intervalle $]0 ; +\infty[$ par : $$g(x)=\dfrac{\e^x}{x}$$
    On note $\mathscr{C}_g$ la courbe représentative de la fonction $g$ dans un repère orthogonal.
    La courbe $\mathscr{C}_g$ admet :
    a. une asymptote verticale et une asymptote horizontale.
    b. une asymptote verticale et aucune asymptote horizontale.
    c. aucune asymptote verticale et une asymptote horizontale.
    d. aucune asymptote verticale et aucune asymptote horizontale.
    $\quad$
  6. Soit $f$ la fonction définie sur $\R$ par $$f(x)=x\e^{x^2+1}$$
    Soit $F$ une primitive sur $\R$ de la fonction $f$. Pour tout réel $x$, on a :
    a. $F(x)=\dfrac{1}{2}x^2\e^{x^2+1}$
    b. $F(x)=\left(1+2x^2\right)\e^{x^2+1}$
    c. $F(x)=\e^{x^2+1}$
    d. $F(x)=\dfrac{1}{2}\e^{x^2+1}$
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Métropole, Antilles, Guyane – sujet 2 – 9 septembre 2022

Métropole Antilles/Guyane – 9 septembre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient l’arbre pondéré suivant :
    $\quad$$\quad$
  2. a. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} p(E)&=p(R)\times p_R(E)+p\left(\conj{R}\right)\times p_{\conj{R}}(E) \\
    &=0,4\alpha+0,7(1-\alpha) \\
    &=0,7-0,3\alpha\end{align*}$
    $\quad$
    b.
    $\begin{align*} p(E)=0,58&\ssi 0,7-0,3\alpha=0,58 \\
    &\ssi -0,12=-0,3\alpha\\
    &\ssi  \alpha=0,4\end{align*}$
    $\quad$
  3. On a
    $\begin{align*}
    p_E\left(\conj{R}\right)&=\dfrac{p\left(E\cap \conj{R}\right)}{p(E)} \\
    &=\dfrac{p\left(\conj{R}\right)\times P_{\conj{R}}(E)}{p(E)} \\
    &=\dfrac{0,7(1-\alpha)}{0,58} \\
    &=\dfrac{0,7\times 0,6}{0,58} \\
    &=\dfrac{21}{29}\\
    &\approx 0,72
    \end{align*}$
    La probabilité que le client ayant loué un vélo électrique ait loué un vélo tout terrain est environ égale à $0,72$.
    $\quad$
  4. On a
    $\begin{align*} p\left(\conj{R}\cap E\right)&=p\left(\conj{R}\right)\times p_{\conj{R}}(E) \\
    &=0,7(1-\alpha)\\
    &=0,7\times 0,6\\
    &=0,42\end{align*}$
    La probabilité que le client loue un vélo tout terrain électrique est égale à $0,42$.
    $\quad$
  5. a. $X(\Omega)=\acco{25,~35,~40,~50}$
    $\begin{align*} p(X=25)&=p\left(R\cap \conj{E}\right) \\
    &= 0,4\times 0,4\\
    &=0,24\end{align*}$
    $\begin{align*} p(X=35)&=p\left(\conj{R}\cap \conj{E}\right) \\
    &= 0,6\times 0,3\\
    &=0,18\end{align*}$
    $\begin{align*} p(X=40)&=p\left(R\cap \conj{E}\right) \\
    &= 0,4\times 0,4\\
    &=0,16\end{align*}$
    $\begin{align*} p(X=50)&=p\left(\conj{R}\cap E\right) \\
    &= 0,6\times 0,7\\
    &=0,42\end{align*}$
    On obtient ainsi le tableau de loi de probabilité de $X$ suivant :
    $\begin{array}{|c|c|c|c|c|}
    \hline
    x&25&35&40&50\\
    \hline
    p(X=x)&0,24&0,18&0,16&0,42\\
    \hline
    \end{array}$
    $\quad$
    b. L’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=25\times 0,24+35\times 0,18+40\times 0,16+50\times 0,42 \\
    &=39,7\end{align*}$
    En moyenne, une location de vélo coûte $39,70$ euros.
    $\quad$
  6. a. On répète $30$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,58$.
    $Y$ suit donc la loi binomiale de paramètres $n=30$ et $p=0,58$.
    $\quad$
    b.
    $\begin{align*} p(X=20)&=\dbinom{30}{20} 0,58^{20}\times 0,42^{10} \\
    &\approx 0,095\end{align*}$
    La probabilité qu’un échantillon contienne exactement $20$ clients qui
    louent un vélo électrique est environ égale à $0,095$.
    $\quad$
    c. On veut calculer $P(X\pg 15) \approx 0,858$.
    La probabilité qu’un échantillon contienne au moins $15$ clients qui louent un vélo électrique est environ égale à $0,858$.
    $\quad$

Ex 2

Exercice 2

  1. Soit $n\in \N$
    $\begin{align*} b_{n+1}&=a_{n+1}-2 \\
    &=0,5a_n+1-2 \\
    &=0,5a_n-1 \\
    &=0,5\left(a_n-2\right) \\
    &=0,5b_n\end{align*}$
    La suite $\left(b_n\right)$ est donc géométrique de raison $0,5$.
    Réponse b
    $\quad$
  2. On a donc $u_1=5$, $v_1=3$, $u_2=14$ et $v_2=8$.
    Donc $\dfrac{u_2}{v_2}=1,75$
    Réponse c
    $\quad$
  3. La boucle du programme calcule tous les termes $u_n$ et $v_n$ pour $n$ allant de $1$ à $10$.
    Le programme renvoie donc $u_{10}$ et $v_{10}$.
    Réponse d
    $\quad$
  4. La fonction $f’$ semble croissante sur l’intervalle $[-4;0]$.
    Par conséquent la fonction $f$ semble convexe sur cet intervalle.
    Réponse b
    $\quad$
  5. Le coefficient directeur de la droite $(BC)$ est
    $\begin{align*} f\dsec(1)&=\dfrac{y_C-y_B}{x_C-x_B} \\
    &=5\end{align*}$
    Réponse d
    $\quad$
  6. On considère la fonction $F$ définie sur $\R$ par $F(x)=\left(x^2-2x+3\right)\e^x-2$.
    La fonction $F$ est dérivable sur $\R$ en tant que somme et produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} F'(x)&=(2x-2)\e^x+\left(x^2-2x+3\right)\e^x \\
    &=\left(2x-2+x^2-2x+3\right)\e^x \\
    &=\left(x^2+1\right)\e^x\end{align*}$
    Ainsi $F$ est une primitive de la fonction $f$ sur $\R$.
    De plus $F(0)=3-2=1$.
    Réponse b
    $\quad$

Ex 3

Exercice 3

Partie A

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=0$.
    $\quad$
  2. Pour tout réel $x>0$ on a $f(x)=x\left(1-\ln(x)\right)$.
    Or $\lim\limits_{x\to +\infty}\ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} 1-\ln(x)=-\infty$ ainsi $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. a. Pour tout réel $x>0$ on a
    $\begin{align*} f'(x)&=1-\ln(x)-x\times \dfrac{1}{x} \\
    &=1-\ln(x)+1\\
    &=-\ln(x)\end{align*}$
    $\quad$
    b. $f'(x)=0\ssi -\ln(x)=0 \ssi x=1$
    $f'(x)>0 \ssi -\ln(x)>0 \ssi x\in ]0;1[$.
    La fonction $f$ est donc strictement croissante sur $]0;1]$ et strictement décroissante sur $[1;+\infty[$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$

    $\quad$
  4. $f(x)=x\ssi x-x\ln(x)=x \ssi -x\ln(x)=0 \ssi x=1$ (la valeur $0$ n’est pas solution puisque $f$ n’est pas définie en $0$).
    $\quad$

Partie B

  1. Pour tout $n\in \N$ on pose $P(n):~0,5\pp u_n\pp u_{n+1} \pp 1$.
    Initialisation : $u_0=0,5$ et $u_1\approx 0,85$.
    Par conséquent $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $0,5\pp u_n \pp u_{n+1} \pp 1$.
    La fonction $f$ est croissante sur l’intervalle $[0,5;1]$.
    Par conséquent $f(0,5) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp p(1)$ c’est-à-dire $u_1\pp u_{n+1} \pp u_{n+2} \pp 1$.
    Or $u_1\approx 0,85$.
    La propriété $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout $n\in \N$, $0,5\pp u_n\pp u_{n+1} \pp 1$.
    $\quad$
  2. a. La suite $\left(u_n\right)$ est croissante et majorée par $1$. Elle converge donc vers un réel $\ell$.
    $\quad$
    b. La fonction $f$ est continue sur $]0;+\infty[$ et, pour tout $n\in \N$, on a $u_{n+1}=f\left(u_n\right)$.
    Par conséquent $\ell$ est solution de l’équation $f(x)=x$.
    D’après la question A.4. l’unique solution de cette équation est $1$.
    Ainsi $\ell=1$.
    $\quad$

Partie C

  1. La fonction $f_k$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f_k'(x)&=k-\ln(x)-x\times \dfrac{1}{x} \\
    &=-\ln(x)+k-1\end{align*}$
    $f_k'(x)>0 \ssi -\ln(x)+k-1>0 \ssi \ln(x)<k-1 \ssi x<\e^{k-1}$
    La fonction $f_k$ est donc strictement croissante sur $\left]0;\e^{k-1}\right]$ et strictement décroissante sur $\left[\e^{k-1};+\infty\right[$.
    La fonction $f_k$ admet par conséquent un maximum en $x_k=\e^{k-1}$.
    $\quad$
  2. Soit $k\in \R$.
    $\begin{align*} y_k=f_k\left(x_k\right)\\
    &=k\e^{k-1}-\e^{k-1}\ln\left(\e^{k-1}\right) \\
    &=k\e^{k-1}-(k-1)\e^{k-1} \\
    &=\e^{k-1}\left(k-(k-1)\right) \\
    &=\e^{k-1}\\
    &=x_k\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. a. Les coordonnées du vecteur $\vec{u}’$ sont $\begin{pmatrix} 0\\1\\1\end{pmatrix}$.
    $\quad$
    b. Les vecteurs $\vec{u}$ et $\vec{u}’$ ne sont pas colinéaires (ils n’ont pas les mêmes coordonnées nulles). Les droites $\mathscr{D}$ et $\mathscr{D}’$ ne sont donc pas parallèles.
    $\quad$
    c. Une représentation paramétrique de la droite $\mathscr{D}$ est $\begin{cases} x=2+k\\y=4+2k\\z=0\end{cases}$.
    $\quad$
  2. $\vec{v}.\vec{u}=2-2+0=0$ et $\vec{v}.\vec{u}’=0-1+1=0$.
    $\vec{v}$ est donc orthogonal aux deux vecteurs, non colinéaires, $\vec{u}$ et $\vec{u}’$.
    $\vec{v}$ est donc un vecteur directeur de la droite perpendiculaire à la fois à $\mathscr{D}$ et $\mathscr{D}’$.
    Ainsi $\vec{v}\begin{pmatrix}2\\-1\\1\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$.
    $\quad$
  3. a. $\vec{n}.\vec{u}=2-2+0=0$ et $\vec{n}.\vec{v}= 4+1-5=0$.
    Ainsi $\vec{n}$ orthogonal à deux vecteurs non colinéaires du plan $\mathscr{P}$.
    $\quad$
    b. Une équation cartésienne du plan $\mathscr{P}$ est donc de la forme $2x-y-5z+d=0$.
    Le point $A(2;4;0)$ appartient au plan $\mathscr{P}$.
    Par conséquent $4-4-0+d=0 \ssi d=0$.
    Une équation cartésienne du plan $\mathscr{P}$ est donc $2x-y-5z=0$.
    $\quad$
    c. $M’$ est un point de $Delta$. Il appartient donc également au plan $\mathscr{P}$ qui contient cette droite.
    $M’$ est un point de $\mathscr{D}’$.
    $M’$ est donc le point d’intersection de la droite $\mathscr{D}’$ avec le plan $\mathscr{P}$.
    $2\times 3-1-5=0$ : le point de coordonnées $(3;1;1)$ appartient donc au plan $\mathscr{P}$.
    En prenant $t=-2$ dans la représentation paramétrique de la droite $\mathscr{D}’$ on obtient le point de coordonnées $(3;1;1)$.
    Ainsi ce point est le point d’intersection de la droite $\mathscr{D}’$ et $\mathscr{P}$.
    Ainsi $M’$ a pour coordonnées $(3;1;1)$.
    $\quad$
  4. a. $\vec{v}$ est un vecteur directeur de $\Delta$ et $M’$ appartient à cette droite.
    Une représentation paramétrique de la droite $\Delta$ est donc $\begin{cases} x= 3+2k’\\y=1-k’\\z=1+k’\end{cases} \qquad k’\in \R$.
    $\quad$
    b. En prenant $k’=-1$ dans la représentation paramétrique de $\Delta$ on obtient le point de coordonnées $(-1;2;0)$.
    En prenant $k=-1$ dans la représentation paramétrique de $\mathscr{D}$ on obtient le point de coordonnées $(-1;2;0)$.
    $M$ est le point d’intersection de ces deux droites. Donc $M$ a pour coordonnées $(1;2;0)$.
    $\quad$
    c. Les coordonnées de $\vect{MM’}$ sont $\begin{pmatrix}2\\-1\\1\end{pmatrix}$.
    Par conséquent
    $\begin{align*} MM’&=\sqrt{2^2+(-1)^2+1^2}\\
    &=\sqrt{4+1+1} \\
    &=\sqrt{6}\end{align*}$.
    $\quad$
  5. a. Un vecteur directeur de la droite $d$ est $\vec{r}\begin{pmatrix} 5\\5\\1\end{pmatrix}$.
    $\vec{n}.\vec{r}=10-5-5=0$. Par conséquent $\vec{n}$ est normal à la droite $d$.
    Ainsi $d$ est parallèle au plan $\mathscr{P}$.
    $\quad$
    b. Les droites $\mathscr{D}$ et $\Delta$ sont perpendiculaires en $M$.
    Le point $A$ appartient à la droite $\mathscr{D}$ et le point $M’$ appartient à la droite $\Delta$.
    Le triangle $AMM’$ est rectangle en $M$.
    Les coordonnées de $\vect{AM}$ sont $\begin{pmatrix} -1\\-2\\0\end{pmatrix}$.
    Par conséquent
    $\begin{align*} AM&=\sqrt{(-1)^2+(-2)^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    Ainsi l’aire du triangle $AMM’$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AM\times MM’}{2} \\
    &=\dfrac{\sqrt{30}}{2}\end{align*}$.
    Le volume du tétraèdre $ANMM’$ est donc $V=\dfrac{\sqrt{30}}{3}\ell$.
    $\quad$
    c. La droite $d$ est parallèle au plan $\mathscr{P}$. La distance d’un point de la droite $d$ à ce plan est donc toujours la même. Ainsi $\ell$ ne dépend pas du point $N$ choisi.
    Par conséquent $AN_1MM’$ et $AN_2MM’$ ont le même volume.
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : probabilités

Dans le magasin d’Hugo, les clients peuvent louer deux types de vélos : vélos de route ou bien vélos tout terrain. Chaque type de vélo peut être loué dans sa version électrique ou non.
On choisit un client du magasin au hasard, et on admet que :

  • Si le client loue un vélo de route, la probabilité que ce soit un vélo électrique est de $0,4$ ;
  • Si le client loue un vélo tout terrain, la probabilité que ce soit un vélo électrique est de $0,7$ ;
  • La probabilité que le client loue un vélo électrique est de $0,58$.

On appelle $\alpha$ la probabilité que le client loue un vélo de route, avec $0\pp \alpha\pp 1$.

On considère les événements suivants :

  • $R$ : « le client loue un vélo de route » ;
  • $E$ : « le client loue un vélo électrique » ;
  • $\conj{R}$ et $\conj{E}$ , événements contraires de $R$ et $E$.

On modélise cette situation aléatoire à l’aide de l’arbre reproduit ci-dessous :

Si $F$ désigne un événement quelconque, on notera $p(F)$ la probabilité de $F$.

  1. Recopier cet arbre sur la copie et le compléter.
    $\quad$
  2. a. Montrer que $p(E)=0,7-0,3\alpha$.
    $\quad$
    b. En déduire que : $\alpha = 0,4$.
    $\quad$
  3. On sait que le client a loué un vélo électrique. Déterminer la probabilité qu’il ait loué un vélo tout terrain. On donnera le résultat arrondi au centième.
    $\quad$
  4. Quelle est la probabilité que le client loue un vélo tout terrain électrique ?
    $\quad$
  5. Le prix de la location à la journée d’un vélo de route non électrique est de $25$ euros, celui d’un vélo tout terrain non électrique de $35$ euros. Pour chaque type de vélo, le choix de la version électrique augmente le prix de location à la journée de $15$ euros.
    On appelle $X$ la variable aléatoire modélisant le prix de location d’un vélo à la journée.
    a. Donner la loi de probabilité de $X$. On présentera les résultats sous forme d’un tableau.
    $\quad$
    b. Calculer l’espérance mathématique de $X$ et interpréter ce résultat.
    $\quad$
  6. Lorsqu’on choisit $30$ clients d’Hugo au hasard, on assimile ce choix à un tirage avec remise. On note $Y$ la variable aléatoire associant à un échantillon de $30$ clients choisis au hasard le nombre de clients qui louent un vélo électrique.
    On rappelle que la probabilité de l’événement $E$ est : $p(E) = 0,58$.
    a. Justifier que $Y$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Déterminer la probabilité qu’un échantillon contienne exactement $20$ clients qui louent un vélo électrique. On donnera le résultat arrondi au millième.
    $\quad$
    c. Déterminer la probabilité qu’un échantillon contienne au moins $15$ clients qui louent un vélo électrique. On donnera le résultat arrondi au millième.
    $\quad$

$\quad$

Exercice 2     7 points
Thèmes : suites, fonctions

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère les suites $\left(a_n\right)$ et $\left(b_n\right)$ définie par $a_0=1$ et, pour tout entier naturel $n$, $a_{n+1} = 0,5a_n+1$ et $b_n=a_n-2$.
    On peut affirmer que :
    a. $\left(a_n\right)$ est arithmétique ;
    b. $\left(b_n\right)$ est géométrique ;
    c. $\left(a_n\right)$ est géométrique ;
    d. $\left(b_n\right)$ est arithmétique.
    $\quad$

Dans les questions 2. et 3., on considère les suites $\left(u_n\right)$ et $\left(b_n\right)$ définies par :$$u_0=2,~v_0=1 \text{ et, pour tout entier naturel }n :\begin{cases} u_{n+1}=u_n+3v_n\\v_{n+1}=u_n+v_n\end{cases}$$

  1. On peut affirmer que :
    a. $\begin{cases} u_2=5\\v_2=3\end{cases}$;
    b. $u_2^2-3v_2^2=-2^2$;
    c. $\dfrac{u_2}{v_2}=1,75$;
    d. $5u_1=3v_1$.
    $\quad$
  2. On considère le programme ci-dessous écrit en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def valeurs() :}\\
    \quad \text{u = 2}\\
    \quad \text{v = 1}\\
    \quad \text{for k in range(1,11) :}\\
    \qquad \text{c = u}\\
    \qquad \text{u = u+3*v}\\
    \qquad \text{v = c+v}\\
    \quad \text{return (u,v)}\\
    \hline
    \end{array}$$
    Ce programme renvoie :
    a. $u_{11}$ et $v_{11}$;
    b. $u_{10}$ et $v_{11}$;
    c. les valeurs de $u_n$ et $v_n$ pour $n$ allant de $1$ à $10$;
    d. $u_{10}$ et $v_{10}$.
    $\quad$

Pour les questions 4. et 5., on considère une fonction $f$ deux fois dérivable sur l’intervalle $[-4 ; 2]$. On note $f’$ la fonction dérivée de $f$ et $f\dsec$ la dérivée seconde de $f$.
On donne ci-dessous la courbe représentative $\mathcal{C}’$ de la fonction dérivée $f’$ dans un repère du plan. On donne de plus les points $A(-2; 0)$, $B(1; 0)$ et $C(0; 5)$.

  1. La fonction $f$ est :
    a. concave sur $[-2; 1]$;
    b. convexe sur $[-4; 0]$;
    c. convexe sur $[-2; 1]$;
    d. convexe sur $[0; 2]$.
    $\quad$
  2. On admet que la droite $(BC)$ est la tangente à la courbe $\mathcal{C}’$ au point $B$.
    On a :
    a. $f'(1) < 0$;
    b. $f'(1)= 5$;
    c. $f\dsec(1) > 0$;
    d. $f\dsec(1) = -5$.
    $\quad$
  3. Soit $f$ la fonction définie sur $\R$ par $f(x)=\left(x^2+1\right)\e^x$.
    La primitive $F$ de $f$ sur $\R$ telle que $F(0) = 1$ est définie par :
    a. $F(x)=\left(x^2-2x+3\right)\e^x$;
    b. $F(x)=\left(x^2-2x+3\right)\e^x-2$;
    c. $F(x)=\left(\dfrac{1}{3}x^3+x\right)\e^x+1$;
    d. $F(x)=\left(\dfrac{1}{3}x^3+x\right)\e^x$;
    $\quad$

$\quad$

Exercice 3     7 points
Thèmes : fonction logarithme, suites

Les parties B et C sont indépendantes.

On considère la fonction $f$ définie sur $]0; +\infty[$ par $f(x) = x-x\ln(x)$, où $\ln$ désigne la fonction logarithme népérien.

Partie A

  1. Déterminer la limite de $f(x)$ quand $x$ tend vers $0$.
    $\quad$
  2. Déterminer la limite de $f(x)$ quand $x$ tend vers $+\infty$.
    $\quad$
  3. On admet que la fonction $f$ est dérivable sur $]0; +\infty[$ et on note $f’$ sa fonction dérivée.
    a. Démontrer que, pour tout réel $x>0$, on a : $f'(x)=-\ln(x)$.
    $\quad$
    b. En déduire les variations de la fonction $f$ sur $]0; +\infty[$ et dresser son tableau de variation.
    $\quad$
  4. Résoudre l’équation $f(x) = x$ sur $]0; +\infty[$.
    $\quad$

Partie B

Dans cette partie, on pourra utiliser avec profit certains résultats de la partie A.

On considère la suite $\left(u_n\right)$ définie par : $$\begin{cases} u_0=0,5\\\text{pour tout entier naturel }n, u_{n+1}=u_n-u_n\ln\left(u_n\right)\end{cases}$$
Ainsi, pour tout entier naturel $n$, on a : $u_{n+1}=f\left(u_n\right)$.

  1. On rappelle que la fonction $f$ est croissante sur l’intervalle $[0,5; 1]$.
    Démontrer par récurrence que, pour tout entier naturel $n$, on a : $0,5\pp u_n\pp u_{n+1}\pp 1$.
    $\quad$
  2. a. Montrer que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    b. On note $l$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $l$.
    $\quad$

Partie C

Pour un nombre réel $k$ quelconque, on considère la fonction $f_k$ définie sur $]0; +\infty[$ par : $$f_k(x)=kx-x\ln(x)$$

  1. Pour tout nombre réel $k$, montrer que $f_k$ admet un maximum $y_k$ atteint en $x_k=\e^{k-1}$.
    $\quad$
  2. Vérifier que, pour tout nombre réel $k$, on a : $x_k=y_k$.
    $\quad$

$\quad$

 

Exercice 4     7 points
Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère :

  • la droite $\mathscr{D}$ passant par le point $A(2; 4; 0)$ et dont un vecteur directeur est $\vec{u}\begin{pmatrix}1\\2\\0\end{pmatrix}$;
  • la droite $\mathscr{D}’$ dont une représentation paramétrique est : $\begin{cases}x=3\\y=3+t\\z=3+t\end{cases} \quad, t\in \R$.
  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u’}$ de la droite $\mathscr{D}’$.
    $\quad$
    b. Montrer que les droites $\mathscr{D}$ et $\mathscr{D}’$ ne sont pas parallèles.
    $\quad$
    c. Déterminer une représentation paramétrique de la droite $\mathscr{D}$.

On admet dans la suite de cet exercice qu’il existe une unique droite $\Delta$ perpendiculaire aux droites $\mathscr{D}$ et $\mathscr{D}’$. Cette droite $\Delta$ coupe chacune des droites $\mathscr{D}$ et $\mathscr{D}’$. On appellera $M$ le point d’intersection de $\Delta$ et $\mathscr{D}$, et $M’$ le point d’intersection de $\Delta$ et $\mathscr{D}’$.

On se propose de déterminer la distance $MM’$ appelée « distance entre les droites $\mathscr{D}$ et $\mathscr{D}’$ ».

  1. Montrer que le vecteur $\vec{v}\begin{pmatrix}2\\-1\\1\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$.
    $\quad$
  2. On note $\mathscr{P}$ le plan contenant les droites $\mathscr{D}$ et $\Delta$, c’est-à-dire le plan passant par le point $A$ et de vecteurs directeurs $\vec{u}$ et $\vec{v}$.
    a. Montrer que le vecteur $\vec{n}\begin{pmatrix}2\\-1\\-5\end{pmatrix}$ est un vecteur normal au plan $\mathscr{P}$.
    $\quad$
    b. En déduire qu’une équation du plan $\mathscr{P}$ est : $2x-y-5z=0$.
    $\quad$
    c. On rappelle que $M’$ est le point d’intersection des droites $\Delta$ et $\mathscr{D}’$. Justifier que $M’$ est également le point d’intersection de $\mathscr{D}’$ et du plan $\mathscr{P}$.
    En déduire que les coordonnées du point $M’$ sont $(3; 1; 1)$.
    $\quad$
  3. a. Déterminer une représentation paramétrique de la droite $\Delta$.
    $\quad$
    b. Justifier que le point $M$ a pour coordonnées $(1; 2; 0)$.
    $\quad$
    c. Calculer la distance $MM’$.
    $\quad$
  4. On considère la droite $d$ de représentation paramétrique $\begin{cases} x=5t\\y=2+5t\\z=1+t\end{cases} \quad$ avec $t\in \R$.
    a. Montrer que la droite $d$ est parallèle au plan $\mathscr{P}$.
    $\quad$
    b. On note $\ell$ la distance d’un point $N$ de la droite $d$ au plan $\mathscr{P}$. Exprimer le volume du tétraèdre $ANMM’$ en fonction de $\ell$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$
    c. Justifier que, si $N_1$ et $N_2$ sont deux points quelconques de la droite $d$, les tétraèdres $AN_1MM’$ et $AN_2MM’$ ont le même volume.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Polynésie – sujet 1 – 30 août 2022

Polynésie – 30 août 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie 1

  1. On peut utiliser l’arbre suivant :
    $\quad$
    On a alors :
    $\begin{align*} P(A\cap T)&=P(A)\times P_A(T) \\
    &=\dfrac{1}{4}\times 0,9 \\
    &=0,225\end{align*}$
    $\quad$
  2. $\left(A,\conj{A}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a
    $\begin{align*} P(T)&=P(A\cap T)+P\left(\conj{A}\cap T\right) \\
    &=0,225+P\left(\conj{A}\right)\times P_{\conj{A}}(T) \\
    &=0,225+\dfrac{3}{4}\times 0,05 \\
    &=0,262~5\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_T(A)&=\dfrac{P(A\cap T)}{P(T)} \\
    &=\dfrac{0,225}{0,262~5} \\
    &=\dfrac{6}{7}\\
    &\approx 0,857~1\end{align*}$
    La probabilité que le patient soit atteint d’une angine nécessitant la prise d’antibiotiques sachant que sont test est positif est environ égale à $0,857~1$.
    $\quad$
  4. a. Les résultats erronés correspondent à :
    – le patient est atteint d’une angine nécessitant la prise d’antibiotique et le test est négatif;
    – le patient n’est pas atteint d’une angine nécessitant la prise d’antibiotique et le test est positif.
    Il s’agit donc des événements $A\cap \conj{T}$ et $\conj{A}\cap T$.
    $\quad$
    b. Les événements $A\cap \conj{T}$ et $\conj{A}\cap T$ sont disjoints donc
    $\begin{align*} P(E)&=P\left(\left(A\cap \conj{T}\right) \cup \left(\conj{A}\cap T\right)\right) \\
    &=P\left(A\cap \conj{T}\right)+P\left(\conj{A}\cap T\right) \\
    &=P(A)\times P_A\left(\conj{T}\right)+P\left(\conj{A}\right)\times P_{\conj{A}}(T) \\
    &=\dfrac{1}{4}\times 0,1+\dfrac{3}{4}\times 0,05 \\
    &=0,062~5 \end{align*}$
    $\quad$

Partie 2

  1. a. On réalise $50$ fois la même expérience de Bernoulli de paramètre $P(E)=0,062~5$ de façon indépendantes.
    Par conséquent $X$ suit la loi binomiale de paramètre $n=50$ et $p=0,062~5$.
    $\quad$
    b. On a :
    $\begin{align*} P(X=7)&=\dbinom{50}{7} \times 0,0625^7 \times (1-0,062~5)^{43} \\
    &\approx 0,023~2\end{align*}$
    $\quad$
    c. On veut calculer
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,062~5)^{50} \\
    &\approx 0,960~3\end{align*}$
    La probabilité qu’il y ait au moins un patient dans l’échantillon dont le test est erroné est environ égale à $0,960~3$.
    $\quad$
  2. $X$ suit donc la loi binomiale de paramètres $n$ et $p=0,062~5$.
    À l’aide de la calculatrice, on constate que pour tout entier $n$ inférieur ou égal à $247$ on a $P(X\pg 10) < 0,95$, avec en particulier $P(X\pg 10) \approx 0,948~6$ si $n=247$.
    On constate également que si $n=248$ alors $P(X\pg 10) \approx 0,950~2$.
    La valeur minimale de la taille de l’échantillon est donc $248$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. Pour tout réel $x$ appartenant à $[0;1]$ on a $f(x)=-1,9x^2+1,9x$.
    La fonction $f$ est une fonction polynôme du second degré dont le coefficient principal est $a=-1,9<0$ et les racines sont $0$ et $1$. Le sommet a donc pour abscisse $\dfrac{0+1}{2}=\dfrac{1}{2}$.
    Ainsi $f$ est strictement croissante sur $\left[0;\dfrac{1}{2}\right]$ et strictement décroissante sur $\left[\dfrac{1}{2};1\right]$.
    $\quad$
    b. On a $f(0)=0$ et $f\left(\dfrac{1}{2}\right)=0,475$.
    De plus $f$ est croissante sur $\left[0;\dfrac{1}{2}\right]$.
    Par conséquent, pour tout réel $x \in \left[0;\dfrac{1}{2}\right]$ on a $f(x) \in \left[0;\dfrac{1}{2}\right]$.
    $\quad$
  2. Il semblerait que la suite soit strictement croissante et converge vers un réel $\ell \approx 0,47$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on pose $P(n):~0\pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$.
    Initialisation : On a $u_0=0,1$ et $u_1=0,171$. Donc $0\pp u_0\pp u_1 \pp \dfrac{1}{2}$.
    Ainsi $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$
    La fonction $f$ est croissante sur $\left[0;\dfrac{1}{2}\right]$.
    Par conséquent $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f\left(\dfrac{1}{2}\right)$.
    Soit $0\pp f(0) \pp u_{n+1} \pp u_{n+2} \pp f\left(\dfrac{1}{2} \pp \dfrac{1}{2}\right)$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$, on a $0\pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $\dfrac{1}{2}$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. La fonction $f$ est continue sur $[0;1]$ en tant que fonction polynôme, $u_{n+1}=f\left(u_n\right)$ et $0\pp u_n\pp u_{n+1}$ pour tout entier naturel $n$.
    Ainsi $\ell$ est solution de l’équation $f(x)=x$.
    Or :
    $\begin{align*} f(x)=x&\ssi -1,9x^2+1,9x=x\\
    &\ssi -1,9x^2+0,9x=0\\
    &\ssi x(-1,9x+0,9)=0\end{align*}$
    Les solutions de cette équation sont donc $0$ et $\dfrac{0,9}{1,9}=\dfrac{9}{19}$.
    La suite $\left(u_n\right)$ est croissante et $u_0=0,1$. Ainsi, la seule solution possible est $\dfrac{9}{19}$.
    Par conséquent $\lim\limits_{n\to +\infty} u_n=\dfrac{9}{19}$.
    $\quad$

Partie 2

  1. On a $\lim\limits_{n\to +\infty} \left(\dfrac{1}{2}\right)^n=0$ car $-1<\dfrac{1}{2}<1$.
    De plus, pour tout entier naturel $n$, on a $0\pp u_n \pp \left(\dfrac{1}{2}\right)^n$.
    Par conséquent, d’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  2. $\lim\limits_{n\to +\infty} u_n=0$ et, pour tout entier naturel $n$, $u_n\pg 0$. Donc pour tout réel $\alpha>0$ il existe un entier naturel $n_0$ tel que, pour tout entier naturel $n\pg n_0$, on ait $0\pp u_n\pp x$.
    C’est en particulier vrai, pour $x=10^{-p}$ où $p\in \N$.
    Cela explique pourquoi la boucle $\texttt{while}$ ne tourne pas indéfiniment.
    $\quad$

 

Ex 3

Exercice 3

Partie 1

  1. La fonction $g$ est dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables sur $]0;+\infty[$ dont le dénominateur ne s’annule pas.
    Ainsi, pour tout réel $x>0$, on a :
    $\begin{align*} g'(x)&=\dfrac{\dfrac{2}{x}\times x-2\ln(x)\times 1}{x^2} \\
    &=\dfrac{2-2\ln(x)}{x^2}\end{align*}$.
    $\quad$
  2. a. On a
    $\begin{align*} g(\e)&=\dfrac{2\ln(\e)}{\e} \\
    &=\dfrac{2\times 1}{\e} \\
    &=\dfrac{2}{\e}\end{align*}$.
    $\quad$
    b. $g'(x)$ est du signe de $2-2\ln(x)$.
    Or $2-2\ln(x)>0 \ssi -2\ln(x)>-2 \ssi \ln(x)<1 \ssi x<\e$.
    La fonction $g$ est donc strictement croissante sur $]0;\e]$ et strictement décroissante sur $[\e;+\infty[$.
    $\quad$
    c. $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0^+} \dfrac{1}{x}=+\infty$.
    Par produit, $\lim\limits_{x\to 0^+} g(x)=-\infty$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$ donc $\lim\limits_{x\to +\infty} g(x)=0$.
    $\quad$
  3. La fonction $g$ est strictement croissante sur $]0;\e[$ et s’annule en $1$. Par conséquent $g(x)<0$ sur $]0;1[$, $g(1)=0$ et $g(x)>0$ sur $]1;\e[$.
    La fonction $g$ est strictement décroissante sur $[\e;+\infty[$ et $\lim\limits_{x\to +\infty} g(x)=0$. Par conséquent, pour tout réel $x\pg \e$ on a $g(x)>0$.
    On obtient ainsi le tableau de signes suivant :
    $\quad$

    $\quad$

Partie 2

  1. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    On a donc, pour tout réel $x>0$ :
    $\begin{align*} f'(x)&=2\times \dfrac{1}{x} \times \left(\ln(x)\right)^{2-1} \\
    &=\dfrac{2\ln(x)}{x} \\
    &=g(x)\end{align*}$
    Ainsi $f$ est une primitive de $g$ sur $]0;+\infty[$.
    $\quad$
  2. a. D’après la partie 1 on sait que, pour tout réel $x>0$ on a $g$ est strictement croissante sur $]0;+\e]$ et strictement décroissante sur $[\e;+\infty[$.
    Or $f'(x)=g(x)$ pour tout réel $x>0$.
    Ainsi, $f$ est convexe sur $]0;\e]$ et concave sur $[\e;+\infty[$.
    $\quad$
    b. D’après la partie 1, $g(x)<0$ sur $]0;1[$, $g(1)=0$ et $g(x)>0$ sur $]1;+\infty[$.
    Or $f'(x)=g(x)$ pour tout réel $x>0$.
    Donc $f$ est strictement décroissante sur $]0;1]$ et strictement croissante sur $[1;+\infty[$.
    $\quad$
  3. a. Une équation de la tangente à la courbe représentative de la fonction $f$ au point d’abscisse $\e$ est $y=f'(\e)(x-\e)+f(\e)$.
    Or $f'(\e)=g(\e)=\dfrac{2}{\e}$ et $f(\e)=1$.
    Ainsi, une équation de cette tangente est $y=\dfrac{2}{\e}(x-\e)+1$ soit $y=\dfrac{2}{\e}x-1$.
    $\quad$
    b. La fonction $f$ est convexe sur $]0;\e]$. Sa courbe représentative est donc située au-dessus de ses tangentes sur cet intervalle.
    Ainsi, pour tout $x\in]0;\e]$ on a $\left(\ln(x)\right)^2\pg \dfrac{2}{\e}x-1$.
    $\quad$

 

 

Ex 4

Exercice 4

  1. a. $C$ a pour coordonnées $(1;1;0)$, $F$ a pour coordonnées $(1;0;1)$ et $G$ a pour coordonnées $(1;1;1)$.
    $\quad$
    b. $\vect{CF}\begin{pmatrix}0\\-1\\1\end{pmatrix}$ et $\vect{CI}\begin{pmatrix}-1\\-\dfrac{1}{2}\\[2mm]1\end{pmatrix}$ sont deux vecteurs non colinéaires (ils n’ont pas la même coordonnée nulle) du plan $(CFI)$.
    De plus :
    $\vect{CF}.\vec{n}=0-2+2=0$ et $\vect{CI}.\vec{n}=-1-1+2=0$.
    Par conséquent $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(CFI)$. Il est donc normal à ce plan.
    $\quad$
    c. Une équation cartésienne du plan $(CFI)$ est donc de la forme $x+2y+2z+d=0$.
    Or $C(1;1;0)$ appartient à ce plan. Donc $1+2+0+d=0 \ssi d=-3$.
    Une équation cartésienne du plan $(CFI)$ est donc $x+2y+2z-3=0$.
    $\quad$
  2. a. Le vecteur $\vec{n}$ est un vecteur directeur de $d$.
    Une représentation paramétrique de la droite $d$ est donc $$\begin{cases} x=1+t\\y=1+2t\\z=1+2t\end{cases} \quad t\in \R$$
    $\quad$
    b. Montrons que le point $K$ appartient à la fois au plan $(CFI)$ et à la droite $d$.
    $\dfrac{7}{9}+2\times \dfrac{5}{9}+2\times \dfrac{5}{9}-3=\dfrac{27}{9}-3=0$ : $K$ appartient au plan $(CFI)$.
    En prenant $t=-\dfrac{2}{9}$ dans la représentation paramétrique de $d$ on obtient $\begin{cases} x=\dfrac{7}{9}\\[2mm] y=\dfrac{5}{9}\\[2mm]z=\dfrac{5}{9}\end{cases}$. Donc $K$ appartient à $d$.
    La droite $d$ passe par le point $G$ et est orthogonale au plan $(CFI)$.
    Par conséquent $K\left(\dfrac{7}{9};\dfrac{5}{9};\dfrac{5}{9}\right)$ est le projeté orthogonal du point $G$ sur le plan $(CFI)$.
    $\quad$
    c. La distance cherchée est égale à $GK$. Or $\vect{GK}$ a pour coordonnées $\begin{pmatrix} -\dfrac{2}{9}\\[2mm]-\dfrac{4}{9}\\[2mm]-\dfrac{4}{9}\end{pmatrix}$.
    Ainsi :
    $\begin{align*} GK&=\sqrt{\left(-\dfrac{2}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2} \\
    &=\sqrt{\dfrac{4}{81}+\dfrac{16}{81}+\dfrac{16}{81}} \\
    &=\dfrac{6}{9} \\
    &=\dfrac{2}{3}\end{align*}$
    $\quad$
  3. a. L’aire du triangle $CFG$ rectangle en $G$ est $\mathscr{A}=\dfrac{1\times 1}{2}$ u.a.
    La hauteur de la pyramide $CFGI$ relative au somme $I$ est $[IJ]$ où $J$ est le milieu de $[FG]$ et mesure donc $1$ u.
    Ainsi le volume de cette pyramide est :
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times IJ \\
    &=\dfrac{1}{3}\times \dfrac{1}{2}\times 1\\
    &=\dfrac{1}{6} \text{ u.v.}\end{align*}$
    $\quad$
    b. On appelle $\mathscr{A}’$ l’aire du triangle $CFI$.
    On a donc
    $\dfrac{1}{6}=\dfrac{1}{3}\mathscr{A}’\times GK \ssi \mathscr{A}’=\dfrac{1}{2GK} \ssi \mathscr{A}’=\dfrac{3}{4}$ u.a.
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : probabilités

Parmi les angines, un quart nécessite la prise d’antibiotiques, les autres non.
Afin d’éviter de prescrire inutilement des antibiotiques, les médecins disposent d’un test de diagnostic ayant les caractéristiques suivantes :

  • lorsque l’angine nécessite la prise d’antibiotiques, le test est positif dans $90 \%$ des cas ;
  • lorsque l’angine ne nécessite pas la prise d’antibiotiques, le test est négatif dans $95 \%$ des cas.

Les probabilités demandées dans la suite de l’exercice seront arrondies à $10{-4}$ près si nécessaire.

Partie 1

Un patient atteint d’angine et ayant subi le test est choisi au hasard.
On considère les événements suivants :

  • $A$ : « le patient est atteint d’une angine nécessitant la prise d’antibiotiques » ;
  • $T$ : « le test est positif » ;
  • $\conj{A}$et $\conj{T}$ sont respectivement les événements contraires de $A$ et $T$.
  1. Calculer $P(A\cap T)$. On pourra s’appuyer sur un arbre pondéré.
    $\quad$
  2. Démontrer que $P(T) = 0,262~5$.
    $\quad$
  3. On choisit un patient ayant un test positif. Calculer la probabilité qu’il soit atteint d’une angine nécessitant la prise d’antibiotiques.
    $\quad$
  4. a. Parmi les événements suivants, déterminer ceux qui correspondent à un résultat erroné du test : $A\cap T$, $\conj{A}\cap T$, $A\cap \conj{T}$, $\conj{A}\cap \conj{T}$.
    $\quad$
    b. On définit l’événement $E$ : « le test fournit un résultat erroné ».
    Démontrer que $P(E) = 0,062~5$.
    $\quad$

Partie 2

On sélectionne au hasard un échantillon de $n$ patients qui ont été testés.
On admet que l’on peut assimiler ce choix d’échantillon à un tirage avec remise.
On note $X$ la variable aléatoire qui donne le nombre de patients de cet échantillon ayant un test erroné.

  1. On suppose que $n = 50$.
    a. Justifier que la variable aléatoire $X$ suit une loi binomiale $\mathscr{B}(n,p)$ de paramètres $n = 50$ et $p = 0,062~5$.
    $\quad$
    b. Calculer $P(X=7)$.
    $\quad$
    c. Calculer la probabilité qu’il y ait au moins un patient dans l’échantillon dont le test est erroné.
    $\quad$
  2. Quelle valeur minimale de la taille de l’échantillon faut-il choisir pour que $P(X\pg 10)$ soit supérieure à $0,95$ ?
    $\quad$

$\quad$

Exercice 2     7 points
Thème : suites, fonctions

Soit $k$ un nombre réel.
On considère la suite $\left(u_n\right)$ définie par son premier terme $u_0$ et pour tout entier naturel $n$, $$u_{n+1}=ku_n\left(1-u_n\right)$$

Les deux parties de cet exercice sont indépendantes. On y étudie deux cas de figure selon les valeurs de $\boldsymbol{k}$.

Partie 1

Dans cette partie, $k = 1,9$ et $u_0 = 0,1$.
On a donc, pour tout entier naturel $n$, $u_{n+1}=1,9u_n\left(1-u_n\right)$.

  1. On considère la fonction $f$ définie sur $[0 ; 1]$ par $f(x) = 1,9x(1-x)$.
    a. Etudier les variations de $f$ sur l’intervalle $[0 ; 1]$.
    $\quad$
    b. En déduire que si $x\in \left[0 ;\dfrac{1}{2}\right]$ alors $f(x)\in  \left[0 ;\dfrac{1}{2}\right]$.
    $\quad$
  2. Ci-dessous sont représentés les premiers termes de la suite $\left(u_n\right)$ construits à partir de la courbe $C_f$ de la fonction $f$ et de la droite $D$ d’équation $y=x$.
    Conjecturer le sens de variation de la suite $\left(u_n\right)$ et sa limite éventuelle.
    $\quad$

    $\quad$
  3. a. En utilisant les résultats de la question 1, démontrer par récurrence que pour tout entier naturel $n$ : $$0 \pp u_n \pp u_{n+1} \pp \dfrac{1}{2}$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ converge.
    $\quad$
    c. Déterminer sa limite.
    $\quad$

Partie 2

Dans cette partie, $k=\dfrac{1}{2}$ et $u_0=\dfrac{1}{4}$.
On a donc, pour tout entier naturel $n$, $u_{n+1}=\dfrac{1}{2}u_n\left(1-u_n\right)$ et $u_0=\dfrac{1}{4}$.
On admet que pour tout entier naturel $n$ ∶ $0\pp u_n\pp \left(\dfrac{1}{2}\right)^n$.

  1. Démontrer que la suite $\left(u_n\right)$ converge et déterminer sa limite.
    $\quad$
  2. On considère la fonction Python $\texttt{algo(p)}$ où $\texttt{p}$ désigne un entier naturel non nul :
    $$\begin{array}{|l|}
    \hline
    \text{def algo(p) :}\\
    \quad \text{u = 1/4}\\
    \quad \text{ n = 0}\\
    \quad \text{while u > 10**(-p):}\\
    \qquad \text{u = 1/2*u*(1-u)}\\
    \qquad \text{n = n+1} \\
    \quad \text{return(n)}\\
    \hline
    \end{array}$$
    Expliquer pourquoi, pour tout entier naturel non nul $\texttt{p}$, la boucle $\texttt{while}$ ne tourne pas indéfiniment, ce qui permet à la commande $\texttt{algo(p)}$ de renvoyer une valeur.
    $\quad$

$\quad$

Exercice 3     7 points
Thème : fonctions

Partie 1

Soit $g$ la fonction définie pour tout nombre réel $x$ de l’intervalle $]0;+\infty[$ par : $$g(x) =
\dfrac{2\ln(x)}{x}$$

  1. On note $g’$ la dérivée de $g$. Démontrer que pour tout réel $x$ strictement positif : $$g'(x)=\dfrac{2-2\ln(x)}{x^2}$$
    $\quad$
  2. On dispose de ce tableau de variations de la fonction g sur l’intervalle $]0 ; +\infty[$ :
    $\quad$

    $\quad$
    Justifier les informations suivantes lues dans ce tableau :
    a. la valeur $\dfrac{2}{\e}$;
    $\quad$
    b. les variations de la fonction $g$ sur son ensemble de définition ;
    $\quad$
    c. les limites de la fonction $g$ aux bornes de son ensemble de définition.
    $\quad$
  3. En déduire le tableau de signes de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$

Partie 2

Soit $f$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par $f(x)=\left(\ln(x)\right)^2$.
Dans cette partie, chaque étude est effectuée sur l’intervalle $]0 ; +\infty[$.

  1. Démontrer que sur l’intervalle $]0 ; +\infty[$, la fonction $f$ est une primitive de la fonction $g$.
    $\quad$
  2. À l’aide de la partie 1, étudier :
    a. la convexité de la fonction $f$ ;
    $\quad$
    b. les variations de la fonction $f$.
    $\quad$
  3. a. Donner une équation de la tangente à la courbe représentative de la fonction $f$ au point d’abscisse $\e$.
    $\quad$
    b. En déduire que, pour tout réel $x$ dans $]0 ; \e]$ : $$\left(\ln(x)\right)^2 \pg \dfrac{2}{\e}x-1$$
    $\quad$

$\quad$

Exercice 4     7 points
Thème : géométrie dans le plan et dans l’espace

On considère le cube $ABCDEFGH$. On note $I$ le milieu du segment $[EH]$ et on considère le triangle $CFI$.
L’espace est muni du repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$ et on admet que le point $I$ a pour coordonnées $\left(0 ;\dfrac{1}{2};1\right)$ dans ce repère.
$\quad$

$\quad$

  1. a. Donner sans justifier les coordonnées des points $C$, $F$ et $G$.
    $\quad$
    b. Démontrer que le vecteur $\vec{n}\begin{pmatrix}1\\2\\2\end{pmatrix}$ est normal au plan $(CFI)$.
    $\quad$
    c. Vérifier qu’une équation cartésienne du plan $(CFI)$ est : $x+2y+2z-3=0$.
    $\quad$
  2. On note $d$ la droite passant par $G$ et orthogonale au plan $(CFI)$.
    a. Déterminer une représentation paramétrique de la droite $d$.
    $\quad$
    b. Démontrer que le point $K \left(\dfrac{7}{9};\dfrac{5}{9};\dfrac{5}{9}\right)$ est le projeté orthogonal du point $G$ sur le
    plan $(CFI)$.
    $\quad$
    c. Déduire des questions précédentes que la distance du point $G$ au plan $(CFI)$ est égale à $\dfrac{2}{3}$.
    $\quad$
  3. On considère la pyramide $GCFI$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule $V=\dfrac{1}{3}\times b\times h$, $b$ est l’aire d’une base et $h$ la hauteur associée à cette base.
    a. Démontrer que le volume de la pyramide $GCFI$ est égal à $\dfrac{1}{6}$, exprimé en unité de volume.
    $\quad$
    b. En déduire l’aire du triangle $CFI$, en unité d’aire.
    $\quad$

Bac – Spécialité mathématiques – Amérique du Nord – sujet 2 – 19 mai 2022

Amérique du nord – 19 mai 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. $\left(A_1,B_1\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} a_2&=P\left(A_2\right) \\
    &=P\left(A_1\cap A_2\right)+P\left(B_1\cap A_2\right) \\
    &=P\left(A_1\right)\times P_{A_1}\left(A_2\right)+P\left(B_1\right)\times P_{B_1}\left(A_2\right) \\
    &=0,5\times 0,84+0,5\times 0,24 \\
    &=0,54\end{align*}$
    $\quad$
    b. On veut calculer :
    $\begin{align*} P_{A_2}\left(B_1\right)&=\dfrac{P\left(A_2\cap B_1\right)}{P\left(A_2\right)} \\
    &=\dfrac{0,5\times 0,24}{0,54}\\
    &=\dfrac{2}{9}\end{align*}$
    La probabilité que le vélo se trouve au point B le premier matin sachant qu’il se trouve au point A le deuxième matin est égale à $\dfrac{2}{9}$ soit environ égale à $0,222$.
    $\quad$
  3. a. On obtient l’arbre suivant :$\quad$
    b. Soit $n\in \N^*$. $\left(A_n,B_n\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} a_{n+1}&=P\left(A_{n+1}\right) \\
    &=P\left(A_n\cap A_{n+1}\right)+P\left(B_n\cap A_{n+1}\right) \\
    &=P\left(A_n\right)\times P_{A_n}\left(A_{n+1}\right)+P\left(B_n\right)\times P_{B_n}\left(A_{n+1}\right) \\
    &=0,84a_n+0,24\left(1-a_n\right) \\
    &=0,6a_n+0,24\end{align*}$
    $\quad$
  4. Pour tout entier naturel $n$ non nul on pose $R(n):~a_n=0,6-0,1\times 0,6^{n-1}$.
    Initialisation : $a_1=0,5$ et $0,6-0,1^1=0,5$ donc $R(1)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $R(n)$ vraie.
    $\begin{align*} a_{n+1}&=0,6a_n+0,24 \\
    &=0,6\left(0,6-0,1\times 0,6^{n-1}\right)+0,24\\
    &=0,36-0,1\times 0,6^n+0,24 \\
    &=0,6-0,1\times 0,6^n\end{align*}$
    Donc $R(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $1$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $a_n=0,6-0,1\times 0,6^{n-1}$.
    $\quad$
  5. $-1<0,6<1$ donc $\lim\limits_{n\to +\infty} 0,6^n=0$ et $\lim\limits_{n\to +\infty} a_n=0,6$.
    Sur le long terme, la probabilité que le vélo se trouve au point $A$ est égale à $0,6$.
    $\quad$
  6. $\quad$
    $\begin{align*} a_n\pg 0,599&\ssi 0,6-0,1\times 0,6^{n-1}\pg 0,599 \\
    &\ssi -0,1\times 0,6^{n-1} \pg -0,001 \\
    &\ssi 0,6^{n-1} \pp 0,01 \\
    &\ssi (n-1)\ln(0,6)\pp \ln(0,01) \\
    &\ssi n-1\pg \dfrac{\ln(0,01)}{\ln(0,6)} \quad \text{car } \ln(0,6)<0\\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,6)}+1\end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,6)}+1\approx 10,02$
    Le plus petit entier naturel $n$ tel que $a_n\pg 0,599$ est donc $11$.
    La probabilité que le vélo se trouve au point $A$ est supérieure à $0,599$ à partir du $11$-ième jour.
    $\quad$

 

Ex 2

Exercice 2

Partie A

  1. La fonction $p$ est dérivable sur $[-3;4]$ en tant que fonction polynôme.
    Pour tout réel $x\in [-3;4]$ on a $p'(x)=3x^2-6x+5$.
    Il s’agit d’un polynôme du second degré dont le discriminant est $\Delta=-24<0$
    Ainsi $p'(x)$ est du signe du coefficient principal $a=3>0$.
    Par conséquent $p$ est strictement croissante sur $[-3;4]$.
    $\quad$
  2. La fonction $p$ est continue (car dérivable) et strictement croissante sur $[-3;4]$.
    $p(-3)=-68<0$ et $p(4)=37>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $p(x)=0$ admet une unique solution $\alpha$ sur $[-3;4]$.
    $\quad$
  3. D’après la calculatrice $\alpha\approx -0,2$.
    $\quad$
  4. La fonction $p$ est strictement croissante sur $[-3;4]$ et s’annule en $\alpha$. On obtient alors le tableau de signes suivant :
    $\quad$

Partie B

  1. a. La fonction $f$ est dérivable sur $[-3;4]$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in [-3;4]$ on a :
    $\begin{align*} f'(x)&=\dfrac{\e^x\left(1+x^2\right)-2x\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{\left(x^2-2x+1\right)\e^x}{\left(1+x^2\right)^2} \\
    &=\dfrac{(x-1)^2\e^x}{\left(1+x^2\right)^2} \end{align*}$
    $\quad$
    b. On a fonc $f'(1)=0$.
    La courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. a. Il semblerait que la fonction change de convexité (et donc $\mathscr{C}_f$ possède un point d’inflexion) environ en $0$ et en $1$.
    Le toboggan semble dont assurer de bonnes sensations.
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$ et pour tout réel $x\in [-3;4]$ on a $\left(1+x^2\right)^3>0$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $p(x)(x-1)$.
    $x-1=0 \ssi x=1$ et $x-1>0\ssi x>1$.
    D’après le tableau de signes obtenu à la question A.4. on obtient le tableau de signes de $f\dsec(x)$.
    La fonction $f$ est donc convexe sur $[-3;\alpha]$ et $[1;4]$ et concave sur $[\alpha;1]$. $f\dsec(x)$ s’annule en $\alpha$ et $1$.
    Donc $\mathscr{C}_f$ possède deux points d’inflexion et le toboggan assurera de bonnes sensations.
    $\quad$

 

Ex 3

Exercice 3

  1. a. $\vect{AR}\begin{pmatrix}0\\3\\2\end{pmatrix}$ et $\vect{AT}\begin{pmatrix}-3\\0\\2\end{pmatrix}$
    Par conséquent
    $\begin{align*} AR&=\sqrt{0^2+3^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    $\begin{align*} AT&=\sqrt{(-3)^2+0^2+2^2} \\
    &=\sqrt{13}\end{align*}$
    Ainsi $AR=AT$. Le triangle $ART$ est isocèle en $A$.
    b. $\quad$
    $\begin{align*} \vect{AR}.\vect{AT}&=0\times -(-3)+3\times 0+2\times 2\\
    &=4\end{align*}$
    $\quad$
    c. On a également $\vect{AR}.\vect{AT}=AR\times AT\times \cos \widehat{RAT}$.
    Par conséquent
    $\begin{align*} \cos \widehat{RAT}&=\dfrac{\vect{AR}.\vect{AT}}{AR\times AT} \\
    &=\dfrac{4}{13} \end{align*}$
    Donc $\widehat{RAT}\approx 72,1$°
    $\quad$
  2. a. D’une part
    $\begin{align*} \vec{n}.\vect{AR}&=2\times 0+(-2)\times 3+3\times 2\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{n}.\vect{AT}&=2\times (-3)+(-2)\times 0+3\times 2\\
    &=0\end{align*}$
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires (l’angle $\widehat{RAT}$ n’est ni plat ni nul) du plan $(ART)$.
    $\vec{n}$ est donc un vecteur normal au plan $(ART)$.
    $\quad$
    b. Une équation du plan $(ART)$ est par conséquent de la forme $2x-2y+3z+d=0$.
    Or $A(6;0;2)$ appartient à ce plan.
    Donc $12-0+6+d=0 \ssi d=-18$
    Une équation cartésienne du plan $(ART)$ est $2x-2y+3z-18=0$.
    $\quad$
  3. a. $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$ et le point $S\left(3;\dfrac{5}{2};0\right)$ appartient à cette droite.
    Une représentation paramétrique de la droite $\Delta$ est bien $\begin{cases} x=3+2k\\y=\dfrac{5}{2}-2k\\z=3k\end{cases} \quad k\in \R$.
    $\quad$
    b. Prenons $k=1$ dans la représentation paramétrique précédente. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient à la droite $\Delta$.
    $2\times 5-2\times \dfrac{1}{2}+3\times 3-18=10-1+9-18=0$. Le point de coordonnées $\left(5;\dfrac{1}{2};3\right)$ appartient au plan $(ART)$.
    Ainsi $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. a. On a $D(0,8,0)$ et $K(0;4;4)$ donc $\vect{DK}\begin{pmatrix}0\\-4\\4\end{pmatrix}$ et $\vect{DN}\begin{pmatrix} 0\\-4t\\4t\end{pmatrix}$
    Par conséquent $\vect{DN}=t\vect{DK}$.
    Les points $D$, $N$ et $K$ sont alignés.
    $T\in[0;1]$ donc $N$ appartient au segment $[DK]$.
    $\quad$
    b. On a $\vect{SL}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ et $\vect{SN}\begin{pmatrix} -3\\\dfrac{11}{2}-4t\\4t\end{pmatrix}$.$\begin{align*} &(SL) \text{ et }(SN)\text{ sont perpendiculaires}\\
    &\ssi\vect{SL}.\vect{SN}=0 \\
    &\ssi 2\times (-3)+(-2)\times  \left(\dfrac{11}{2}-4t\right)+3\times 4t=0 \\
    &\ssi -6-11+8t+12t=0 \\
    &\ssi 20t=17 \\
    &\ssi t=0,85\end{align*}$
    Le point $N$ doit donc avoir pour coordonnées $(0;4,6;3,4)$ pour que les deux rayons lasers soient perpendiculaires.
    $\quad$

 

Ex 4

Exercice 4

  1. $\quad$
    $\begin{align*}a&=\ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right) \\
    &=\ln(9)+\ln\left(\sqrt{3}\right)-\ln(3)-\ln(9)\\
    &=\dfrac{1}{2}\ln(3)-\ln(3) \\
    &=-\dfrac{1}{2}\ln(3)\end{align*}$
    Réponse d
    $\quad$
  2. $x-10>0\ssi x>10$ : l’équation est définie sur $]10;+\infty[$
    Sur $]10;+\infty[$
    $\begin{align*} &\ln(x)+\ln(x-10)=\ln(3)+\ln(7) \\
    &\ssi \ln\left(x(x-10)\right)=\ln(21) \\
    &\ssi x(x-10)=21 \\
    &\ssi x^2-10x-21=0\end{align*}$
    Le discriminant de $x^2-10x-21$ est $\Delta=184>0$.
    Les racines de ce polynômes sont $x_1=\dfrac{10-\sqrt{184}}{2}<0$ et $x_2=\dfrac{10+\sqrt{184}}{2}>10$
    Donc l’unique solution de $(E)$ est $\dfrac{10+\sqrt{184}}{2}$.
    Réponse c
    $\quad$
  3. La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$,
    $\begin{align*} f'(x)&=2x\left(-1+\ln(x)\right)+x^2\times \dfrac{1}{x} \\
    &=-2x+2x\ln(x)+x \\
    &=x\left(2\ln(x)-1\right)\end{align*}$
    $\ln\left(\sqrt{e}\right)=\dfrac{1}{2}$
    Par conséquent $f’\left(\sqrt{e}\right)=0$.
    Une équation de la tangente au point d’abscisse $\sqrt{e}$ est donc $y=f\left(\sqrt{e}\right)$ soit $y=-\dfrac{1}{2}\e$.
    Réponse d
    $\quad$
  4. On répète $5$ fois de façon indépendante la même expérience de Bernoulli. On appelle $X$ la variable aléatoire qui compte le nombre de jetons jaunes tirés.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=\dfrac{2}{5}$
    Ainsi
    $\begin{align*} P(X=2)&=\dbinom{5}{2}\left(\dfrac{2}{5}\right)^2\left(\dfrac{3}{5}\right)^3\\
    &\approx 0,346\end{align*}$
    Réponse b
    $\quad$
  5. On reprend la variable aléatoire $X$ définie à la question précédente.
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-\left(\dfrac{3}{5}\right)^5\\
    &\approx 0,922\end{align*}$
    Réponse d
    $\quad$
  6. On reprend la variable aléatoire $X$ définie à la question 4..
    Son espérance mathématiques est :
    $\begin{align*} E(X)&=np\\
    &=5\times \dfrac{2}{5} \\
    &=2\end{align*}$
    Réponse c
    $\quad$

Énoncé

Exercice 1     7 points

Thème : probabilités, suites

Dans une région touristique, une société propose un service de location de vélos pour la journée.
La société dispose de deux points de location distinctes, le point A et le point B. Les vélos peuvent être empruntés et restitués indifféremment dans l’un où l’autre des deux points de location.
On admettra que le nombre total de vélos est constant et que tous les matins, à l’ouverture du service, chaque vélo se trouve au point A ou au point B.

D’après une étude statistique :

  • Si un vélo se trouve au point A un matin, la probabilité qu’il se trouve au point A le matin suivant est égale à $0,84$;
  • Si un vélo se trouve au point B un matin la probabilité qu’il se trouve au point B le matin suivant est égale à $0,76$.

À l’ouverture du service le premier matin, la société a disposé la moitié de ses vélos au point A, l’autre moitié au point B.

On considère un vélo de la société pris au hasard.

Pour tout entier naturel non nul n, on définit les évènements suivants :

  • $A_n$ : « le vélo se trouve au point A le $n$-ième matin »
  • $B_n$ : « le vélo se trouve au point B le $n$-ième matin ».

Pour tout entier naturel non nul $n$, on note $a_n$ la probabilité de l’évènement $A_n$ et $b_n$ la probabilité de l’évènement $B_n$. Ainsi $a_1 = 0,5$ et $b_1 = 0,5$.

  1. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les deux premiers matins :$\quad$
  2. a. Calculer $a_2$.
    $\quad$
    b. Le vélo se trouve au point A le deuxième matin. Calculer la probabilité qu’il se soit trouvé au point B le premier matin. La probabilité sera arrondie au millième.
    $\quad$
  3. a. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation pour les $n$-ième et $n +1$-ième matins.
    $\quad$
    b. Justifier que pour tout entier naturel non nul $n$, $a_{n+1} = 0,6a_n +0,24$.
    $\quad$
  4. Montrer par récurrence que, pour tout entier naturel non nul $n$, $a_n = 0,6−0,1×0,6^{n−1}$.
    $\quad$
  5. Déterminer la limite de la suite $\left(a_n\right)$ et interpréter cette limite dans le contexte de l’exercice.
    $\quad$
  6. Déterminer le plus petit entier naturel $n$ tel que $a_n > 0,599$ et interpréter le résultat obtenu dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : fonctions, fonction exponentielle

Partie A

Soit p la fonction définie sur l’intervalle $[-3 ; 4]$ par : $$p(x)=x^3-3x^2+5x+1$$

  1. Déterminer les variations de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
  2. Justifier que l’équation $p(x) = 0$ admet dans l’intervalle $[-3 ; 4]$ une unique solution qui sera notée $\alpha$.
    $\quad$
  3. Déterminer une valeur approchée du réel $\alpha$ au dixième près.
    $\quad$
  4. Donner le tableau de signes de la fonction $p$ sur l’intervalle $[-3 ; 4]$.
    $\quad$

Partie B

Soit $f$ la fonction définie sur l’intervalle $[-3 ; 4]$ par :$$f(x)=\dfrac{\e^x}{1+x^2}$$
On note $\mathscr{C}_f$ sa courbe représentative dans un repère orthogonal.

  1. a. Déterminer la dérivée de la fonction $f$ sur l’intervalle $[-3 ; 4]$.
    $\quad$
    b. Justifier que la courbe $\mathscr{C}_f$ admet une tangente horizontale au point d’abscisse $1$.
    $\quad$
  2. Les concepteurs d’un toboggan utilisent la courbe $\mathscr{C}_f$ comme profil d’un toboggan. Ils estiment que le toboggan assure de bonnes sensations si le profil possède au moins deux points d’inflexion.
    $\quad$
    a. D’après le graphique ci-dessus, le toboggan semble-t-il assurer de bonnes sensations ?
    Argumenter.
    b. On admet que la fonction $f\dsec$, dérivée seconde de la fonction $f$ , a pour expression pour tout réel $x$ de l’intervalle $[-3 ; 4]$ :
    $$f\dsec(x)=\dfrac{p(x)(x-1)\e^x}{\left(1+x^2\right)^3}$$
    où $p$ est la fonction définie dans la partie A.
    En utilisant l’expression précédente de $f\dsec$, répondre à la question : « le toboggan assure-t-il de bonnes sensations ? ». Justifier.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Une exposition d’art contemporain a lieu dans une salle en forme de pavé droit de largeur $6$ m, de longueur $8$ m et de hauteur $4$ m.
Elle est représentée par le parallélépipède rectangle $OBCDEFGH$ où $OB = 6$ m, $OD = 8$ m et $OE = 4$ m.
On utilise le repère orthonormé $\Oijk$ tel que $\vec{i}=\dfrac{1}{6}\vect{OB}$, $\vec{j}=\dfrac{1}{8}\vect{OD}$ et $\vec{k}=\dfrac{1}{4}\vect{OE}$.

 

Dans ce repère on a, en particulier $C(6; 8; 0)$, $F(6; 0; 4)$ et $G(6; 8; 4)$.
Une des œuvres exposées est un triangle de verre représenté par le triangle $ART$ qui a pour sommets $A(6; 0; 2)$, $R(6; 3; 4)$ et $T(3; 0; 4)$, Enfin, $S$ est le point de coordonnées $\left(3;\dfrac{5}{2};0\right)$.

  1. a. Vérifier que le triangle $ART$ est isocèle en $A$.
    $\quad$
    b. Calculer le produit scalaire $\vect{AR}.\vect{AT}$.
    $\quad$
    c. En déduire une valeur approchée à $0,1$ degré près de l’angle $\widehat{RAT}$.
    $\quad$
  2. a. Justifier que le vecteur $\vec{n}\begin{pmatrix}2\\-2\\3\end{pmatrix}$ est un vecteur normal au plan $(ART)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(ART)$.
    $\quad$
  3. Un rayon laser dirigé vers le triangle $ART$ est émis du plancher à partir du point $S$. On admet que ce rayon est orthogonal au plan $(ART)$.
    a. Soit $\Delta$ la droite orthogonale au plan $(ART)$ et passant par le point $S$.
    Justifier que le système ci-dessous est une représentation paramétrique de la droite $\Delta$ : $$\begin{cases} x=3+2k\\[3pt]y=\dfrac{5}{2}-2k\\[3pt]z=3k\end{cases} \quad, \text{avec } k\in \R$$
    $\quad$
    b. Soit $L$ le point d’intersection de la droite $\Delta$, avec le plan $(ART)$.
    Démontrer que $L$ a pour coordonnées $\left(5;\dfrac{1}{2};3\right)$.
    $\quad$
  4. L’artiste installe un rail représenté par le segment $[DK]$ ou $K$ est le milieu du segment $[EH]$.
    Sur ce rail, il positionne une source lumineuse laser en un point $N$ du segment $[DK]$ et il oriente ce second rayon laser vers le point $S$.
    $\quad$
    $\quad$
    a. Montrer que, pour tout réel $t$ de l’intervalle $[0; 1]$, le point $N$ de coordonnées $(0 ; 8−4t ; 4t)$ est un point du segment $[DK]$.
    $\quad$
    b. Calculer les coordonnées exactes du point $N$ tel que les deux rayons laser représentés par les segments $[SL]$ et $[SN]$ soient perpendiculaires.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : : fonction logarithme népérien, probabilités

Cet exercice est un questionnaire à choix multiples (QCM) qui comprend six questions. Les six questions sont indépendantes. Pour chacune des questions, une seule des quatre réponses est exacte. Le candidat indiquera sur sa copie le numéro de la question suivi de la lettre correspondant à la réponse exacte.
Aucune justification n’est demandée.
Une réponse fausse, une réponse multiple ou une absence de réponse ne rapporte ni n’enlève aucun point.

Question 1

Le réel $a$ est définie par $a = \ln(9)+\ln\left(\dfrac{\sqrt{3}}{3}\right)+\ln\left(\dfrac{1}{9}\right)$ est égal à :
a. $1-\dfrac{1}{2}\ln(3)$
b. $\dfrac{1}{2}\ln(3)$
c. $3\ln(3)-\dfrac{1}{2}$
d. $-\dfrac{1}{2}\ln(3)$
$\quad$

Question 2

On note $(E)$ l’équation suivante $\ln(x) +\ln(x −10) = ln (3)+ln (7)$ d’inconnue le réel $x$.
a. $3$ est solution de $(E)$.
b. $5-\sqrt{46}$ est solution de $(E)$.
c. L’équation $(E)$ admet une unique solution réelle.
d. L’équation $(E)$ admet deux solutions réelles.
$\quad$

Question 3

La fonction $f$ est définie sur l’intervalle $]0 ; +\infty[$ par l’expression $f(x)=x^2\left(-1+\ln(x)\right)$.
On note $\mathscr{C}_f$ sa courbe représentative dans le plan muni d’un repère.
a. Pour tout réel $x$ de l’intervalle $]0 ; +\infty[$, $f'(x)=2x+\dfrac{1}{x}$.
b. La fonction $f$ est croissante sur l’intervalle $]0 ; +\infty[$.
c. $f’\left(\sqrt{\e}\right)$ est différent de $0$.
d. La droite d’équation $y=-\dfrac{1}{2}\e$ est tangente à la courbe $\mathscr{C}_f$ au point d’abscisse $\sqrt{\e}$.
$\quad$

Question 4

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer exactement $2$ jetons jaunes, arrondie au millième, est :
a. $0,683$
b. $0,346$
c. $0,230$
d. $0,165$
$\quad$

Question 5

Un sac contient $20$ jetons jaunes et $30$ jetons bleus. On tire successivement et avec remise $5$ jetons du sac.
La probabilité de tirer au moins un jeton jaune, arrondie au millième, est :
a. $0,078$
b. $0,259$
c. $0,337$
d. $0,922$
$\quad$

Question 6

Un sac contient $20$ jetons jaunes et $30$ jetons bleus.
On réalise l’expérience aléatoire suivante : on tire successivement et avec remise cinq jetons du sac.
On note le nombre de jetons jaunes obtenus après ces cinq tirages.
Si on répète cette expérience aléatoire un très grand nombre de fois alors, en moyenne, le nombre de jetons jaunes est égal à:
a. $0,4$
b. $1,2$
c. $2$
d. $2,5$
$\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 19 mai 2022

Centres étrangers – Liban – 19 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient donc l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(F\cap C)&=P(F)\times P_F(C) \\
    &=0,48\times 0,165 \\
    &=0,079~2\end{align*}$
    La probabilité que la personne choisie soit une femme qui exerce une profession de cadre est égale à $0,079~2$.
    $\quad$
  3. a. $\left(F,\conj{F}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(C)&=P(C\cap F)+P\left(C\cap\conj{F}\right) \\
    &=0,079~2+P\left(\conj{F}\right)\times P_{\conj{F}}(C) \\
    &=0,079~2+0,52\times 0,215 \\
    &=0,191\end{align*}$
    La probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. D’une part $P(C)\times P(F)=0,091~68$
    D’autre part $P(C \cap F)=0,079~2$
    Donc $P(C)\times P(F)\neq P(C\cap F)$.
    Les événements $F$ et $C$ ne sont pas indépendants.
    $\quad$
  4. On a
    $\begin{align*} P_C(F)&=\dfrac{P(C\cap F)}{P(C)} \\
    &=\dfrac{0,079~2}{0,191} \\
    &\approx 0,414~7\end{align*}$.
    La probabilité que la personne choisie soit une femme sachant qu’elle exerce une profession de cadre est environ égale à $0,414~7$.
    $\quad$
  5. a. On répète $15$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de cadres au sein de l’échantillon de $15$ salariés.
    Par conséquent $X$ suit la loi binomiale de paramètres $n=15$ et $p=0,191$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=(1-0,191)^{15}+\dbinom{15}{1}0,191\times (1-0,191)^{14} \\
    &\approx 0,189~0\end{align*}$
    La probabilité que l’échantillon contienne au plus $1$ cadre est environ égale à $0,189~0$.
    $\quad$
    c. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=np\\
    &=15\times 0,191 \\
    &=2,865\end{align*}$
    $\quad$
  6. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire qui compte le nombre de cadres au sein de l’échantillon de $n$ salariés.
    Par conséquent $Y$ suit la loi binomiale de paramètres $n$ et $p=0,191$.
    $\begin{align*} P(Y\pg 1)\pg 0,99 &\ssi 1-P(Y=0)\pg 0,99 \\
    &\ssi P(X=0)\pp 0,01 \\
    &\ssi 0,809^n \pp 0,01\\
    &\ssi n\ln(0,809) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,809)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,809)} \approx 21,7$.
    Il faut donc que l’échantillon contienne au moins $22$ salariés pour la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. $[AH]$ et $[ED]$ sont les diagonales du carré $ADHE$.
    Les droites $(AH)$ et $(ED)$ sont par conséquent perpendiculaires.
    $\quad$
    b. $EFGH$ est un carré donc $(EH)$ et $(HG)$ sont perpendiculaires.
    $CDHG$ est un carré donc $(GH)$ et $(DH)$ sont perpendiculaires.
    Ainsi, $(HG)$ est perpendiculaire à deux droites sécantes du plan $(EDH)$.
    Par conséquent, la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. La droite $(ED)$ est incluse dans le plan $(EDH)$. D’après la question précédente, les droites $(GH)$ et $(ED)$ sont orthogonales.
    D’après la question 1.a. les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    La droite $(ED)$ est donc orthogonale à deux droites sécantes (le point $A$ n’appartient pas à la droite $(GH)$) du plan $(AGH)$.
    La droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Dans le repère fourni on a $E(0;0;1)$ et $D(0;1;0)$.
    Par conséquent $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$.
    $\quad$
    $\vect{ED}$ est un vecteur normal au plan $(AGH)$ d’après la question précédente.
    Une équation cartésienne du plan $(AGH)$ est donc de la forme $y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan. Ainsi $d=0$.
    Une équation cartésienne du plan $(AGH)$ est $y-z=0$.
    $\quad$
  3. a. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]1\\-1\end{pmatrix}$.
    Une représentation paramétrique de la droite $(EL)$ est $\begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\end{cases} \qquad t\in \R$.
    $\quad$
    b. On résout le système
    $\begin{align*} \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\y-z=0 \end{cases} &\ssi \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\ 1+t+t=0\end{cases} \\
    &\ssi \begin{cases}t=-\dfrac{1}{2}\\ x=\dfrac{1}{3}t\\[3pt]y=\dfrac{1}{2}\\[3pt]z=\dfrac{1}{2}\end{cases}\end{align*}$
    Le point d’intersection de la droite $(EL)$ et du plan $(AGH)$ a donc pour coordonnées $\left(\dfrac{1}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    c. $\dfrac{1}{2}-\dfrac{1}{2}=0$ : le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ appartient au plan $(AGH)$.
    $\vect{KL}\begin{pmatrix}0\\-\dfrac{1}{2}\\[3pt]\dfrac{1}{2}\end{pmatrix}$.
    Par conséquent $\vect{KL}=-\dfrac{1}{2}\vect{ED}$.
    Ainsi $\vect{KL}$ est un vecteur normal au plan $(AGH)$.
    Donc $K\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ est le projeté orthogonal du point $L$ sur le plan $(AGH)$.
    $\quad$
    d. On a
    $\begin{align*} KL&=\sqrt{0^2+\left(-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^2} \\
    &=\sqrt{\dfrac{1}{2}} \\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$.
    La distance du point $L$ ai plan $(AGH)$ est donc $h=\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. On applique le théorème de Pythagore dans le triangle $AHD$ rectangle en $D$.
    Donc $AH^2=AD^2+HD^2$ ainsi $AH^2=2$ et $AH=\sqrt{2}$
    $(HG)$ est orthogonale au plan $(EDH)$ d’après la question 1.b.
    La droite $(AH)$ est incluse dans le plan $(EDH)$.
    Par conséquent les droites $(AH)$ et $(HG)$ sont perpendiculaires et le triangle $AHG$ est rectangle en $H$.
    L’aire du triangle $AHG$ est donc
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times HG}{2} \\
    &=\dfrac{\sqrt{2}\times 1}{2}\\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$
    Le volume du tétraèdre $LAGH$ est alors
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times h \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{2}}{2}\times \dfrac{\sqrt{2}}{2} \\
    &=\dfrac{1}{6}\end{align*}$.

Ex 3

Exercice 3

  1. La fonction $g$ est deux fois dérivables sur $\R$ en tant que somme de fonctions deux fois dérivables.
    Pour tout réel $x$ on a $g'(x)=1~000x^{999}+1$ et $g\dsec(x)=999~000x^{998}$
    $998$ est pair donc, pour tout réel $x$ $g\dsec(x)\pg 0$.
    La fonction $g$ est convexe sur $\R$
    Réponse b
    $\quad$
  2. D’après le graphique, $f'(0)=1$.
    Une équation de la droite $T$ est donc de la forme $y=x+b$.
    $T$ est par conséquent parallèle à la droite d’équation $y=x$.
    Réponse a
    $\quad$
  3. Pour tout entier naturel $n$ on a $-1\pp (-1)^n \pp 1$.
    Donc $-\dfrac{-1}{1+n}\pp u_n \pp \dfrac{1}{n+1}$
    Or pour tout entier naturel $n$ on a $-1 \pp -\dfrac{1}{1+n}$ et $\dfrac{1}{1+n}\pp 1$.
    Ainsi $-1\pp u_n \pp 1$.
    Réponse c
    $\quad$
  4. Pour tout entier naturel $n$ on a $v_n\times v_{n+1}<0$.
    Cela signifie donc que deux termes consécutifs de la suite $\left(v_n\right)$ sont toujours de signes contraires.
    Ainsi, tous les termes de rang pair sont du même signe.
    Par conséquent $v_{10}$ est du même signe que $v_0$
    Réponse c
    $\quad$
  5. On a $8=2w_1-4 \ssi 12=2w_1 \ssi w_1=6$
    $6=2w_0-4 \ssi 2w_0=10\ssi w_0=5$.
    Réponse b
    $\quad$
  6. Pour tout entier naturel $n$ on pose $P(n):~a_n>0$
    Initialisation : $a_0=1>0$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $a_n>0$ et $\e^n>0$ donc $\dfrac{\e^n}{\e^n+1}a_n>0$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n$, on a $a_n>0$.
    $\quad$
    Soit $n\in \N$
    $\begin{align*} a_{n+1}-a_n&=\dfrac{\e^n}{\e^n+1}a_n-a_n \\
    &=\left(\dfrac{\e^n}{\e^n+1}-1\right)a_n \\
    &=-\dfrac{1}{\e^n+1}a_n\\
    &<0\end{align*}$
    La suite $\left(a_n\right)$ est donc strictement décroissante.
    Réponse b
    $\quad$
    Remarque : Puisqu’il s’agit d’une question d’un QCM, l’utilisation de la calculatrice est à privilégiée ici pour avoir une idée du comportement de la suite.
    $\quad$
  7. On appelle $u_n$ le nombre de cellules à la $n$-ième génération.
    Ainsi, pour tout entier naturel $n$ on a $u_n=2^n$.
    Au bout de $4$ heures il y a environ $4~000$ cellules. Or $u_{11}=2~048$ et $u_{12}=4~096$.
    Il a donc fallu $4$ heures pour obtenir à la $12$-ième génération.
    $\dfrac{4\times 60}{12}=20$.
    Le temps de génération est donc environ égal à $20$ minutes.
    Réponse c
    $\quad$

 

Ex 4

Exercice 4

Partie A

  1. On a $\lim\limits_{x\to 0^+} \e^{-x}=1$ et $\lim\limits_{x\to 0^+} \ln(x)=-\infty$.
    Ainsi $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
  2. Pour tout réel $x\in ]0;1]$ on a
    $\begin{align*} f'(x)&=-\e^{-x}+\dfrac{1}{x} \\
    &=\dfrac{-x\e^{-x}+1}{x} \\
    &=\dfrac{1-x\e^{-x}}{x}\end{align*}$
    $\quad$
  3. La fonction exponentielle est convexe sur $\R$. Sa courbe représentative est donc au-dessus de toutes ses tangentes.
    On a $\e^0=1$. Une équation de la tangente à la courbe au point d’abscisse $0$ est par conséquent $y=x+1$.
    Ainsi, pour tout réel $x\in ]0;1]$, $\e^x\pg x+1>x$ soit $1\pg x\e^{-x}$.
    Donc pour tout réel $x\in ]0;1]$ on a $x\e^x<1$.
    Remarque : On pouvait également déterminer le tableau de variations de la fonction $g$ définie sur $]0;1]$ par $g(x)=x\e^{-x}$.
    $\quad$
    Ainsi sur $]0;1]$, $1-x\e^{-x}>0$
    Par conséquent $f'(x)>0$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;1]$.
    $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $f(1)=\e^{-1}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=0$ admet une unique solution $\ell$ sur $]0;1]$.
    $\quad$

Partie B

  1. a. On a $a_1=\e^{-1}\approx 0,37$ et $b_1=\e^{-1/10}\approx 0,90$.
    $\quad$
    b. On peut écrire
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad \text{a = 1 / 10} \\
    \quad \text{b = 1} \\
    \quad \text{for k in range(0,n):}\\
    \qquad \text{c = exp(-b)}\\
    \qquad \text{b = exp(-a)}\\
    \qquad \text{a = c}\\
    \quad \text{return(a,b)}\\
    \hline
    \end{array}$
    Remarque : On suppose donc que la bibliothèque $\texttt{math}$ a été importée (ou au moins la fonction $\texttt{exp}$) pour que la fonction ne comporte pas d’erreur.
    $\quad$
  2. a. Pour tout $n\in \N$ on pose $P(n):~0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    Initialisation : On a $a_0=0,1$, $a_1 \approx 0,37$, $b_1\approx 0,90$ et $b_0=1$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    La fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    Par conséquent $\e^{0}>\e^{-a_n}\pg \e^{-a_{n+1}}\pg \e^{-b_{n+1}}\pg \e^{-b_n}\pg \e^{-1}$
    Soit $1>b_{n+1}\pg b_{n+2}\pg a_{n+2}\pg a_{n+1}\pg \e^{-1}>0$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout entier naturel $n$ on a $0<a_n\pp a_{n+1}\pp b_{n+1} \pp b_n \pp 1$.
    $\quad$
    b. La suite $\left(a_n\right)$ est croissante et majorée par $1$ : elle converge donc.
    La suite $\left(b_n\right)$ est décroissante et minorée par $0$ : elle converge donc.
    $\quad$
  3. a. On a $A=\e^{-B}$  par conséquent $\ln(A)=-B$ et $B=-\ln(A)$.
    Or $B=\e^{-A}$ donc $-\ln(A)=\e^{-A}$ soit $\e^{-A}+\ln(A)=0$.
    Par conséquent $f(A)=0$.
    $\quad$
    b. D’après la question précédente et la question A.4. $A=\ell$.
    On a $B=\e^{-A}$ donc $A=-\ln(B)$
    Or $A=\e^{-B}$ soit $-\ln(B)=\e^{-B}$ et donc $f(B)=0$.
    On a ainsi également $B=\ell$.
    Donc $A-B=0$.
    Remarque : On dit que les suite $\left(a_n\right)$ et $\left(b_n\right)$ sont adjacentes.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Les résultats seront arrondis si besoin à $10^{-4}$ près.
Une étude statistique réalisée dans une entreprise fournit les informations suivantes :

  • $48 \%$ des salariés sont des femmes. Parmi elles, $16,5 \%$ exercent une profession de cadre ;
  • $52 \%$ des salariés sont des hommes. Parmi eux, $21,5 \%$ exercent une profession de cadre.

On choisit une personne au hasard parmi les salariés.
On considère les événements suivants :

  • $F$ : « la personne choisie est une femme » ;
  • $C$ : « la personne choisie exerce une profession de cadre ».
  1. Représenter la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que la personne choisie soit une femme qui exerce une profession de cadre.
    $\quad$
  3. a. Démontrer que la probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. Les événements $F$ et $C$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Calculer la probabilité de $F$ sachant $C$, notée $P_C(F)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  5. On choisit au hasard un échantillon de 15 salariés. Le grand nombre de salariés dans l’entreprise permet d’assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de cadres au sein de l’échantillon de $15$ salariés.
    On rappelle que la probabilité qu’un salarié choisi au hasard soit un cadre est égale à $0,191$.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Calculer la probabilité que l’échantillon contienne au plus $1$ cadre.
    $\quad$
    c. Déterminer l’espérance de la variable aléatoire $X$.
    $\quad$
  6. Soit $n$ un entier naturel.
    On considère dans cette question un échantillon de $n$ salariés.
    Quelle doit être la valeur minimale de $n$ pour que la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

On considère le cube $ABCDEFGH$ de côté $1$ représenté ci-dessous.

 

On munit l’espace du repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. a. Justifier que les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    $\quad$
    b. Justifier que la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. En déduire que la droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Donner les coordonnées du vecteur $\vect{ED}$.
    Déduire de la question 1.c. qu’une équation cartésienne du plan $(AGH)$ est :
    $$y-z=0$$
    $\quad$
  3. On désigne par $L$ le point de coordonnées $\left(\dfrac{2}{3};1;0\right)$
    a. Déterminer une représentation paramétrique de la droite $(EL)$.
    $\quad$
    b. Déterminer l’intersection de la droite $(EL)$ et du plan $(AGH)$.
    $\quad$
    c. Démontrer que le projeté orthogonal du point $L$ sur le plan $(AGH)$ est le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    d. Montrer que la distance du point $L$ au plan $(AGH)$ est égale à $\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. Déterminer le volume du tétraèdre $LAGH$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule :
    $$V=\dfrac{1}{3}\times (\text{aire de la base})\times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonctions, suites

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. . Soit $g$ la fonction définie sur $\R$ par $g(x)=x^{1~000}+x$.
    On peut affirmer que :
    a. la fonction $g$ est concave sur $\R$.
    b. la fonction $g$ est convexe sur $\R$.
    c. la fonction $g$ possède exactement un point d’inflexion.
    d. la fonction $g$ possède exactement deux points d’inflexion.
    $\quad$
  2. On considère une fonction $f$ définie et dérivable sur $\R$. On note $f’$ sa fonction dérivée.
    On note $C$ la courbe représentative de $f$.
    On note $\Gamma$ la courbe représentative de $f’$.
    On a tracé ci-dessous la courbe $\boldsymbol{\Gamma}$ .On note $T$ la tangente à la courbe $\boldsymbol{C}$ au point d’abscisse $0$.
    On peut affirmer que la tangente $T$ est parallèle à la droite d’équation :
    a. $y=x$
    b. $y=0$
    c. $y=1$
    d. $x=0$
    $\quad$
  3. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n=\dfrac{(-1)^n}{n+1}$.
    On peut affirmer que la suite $\left(u_n\right)$ est :
    a. majorée et non minorée.
    b. minorée et non majorée.
    c. bornée.
    d. non majorée et non minorée.
    $\quad$
  4. Soit $k$ un nombre réel non nul.
    Soit $\left(v_n\right)$ une suite définie pour tout entier naturel $n$.
    On suppose que $v_0=k$ et que pour tout $n$, on a $v_n\times v_{n+1}<0$.
    On peut affirmer que $v_{10}$ est :
    a. positif.
    b. négatif.
    c. du signe de $k$.
    d. du signe de $-k$.
    $\quad$
  5. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par :
    $$w_{n+1}=2w_n-4\text{ et } w_2=8$$
    On peut affirmer que :
    a. $w_0=0$.
    b. $w_0=5$.
    c. $w_0=10$.
    d. Il n’est pas possible de calculer $w_0$.
    $\quad$
  6. On considère la suite $\left(a_n\right)$ définie pour tout entier naturel $n$ par : $$a_{n+1}=\dfrac{\e^n}{\e^n+1}a_n \text{ et } a_0=1$$
    On peut affirmer que :
    a. la suite $\left(a_n\right)$ est strictement croissante.
    b. la suite $\left(a_n\right)$ est strictement décroissante.
    c. la suite $\left(a_n\right)$ n’est pas monotone.
    d. la suite $\left(a_n\right)$ est constante.
    $\quad$
  7. Une cellule se reproduit en se divisant en deux cellules identiques, qui se
    divisent à leur tour, et ainsi de suite. On appelle temps de génération le temps nécessaire pour qu’une cellule donnée se divise en deux cellules. On a mis en culture $1$ cellule. Au bout de $4$ heures, il y a environ $4~000$ cellules.
    On peut affirmer que le temps de génération est environ égal à :
    a. moins d’une minute.
    b. $12$ minutes.
    c. $20$ minutes.
    d. $1$ heure.
    $\quad$

$\quad$

Exercice 4

Thème : Fonctions, fonction exponentielle, fonction logarithme, suites

Partie A

On considère la fonction $f$ définie pour tout réel $x$ de $]0 ; 1]$ par :$$f(x)=\e^{-x}+\ln(x)$$

  1. Calculer la limite de $f$ en $0$.
    $\quad$
  2. On admet que $f$ est dérivable sur $]0 ; 1]$. On note $f’$ sa fonction dérivée.
    Démontrer que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a :
    $$f'(x)=\dfrac{1-x\e^{-x}}{x}$$
    $\quad$
  3. Justifier que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a $x\e^{-x}<1$.
    En déduire le tableau de variation de $f$ sur $]0 ; 1]$.
    $\quad$
  4. Démontrer qu’il existe un unique réel $\ell$ appartenant à $]0 ; 1]$ tel que $f(\ell)=0$.
    $\quad$

Partie B

  1. On définit deux suites $\left(a_n\right)$ et $\left(b_n\right)$ par :
    $$\begin{cases} a_0=\dfrac{1}{10}\\[3pt]b_0=1\end{cases} \text{ et, pour tout entier naturel }n,~\begin{cases} a_{n+1}=\e^{-b_n}\\[3pt]b_{n+1}=\e^{-a_n}\end{cases}$$
    a. Calculer $a_1$ et $b_1$. On donnera des valeurs approchées à $10^{-2}$ près.
    $\quad$
    b. On considère ci-dessous la fonction termes, écrite en langage Python.
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad\text{a = 1/10}\\
    \quad\text{b = 1}\\
    \quad\text{for k in range(0,n):}\\
    \qquad\text{c = …}\\
    \qquad\text{b = …}\\
    \qquad\text{a = c}\\
    \quad\text{return(a,b)}\\
    \hline
    \end{array}$
    Recopier et compléter sans justifier le cadre ci-dessus de telle sorte que la
    fonction termes calcule les termes des suites $\left(a_n\right)$ et $\left(b_n\right)$.
    $\quad$
  2. On rappelle que la fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    a. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $$0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$$
    $\quad$
    b. En déduire que les suites $\left(a_n\right)$ et $\left(b_n\right)$ sont convergentes.
    $\quad$
  3. On note $A$ la limite de $\left(a_n\right)$ et $B$ la limite de $\left(b_n\right)$.
    On admet que $A$ et $B$ appartiennent à l’intervalle $]0 ; 1]$, et que $A = \e^{-B}$ et $B = \e^{-A}$.
    a. Démontrer que $f(A)=0$.
    $\quad$
    b. Déterminer $A-B$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Amérique du Nord – sujet 1 – 18 mai 2022

Amérique du nord – 18 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On obtient l’arbre pondéré suivant:
    $\quad$
    $\quad$
    b. $\left(V,\conj{V}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} P(R)&=P(R\cap V)+P\left(R\cap \conj{V}\right) \\
    &=P(V)\times P_V(R)+P\left(\conj{V}\right)\times P_{\conj{V}}(R)\\
    &=\dfrac{2}{3}\times \dfrac{1}{50}+\dfrac{1}{3}\times \dfrac{1}{10} \\
    &=\dfrac{7}{150}\end{align*}$
    La probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} P_R(V)&=\dfrac{P(R\cap V)}{P(R)} \\
    &=\dfrac{~\dfrac{2}{150}~}{\dfrac{7}{150}} \\
    &=\dfrac{2}{7}\end{align*}$
    La probabilité que Paul ait pris son vélo pour rejoindre la gare sachant qu’il a raté son train est égale à $\dfrac{2}{7}$.
    $\quad$
  2. a. On répète $20$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=\dfrac{2}{3}$.
    $\quad$
    b.
    $\begin{align*} P(X=10)&=\dbinom{20}{10}\times \left(\dfrac{2}{3}\right)^{10}\times \left(\dfrac{1}{3}\right)^{10} \\
    &\approx 0,054\end{align*}$
    La probabilité que Paul prenne son vélo exactement $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,054$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 10)&=1-P(X\pp 9) \\
    &\approx 0,962\end{align*}$
    La probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare est environ égale à $0,962$.
    d. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=20\times \dfrac{2}{3}\\
    &=\dfrac{40}{3}\end{align*}$
    En moyenne, sur un période choisie au hasard de $20$ jours, Paul prend son vélo environ $13$ jours pour se rendre à la gare.
    $\quad$
  3. L’espérance mathématique de $T$ est :
    $\begin{align*} E(T)&=10\times P(T=10)+11\times P(T=11)+\ldots+18\times P(T=18) \\
    &=13,5\end{align*}$
    En moyenne Paul met $13,5$ minutes pour se rendre à la gare en voiture.
    $\quad$

Ex 2

Exercice 2

  1. a. Pour tout entier naturel $n$ on note $P(n):~T_n\pg 20$.
    Initialisation : $T_0=180\pg 20$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} T_n\pg 20&\ssi 0,955T_n \pg 19,1 \\
    &\ssi 0,955T_n+0,9 \pg 20 \\
    &\ssi T_{n+1} \pg 20\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $T_n\pg 20$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} T_{n+1}-T_n&=0,955T_n+0,9 -T_n \\
    &=-0,045T_n+0,9 \\
    &=-0,045\left(T_n-20\right)\end{align*}$
    $\quad$
    Pour tout $n\in \N$ on a $T_n\pg 20 \ssi T_n-20\pg 0$.
    Ainsi $T_{n+1}-T_n\pp 0$.
    Par conséquent $\left(T_n\right)$ est décroissante.
    $\quad$
    c. La suite $\left(T_n\right)$ est décroissante et minorée par $20$. Elle converge donc vers un réel $\ell$.
    $\quad$
  2. a. Soit $n\in \N$. $u_n=T_n-20\ssi T_n=u_n+20$
    $\begin{align*} u_{n+1}&=T_{n+1}-20 \\
    &=0,955T_n+0,9-20 \\
    &=0,955T_n-19,1\\
    &=0,955\left(u_n+20\right)-19,1 \\
    &=0,955u_n+19,1-19,1\\
    &=0,955u_n\end{align*}$
    Par conséquent, la suite $\left(u_n\right)$ est géométrique de raison $0,955$ et de premier terme $u_0=160$.
    $\quad$
    b. Pour tout entier naturel $n$ on a $u_n=160\times 0,955^n$.
    Donc $T_n=u_n+20=20+160\times 0,955^n$.
    $\quad$
    c. $-1<0,955<1$ donc $\lim\limits_{n\to +\infty} 0,955^n=0$.
    Par conséquent $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    d.
    $\begin{align*} T_n\pp 120&\ssi 20+160\times 0,955^n \pp 120 \\
    &\ssi 160\times 0,955^n \pp 100 \\
    &\ssi 0,955^n \pp 0,625 \\
    &\ssi n\ln(0,955) \pp \ln(0,625) \\
    &\ssi n\pg \dfrac{\ln(0,625)}{\ln(0,955)} \end{align*}$
    Or $\dfrac{\ln(0,625)}{\ln(0,955)} \approx 10,2$.
    L’ensemble solution de $T_n\pp 120$ est l’ensemble des entiers naturels supérieurs ou égaux à $11$.
    $\quad$
  3. a. La température au centre du gâteau va décroitre jusqu’à atteindre la température ambiante.
    Il était donc prévisible que $\lim\limits_{n\to +\infty} T_n=20$.
    $\quad$
    b. La fonction $\texttt{temp}$ renvoie le plus petit entier naturel $n$ tel que $T_n\pp x$.
    D’après la question 2.d. la commande $\texttt{temp(120)}$ renvoie $11$.
    Cela signifie que la température au centre du gâteau devient inférieure à $120$ degré Celsius au bout de $11$ minutes.
    $\quad$

Ex 3

Exercice 3

  1. a. $\vect{JK}\begin{pmatrix} -1\\2\\0\end{pmatrix}$ et $\vect{JL}\begin{pmatrix} -4\\-2\\-3\end{pmatrix}$
    Donc
    $\begin{align*} \vect{JK}.\vect{JL}&=-1\times (-4)+2\times (-2)+0\times (-3) \\
    &=4-4\\
    &=0\end{align*}$
    Les vecteurs $\vect{JK}$ et $\vect{JL}$ sont donc orthogonaux. Le triangle $JKL$ est par conséquent rectangle en $J$.
    $\quad$
    b.
    $\begin{align*} JK&=\sqrt{(-1)^2+2^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} JL&=\sqrt{(-4)^2+(-2)^2+(-3)^2} \\
    &=\sqrt{29}\end{align*}$
    L’aire du triangle $JKL$ est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{JK\times JL}{2} \\
    &=\dfrac{\sqrt{5}\times \sqrt{29}}{2} \\
    &=\dfrac{\sqrt{145}}{2} \text{ cm}^2\end{align*}$
    c. Dans le triangle $JKL$ rectangle en $J$ on a $\tan \widehat{JKL}=\dfrac{JL}{JK}$
    Soit $\tan \widehat{JKL}=\dfrac{\sqrt{29}}{\sqrt{5}}$
    Par conséquent $\widehat{JKL} \approx 67,5$°
    $\quad$
  2. a. D’une part :
    $\begin{align*}\vect{JK}.\vec{n}&=6\times (-1)+3\times 2+0\times (-10) \\
    &=-6+6\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*}\vect{JL}.\vec{n}&=6\times (-4)+3\times (-2)+(-10)\times (-3)
    &=-24-6+30\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteur non colinéaires (puisqu’orthogonaux) du plan $(JKL)$.
    $\vec{n}$ est par conséquent un vecteur normal au plan $(JKL)$.
    $\quad$
    b. Une équation cartésienne du plan $(JKL)$ est donc de la forme $6x+3y-10z+d=0$.
    Le point $J(2;0;1)$ appartient au plan $(JKL)$.
    Par conséquent $12+0-10+d=0 \ssi d=-2$
    Une équation cartésienne du plan $(JKL)$ est $6x+3y-10z-2=0$.
    $\quad$
  3. a. $\vec{n}$ est un vecteur directeur de $\Delta$.
    Une représentation paramétrique de $\Delta$ est donc $\begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\end{cases} \qquad ,t\in \R$.
    $\quad$
    b. On résout le système :
    $\begin{align*} \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6x+3y-10z-2=0\end{cases}&\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\6(10+6t)+3(9+3t)-10(-6-10t)-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\60+36t+27+9t+60+100t-2=0\end{cases}\\
    &\ssi \begin{cases} x=10+6t\\y=9+3t\\z=-6-10t\\145t+145=0\end{cases}\\
    &\ssi \begin{cases}t=-1\\ x=4\\y=6\\z=4\end{cases}\end{align*}$
    Ainsi $H$ a pour coordonnées $(4;6;4)$.
    $\quad$
    c. $\vect{HT}\begin{pmatrix} 6\\3\\-10\end{pmatrix}$
    Donc
    $\begin{align*} HT&=\sqrt{6^2+3^2+(-10)^2} \\
    &=\sqrt{145}\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\mathscr{A}\times HT \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{145}}{2}\times \sqrt{145}\\
    &=\dfrac{145}{6} \text{ cm}^3\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. Soit $x\in \R$
    $\begin{align*} 1-\dfrac{1-\e^x}{1+\e^x}&=\dfrac{1+\e^x-1+\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{1+\e^x} \\
    &=\dfrac{2\e^x}{\e^x\left(\e^{-x}+1\right)} \\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Affirmation 1 vraie
    $\quad$
  2. $\quad$
    $\begin{align*} g(x)=\dfrac{1}{2} &\ssi \dfrac{\e^x}{\e^x+1}=\dfrac{1}{2} \\
    &\ssi 2\e^x=\e^x+1 \\
    &\ssi \e^x=1 \\
    &\ssi x=0\end{align*}$
    L’équation $g(x)=\dfrac{1}{2}$ admet une unique solution : $0$.
    Affirmation 2 vraie
    $\quad$
  3. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=2x\e^{-x}-x^2\e^{-x} \\
    &=\left(2x-x^2\right)\e^{-x} \\
    &=x(2-x)\e^{-x}\end{align*}$
    Si l’axe des abscisses est tangent à la courbe $C$ en $A\left(x_A;y_A\right)$ alors $f’\left(x_A\right)=0$.
    Or $f'(x)=0 \ssi x(2-x)=0$ car la fonction exponentielle est strictement positive.
    $x(2-x)=0 \ssi x=0$ ou $x=2$.
    Cependant $f(0)=0$ et $f(2)=4\e^{-2}\neq 0$. Le point de coordonnées $(0;0)$ appartient à l’axe des abscisses mais le point de coordonnées $\left(2;4\e^{-2}\right)$ n’appartient pas à cet axe.
    L’axe des abscisses est tangent à la courbe $C$ qu’en l’origine du repère.
    Affirmation 3 vraie
    $\quad$
  4. La fonction $h$ est deux fois dérivable sur $\R$ en tant que produit de fonctions deux fois dérivables.
    Soit $x\in \R$
    $\begin{align*} h'(x)&=\e^x\left(1-x^2\right)-2x\e^x \\
    &=\e^x\left(-x^2-2x+1\right)\end{align*}$
    $\begin{align*} h\dsec(x)&=\e^x\left(-x^2-2x+1\right)+\e^{-x}(-2x-2)\\
    &=\e^x\left(-x^2-2x+1-2x-2\right) \\
    &=\e^x\left(-x^2-4x-1\right)\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$. Le signe de $h\dsec(x)$ ne dépend donc que de celui de $-x^2-4x-1$.
    Le discriminant de ce polynôme du second degré est $\Delta=12>0$.
    Ainsi l’équation $-x^2-4x-1=0$ admet $2$ solutions distinctes et $h\dsec(x)$ change deux fois de signe en s’annulant.
    La courbe représentative de la fonction $h$ admet donc deux points d’inflexion.
    Affirmation 4 fausse
    $\quad$
  5. Soit $x>0$. $\dfrac{\e^x}{\e^x+x}=\dfrac{1}{1+\dfrac{x}{\e^x}}$
    Or, par croissances comparées $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$
    Par conséquent $\lim\limits_{x\to +\infty} \dfrac{1}{1+\dfrac{x}{\e^x}}=1$
    Affirmation 5 fausse
    $\quad$
  6. $\quad$
    $\begin{align*} 1+\e^{2x}\pg 2\e^x &\ssi \left(\e^x\right)^2-2\e^x+1 \pg 0\\
    &\ssi \left(\e^x-1\right)^2 \pg 0\end{align*}$
    Cette dernière inégalité est vraie pour tout réel $x$.
    Affirmation 6 vraie
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Chaque chaque jour où il travaille, Paul doit se rendre à la gare pour rejoindre son lieu de travail en train. Pour cela, il prend son vélo deux fois sur trois et, si il ne prend pas son vélo, il prend sa voiture.

  1. lorsqu’il prend son vélo pour rejoindre la gare, Paul ne rate le train qu’une fois sur $50$ alors que, lorsqu’il prend sa voiture pour rejoindre la gare Paul rate son train une fois sur $10$.
    On considère une journée au hasard lors de laquelle Paul sera à la gare pour prendre le train qui le conduira au travail.
    On note :
    • $V$ l’évènement « Paul prend son vélo pour rejoindre la gare »;
    • $R$ l’évènement « Paul rate son train ».
    a. Faire un arbre pondéré résumant la situation.
    $\quad$
    b. Montrer que la probabilité que Paul rate son train est égale à $\dfrac{7}{150}$.
    $\quad$
    c. Paul a raté son train. Déterminer la valeur exacte de la probabilité qu’il ait pris son vélo pour rejoindre la gare.
    $\quad$
  2. On choisit au hasard un mois pendant lequel Paul s’est rendu $20$ jours à la gare pour rejoindre son lieu de travail selon les modalités décrites en préambule.
    On suppose que, pour chacun de ces $20$ jours, le choix entre le vélo et la voiture est indépendant des choix des autres jours.
    On note $X$ la variable aléatoire donnant le nombre de jours où Paul prend son vélo sur ces $20$ jours.
    a. Déterminer la loi suivie par la variable aléatoire $X$. Préciser ses paramètres.
    $\quad$
    b. Quelle est la probabilité que Paul prenne son vélo exactement 10 jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    c. Quelle est la probabilité que Paul prenne son vélo au moins $10$ jours sur ces $20$ jours pour se rendre à la gare ? On arrondira la probabilité cherchée à $10^{-3}$.
    $\quad$
    d. En moyenne, combien de jours sur une période choisie au hasard de $20$ jours pour se rendre à la gare, Paul prend-il son vélo ? On arrondira la réponse à l’entier.
    $\quad$
  3. Dans le cas où Paul se rend à la gare en voiture, on note $T$ la variable aléatoire donnant le temps de trajet nécessaire pour se rendre à la gare. La durée du trajet est donnée en minutes, arrondie à la minute. La loi de probabilité de $T$ est donnée par le tableau ci-dessous :
    $\begin{array}{|l|c|c|c|c|c|c|c|c|c|}
    \hline
    k\text{ (en minutes)}&10&11&12&13&14&15&16&17&18\\
    \hline
    P(T=k)&0,14&0,13&0,13&0,12&0,12&0,11&0,10&0,08&0,07\\
    \hline
    \end{array}$
    Déterminer l’espérance de la variable aléatoire $T$ et interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : suites

Dans cet exercice, on considère la suite $\left(T_n\right)$ définie par :
$$T_0 = 180 \text{ et, pour tout entier naturel }n,~ T_{n+1} = 0,955T_n +0,9$$

  1. a. Démontrer par récurrence que, pour tout entier naturel $n$, $T_n \pg 20$.
    $\quad$
    b. Vérifier que pour tout entier naturel $n$, $T_{n+1}-T_n = −0,045\left(T_n-20\right))$. En déduire le sens de
    variation de la suite $\left(T_n\right)$.
    $\quad$
    c. Conclure de ce qui précède que la suite $\left(T_n\right)$ est convergente. Justifier.
    $\quad$
  2. Pour tout entier naturel $n$, on pose : $u_n = T_n-20$.
    a. Montrer que la suite $\left(u_n\right)$ est une suite géométrique dont on précisera la raison.
    $\quad$
    b. En déduire que pour tout entier naturel $n$, $T_n = 20+160\times 0,955^n$.
    $\quad$
    c. Calculer la limite de la suite $\left(T_n\right)$.
    $\quad$
    d. Résoudre l’inéquation $T_n\pp 120$ d’inconnue $n$ entier naturel.
    $\quad$
  3. Dans cette partie, on s’intéresse à l’évolution de la température au centre d’un gâteau après sa sortie du four.
    On considère qu’à la sortie du four, la température au centre du gâteau est de $180$° C et celle de l’air ambiant de $20$° C.
    La loi de refroidissement de Newton permet de modéliser la température au centre du gâteau par la suite précédente $\left(T_n\right)$. Plus précisément, $T_n$ représente la température au centre du gâteau, exprimée en degré Celsius, n minutes après sa sortie du four.
    a. Expliquer pourquoi la limite de la suite $\left(T_n\right)$ déterminée à la question 2. c. était prévisible dans le contexte de l’exercice.
    $\quad$
    b. On considère la fonction Python ci-dessous :
    $$\begin{array}{|l|}
    \hline
    \text{def temp(x):}\\
    \quad \text{T = 180} \\
    \quad \text{n = 0}\\
    \quad \text{while T > x:} \\
    \qquad \text{T = 0.955 * T + 0.9}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner le résultat obtenu en exécutant la commande $\texttt{temp(120)}$.
    Interpréter le résultat dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

Dans l’espace muni d’un repère orthonormé $\Oijk$ d’unité $1$ cm, on considère les points suivants :
$$J(2 ; 0 ; 1),~~ K(1 ; 2 ; 1) \text{ et } L(−2 ; −2 ; −2)$$

  1. a. Montrer que le triangle $JKL$ est rectangle en $J$.
    $\quad$
    b. Calculer la valeur exacte de l’aire du triangle $JKL$ en cm$^2$.
    $\quad$
    c. Déterminer une valeur approchée au dixième près de l’angle géométrique $\widehat{JKL}$.
    $\quad$
  2. a. Démontrer que le vecteur $\vec{n}$ de coordonnées$\begin{pmatrix}6\\3\\-10\end{pmatrix}$ est un vecteur normal au plan $(JKL)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(JKL)$.

$\quad$
Dans la suite, $T$ désigne le point de coordonnées $(10 ; 9 ; −6)$.

  1. a. Déterminer une représentation paramétrique de la droite $\Delta$ orthogonale au plan $(JKL)$ et passant par $T$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $T$ sur le plan $(JKL)$.
    $\quad$
    c. On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{B}\times h \text{où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur correspondante}$$
    Calculer la valeur exacte du volume du tétraèdre $JKLT$ en cm$^3$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonction exponentielle

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Justifier chaque réponse.

  1. Affirmation 1 : Pour tout réel $x$ : $1-\dfrac{1-\e^x}{1+\e^x}=\dfrac{2}{1+\e^{-x}}$.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par $g(x) =
    \dfrac{\e^x}{\e^x+1}$.
    Affirmation 2 : L’équation $g(x) = \dfrac{1}{2}$ admet une unique solution dans $\R$.
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par $f(x) = x^2\e^{-x}$ et on note $\mathscr{C}$ sa courbe dans un repère orthonormé.
    Affirmation 3 : L’axe des abscisses est tangent à la courbe $\mathscr{C}$ en un seul point.
    $\quad$
  4. On considère la fonction $h$ définie sur $\R$ par $h(x)=\e^x\left(1-x^2\right)$.
    Affirmation 4 : Dans le plan muni d’un repère orthonormé, la courbe représentative de la fonction $h$ n’admet pas de point d’inflexion.
    $\quad$
  5. Affirmation 5 : $\lim\limits_{x\to +\infty} \dfrac{\e^x}{\e^x+x}=0$.
    $\quad$
  6. Affirmation 6 : Pour tout réel $x$, $1+\e^{2x}\pg 2\e^x$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 12 mai 2022

Centres étrangers – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\dfrac{1\times\e^x-x\e^x}{\left(\e^x\right)^2} \\
    &=\dfrac{(1-x)\e^x}{\e^{2x}} \\
    &=\dfrac{1-x}{\e^x} \\
    &=(1-x)\e^{-x}\end{align*}$
    Réponse C
    $\quad$
  2. La fonction $f\dsec$ semble donc strictement positive sur $]-3;-1[$ et strictement négative sur $]-1;1[$.
    La fonction $f’$ semble donc croissante sur $[-3;-1]$ et strictement décroissante sur $[-1;1]$.
    Ainsi $f’$ admet un maximum en $x=-1$.
    Réponse D
    $\quad$
  3. On considère la fonction $F$ définie sur $\R$ par $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$.
    Elle est dérivable sur $\R$ en tant que produit et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$
    $\begin{align*} F'(x)&=-\dfrac{1}{2}\left(2x\e^{-x^2}+\left(x^2+1\right)\times (-2x)\e^{-x^2}\right)\\
    &=-\dfrac{1}{2}\left(2x\e^{-x^2}-2x^3\e^{-x^2}-2x\e^{-x^2}\right) \\
    &=-\dfrac{1}{2}\times \left(-2x^3\right) \e^{-x^2}\\
    &=f(x)\end{align*}$
    Réponse C
    $\quad$
  4. Pour tout réel $x$ on a
    $\begin{align*} \dfrac{\e^x+1}{\e^x-1}&=\dfrac{\e^x\left(1+\e^{-x}\right)}{\e^x\left(1-\e^{-x}\right)} \\
    &=\dfrac{1+\e^{-x}}{1-\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}=1$.
    Réponse B
    $\quad$
  5. Une primitive de la fonction $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{2x+1}+K$
    $\begin{align*} F(0)=1&\ssi \dfrac{1}{2}\e+K=1 \\
    &\ssi K=1-\dfrac{1}{2}\e\end{align*}$
    Donc, pour tout réel $x$, $F(x)=\dfrac{1}{2}\e^{2x+1}+1-\dfrac{1}{2}\e$.
    Réponse C
    $\quad$
  6. La fonction $f$ semble concave sur $[-2;1]$ et convexe sur $[1;4]$.
    Par conséquent $f\dsec(x)$ est négatif sur $[-2;1]$ et positif sur $[1;4]$ en ne s’annulant qu’en $1$.
    Réponse A
    $\quad$

 

Ex 2

Exercice 2

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=1$.
    $\quad$
    $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} x\ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. a. Pour tout réel $x$ strictement positif,
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x} \\
    &=\ln(x)+1\end{align*}$
    $\quad$
    b. $\ln(x)+1=0 \ssi \ln(x)=-1 \ssi x=\e^{-1}$
    $\ln(x)+1>0\ssi \ln(x)>-1 \ssi x>\e^{-1}$
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. La fonction $f$ est strictement décroissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left]0;\e^{-1}\right]$ on a $0<1-\e^{-1}\pp f(x) <1$.
    $f(1)=1$.
    La fonction $f$ est strictement croissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left[\e^{-1};1\right[$ on a $0<1-\e^{-1}\pp f(x) < 1$.
    Ainsi, pour tout $x\in [0;1]$ on a $0<f(x)<1$.
    $\quad$
  3. a. $f'(1)=1$ et $f(1)=1$
    Une équation de $(T)$ est donc $y=1\times (x-1)+1$ soit $y=x$.
    $\quad$
    b. La fonction $f’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    c. La courbe $C_f$ est donc au-dessus de toutes ses tangentes en particulier au-dessus de $T$.
    Donc, pour tout réel $x$ strictement positif, $f(x)\pg x$.
    $\quad$
  4. a. Pour tout entier naturel $n$ on pose $P(n):~0<u_n<1$.
    Initialisation : $u_0\in ]0;1[$ par définition. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    On a $0<u_n<1$ donc, d’après la question 2.c., $0<f\left(u_n\right)<1$ soit $0<u_{n+1}<1$.
    $P(n+1)$ est donc vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $0<u_n<1$.
    $\quad$
    b. Soit $n\in \N$
    D’après la question 3.c. on a $f\left(u_n\right)\pg u_n$ soit $u_{n+1}\pg u_n$.
    La suite $\left(u_n\right)$ est donc croissante.
    $\quad$
    c. La suite $\left(un\right)$ est croissante et majorée par $1$. Elle est donc convergente.
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $\vect{AB}\begin{pmatrix}3\\3\\3\end{pmatrix}$, $\vect{AC}\begin{pmatrix}3\\0\\-3\end{pmatrix}$ et $\vect{AD}\begin{pmatrix}-3\\6\\-3\end{pmatrix}$
    $A$, $B$, $C$ et $D$ sont coplanaires si, et seulement si, il existe deux réels $x$ et $y$ tels que :
    $\begin{align*} \vect{AD}=x\vect{AB}+y\vect{AC}&\ssi \begin{cases} 3x+3y&=-3\\3x&=6\\3x-3y&=-3\end{cases} \\
    &\ssi \begin{cases} x+y&=-3\\x&=2\\x-y&=-1\end{cases} \\
    &\ssi \begin{cases} x=2\\y=-5\\y=3\end{cases}\end{align*}$
    Les deux dernières lignes du système sont incompatibles.
    Les points $A$, $B$, $C$ et $D$ ne sont donc pas coplanaires.
    $\quad$
  2. a.
    $\begin{align*} \vect{AB}.\vect{AC}&=3\times 3+3\times 0+3\times (-3) \\
    &=9+0-9\\
    &=0\end{align*}$
    Ces deux vecteurs sont orthogonaux.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b.
    $\begin{align*} \vect{AD}.\vect{AB}&=-3\times 3+6\times 3+(-3)\times 3 \\
    &=-9+18-9 \\
    &=0\end{align*}$
    $\begin{align*} \vect{AD}.\vect{AC}&=-3\times 3+6\times 0+(-3)\times (-3) \\
    &=-9+0+9 \\
    &=0\end{align*}$
    Le vecteur $\vect{AD}$ est donc orthogonal à deux vecteurs non colinéaires (ils sont orthogonaux d’après la question précédente) du plan $(ABC)$.
    La droite $(AD)$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c.
    $\begin{align*} AD&=\sqrt{(-3)^2+6^2+(-3)^2} \\
    &=\sqrt{9+36+9} \\
    &=\sqrt{54}\end{align*}$
    $\begin{align*} AB&=\sqrt{3^2+3^2+3^2} \\
    &=\sqrt{9+9+9} \\
    &=\sqrt{27}\end{align*}$
    $\begin{align*} AC&=\sqrt{3^2+0^2+(-3)^2} \\
    &=\sqrt{9+0+9} \\
    &=\sqrt{18}\end{align*}$
    L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2} \\
    &=\dfrac{\sqrt{27}\times \sqrt{18}}{2}\\
    &=\dfrac{9\sqrt{6}}{2}\end{align*}$
    Par conséquent le volume du tétraèdre $ABCD$ est
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times AD\times \mathscr{A} \\
    &=\dfrac{1}{3}\times \sqrt{54}\times \dfrac{9\sqrt{6}}{2}\\
    &=27\end{align*}$
    $\quad$
  3. a. $\vect{BH}\begin{pmatrix}-1\\-1\\-4\end{pmatrix}$, $\vect{BC}\begin{pmatrix}0\\-3\\-6\end{pmatrix}$ et $\vect{BD}\begin{pmatrix}-6\\3\\-6\end{pmatrix}$
    $\begin{align*} \vect{BH}=\alpha\vect{BC}+\beta\vect{BD}&\ssi \begin{cases} -6\beta&=-1 \\
    -3\alpha+3\beta&=-1\\
    -6\alpha-6\beta&=-4\end{cases} \\
    &\ssi \begin{cases} \beta=\dfrac{1}{6}\\\alpha=\dfrac{1}{2}\end{cases}\end{align*}$
    Par conséquent $\vect{BH}=\dfrac{1}{2}\vect{BC}+\dfrac{1}{6}\vect{BD}$.
    $\quad$
    b. $\vect{AH}\begin{pmatrix}2\\2\\-1\end{pmatrix}$
    $\begin{align*} \vect{AH}.\vect{BC}&=2\times 0+2\times (-3)+(-1)\times (-6) \\
    &=0\end{align*}$
    $\begin{align*} \vect{AH}.\vect{BD}&=2\times (-6)+2\times 3+(-1)\times (-6) \\
    &=0\end{align*}$
    Le vecteur $\vect{AH}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(BCD)$.
    C’est donc un vecteur normal à ce plan.
    D’après la question précédente, $H$ appartient au plan $(BCD)$.
    Donc $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c.
    $\begin{align*} AH&=\sqrt{2^2+2^2+(-1)^2} \\
    &=\sqrt{9} \\
    &=3\end{align*}$
    La distance du point $A$ au plan $(BCD)$ est égale à $3$ unités de longueur.
    $\quad$
  4. On note $\mathscr{A}$ l’aire du triangle $BCD$.
    $\begin{align*} V=\dfrac{1}{3}\mathscr{A}\times h&\ssi 27=\dfrac{1}{3}\mathscr{A}\times 3\\
    &\ssi \mathscr{A}=27\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. a. On appelle :
    $\bullet ~~N_i$ l’événement « le jeton tiré lors du $i$-ème tirage est noir » ;
    $\bullet ~~B_i$ l’événement « le jeton tiré lors du $i$-ème tirage est blanc ».
    On obtient donc l’arbre pondéré suivant :
    $ \quad$
    $\quad$
    b. La probabilité de perdre $9$ € sur une partie est égale à :
    $\begin{align*} P\left(B_1\cap B_2\right)&=P\left(B_1\right)\times P_{B_1}\left(B_2\right) \\
    &=\dfrac{3}{5}\times \dfrac{3}{5} \\
    &=\dfrac{9}{25}\end{align*}$
    $\quad$
  2. a. À chaque tirage, la probabilité de tirer un jeton noir vaut $\dfrac{N}{N+3}$ et la probabilité de tirer un jeton blanc vaut $\dfrac{3}{N+3}$.
    La probabilité de tirer deux jetons blancs est égale à $\left(\dfrac{3}{N+3}\right)^2$.
    La probabilité de tirer deux jetons noirs est égale à $\left(\dfrac{N}{N+3}\right)^2$.
    Par conséquent la probabilité de tirer deux jetons de couleurs différentes est égale à :
    $\begin{align*} p&=1-\left(\dfrac{3}{N+3}\right)^2-\left(\dfrac{N}{N+3}\right)^2 \\
    &=1-\dfrac{9}{(N+3)^2}-\dfrac{N^2}{(N+3)^2} \\
    &=\dfrac{(N+3)^2-9-N^2}{(N+3)^2} \\
    &=\dfrac{N^2+6N+9-9-N^2}{(N+3)^2} \\
    &=\dfrac{6N}{(N+3)^2}\end{align*}$
    On obtient ainsi la loi de probabilité suivante :
    $\begin{array}{|c|c|c|c|}
    \hline
    x&-9&-1&5\\
    \hline
    P(X=x)&\dfrac{9}{(N+3)^2}&\dfrac{N^2}{(N+3)^2}&\dfrac{6N}{(N+3)^2}\\
    \hline
    \end{array}$
    $\quad$
    b. Le discriminant de $-x^2+30x-81$ est $\Delta=576>0$.
    Les racines de $-x^2+3x-81$ sont donc $x_1=\dfrac{-30-\sqrt{576}}{-2}=27$ et $x_1=\dfrac{-30+\sqrt{576}}{-2}=3$.
    Le coefficient principal du polynôme du second degré est $a=-1<0$.
    Par conséquent l’ensemble solution de $-x^2+3x-81>0$ est $]3;27[$.
    $\quad$
    c. Le jeu est favorable au joueur si, et seulement si, l’espérance de $X$ est strictement positive.
    $\begin{align*} E(X)>0&\ssi -9\times \dfrac{9}{(N+3)^2}-1\times \dfrac{N^2}{(N+3)^2}+5\times \dfrac{6N}{(N+3)^2}>0 \\
    &\ssi -81-N^2+30N>0\end{align*}$
    D’après la question précédente, le jeu est favorable au joueur si, et seulement si, $N$ est un entier naturel compris entre $4$ et $26$, tous les deux inclus.
    $\quad$
    d. On considère la fonction $g$ définie sur $[0;+\infty[$ par $g(x)=\dfrac{-x^2+30x-81}{(x+3)^2}$.
    Elle est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in[0;+\infty[$ on a
    $\begin{align*} g'(x)&=\dfrac{(-2x+30)(x+3)^2-2(x+3)\left(-x^2+30x-81\right)}{(x+3)^4} \\
    &=\dfrac{(-2x+30)(x+3)-2\left(-x^2+30x-81\right)}{(x+3)^3} \\
    &=\dfrac{-2x^2-6x+30x+90+2x^2-60x+162}{(x+3)^3}\\
    &=\dfrac{-36x+252}{(x+3)^3}\end{align*}$
    $g'(x)$ est donc du signe de $-36x+252$ sur $[0;+\infty[$.
    Or $-36x+252>0\ssi -36x>-252 \ssi x<7$.
    Par conséquent $g$ est strictement croissante sur $[0;7]$ et strictement décroissante sur $[7;+\infty[$.
    Elle atteint donc son maximum pour $x=7$.
    Or $E(X)=g(N)$ et $7\in [4;26]$.
    Le gain moyen est donc maximal s’il y a $7$ jetons noirs.
    $\quad$
  3. $N=7$ donc $P(X=5)=0,42$.
    On répète $10$ fois de façons indépendantes la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire comptant le nombre de joueur ayant gagné $5$ euros.
    $Y$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,42$.
    $\begin{align*} P(Y\pg 1)&=1-P(Y=0) \\
    &=1-(1-0,42)^{10} \\
    &=1-0,58^{10}\\
    &\approx 0,996\end{align*}$
    La probabilité d’avoir au moins un joueur gagnant $5$ euros est environ égale à $0,996$.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction exponentielle

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question en rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. Soit $f$ la fonction définie sur $\R$ par $$f(x)=\dfrac{x}{\e^x}$$
    On suppose que $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. $f'(x)=\e^{-x}$
    b. $f'(x)=x\e^{-x}$
    c. $f'(x)=(1-x)\e^{-x}$
    d. $f'(x)=(1+x)\e^{-x}$
    $\quad$
  2. Soit $f $ une fonction deux fois dérivable sur l’intervalle $[-3;1]$. On donne ci-dessous la représentation graphique de sa fonction dérivée seconde $f\dsec$.
    On peut alors affirmer que :
    a. La fonction $f$ est convexe sur l’intervalle $[-1;1]$
    b. La fonction $f$ est concave sur l’intervalle $[-2;0]$
    c. La fonction $f’$ est décroissante sur l’intervalle $[-2;0]$
    d. La fonction $f’$ admet un maximum en $x=-1$
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par : $$f(x)=x^3\e^{-x^2}$$
    Une primitive $F$ de la fonction $f$ est définie sur $\R$ par :
    a. $F(x)=-\dfrac{1}{6}\left(x^3+1\right)\e^{-x^2}$
    b. $F(x)=-\dfrac{1}{4}x^4\e^{-x^2}$
    c. $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$
    d. $F(x)=x^2\left(3-2x^2\right)\e^{-x^2}$
    $\quad$
  4. Que vaut  $$\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}$$
    a $-1$
    b. $1$
    c. $+\infty$
    d. N’existe pas
    $\quad$
  5. On considère la fonction $f$ définie sur $\R$ par $f(x)=\e^{2x+1}$.
    La seule primitive de $F$ sur $\R$ de la fonction $f$ telle que $F(0)=1$ est la fonction :
    a. $x\mapsto 2\e^{2x+1}-2\e+1$
    b. $x\mapsto \e^{2x+1}-\e$
    c. $x\mapsto \dfrac{1}{2}\e^{2x+1}-\dfrac{1}{2}\e+1$
    d. $x\mapsto \e^{x^2+x}$
    $\quad$
  6. Dans un repère, on a tracé ci-dessous la courbe représentative d’une fonction $f$ définie et deux fois dérivable sur $[-2;4]$.
    Parmi les courbes suivantes, laquelle représente la fonction $f\dsec$, dérivée seconde de $f$?
    a.
    b.
    c. d. $\quad$

$\quad$

Exercice 2     7 points

Thème : Fonction logarithme et suite

Soit $f$ la fonction définie sur l’intervalle $]0;+\infty[$ par $$f(x)=x\ln(x)+1$$

On note $C_f$ sa courbe représentative dans un repère du plan.

  1. Déterminer la limite de la fonction $f$ en $0$ ainsi que sa limite en $+\infty$.
    $\quad$
  2. a. On admet que $f$ est dérivable sur $]0;+\infty[$ et on notera $f’$ sa fonction dérivée.
    Montrer que pour tout réel $x$ strictement positif : $$f'(x)=1+\ln(x)$$
    $\quad$
    b. En déduire le tableau de variation de la fonction $f$ sur $]0;+\infty[$.
    On y fera figurer la valeur exacte de l’extremum de $f$ sur $]0;+\infty[$ et les limites.
    $\quad$
    c. Justifier que pour tout $x\in ]0;1[$, $f(x)\in ]0;1[$.
    $\quad$
  3. a. Déterminer une équation de la tangente $(T)$ à la courbe $C_f$ au point d’abscisse $1$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $]0;+\infty[$.
    $\quad$
    c. En déduire que pour tout réel $x$ strictement positif $$f(x)\pg x$$
    $\quad$
  4. On définit la suite $\left(u_n\right)$ par son premier terme $u_0$ élément de l’intervalle $]0;1[$ et pour tout entier naturel $n$ : $$u_{n+1}=f\left(u_n\right)$$
    a. Démontrer par récurrence que pour tout entier naturel $n$, on a $0<u_n<1$.
    $\quad$
    b. Déduire de la question 3c la croissance de la suite $\left(u_n\right)$.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $Oijk$.

On considère les points $A(3;-2;2)$, $B(6;1;5)$, $C(6;-2;-1)$ et $D(0;4;-1)$.

On rappelle que le volume d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{A}\times h$$
où $\mathscr{A}$ est l’aire de la base et $h$ la hauteur correspondante.

  1. Démontrer que les points $A$, $B$, $C$ et $D$ ne sont pas coplanaires.
    $\quad$
  2. a. Montrer que le triangle $ABC$ est rectangle.
    $\quad$
    b. Montrer que la droite $(AD)$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. En déduire le volume du tétraèdre $ABCD$.
    $\quad$
  3. On considère le point $H(5;0;1)$.
    a. Montrer qu’il existe des réels $\alpha$ et $\beta$ tels que $\vect{BH}=\alpha \vect{BC}+\beta\vect{BD}$.
    $\quad$
    b. Démontrer que $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c. En déduire la distance du point $A$ au plan $(BCD)$.
    $\quad$
  4. Déduire des questions précédentes l’aire du triangle $BCD$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Une urne contient des jetons blancs et noirs tous indiscernables au toucher.

Une partie consiste à prélever au hasard successivement et avec remise deux jetons de cette urne.

On établit la règle de jeu suivante :

  • un joueur perd $9$ euros si les deux jetons tirés sont de couleur blanche;
  • un joueur perd $1$ euro si les deux jetons tirés sont de couleur noire;
  • un joueur gagne $5$ euros si les deux jetons tirés sont de couleurs différentes.
  1. On considère que l’urne contient $2$ jetons noirs et $3$ jetons blancs.
    a. Modéliser la situation à l’aide d’un arbre pondéré.
    $\quad$
    b. Calculer la probabilité de perdre $9$ € sur une partie.
    $\quad$
  2. On considère maintenant que l’urne contient $3$ jetons blancs et au moins deux jetons noirs mais on ne connait pas le nombre exact de jetons noirs. On appellera $N$ le nombre de jetons noirs.
    a. Soit $X$ la variable aléatoire donnant le gain du jeu pour une partie.
    Déterminer la loi de probabilité de cette variable aléatoire.
    $\quad$
    b. Résoudre l’inéquation pour $x$ réel : $$-x^2+30x-81>0$$
    $\quad$
    c. En utilisant le résultat de la question précédente, déterminer le nombre de jetons noirs que l’une doit contenir afin que ce jeu soit favorable au joueur.
    $\quad$
    d. Combien de jetons noirs le joueur doit-il demander afin d’obtenir un gain moyen maximal?
    $\quad$
  3. On observe $10$ joueurs qui tentent leur chance en effectuant une partie de ce jeu, indépendamment les uns des autres. On suppose que $7$ jetons noirs ont été placés dans l’urne (avec $3$ jetons blancs). Quelle est la probabilité d’avoir au moins $1$ joueur gagnant $5$ euros?
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 11 mai 2022

Centres étrangers – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $\quad$
    $\begin{align*} f(x)=2~022 &\ssi \ln\left(1+x^2\right)=2~022\\
    &\ssi 1+x^2=\e^{2~022} \\
    &\ssi x^2=\e^{2~022}-1 \end{align*}$
    Or $\e^{2~022}-1>0$
    Les solutions de l’équation $x^2=\e^{2~022}-1$ sont donc $\sqrt{\e^{2~022}-1}$ et $-\sqrt{\e^{2~022}-1}$.
    Réponse C
    $\quad$
  2. La fonction $g$ dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g'(x)&=\ln(x)+x\times \dfrac{1}{x}-2x \\
    &=\ln(x)+1-2x\end{align*}$
    La fonction $g’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g\dsec(x)&=\dfrac{1}{x}-2 \\
    &=\dfrac{1-2x}{x}\end{align*}$
    Sur $]0;+\infty[$, $g\dsec(x)$ ne dépend que du signe de $1-2x$.
    Or $1-2x>0\ssi -2x>-1 \ssi x<\dfrac{1}{2}$ et $1-2x=0 \ssi x=\dfrac{1}{2}$.
    Ainsi $g\dsec(x)$ s’annule en changeant de signes qu’une seule fois pour $x=\dfrac{1}{2}$.
    La courbe $C_g$ admet donc exactement un point d’inflexion sur $]0;+\infty[$.
    Réponse C
    $\quad$
  3. Pour tout réel $x\in ]-1;1[$ on a $f(x)=-\dfrac{1}{2}\times \dfrac{-2x}{1-x^2}$
    On reconnaît une dérivée de la forme $\dfrac{u’}{u}$ dont une primitive est $\ln(u)$ avec $u(x)=1-x^2$.
    Une primitive de $f$ est donc la fonction $g$ définie sur $]-1;1[$ par $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$.
    Réponse A
    $\quad$
  4. La fonction $\ln$ est définie sur $]0;+\infty[$.
    $-x^2-x+6$ a pour discriminant $\Delta = 25>0$.
    Les solutions de l’équation $-x^2-x+6=0$ sont $x_1=2$ et $x_2=-3$.
    Le coefficient principal est $a=-1<0$.
    Ainsi $-x^2-x+6>0$ sur $]-3;2[$.
    Réponse A
    $\quad$
  5. La fonction $f$ est dérivable sur $]0,5;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout réel $x\in ]0,5;+\infty[$ on a $f'(x)=-2x-4+\dfrac{6}{2x-1}$
    Par conséquent $f'(1)=4$ et $f(1)=-3$.
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est $y=4(x-1)-3$ soit $y=4x-7$.
    Réponse A
    $\quad$
    Remarque : On pouvait se contenter de calculer $f'(1)$ car tous les coefficients directeurs fournis sont différents les uns des autres. Le reste du calcul permet de vérifier que l’ordonnée à l’origine est bien égale à ce qui est proposé.
     $\quad$
  6. $x+3>0\ssi x>-3$ et $x+1>0\ssi x>-1$.
    L’inégalité n’est donc définie que sur $]-1;+\infty[$.
    $\begin{align*} \ln(x+3)<2\ln(x+1)&\Rightarrow \ln(x+3) <\ln\left((x+1)^2\right) \\
    &\Rightarrow x+3<(x+1)^2 \\
    &\Rightarrow x+3<x^2+2x+1\\
    &\Rightarrow x^2+x-2>0\end{align*}$
    Le discriminant est $\Delta=9>0$.
    Les solutions de $x^2+x-2=0$ sont donc $-2$ et $1$.
    Le coefficient principal est $a=1>0$ donc $x^2+x-2>0$ sur $]-\infty;-2[\cup]1;+\infty[$.
    Ainsi
    $\begin{align*} \mathscr{S}&=]-1;+\infty[ \cap \left(]-\infty;-2[\cup]1;+\infty[\right) \\
    &=]1;+\infty[\end{align*}$
    Réponse B
    $\quad$

Ex 2

Exercice 2

  1. Calcul d’un angle
    a.
    On a $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    $\dfrac{-3}{-2}=1,5$ et $\dfrac{-1}{2}=-0,5$. Or $1,5\neq -0,5$.
    Les deux vecteurs ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b.
    $\begin{align*} AB&=\sqrt{(-2)^2+2^2+(-2)^2} \\
    &=\sqrt{12} \\
    &=2\sqrt{3}\end{align*}$
    $\begin{align*} AC&=\sqrt{(-3)^2+(-1)^2+(-1)^2} \\
    &=\sqrt{11}\end{align*}$
    $\quad$
    c.
    $\begin{align*} \vect{AB}.\vect{AC}&=-2\times (-3)+2\times (-1)+(-2)\times (-1) \\
    &=6\end{align*}$
    $\quad$
    $\begin{align*} \vect{AB}.\vect{AC}=AB\times AC\times \cos\left(\widehat{BAC}\right) &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{\vect{AB}.\vect{AC}}{AB\times AC} \\
    &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{6}{2\sqrt{3}\times \sqrt{11}} \\
    &=\dfrac{3}{\sqrt{33}}\end{align*}$
    Par conséquent $\widehat{BAC}\approx 58,5$°
    $\quad$
  2. Calcul d’une aire
    a.
    $\vect{AB}$ est donc un vecteur normal au plan $P$
    Une équation de $P$ est donc de la forme $-2x+2y-2z+d=0$.
    $C(-1;-1;2)$ appartient à $P$. Donc $2-2-4+d=0 \ssi d=4$.
    Une équation cartésienne de $P$ est $-2x+2y-2z+4=0$ ou encore $-x+y-z+2=0$.
    $\quad$
    b. Une représentation paramétrique de la droite $(AB)$ est $\begin{cases} x=2-2t\\y=2t\\z=3-2t\end{cases}$.
    $\quad$
    c.
    $\begin{align*}\begin{cases} x=2-2t\\y=2t\\z=3-2t\\-x+y-z+2=0\end{cases} &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-(2-2t)+2t-(3-2t)+2=0\end{cases} \\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-2+2t+2t-3+2t+2=0\end{cases}\\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\6t =3\end{cases}\\
    &\ssi \begin{cases} x=\dfrac{1}{2}\\x=1\\y=1\\z=2\end{cases}\end{align*}$
    Le point $E$ a donc pour coordonnées $(1;1;2)$.
    $\quad$
    d. L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{1}{2}\times AB\times AC\times \sin\left(\widehat{ABC}\right) \\
    &=\dfrac{1}{2}\times 2\sqrt{3}\times \sqrt{11}\times \sin\left(\widehat{ABC}\right) \\
    &=\sqrt{33}\times \sin\left(\widehat{ABC}\right)\\
    &=2\sqrt{6}\\
    &\approx 4,899\end{align*}$
    $\quad$
    Remarque : Pour calculer la valeur exacte de $\sin\left(\widehat{ABC}\right)$ on peut utiliser la propriété suivante : pour tout réel $x$, $\sin^2x+\cos^2 x=1$, connaissant la valeur de $\cos\left(\widehat{ABC}\right)=\dfrac{3}{\sqrt{33}}$
    On a donc $\sin^2\left(\widehat{ABC}\right)+\dfrac{9}{33}=1$ soit $\sin^2\left(\widehat{ABC}\right)=\dfrac{8}{11}$.
    Or $\sin\left(\widehat{ABC}\right)>0$ (sinon l’aire est négative!) donc $\sin\left(\widehat{ABC}\right)=\dfrac{2\sqrt{2}}{\sqrt{11}}$
    $\quad$
  3. Calcul d’un volume
    a.
    $\vect{AF}(-1;-1;0)$ or $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    Par conséquent (après résolution d’un système éventuellement) $\vect{AF}=-\dfrac{1}{4}\vect{AB}+\dfrac{1}{2}\vect{AC}$.
    Ainsi, les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. $\vect{FD}(2;-2;-4)$.
    $\begin{align*} \vect{FD}.\vect{AB}&=2\times (-2)-2\times 2-4\times (-2) \\
    &=0\end{align*}$
    $\begin{align*} \vect{FD}.\vect{AC}&=2\times (-3)-2\times (-1)-4\times (-1) \\
    &=0\end{align*}$
    Le vecteur $\vect{FD}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    $(FD)$ est orthogonale au plan $(ABC)$.
    c.
    $\begin{align*} FD&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    Le volume de $ABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times FD\times \mathscr{A} \\
    &=8\end{align*}$
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. $\lim\limits_{x\to -\infty} \e^x=0$ et $\lim\limits_{x\to -\infty} -x=+\infty$ donc $\lim\limits_{x\to -\infty} h(x)=+\infty$
    Pour tout réel $x$, $h(x)=\e^x\left(1-\dfrac{x}{\e^x}\right)$. $\lim\limits_{x\to +\infty} \e^x=+\infty$ et par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$.
    Donc $\lim\limits_{x\to +\infty} h(x)=+\infty$
    $\quad$
  2. La fonction $h$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $h'(x)=\e^x-1$.
    Or $\e^x-1=0 \ssi x=0$ et $\e^x-1>0 \ssi x>0$.
    La fonction $h$ est donc strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;+\infty[$.
    On obtient alors le tableau de variations suivant :$\quad$
  3. La fonction $h$ est strictement croissante sur $[0;+\infty[$.
    Donc, pour tous réels $a$ et $b$ tels que $0\pp a\pp b$ on a $h(a)\pp h(b)$ c’est-à-dire $h(a)-h(b) \pp 0$.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $\R$ en tant que fonction exponentielle.
    Pour tout réel $x$ on a $f'(x)=\e^x$.
    $f(0)=1$ et $f'(0)=1$.
    Une équation de $T$ est donc $y=x+1$.
    $\quad$
  2. $\lim\limits_{n\to +\infty } \dfrac{1}{n}=0$ et $\lim\limits_{x\to 0} \e^x=1$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  3. a. Soit $n$ un entier naturel non nul.
    $\begin{align*} u_{n+1}-u_n&=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-1-\left(\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1\right) \\
    &=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-\exp\left(\dfrac{1}{n}\right)+\dfrac{1}{n} \\
    &=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ non nul on a $\dfrac{1}{n+1}<\dfrac{1}{n}$.
    Donc d’après la question A.3. $h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\pp 0$.
    Donc $u_{n+1}-u_n\pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  4. D’après le tableau de valeurs $u_n<10^{-2}$ à partir de $n=8$.
    C’est donc à partir de $n=8$ que l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

Ex 4

Exercice 4

  1. On obtient le tableau suivant :
    $\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&0,05&0,15&0,2\\
    \hline
    \conj{B}&0,05&0,75&0,8 \\
    \hline
    \text{Total}&0,1&0,9&1\\
    \hline
    \end{array}$
    $\quad$
  2. a. On veut calculer
    $\begin{align*} P(A\cup B)&=1-P\left(\conj{A}\cap \conj{B}\right) \\
    &=1-0,75 \\
    &=0,25\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour au moins un des deux traitements est donc égale à $0,25$.
    $\quad$
    b. On veut calculer $P(A\cap B)=0,05$.
    La probabilité qu’une paire de verres présente un défaut pour les deux traitements est donc égale à $0,05$.
    $\quad$
    c. $P(A)\times P(B)=0,02$ et $P(A\cap B)=0,05$.
    Donc $P(A)P(B)\neq P(A\cap B)$
    Les événements $A$ et $B$ ne sont pas indépendants.
    $\quad$
  3. On veut calculer
    $\begin{align*} P\left(A\cap \conj{B}\right)+P\left(B\cap \conj{A}\right) &=0,15+0,05 \\
    &=0,2\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour un seul des deux traitements est donc égale à $0,2$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_A(B)&=\dfrac{P(A\cap B)}{P(A)} \\
    &=\dfrac{0,05}{0,1} \\
    &=0,5\end{align*}$
    La probabilité qu’une paire de verres présente un défaut de traitement T2 sachant qu’elle présente un défaut de traitement T1 est égale à $0,5$.
    $\quad$

Partie B

  1. On répète indépendamment $50$ fois la même expérience de Bernoulli. $X$ compte le nombre de paires de verres qui présentent le défaut pour le traitement T1.
    Donc $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,1$.
    $\quad$
  2. On veut calculer
    $\begin{align*} P(X=10)&=\dbinom{50}{10}\times 0,1^{10} \times (1-0,1)^{50-10} \\
    &\approx 0,015\end{align*}$
    La probabilité qu’exactement $10$ paires de verres présentent ce défaut dans l’échantillon est environ égale à $0,015$.
    $\quad$
  3. L’espérance de $X$ est $E(X)=50\times 0,1=5$.
    Ainsi, en moyenne, on peut trouver $5$ paires de verres ayant ce défaut dans un échantillon de $50$ paires.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction logarithme

Cet exercice est un questionnaire d choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Les six questions sont indépendantes.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $f$ définie pour tout réel $x$ par $f(x)=\ln\left(1+x^2\right)$.
    Sur $\R$, l’équation $f(x)=2~022$
    a. n’admet aucune solution.
    b. admet exactement une solution.
    c. admet exactement deux solutions.
    d. admet une infinité de solutions.
    $\quad$
  2. Soit la fonction $g$ définie pour tout réel $x$ strictement positif par : $$g(x) = x \ln(x)− x^2$$
    On note $\mathscr{C}_g$ sa courbe représentative dans un repère du plan.
    a. La fonction $g$ est convexe sur $]0 ; +\infty[$.
    b. La fonction $g$ est concave sur $]0 ; +\infty[$.
    c. La courbe $\mathscr{C}_g$ admet exactement un point
    d’inflexion sur $]0 ; +\infty[$.
    d. La courbe $\mathscr{C}_g$ admet exactement deux
    points d’inflexion sur $]0 ; +\infty[$.
    $\quad$
  3. On considère la fonction $f$ définie sur $]-1;1[$ par $$f(x)=\dfrac{x}{1-x^2}$$
    Une primitive de la fonction $f$ est la fonction $g$ définie sur l’intervalle $]-1;1[$ par :
    a. $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$
    b. $g(x)=\dfrac{1+x^2}{\left(1-x^2\right)^2}$
    c. $g(x)=\dfrac{x^2}{2\left(x-\dfrac{x^3}{3}\right)}$
    d. $g(x)=\dfrac{x^2}{2}\ln\left(1-x^2\right)$
    $\quad$
  4. La fonction $x\mapsto \ln\left(-x^2-x+6\right)$ est définie sur
    a. $]-3;2[$
    b. $]-\infty;6[$
    c. $]0;+\infty[$
    d. $]2;+\infty[$
    $\quad$
  5. On considère la fonction $f$ définie sur $]0,5;+\infty[$ par $$f(x)=x^2-4x+3\ln(2x-1)$$
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est :
    a. $y=4x-7$
    b. $y=2x-4$
    c. $y=-3(x-1)+4$
    d. $y=2x-1$
    $\quad$
  6. L’ensemble $\mathscr{S}$ des solutions dans $\R$ de l’inéquation $\ln(x+3)<2\ln(x+1)$ est :
    a. $\mathscr{S}=]-\infty;-2[\cup]1;+\infty[$
    b. $\mathscr{S}=]1;+\infty[$
    c. $\mathscr{S}=\emptyset$
    d. $\mathscr{S}=]-1;1[$
    $\quad$

$\quad$

Exercice 2     7 points

Thème : Géométrie dans l’espace

Dans l’espace, rapporté à un repère orthonormé $\Oijk$, on considère les points : $$A(2;0;3),~B(0;2;1),~C(-1;-1;2) \text{ et } D(3;-3;-1)$$

  1. Calcul d’un angle.
    a.
     Calculer les coordonnées des vecteurs $\vect{AB}$ et
    $\vect{AC}$ et en déduire que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b. Calculer les longueurs $AB$ et $AC$.
    $\quad$
    c. À l’aide du produit scalaire $\vect{AB}.\vect{AC}$, déterminer la valeur du cosinus de l’angle $\widehat{BAC}$ puis donner une valeur approchée de la mesure de l’angle $\widehat{BAC}$ au dixième de degré.
    $\quad$
  2. Calcul d’une aire.
    a.
    Déterminer une équation du plan $P$ passant par le point $C$ et perpendiculaire à la droite $(AB)$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(AB)$.
    $\quad$
    c. En déduire les coordonnées du projeté orthogonal $E$ du point $C$ sur la droite $(AB)$, c’est-à-dire du point d’intersection de la droite $(AB)$ et du plan $P$.
    $\quad$
    d. Calculer l’aire du triangle $ABC$.
    $\quad$
  3. Calcul d’un volume.
    a.
    Soit le point $F(1 ; −1 ; 3)$. Montrer que les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. Vérifier que la droite $(FD)$ est orthogonale au plan $(ABC)$.
    $\quad$
    c. Sachant que le volume d’un tétraèdre est égal au tiers de l’aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre $ABCD$.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonction exponentielle et suite

Partie A :

Soit $h$ la fonction définie sur $\R$ par $$h(x)=\e^x-x$$

  1. Déterminer les limites de $h$ en $-\infty$ et $+\infty$.
    $\quad$
  2. Étudier les variations de $h$ et dresser son tableau de variation.
    $\quad$
  3. En déduire que :
    si $a$ et $b$ sont deux réels tels que $0\pp a\pp b$ alors $h(a)-h(b)\pp 0$.
    $\quad$

Partie B :

Soit $f$ la fonction définie sur $\R$ par $$f(x)=\e^x$$

On note $C_f$ sa courbe représentative dans un repère $\Oij$.

  1. Déterminer une équation de la tangente $T$ à $C_f$ au point d’abscisse $0$.

Dans la suite de l’exercice on s’intéresse à l’écart entre $T$ et $C_f$ au voisinage de $0$. Cet écart est défini comme la différence des ordonnées des points de $T$ et $C_f$ de même abscisse.

On s’intéresse aux points d’abscisse $\dfrac{1}{n}$, avec $n$ entier naturel non nul.

On considère alors la suite $\left(u_n\right)$ définie pour tout entier naturel non nul $n$ par : $$u_n=\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1$$

  1. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$
  2. a. Démontrer que, pour tout entier naturel non nul $n$, $$u_{n+1}-u_n=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)$$
    où $h$ est la fonction définie à la partie A.
    $\quad$
    b. En déduire le sens de variation de la suite $\left(u_n\right)$.
    $\quad$
  3. Le tableau ci-dessous donne des valeurs approchées à $10^{-9}$ des premiers termes de la suite $\left(u_n\right)$.
    $$\begin{array}{|c|c|}
    \hline
    n &u_n \\ \hline
    1 &0,718281828\\ \hline
    2& 0,148721271\\ \hline
    3& 0,062279092 \\ \hline
    4& 0,034025417\\ \hline
    5& 0,021402758\\ \hline
    6& 0,014693746\\ \hline
    7& 0,010707852\\ \hline
    8& 0,008148453\\ \hline
    9& 0,006407958\\ \hline
    10& 0,005170918\\ \hline
    \end{array}$$
    Donner la plus petite valeur de l’entier naturel $n$ pour laquelle l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Les parties A et B peuvent être traitées de façon indépendante.

Au cours de la fabrication d’une paire de lunettes, la paire de verres doit subir deux traitements notés T1 et T2.

Partie A

On prélève au hasard une paire de verres dans la production.

On désigne par $A$ l’évènement : « la paire de verres présente un défaut pour le traitement T1 ».

On désigne par $B$ l’évènement : « la paire de verres présente un défaut pour le traitement T2 ».

On note respectivement $\conj{A}$ et $\conj{B}$ les évènements contraires de $A$ et $B$.

Une étude a montré que :

  •  la probabilité qu’une paire de verres présente un défaut pour le traitement T1 notée $P(A)$ est égale à $0,1$.
  • la probabilité qu’une paire de verres présente un défaut pour le traitement T2 notée $P(B)$ est égale à $0,2$.
  • la probabilité qu’une paire de verres ne présente aucun des deux défauts est $0,75$.
  1. Recopier et compléter le tableau suivant avec les probabilités correspondantes $$\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \conj{B}&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \text{Total}&\phantom{123}&\phantom{123}&1\\
    \hline
    \end{array}$$
    $\quad$
  2. a. Déterminer, en justifiant la réponse, la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour au moins un des deux traitements T1 ou T2.
    $\quad$
    b. Donner la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente deux défauts, un pour chaque traitement T1 et T2.
    $\quad$
    c. Les évènements A et B sont-ils indépendants ? Justifier la réponse.
    $\quad$
  3. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour un seul des deux traitements.
    $\quad$
  4. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour le traitement T2, sachant que cette paire de verres présente un défaut pour le traitement T1.
    $\quad$

Partie B

On prélève, au hasard, un échantillon de $50$ paires de verres dans la production. On suppose que la production est suffisamment importante pour assimiler ce prélèvement à un tirage avec remise. On note $X$ la variable aléatoire qui, à chaque échantillon de ce type, associe le nombre de paires de verres qui présentent le défaut pour le traitement T1.

  1. Justifier que la variable aléatoire $X$ suit une loi binomiale et préciser les paramètres de cette loi.
    $\quad$
  2. Donner l’expression permettant de calculer la probabilité d’avoir, dans un tel échantillon, exactement $10$ paires de verres qui présentent ce défaut.
    Effectuer ce calcul et arrondir le résultat à $10^{-3}$.
    $\quad$
  3. En moyenne, combien de paires de verres ayant ce défaut peut-on trouver dans un échantillon de $50$ paires ?
    $\quad$

 

Bac – Spécialité mathématiques – Polynésie – sujet 2 – 5 mai 2022

Polynésie – 5 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1     7 points

Thèmes : fonctions, primitives

  1. Pour tout $x\in ]0;+\infty[$ on a
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x}-1 \\
    &=\ln(x)\end{align*}$
    Réponse a
    $\quad$
  2. Pour tout réel $x\in ]0;+\infty[$ on a $g(x)=x^2-x^2\ln(x)$
    Or $\lim\limits_{x\to 0} x^2=0$ et, par croissances comparées, $\lim\limits_{x\to 0} x^2\ln(x)=0$.
    Donc $\lim\limits_{x\to 0} g(x)=0$.
    Réponse c
    $\quad$
  3. Pour tout réel $x$ on a $f(x)=x\left(x^2-0,9x-0,1\right)$
    $f(x)=0\ssi x=0$ ou $x^2-0,9x-0,1=0$.
    Le discriminant de $x^2-0,9x-0,1$ est $\Delta=(-0,9)^2-4\times \times 1\times (-0,1)=1,21>0$.
    L’équation $x^2-0,9x-0,1=0$ possède donc deux solutions distinctes. $0$ n’est pas solution de cette équation.
    Ainsi l’équation $f(x)=0$ admet exactement $3$ solutions.
    Réponse d
    $\quad$
  4. On considère la fonction $K$ définie sur $\R$ par $K(x)=\dfrac{1}{2}H(2x)$
    La fonction $K$ est dérivable sur $\R$ en tant que composée de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*} K'(x)&=\dfrac{1}{2}\times 2H'(2x)\\
    &=H'(2x) \\
    &=h(2x)\\
    &=k(x)\end{align*}$
    Réponse c
    $\quad$
  5. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables.
    Pour tout réel $x$ on a
    $\begin{align*}f'(x)&=\e^x+x\e^x \\
    &=(1+x)\e^x\end{align*}$
    Donc $f'(1)=2\e$.
    De plus $f(1)=\e$.
    Une équation de la tangente au point d’abscisse $1$ de la courbe de la fonction $f$ est donc $y=2\e(x-1)+\e$
    Soit $y=2\e x-\e$.
    Réponse b
    $\quad$
  6. $\quad$
    $\begin{align*} (0,2)^n<0,001&\ssi n\ln(0,2)<\ln(0,001) \\
    &\ssi n>\dfrac{\ln(0,001)}{\ln(0,2)}\qquad \text{(car $\ln(0,2)<0$)}\end{align*}$
    Or $\dfrac{\ln(0,001)}{\ln(0,2)}\approx 4,29$.
    L’ensemble solution de l’inéquation est donc l’ensemble des entiers naturels supérieurs ou égaux à $5$.
    Réponse d
    $\quad$

Ex 2

Exercice 2     7 points

Thème : probabilités

Partie 1

  1. On a $P(C)=0,2$ et $P_C(D)=0,1$
    Donc
    $\begin{align*} P(C\cap D)&=P(C)\times P_C(D) \\
    &=0,2\times 0,1\\
    &=0,02\end{align*}$
    $\quad$
  2. $\left(C,\conj{C}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales :
    $\begin{align*} P(D)&=P(C\cap D)+P\left(\conj{C}\cap D\right) \\
    &=0,02+P\left(\conj{C}\right)\times P_{\conj{C}}(D) \\
    &=0,02+0,8\times 0,02 \\
    &=0,036\end{align*}$
    $\quad$
  3. On veut calculer
    $\begin{align*} P_D(C)&=\dfrac{P(C\cap D)}{P(D)} \\
    &=\dfrac{0,02}{0,036} \\
    &=\dfrac{5}{9}\end{align*}$
    La probabilité que le casque soit contrefait sachant qu’il a un défaut est égale à $\dfrac{5}{9}$.
    $\quad$

Partie 2

  1. a. On répète $35$ fois la même expérience de Bernoulli de paramètre $0,036$. $X$ est égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n=35$ et $p=0,036$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X=1)&=\dbinom{35}{1}\times 0,036^1\times (1-0,036)^{35-1} \\
    &=35\times 0,036\times 0,964^{34} \\
    &\approx 0,362\end{align*}$
    La probabilité qu’il y ait parmi les casques commandés exactement un casque présentant un défaut de conception est environ égale à $0,362$.
    $\quad$
    c. 
    $\begin{align*}P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=0,964^{35}+35\times 0,036\times 0,964^{34} \\
    &\approx 0,639\end{align*}$
    $\quad$
  2. On répète $n$ fois la même expérience de Bernoulli de paramètre $0,036$. On appelle $Y$ la variable aléatoire égale au nombre de casques présentant un défaut de conception.
    Donc $X$ suit la loi binomiale de paramètres $n$ et $p=0,036$.
    $\begin{align*} P(Y\pg 1)>0,99 &\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01  \\
    &\ssi 0,964^n <0,01 \\
    &\ssi n\ln(0,964)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,964)} \qquad \text{(car $\ln(0,964)<0$)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,964)} \approx 125,6$.
    Il faut donc commander au moins $126$ casques pour que la probabilité qu’au moins un casque présente un défaut soit supérieure à $0,99$.
    $\quad$

Ex 3

Exercice 3     7 points

Thème : suites, fonctions

  1. $\quad$
    $\begin{align*} u_1&=0,008u_1\left(200-u_1\right) \\
    &=0,008\times 40(200-40)\\
    &=51,2\end{align*}$
    Selon ce modèle il y avait environ $52$ oiseaux dans la colonie au début de l’année 2022.
    $\quad$
  2. $\quad$
    $\begin{align*}
    f(x)=x&\ssi 0,008x(200-x)=x \\
    &\ssi 0,008x(200-x)-x=0 \\
    &\ssi x\left(0,008(200-x)-1\right)=0 \\
    &\ssi x(1,6-0,008x-1)=0 \\
    &\ssi (0,6-0,008x)=0\\
    &\ssi x=0 \text{ ou } 0,6-0,008x=0 \\
    &\ssi x=0 \text{ ou } x=\dfrac{0,6}{0,008} \\
    &\ssi x=0 \text{ ou } x=75 \end{align*}$
    Les solutions de l’équation $f(x)=x$ sont donc $0$ et $75$.
    $\quad$
  3. a. Il y a au moins deux méthodes pour répondre à la question :
    – étudier le signe de $f'(x)$;
    – utiliser les propriétés sur les variations des fonctions polynômes du second degré (ce qui va être fait ici)
    Pour tout réel $x$ on a
    $f(x)=-0,008x^2+1,6x$
    Le coefficient principal est $a=-0,008<0$.
    Ainsi $f$ admet un maximum au point d’abscisse $\dfrac{-1,6}{2\times (-0,008)} =100$.
    La fonction est donc strictement croissante sur l’intervalle $[0;100]$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
    b. Pour tout entier naturel $n$ on a $u_{n+1}=0,008u_n\left(200-u_n\right)$
    Donc $u_{n+1}=f\left(u_n\right)$.
    Pour tout entier naturel $n$ on pose $P(n):~0\pp u_n \pp u_{n+1}\pp 100$.
    Initialisation : $u_0=40$ et $u_1=51,2$. Or $0\pp 40\pp 51,2\pp 100$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0\pp u_n \pp u_{n+1} \pp 100$.
    La fonction $f$ est croissante sur $[0;100]$.
    Donc $f(0) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(100)$
    Soit $0\pp u_{n+1} \pp u_{n+2} \pp 80\pp 100$. $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout entier naturel $n$, $0\pp u_n \pp u_{n+1} \pp 100$.
    $\quad$
    c. La suite $\left(u_n\right)$ est donc croissante et majorée par $100$.
    Elle converge donc vers un réel $\ell$.
    $\quad$
    d. La fonction $f$ est continue sur $[0;100]$.
    Donc $\ell$ est solution de l’équation $f(x)=x$ dont l’unique solution est $75$ d’après la question 2.
    Ainsi $\ell=75$.
    Cela signifie que sur le long terme la colonie comptera $75$ individus.
    $\quad$
  4. La fonction renvoie l’année où la population dépasse la valeur $p$ envoyée en paramètre.
    La suite $\left(u_n\right)$ est majorée par $75$. Elle ne peut donc pas prendre de valeurs supérieures à $100$.
    Cela explique donc pourquoi $\texttt{seuil(100)}$ ne renvoie aucune valeur.
    Remarque : On se retrouve dans une boucle infinie!
    $\quad$

Ex 4

Exercice 4     7 points

Thème : géométrie dans le plan et l’espace

Partie 1. Première méthode

  1. On a $A(0;0;0)$ , $B(1;0;0)$ et $G(1;1;1)$.
    $\quad$
  2. $\vect{BK}\left(-1;\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\vect{AI}\left(\dfrac{1}{2};0;1\right)$ et $\vect{AG}(1;1;1)$.
    Les vecteurs $\vect{AI}$ et $\vect{AG}$ ne sont pas colinéaires.
    $\begin{align*} \vect{BK}.\vect{AI}&=-1\times \dfrac{1}{2}+\dfrac{1}{2}\times 0+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    $\begin{align*} \vect{BK}.\vect{AG}&=-1\times 1+\dfrac{1}{2}\times 1+\dfrac{1}{2}\times 1 \\
    &=0\end{align*}$
    Le vecteur $\vect{BK}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(AIG)$.
    Par conséquent la droite $(BK)$ est orthogonale au plan $(AIG)$.
    $\quad$
  3. $-2\vect{BK}(2;-1;-1)$ est normal au plan $(AIG)$.
    Une équation cartésienne du plan $(AIG)$ est donc de la forme $2x-y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan donc $d=0$.
    Ainsi, une équation cartésienne du plan $(AIG)$ est $2x-y-z=0$.
    $\quad$
  4. Une représentation paramétrique de la droite $(BK)$ est :
    $\begin{cases} x=1+2t\\y=-t\\z=-t\end{cases} \qquad ,\forall t\in \R$.
    Remarque : plutôt que de prendre le vecteur $\vect{BK}$ comme vecteur directeur, on peut choisir $2\vect{BK}$ dont les coordonnées sont entières.
    $\quad$
  5. $2\times \dfrac{1}{3}-\dfrac{1}{3}-\dfrac{1}{3}=0$ donc $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ appartient au plan $(AIG)$.
    En prenant $t=-\dfrac{1}{3}$ dans la représentation paramétrique de la droite $(BK)$ on retrouve les coordonnées du point $L$.
    Ainsi $L$ appartient à la fois à la droite $(BK)$ et au plan $(AIG)$.
    $L\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$ est le projeté orthogonal du point $B$ sur le plan $(AIG)$.
    $\quad$
  6. $\vect{BL}\left(-\dfrac{2}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$
    $\begin{align*} BL&=\sqrt{\left(-\dfrac{2}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2} \\
    &=\sqrt{\dfrac{6}{9}} \\
    &=\sqrt{\dfrac{2}{3}}\end{align*}$
    La distance du point $B$ au plan $(AIG)$ est donc égale à $\sqrt{\dfrac{2}{3}}$.
    $\quad$

Partie 2. Deuxième méthode

  1. a. $ABCDEFGH$ est un cube. L’arête $[FG]$ est perpendiculaire au plan $(ABF)$ auquel appartient le point $I$.
    Donc, dans le tétraèdre $ABIG$, $[GF]$ est la hauteur relative à la base $AIB$.
    $\quad$
    b. L’aire de $AIB$ est :
    $\begin{align*} \mathscr{B}&=\dfrac{AE\times AB}{2} \\
    &=\dfrac{1}{2}\end{align*}$
    De plus $GF=1$
    Ainsi, le volume de $ABIG$ est :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times GF\times \mathscr{B} \\
    &=\dfrac{1}{6}\end{align*}$
    $\quad$
  2. Le triangle $AIG$ est donc isocèle en $I$.
    La hauteur issue de $I$ coupe donc le côté $[AG]$ en son milieu $0$.
    Ainsi $AO=\dfrac{\sqrt{3}}{2}$.
    Dans le triangle $AOI$ rectangle en $O$ on applique le théorème de Pythagore.
    $\begin{align*}AI^2=AO^2+OI^2 &\ssi OI^2=AI^2-AO^2 \\
    &\ssi OI^2=\dfrac{5}{4}-\dfrac{3}{4} \\
    &\ssi OI^2=\dfrac{1}{2}\end{align*}$
    Donc $OI=\dfrac{1}{\sqrt{2}}$.
    L’aire du triangle $AIG$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{OI\times AG}{2} \\
    &=\dfrac{\dfrac{1}{\sqrt{2}}\times \sqrt{3}}{2} \\
    &=\dfrac{\sqrt{3}}{2\sqrt{2}} \\
    &=\dfrac{\sqrt{6}}{4}\end{align*}$
    $\quad$
  3. On appelle $h$ la longueur de la hauteur issue de $B$ dans le tétraèdre $ABIG$
    Ainsi
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times h\times \mathscr{A} &\ssi
    \dfrac{1}{6}=\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}h\\
    &\ssi h=\dfrac{\dfrac{1}{6}}{\dfrac{1}{3}\times \dfrac{\sqrt{6}}{4}} \\
    &\ssi h=\dfrac{\sqrt{6}}{3}\end{align*}$
    On retrouve bien la valeur trouvée à la question 6. puisque :
    $\begin{align*} \sqrt{\dfrac{2}{3}}&=\sqrt{\dfrac{2}{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}} \\
    &=\dfrac{\sqrt{6}}{3}\end{align*}$
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices
Chaque exercice est noté sur 7 points (le total sera ramené sur 20 points).
Les traces de recherche, même incomplètes ou infructueuses, seront prises en compte.

Exercice 1     7 points

Thèmes : fonctions, primitives, probabilités

Cet exercice est un questionnaire à choix multiples. Pour chacune des six questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $f$ définie et dérivable sur $] 0 ;+\infty[$ par :
    $$
    f(x)=x \ln (x)-x+1
    $$
    Parmi les quatre expressions suivantes, laquelle est celle de la fonction dérivée de $f$ ?
    a. $\ln (x)$
    b. $\dfrac{1}{x}-1$
    c. $\ln (x)-2$
    d. $\ln (x)-1$
    $\quad$
  2. On considère la fonction $g$ définie sur $] 0 ;+\infty[$ par $g(x)=x^2\left[1-\ln (x)\right]$. Parmi les quatre affirmations suivantes, laquelle est correcte?
    a. $\lim\limits_{x \to 0} g(x)=+\infty$
    b. $\lim\limits_{x \to 0} g(x)=-\infty$
    c. $\lim\limits_{x  \to 0} g(x)=0$
    d. La fonction $g$ n’admet pas de limite en $0$.
    $\quad$
  3. On considère la fonction $f$ définie sur $\mathbb{R}$ par $f(x)=x^3-0,9 x^2-0,1 x$.
    Le nombre de solutions de l’équation $f(x)=0$ sur $\mathbb{R}$ est :
    a. $0$
    b. $1$
    c. $2$
    d. $3$
    $\quad$
  4. Si $H$ est une primitive d’une fonction $h$ définie et continue sur $\mathbb{R}$, et si $k$ est la fonction définie sur $\mathbb{R}$ par $k(x)=h(2x)$, alors, une primitive $K$ de $k$ est définie sur $\mathbb{R}$ par :
    a. $K(x)=H(2 x)$
    b. $K(x)=2 H(2 x)$
    c. $K(x)=\dfrac{1}{2} H(2x)$
    d. $K(x)=2 H(x)$
    $\quad$
  5. L’équation réduite de la tangente au point d’abscisse $1$ de la courbe de la fonction $f$ définie sur $\mathbf{R}$ par $f(x)=x \e^x$ est :
    a. $y=\e x+\e$
    b. $y=2 \e x-\e$
    c. $y=2 \e x+\e$
    d. $y=\e x$
    $\quad$
  6. Les nombres entiers $n$ solutions de l’inéquation $(0,2)^n<0,001$ sont tous les nombres entiers $n$ tels que :
    a. $n \pp 4$
    b. $n \pp 5$
    c. $n \pg 4$
    d. $n \pg 5$
    $\quad$

$\quad$

 

Exercice 2     7 points

Thèmes : probabilités

Les douanes s’intéressent aux importations de casques audio portant le logo d’une certaine marque. Les saisies des douanes permettent d’estimer que :

  • $20 \%$ des casques audio portant le logo de cette marque sont des contrefaçons ;
  • $2 \%$ des casques non contrefaits présentent un défaut de conception ;
  • $10 \%$ des casques contrefaits présentent un défaut de conception.

L’agence des fraudes commande au hasard sur un site internet un casque affichant le logo de la marque. On considère les événements suivants :

  • $C:$ «le casque est contrefait »;
  • $D:$ : le casque présente un défaut de conception “;
  • $\conj{C}$ et $\conj{D}$ désignent respectivement les événements contraires de $C$ et $D$.

Dans l’ensemble de l’exercice, les probabilités seront arrondies à $10^{-3}$ si nécessaire.

Partie 1

  1. Calculer $P(C \cap D)$. On pourra s’appuyer sur un arbre pondéré.
    $\quad$
  2. Démontrer que $P(D)=0,036$.
    $\quad$
  3. Le casque a un défaut. Quelle est la probabilité qu’il soit contrefait ?
    $\quad$

Partie 2
On commande $n$ casques portant le logo de cette marque. On assimile cette expérience à un tirage aléatoire avec remise. On note $X$ la variable aléatoire qui donne le nombre de casques présentant un défaut de conception dans ce lot.

  1. Dans cette question, $n=35$.
    a. Justifier que $X$ suit une loi binomiale $\mathcal{B}(n, p)$ où $n=35$ et $p=0,036$.
    $\quad$
    b. Calculer la probabilité qu’il y ait parmi les casques commandés, exactement un casque présentant un défaut de conception.
    $\quad$
    c. Calculer $P(X \pp 1)$.
    $\quad$
  2. Dans cette question, $n$ n’est pas fixé.
    Quel doit être le nombre minimal de casques à commander pour que la probabilité qu’au moins un casque présente un défaut soit supérieure à $0,99$ ?
    $\quad$

$\quad$

 

Exercice 3     7 points

Thèmes : suites, fonctions

Au début de l’année 2021, une colonie d’oiseaux comptait 40 individus. L’observation conduit à modéliser l’évolution de la population par la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par :
$$
\left\{\begin{aligned}
u_0 & =40 \\
u_{n+1} & =0,008 u_n\left(200-u_n\right)
\end{aligned}\right.
$$
où $u_n$ désigne le nombre d’individus au début de l’année $(2021+n)$.

 

  1. Donner une estimation, selon ce modèle, du nombre d’oiseaux dans la colonie au début de l’année 2022.
    On considère la fonction $f$ définie sur l’intervalle $[0 ; 100]$ par $f(x)=0,008 x(200-x)$.
    $\quad$
  2. Résoudre dans l’intervalle $[0 ; 100]$ l’équation $f(x)=x$.
    $\quad$
  3. a. Démontrer que la fonction $f$ est croissante sur l’intervalle $[0 ; 100]$ et dresser son tableau de variations.
    $\quad$
    b. En remarquant que, pour tout entier naturel $n, u_{n+1}=f\left(u_n\right)$, démontrer par récurrence que, pour tout entier naturel $n$ :
    $$
    0 \pp u_n \pp u_{n+1} \pp 100 .
    $$
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    d. Déterminer la limite $\ell$ de la suite $\left(u_n\right)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  4. On considère l’algorithme suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil(p) :}\\
    \quad \text{n = 0}\\
    \quad \text{u = 40}\\
    \quad \text{while u < p :}\\
    \qquad \text{n = n + 1}\\
    \qquad \text{u = 0.008 * u * (200 – u)}\\
    \quad \text{return (n+2021)}\\
    \hline
    \end{array}$$
    L’exécution de $\text{seuil(100)}$ ne renvoie aucune valeur. Expliquer pourquoi à l’aide de la question 3.
    $\quad$

$\quad$

Exercice 4     7 points

Thèmes : géométrie dans le plan et dans l’espace

On considère le cube $ABCDEFGH$ d’arête de longueur $1$.
L’espace est muni du repère orthonormé $\left(A ; \vect{AB}, \vect{AD}, \vect{AE}\right)$. Le point $I$ est le milieu du segment $[EF]$, $K$ le centre du carré $ADHE$ et $O$ le milieu du segment $[AG]$.

Le but de l’exercice est de calculer de deux manières différentes, la distance du point $B$ au plan $(AIG)$.

Partie 1. Première méthode

  1. Donner, sans justification, les coordonnées des points $A$, $B$, et $G$.
    On admet que les points $I$ et $K$ ont pour coordonnées $I\left(\dfrac{1}{2} ; 0 ; 1\right)$ et $K\left(0 ; \dfrac{1}{2} ; \dfrac{1}{2}\right)$.
    $\quad$
  2. Démontrer que la droite $(BK)$ est orthogonale au plan $(AIG)$.
    $\quad$
  3. Vérifier qu’une équation cartésienne du plan $(AIG)$ est : $2x-y-z=0$.
    $\quad$
  4. Donner une représentation paramétrique de la droite $(BK)$.
    $\quad$
  5. En déduire que le projeté orthogonal $L$ du point $B$ sur le plan $(AIG)$ a pour coordonnées $L\left(\dfrac{1}{3} ; \dfrac{1}{3} ; \dfrac{1}{3}\right)$.
    $\quad$
  6. Déterminer la distance du point $B$ au plan $(AIG)$.
    $\quad$

Partie 2. Deuxième méthode

On rappelle que le volume $V$ d’une pyramide est donné par la formule $V=\dfrac{1}{3} \times b \times h$, où $b$ est l’aire d’une base et $h$ la hauteur associée à cette base.

  1. a. Justifier que dans le tétraèdre $ABIG$, $[GF]$ est la hauteur relative à la base $AIB$.
    $\quad$
    b. En déduire le volume du tétraèdre $ABIG$.
    $\quad$
  2. On admet que $AI=IG=\dfrac{\sqrt{5}}{2}$ et que $AG=\sqrt{3}$.
    Démontrer que l’aire du triangle isocèle $AIG$ est égale à $\dfrac{\sqrt{6}}{4}$ unité d’aire.
    $\quad$
  3. En déduire la distance du point $B$ au plan $(AIG)$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Métropole – sujet 2 – septembre 2021

Métropole – septembre 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1 (4 points)

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. On veut calculer :
    $\begin{align*} p(S\cap I)&=p(S)\times p_S(I) \\
    &=0,08\times 0,9\\
    &=0,072\end{align*}$
    La probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. $\left(S,\conj{S}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*} p(I)&=p(S)p_S(I)+p\left(\conj{S}\right)p_{\conj{S}}(I) \\
    &=0,08\times 0,9+0,92\times 0,01 \\
    &=0,0812\end{align*}$
    La probabilité que le message soit classé indésirable est $0,0812$.
    $\quad$
    c. On veut calculer :
    $\begin{align*} p_I(S)&=\dfrac{p(S)\times p_S(I)}{p(I)} \\
    &=\dfrac{0,08\times 0,9}{0,0812} \\
    &\approx 0,89\end{align*}$
    La probabilité que le message soit du spam sachant qu’il est classé comme indésirable est environ égale à $0,89$.
    $\quad$
  3. a. On effectue $50$ tirages aléatoires, identiques et indépendants. À chaque tirage il n’y a que deux issues : $S$ et $\conj{S}$.
    Ainsi $Z$ suit la loi binomiale de paramètres $n=50$ et $p=0,08$.
    $\quad$
    b. On a :
    $\begin{align*} p(Z\pg 2)&=1-p(Z=0)-p(Z=1) \\
    &=1-0,92^{50}-\dbinom{50}{1}0,08\times 0,92^{49} \\
    &=1-0,92^{50}-50\times 0,08\times 0,92^{49} \\
    &\approx 0,92\end{align*}$
    La probabilité qu’au moins deux courriels choisis soient du spam est environ égale à $0,92$.
    $\quad$

 

Ex 2

Exercice 2 (5 points)

  1. Si $t=-2$ on obtient alors $\begin{cases} x=-3\\y=-4\\z=6\end{cases}$
    Le point $N(-3;-4;6)$ appartient donc à la droite $\Delta$.
    Réponse B
    $\quad$
  2. $\vect{AB}$ a pour coordonnées $\begin{pmatrix} 2-1\\1-0\\0-2\end{pmatrix}$ soit $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse C
    $\quad$
  3. La droite $(AB)$ passe par le point $B(2;1;0)$ et a pour vecteur directeur $\vect{AB}\begin{pmatrix} 1\\1\\-2\end{pmatrix}$ mais également le vecteur $-\vect{AB}\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Ainsi, une représentation paramétrique de $(AB)$ est $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases}\quad, t\in \R$.
    Réponse B
    $\quad$
  4. Un vecteur directeur de $\Delta$ est $\vec{n}\begin{pmatrix}2\\1\\-1\end{pmatrix}$
    Ainsi une équation cartésienne de ce plan est de la forme $2x+y-z+d=0$.
    Le point $C(0;1;2)$ appartient à ce plan.
    Donc $0+1-2+d=0 \ssi d=1$.
    Une équation cartésienne du plan est $2x+y-z+1=0$.
    Réponse B
    $\quad$
  5. On a
    $\begin{align*} \vect{AD}&=\vect{AO}+\vect{OD} \\
    &=\vect{AO}+3\vect{OA}-\vect{OB}-\vect{OC} \\
    &=2\vect{OA}-\vect{OB}-\vect{OC} \\
    &=\vect{BO}+\vect{OA}+\vect{CO}+\vect{OA} \\
    &=\vect{BA}+\vect{CA}\end{align*}$
    Ainsi les vecteurs $\vect{AD}$, $\vect{AB}$ et $\vect{AC}$ sont coplanaires.
    Réponse A
    $\quad$

 

 

Ex 3

Exercice 3 (6 points)

Partie 1

  1. $\lim\limits_{x\to -\infty} -2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to -\infty} -\e^{-2x}=-\infty$
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$
    $\lim\limits_{x\to +\infty} -2x=-\infty$ et $\lim\limits_{X\to -\infty} \e^X=0$ donc $\lim\limits_{x\to +\infty} -\e^{-2x}=0$
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. La fonction $f$ est dérivable sur $\R$ en tant que somme et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=1-(-2)\e^{-2x} \\
    &=1+2\e^{-2x}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $\R$.
    On obtient le tableau de variation suivant :
    $\quad$

    $\quad$
  3. La fonction $f$ est continue (car dérivable) et strictement croissante sur $\R$.
    De plus $\lim\limits_{x\to -\infty} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $\R$.
    D’après la calculatrice $\alpha \approx 0,43$.
    $\quad$
  4. La fonction $f$ est strictement croissante sur $\R$ et s’annule en $\alpha$.
    Donc :
    – $f(x)<0$ sur $]-\infty;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$.
    $\quad$

Partie II

  1. a. La fonction $t\mapsto t^2+\e^{-2t}$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$. Cette fonction est de plus positive en tant que somme de fonctions positives.
    La fonction $h$ est donc dérivable sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} h'(t)&=\dfrac{2t-2\e^{-2t}}{2\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{t-\e^{-t}}{\sqrt{t^2+\e^{-2t}}} \\
    &=\dfrac{f(t)}{\sqrt{t^2+\e^{-2t}}}\end{align*}$
    $\quad$
    b. $h'(x)$ a donc le même signe que $f(x)$ pour tout réel $x$.
    D’après la question I.4. on a donc :
    – $h'(x)<0$ sur $]-\infty;\alpha[$;
    – $h'(\alpha)=0$;
    – $h(x)>0$ sur $]\alpha;+\infty[$.
    Ainsi $h$ admet un minimum en $\alpha$.
    Le point $A\left(\alpha,g(\alpha)\right)$, c’est-à-dire $A\left(\alpha,\e^{-\alpha}\right)$, est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    $\quad$
  2. a. Le coefficient directeur de la tangente $T$ est $g'(\alpha)=-\e^{-\alpha}$.
    $\quad$
    b. Le produit des deux coefficients directeurs est :
    $\begin{align*} -\e^{-\alpha}\times \dfrac{\e^{-\alpha}}{\alpha}&=-\dfrac{\e^{-2\alpha}}{\alpha} \\
    &=-\dfrac{\alpha}{\alpha} \quad \text{car }f(\alpha)=0 \ssi \e^{-2\alpha}=\alpha  \\
    &=-1\end{align*}$
    Les droites $(OA)$ et $T$ sont donc perpendiculaires.
    $\quad$

$\quad$

Ex A

Exercice A (5 points)

  1. On a $u_1=\dfrac{3\times 16+2\times 5}{5}=11,6$.
    et $v_1=\dfrac{16+5}{2}=10,5$
    $\quad$
  2. a. Soit $n\in \N$.
    $\begin{align*} w_{n+1}&=u_{n+1}-v_{n+1} \\
    &=\dfrac{3u_n+2v_n}{5}-\dfrac{u_n+v_n}{2} \\
    &=\dfrac{6u_n+4v_n-5u_n-5v_n}{10} \\
    &=\dfrac{u_n-v_n}{10} \\
    &=0,1 w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $0,1$ et de premier terme $w_0=u_0-v_0=11$.
    Ainsi, pour tout $n\in \N$ on a $w_n=11\times 0,1^n$.
    $\quad$
    b. Pour tout $n\in \N$ on a $w_n\pg 0$ en tant que produit de facteurs positifs.
    De plus $-1<0,1<1$ donc $\lim\limits_{n\to +\infty} w_n=0$.
    $\quad$
  3. a. Soit $n\in \N$. On a
    $\begin{align*} u_{n+1}-u_n&=\dfrac{3u_n+2v_n}{5}-u_n \\
    &=\dfrac{3u_n+2v_n-5u_n}{5} \\
    &=\dfrac{-2u_n+2v_n}{5} \\
    &=-\dfrac{2}{5} \times \left(u_n-v_n\right) \\
    &=-0,4w_n\end{align*}$
    $\quad$
    b. $w_n\pg 0$ et $u_{n+1}-u_n=-0,4w_n$ pour tout $n\in \N$.
    Ainsi $u_{n+1}-u_n \pp 0$ pour tout $n\in \N$.
    La suite $\left(u_n\right)$ est donc décroissante.
    On admet que la suite $\left(v_n\right)$ est croissante et on sait que $v_0=5$.
    Ainsi, pour tout $n\in \N$ on a $v_n\pg v_0$ soit $v_n\pg 5$.
    $\quad$
    c. Initialisation : On a $u_0=16$ donc $u_0\pg 5$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que la propriété est vraie au rang $n$.
    $\begin{align*} u_{n+1}&=\dfrac{3u_n+2v_n}{5} \\
    &\pg \dfrac{3\times 5+2\times 5}{5} \\
    &\pg 5\end{align*}$
    La propriété est donc vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout $n\in \N$ on a $u_n \pg 5$.
    $\quad$
    La suite $\left(u_n\right)$ est donc décroissante et minorée par $5$. Elle est par conséquent convergente.
    $\quad$
  4. a. Pour tout $n\in \N$ on a $w_n=u_n-v_n$ et $\lim\limits_{n\to +\infty} w_n=0$.
    Or $\lim\limits_{n\to +\infty} u_n-v_n=\ell-\ell’$
    Ainsi $\ell-\ell’=0 \ssi \ell=\ell’$.
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} c_{n+1}&=5u_{n+1}+4v_{n+1} \\
    &=3u_n+2v_n+2\left(u_n+v_n\right) \\
    &=3u_n+2v_n+2u_n+2v_n\\
    &=5u_n+4v_n\\
    &=c_n\end{align*}$
    La suite $\left(c_n\right)$ est donc constante.
    Or $c_0=5u_0+4v_0=100$.
    Ainsi, pour tout $n\in \N$ on a $c_n=100$.
    $\quad$
    c. Or $\lim\limits_{n\to +\infty} c_n=5\ell+4\ell’$ soit $\lim\limits_{n\to +\infty} c_n=9\ell$ puisque $\ell=\ell’$.
    Par conséquent $9\ell=100 \ssi \ell=\dfrac{100}{9}$.
    $\quad$

Remarque : On dit que les suites $\left(u_n\right)$ et $\left(v_n\right)$ sont adjacentes.

Ex B

Exercice B (5 points)

Partie 1

  1. $f(x)=0\ssi 2\ln(x)-1=0 \ssi \ln(x)=\dfrac{1}{2}\ssi x=\e^{1/2}$.
    Ainsi l’équation $f(x)=0$ possède une unique solution $\alpha=\e^{1/2}\approx 1,65$.
    $\quad$
  2. Graphiquement :
    – $f(x)<0$ sur $]0;\alpha[$;
    – $f(\alpha)=0$;
    – $f(x)>0$ sur $]\alpha;+\infty[$
    $\quad$

Partie II

  1. a. Pour tout $x>0$ on a $g(x)=\ln(x)\left(\ln(x)-1\right)$
    Or $\lim\limits_{x\to 0^-} \ln(x)=-\infty$ donc $\lim\limits_{x\to 0^-} \ln(x)-1=-\infty$.
    Ainsi $\lim\limits_{x\to 0^-} g(x)=+\infty$.
    $\quad$
    b. $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} \ln(x)-1=+\infty$.
    Ainsi $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    $\quad$
  2. La fonction $g$ est dérivable sur $]0;+\infty[$ comme produit et somme de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} g'(x)&=2\dfrac{1}{x}\times \ln(x)-\dfrac{1}{x} \\
    &=\dfrac{2\ln(x)-1}{x} \\
    &=f(x)\end{align*}$
    $\quad$
  3. On obtient le tableau de variations suivant :
    $\quad$

    On a en effet $\alpha=\e^{1/2}$ donc $g(\alpha)=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}$
    $\quad$
  4. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $]0;\alpha[$.
    De plus $\lim\limits_{x\to 0^+} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]0;\alpha[$.
    $\quad$
    La fonction $g$ est continue (car dérivable) et strictement croissante sur $]\alpha;+\infty[$.
    De plus $\lim\limits_{x\to +\infty} g(x)=+\infty$ et $f(\alpha)=-0,25<m$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=m$ possède une unique solution sur $]\alpha;+\infty[$.
    $\quad$
    De plus $g(\alpha)\neq m$.
    L’équation $g(x)=m$ possède donc exactement deux solutions sur $\R$ pour tout $m>-0,25$.
    $\quad$
    Autre méthode :
    $\begin{align*} g(x)=m &\ssi \left(\ln(x)\right)^2 – \ln(x)-m=0 \\
    &\ssi \begin{cases} X=\ln(x) \\ X^2-X-m=0\end{cases}\end{align*}$Le discriminant de $X^2-X-m$ est $\Delta = 1+4m$.
    Si $m>-0,25$ alors $\Delta>0$ et l’équation $X^2-X-m=0$ possède deux solutions réelles distinctes $\lambda$ et $\mu$.

    $\ln(x)=\lambda \ssi x=\e^{\lambda}$ et $\ln(x)=\mu \ssi x=\e^{\mu}$.

    L’équation $g(x)=m$ possède donc exactement deux solutions sur $\R$ pour tout $m>-0,25$.

    $\quad$

  5. $g(x)=0 \ssi \ln(x)\left(\ln(x)-1\right)=0 \ssi \ln(x)=0$ ou $\ln(x)=1$
    Ainsi $g(x)=0 \ssi x=1$ ou $x=\e$
    Les solutions de l’équation $g(x)=0$ sont donc $1$ et $\e$.
    $\quad$

 

 

 

 

Énoncé

Le candidat traite 4 exercices : les exercices 1, 2 et 3 communs à tous les candidats et un seul des deux exercices A ou B.

Exercice 1     4 points

Une entreprise reçoit quotidiennement de nombreux courriels (courriers électroniques).
Parmi ces courriels, $8 \%$ sont du « spam », c’est-à-dire des courriers à intention publicitaire, voire malveillante, qu’il est souhaitable de ne pas ouvrir.
On choisit au hasard un courriel reçu par l’entreprise.
Les propriétés du logiciel de messagerie utilisé dans l’entreprise permettent d’affirmer que :

  • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que c’est un spam est égale à $0,9$.
    • La probabilité que le courriel choisi soit classé comme « indésirable » sachant que ce n’est pas un spam est égale à $0,01$.

On note :

  • $S$ l’évènement « le courriel choisi est un spam »;
  • $I$ l’évènement « le courriel choisi est classé comme indésirable par le logiciel de messagerie ».
  • $\conj{S}$ et $\conj{I}$ les évènements contraires de $S$ et $I$ respectivement.
  1. Modéliser la situation étudiée par un arbre pondéré, sur lequel on fera apparaître les probabilités associées à chaque branche.
    $\quad$
  2. a. Démontrer que la probabilité que le courriel choisi soit un message de spam et qu’il soit classé indésirable est égale à $0,072$.
    $\quad$
    b. Calculer la probabilité que le message choisi soit classé indésirable.
    $\quad$
    c. Le message choisi est classé comme indésirable. Quelle est la probabilité que ce soit effectivement un message de spam ? On donnera un résultat arrondi au centième.
    $\quad$
  3. On choisit au hasard $50$ courriels parmi ceux reçus par l’entreprise. On admet que ce choix se ramène à un tirage au hasard avec remise de $50$ courriels parmi l’ensemble des courriels reçus par l’entreprise.
    On appelle $Z$ la variable aléatoire dénombrant les courriels de spam parmi les $50$ choisis.
    a. Quelle est la loi de probabilité suivie par la variable aléatoire $Z$, et quels sont ses paramètres ?
    $\quad$
    b. Quelle est la probabilité que, parmi les $50$ courriels choisis, deux au moins soient du spam ? On donnera un résultat arrondi au centième.
    $\quad$

$\quad$

Exercice 2     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points $A(1; 0; 2)$, $B(2; 1; 0)$, $C(0; 1; 2)$ et la droite $\Delta$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=-2+t\\z=4-t\end{cases} \quad,t\in \R$.

  1. Parmi les points suivants, lequel appartient à la droite $\Delta$?
    Réponse A : $M(2 ; 1 ; -1)$;
    Réponse B : $N(-3 ; -4 ; 6)$;
    Réponse C : $P(-3 ; -4 ; 2)$;
    Réponse D : $Q(-5 ; -5 ; 1)$.
    $\quad$
  2. Le vecteur $\vect{AB}$ admet pour coordonnées :
    Réponse A : $\begin{pmatrix} 1,5\\0,5\\1\end{pmatrix}$
    Réponse B : $\begin{pmatrix} -1\\-1\\2\end{pmatrix}$
    Réponse C : $\begin{pmatrix} 1\\1\\-2\end{pmatrix}$
    Réponse D : $\begin{pmatrix} 3\\1\\2\end{pmatrix}$
    $\quad$
  3. Une représentation paramétrique de la droite $(AB)$ est :
    Réponse A : $\begin{cases} x=1+2t\\y=t\\z=2\end{cases} \quad,t\in\R$
    Réponse B : $\begin{cases} x=2-t\\y=1-t\\z=2t\end{cases} \quad,t\in\R$
    Réponse C : $\begin{cases} x=2+t\\y=1+t\\z=2t\end{cases} \quad,t\in\R$
    Réponse D : $\begin{cases} x=1+t\\y=1+t\\z=2-2t\end{cases} \quad,t\in\R$
    $\quad$
  4. Une équation cartésienne du plan passant par le point $C$ et orthogonal à la droite $\Delta$ est :
    Réponse A : $x-2y +4z -6 = 0$;
    Réponse B : $2x + y – z +1 = 0$;
    Réponse C : $2x + y – z -1 = 0$;
    Réponse D : $y +2z -5 = 0$.
    $\quad$
  5. On considère le point $D$ défini par la relation vectorielle $\vect{OD}=3\vect{OA}-\vect{OB}-\vect{OC}$.
    Réponse A : $\vect{AD}$, $\vect{AB}$, $\vect{AC}$ sont coplanaires;
    Réponse B : $\vect{AD} =\vect{BC}$;
    Réponse C : $D$ a pour coordonnées $(3 ; -1 ; -1)$;
    Réponse D : les points $A$, $B$, $C$ et $D$ sont alignés.
    $\quad$

$\quad$

Exercice 3     6 points

Partie I

On considère la fonction $f$ définie sur $\R$ par $$f (x) = x -\e^{-2x}$$
On appelle $\Gamma$ la courbe représentative de la fonction $f$ dans un repère orthonormé $\Oij$.

  1. Déterminer les limites de la fonction $f$ en $-\infty$ et en $+\infty$.
    $\quad$
  2. Étudier le sens de variation de la fonction $f$ sur $\R$ et dresser son tableau de variation.
    $\quad$
  3. Montrer que l’équation $f (x) = 0$ admet une unique solution $\alpha$ sur $\R$, dont on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
  4. Déduire des questions précédentes le signe de $f(x)$ suivant les valeurs de $x$.
    $\quad$

 

Partie II

Dans le repère orthonormé $\Oij$, on appelle $\mathscr{C}$ la courbe représentative de la fonction $g$ définie sur $\R$ par : $$g(x) = \e^{-x}$$
La courbe $\mathscr{C}$ et la courbe $\Gamma$ (qui représente la fonction $f$ de la Partie I) sont tracées sur le graphique donné en annexe qui est à compléter et à rendre avec la copie.
Le but de cette partie est de déterminer le point de la courbe $\mathscr{C}$ le plus proche de l’origine $O$ du repère et d’étudier la tangente à $\mathscr{C}$ en ce point.

  1. Pour tout nombre réel $t$, on note $M$ le point de coordonnées $\left(t,\e^{-t}\right)$ de la courbe $\mathscr{C}$.
    On considère la fonction $h$ qui, au nombre réel $t$, associe la distance $OM$.
    On a donc : $h(t) = OM$, c’est-à-dire : $$h(t) =\sqrt{t^2+\e^{-2t}}$$
    a. Montrer que, pour tout nombre réel $t$, $$h'(t) =\dfrac{f(t)}{\sqrt{t^2+\e^{-2t}}}$$
    où $f$ désigne la fonction étudiée dans la Partie I.
    $\quad$
    b. Démontrer que le point $A$ de coordonnées $\left(\alpha ; \e^{-\alpha}\right)$ est le point de la courbe $\mathscr{C}$ pour lequel la longueur $OM$ est minimale.
    Placer ce point sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$
  2. On appelle $T$ la tangente en $A$ à la courbe $\mathscr{C}$.
    a. Exprimer en fonction de $\alpha$ le coefficient directeur de la tangente $T$.
    On rappelle que le coefficient directeur de la droite $(OA)$ est égal à $\dfrac{\e^{-\alpha}}{\alpha}$.
    On rappelle également le résultat suivant qui pourra être utilisé sans démonstration :
    Dans un repère orthonormé du plan, deux droites $D$ et $D’$ de coefficients directeurs respectifs $m$ et $m’$ sont perpendiculaires si, et seulement si le produit $mm’$ est égal à $-1$.
    $\quad$
    b. Démontrer que la droite $(OA)$ et la tangente $T$ sont perpendiculaires.
    Tracer ces droites sur le graphique donné en annexe, à rendre avec la copie.
    $\quad$

ANNNEXE

$\quad$

$\quad$

Exercice au choix du candidat     5 points

Le candidat doit traiter un seul des deux exercices A ou B.

Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.

Pour éclairer son choix, les principaux domaines abordés dans chaque exercice sont indiqués.

Exercice A

Principaux domaines abordés : Suites numériques; raisonnement par récurrence.

On considère les suites $\left(u_n\right)$ et $\left(v_n\right)$ définies par : $$u_0 = 16 ; v_0 = 5 ;$$
et pour tout entier naturel $n$ : $$\begin{cases} u_{n+1}=\dfrac{3u_n+2v_n}{5}\\v_{n+1}=\dfrac{u_n+v_n}{2}\end{cases}$$

  1. Calculer $u_1$ et $v_1$.
    $\quad$
  2. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par : $w_n = u_n-v_n$.
    a. Démontrer que la suite $\left(w_n\right)$ est géométrique de raison $0,1$.
    En déduire, pour tout entier naturel $n$, l’expression de $w_n$ en fonction de $n$.
    $\quad$
    b. Préciser le signe de la suite $\left(w_n\right)$ et la limite de cette suite.
    $\quad$
  3. a. Démontrer que, pour tout entier naturel $n$, on a : $u_{n+1}-u_n = -0,4w_n$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est croissante. On admet ce
    résultat, et on remarque qu’on a alors : pour tout entier naturel $n$, $vn \pg v_0 = 5$.
    $\quad$
    c. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pg 5$.
    En déduire que la suite $\left(u_n\right)$ est convergente. On appelle $\ell$ la limite de $\left(u_n\right)$.
    $\quad$
    On peut démontrer de la même manière que la suite $\left(v_n\right)$ est convergente. On admet ce
    résultat, et on appelle $\ell’$ la limite de $\left(v_n\right)$.
    $\quad$
  4. a. Démontrer que $\ell=\ell’$.
    $\quad$
    b. On considère la suite $\left(c_n\right)$ définie pour tout entier naturel $n$ par : $c_n = 5u_n +4v_n$.
    Démontrer que la suite $\left(c_n\right)$ est constante, c’est-à-dire que pour tout entier naturel $n$, on a : $c_{n+1} = c_n$.
    En déduire que, pour tout entier naturel $n$ , $c_n = 100$.
    $\quad$
    c. Déterminer la valeur commune des limites $\ell$ et $\ell’$.
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés : Fonction logarithme, limites, dérivation.

Partie 1

Le graphique ci-dessous donne la représentation graphique dans un repère orthonormé de la fonction $f$ définie sur l’intervalle $]0 ; +\infty[$ par : $$f (x) =\dfrac{2\ln(x)-1}{x}$$

 

  1. Déterminer par le calcul l’unique solution $\alpha$ de l’équation $f(x) = 0$.
    On donnera la valeur exacte de $\alpha$ ainsi que la valeur arrondie au centième.
    $\quad$
  2. Préciser, par lecture graphique, le signe de $f(x)$ lorsque $x$ varie dans l’intervalle $]0 ; +\infty[$.
    $\quad$

Partie II

On considère la fonction $g$ définie sur l’intervalle $]0 ; +\infty[$ par : $$g(x) = \left[\ln(x)\right]^2-\ln(x)$$

  1. a. Déterminer la limite de la fonction $g$ en $0$.
    $\quad$
    b. Déterminer la limite de la fonction $g$ en $+\infty$.
    $\quad$
  2. On note $g’$ la fonction dérivée de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    Démontrer que, pour tout nombre réel $x$ de $]0 ; +\infty[$, on a : $g'(x)=f(x)$, où $f$ désigne la fonction définie dans la partie I.
    $\quad$
  3. Dresser le tableau de variations de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    On fera figurer dans ce tableau les limites de la fonction $g$ en $0$ et en $+\infty$, ainsi que la valeur du minimum de $g$ sur $]0 ; +\infty[$.
    $\quad$
  4. Démontrer que, pour tout nombre réel $m > -0,25$, l’équation $g(x) = m$ admet exactement deux solutions.
    $\quad$
  5. Déterminer par le calcul les deux solutions de l’équation $g(x) = 0$.
    $\quad$

$\quad$