solution-E3C2 – Spécialité maths – Vrai Faux – 2020

Vrai / Faux

E3C2 – 1ère

Pour chacune des cinq affirmations suivantes, dire si elle est vraie ou fausse. Chaque réponse devra être justifiée.
Toute démarche de justification même non aboutie sera prise en compte.

  1. Dans le plan muni d’un repère orthonormé, on donne les points :
    $$𝐴(2 ; -2) , \quad B(4 ; 0) ,\quad C(0 ; −5) ,\quad D(-7 ; 1)$$
    Affirmation 1 : Les droites $(AB)$ et $(CD)$ sont perpendiculaires.
    $\quad$
    Affirmation 2 : Une équation de la droite perpendiculaire à $(AB)$ passant par $C$ est : $$y = x- 5$$
    $\quad$
    Affirmation 3 : Une équation du cercle de centre $A$ passant par $B$ est : $$(x-2)^2+(y+2)^2=8$$
    $\quad$
  2. Soit $f$ la fonction définie pour tout $x\in]0;+\infty[$ par : $$f(x)=\dfrac{\e^x}{x}$$ On note $f’$ sa fonction dérivée.
    Affirmation 4 : $f'(1)=0$
    $\quad$
  3. On donne $\cos\left(\dfrac{2\pi}{5}\right)=\dfrac{-1+\sqrt{5}}{4}$
    Affirmation 5 : $\sin\left(\dfrac{2\pi}{5}\right)<0$
    $\quad$

$\quad$

Correction Exercice

Affirmation 1 fausse

On a $\vect{AB}\begin{pmatrix}2\\2\end{pmatrix}$ et $\vect{CD}\begin{pmatrix}-7\\6\end{pmatrix}$
Ainsi :
$\begin{align*} \vect{AB}.\vect{CD}&=2\times (-7)+2\times 6\\
&=-2\\
&\neq 0\end{align*}$
Les vecteurs ne sont pas orthogonaux. Les droites $(AB)$ et $(CD)$ ne sont pas perpendiculaires.

$\quad$

Affirmation 2 fausse

On appelle $d$ la droite perpendiculaire à $(AB)$ passant par $C$
$\vect{AB}$ est un vecteur normal à droite $d$.
Une équation cartésienne de $d$ est donc de la forme $2x+2y+c=0$.
$C(0;-5)$ appartient à $d$ donc $0-10+c=0 \ssi c=10$.
Une équation cartésienne de $d$ est donc $2x+2y+10=0$ ou encore $x+y+5=0$
Par conséquent $y=-5-x$

$\quad$

Affirmation 3 vraie

$AB$ est un rayon de ce cercle. On a $\vect{AB}\begin{pmatrix}2\\2\end{pmatrix}$.
$\begin{align*} AB^2&=2^2+2^2\\
&=8\end{align*}$
Une équation du cercle de centre $A$ passant par $B$ est donc :
$(x-2)^2+\left(y-(-2)\right)^2=8$ soit $(x-2)^2+(y+2)^2=8$.

$\quad$

Affirmation 4 vraie

$f$ est dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur $]0;+\infty[$.
Pour tout réel $x>0$ on a :
$\begin{align*} f'(x)&=\dfrac{\e^x\times x-\e^x\times 1}{x^2} \\
&=\dfrac{(x-1)\e^x}{x^2}\end{align*}$
Par conséquent $f'(1)=0$

$\quad$

Affirmation 5 fausse

$\dfrac{2\pi}{5}\in ]0;\pi[$ donc $\sin\left(\dfrac{2\pi}{5}\right)>0$

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Cet exercice est un QCM et comprend cinq questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée, mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte un point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire aucun point.

Question 1

On donne ci-dessous la courbe représentative $C_f$ d’une fonction $f$.


Cette courbe a une tangente $T$ au point $A(-3 ; 3)$.
L’équation réduite de cette tangente est :

a. $y=\dfrac{1}{5}x-3,7$
b. $y=\dfrac{1}{5}x+18$
c. $y=5x+18$
d. $y=5x-3,7$

$\quad$

Correction Question 1

D’après le graphique, l’ordonnée à l’origine de la droite $T$ est $18$.
Cette droite passe par les points de coordonnées $(-3;3)$ et $(0;18)$.
Le coefficient directeur est donc :
$\begin{align*} a&=\dfrac{18-3}{0-(-3)}\\
&=5\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

On reprend la fonction $f$ de la question précédente. La représentation graphique de sa fonction dérivée est :

$\quad$

Correction Question 2

D’après le graphique, la fonction $f$ est croissante sur les intervalles $]-\infty;-2]$ et $[2;+\infty[$ et décroissante sur l’intervalle $[-2;2]$.
$f'(x)$ est donc positif sur $]-\infty;-2]$ et $[2;+\infty[$ et négatif sur $[-2;2]$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

L’expression $\cos(x+\pi)+\sin\left(x+\dfrac{\pi}{2}\right)$ est égale à :

a. $-2\cos(x)$
b. $0$
c. $\cos(x)+\sin(x)$
d. $2\cos(x)$

$\quad$

Correction Question 3

Pour tout réel $x$ on a :
$\begin{align*} \cos(x+\pi)+\sin\left(x+\dfrac{\pi}{2}\right)&=-\cos(x)+\cos(x)\\
&=0\end{align*}$

Réponse 0

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction polynôme du second degré $f$ définie sur $\R$ par $f(x)=-2x^2+4x+6$.
Cette fonction est strictement positive sur l’intervalle :

a. $]-\infty;-1[\cup]3;+\infty[$
b. $]-1;3[$
c. $]-\infty;-3[\cup]1;+\infty[$
d. $]-3;1[$

$\quad$

Correction Question 4

Le discriminant est :
$\begin{align*} \Delta&=4^2-4\times (-2)\times 6\\
&=64\\
&>0\end{align*}$

Les racines sont donc :
$\begin{align*} x_1&=\dfrac{-4-\sqrt{64}}{-4}\\
&=3\end{align*}$ $\quad$ et $\quad$ $\begin{align*} x_2&=\dfrac{-4+\sqrt{64}}{-4}\\
&=-1\end{align*}$

Le coefficient principal est $a=-2<0$.
Par conséquent $f(x)>0$ sur l’intervalle $]-1;3[$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

On considère la fonction $h$ définie sur $\R$ par $h(x)=(2x-1)\e^x$.
La fonction dérivée de la fonction $h$ est définie sur $\R$ par :

a. $h'(x)=2\e^x$
b. $h'(x)=(2x+1)\e^x$
c. $h'(x)=(2x-1)\e^x$
d. $h'(x)=-\e^x$

$\quad$

Correction Question 5

La fonction $h $est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.

Pour tout réel $x$ on a :
$\begin{align*} h'(x)&=2\e^x +(2x-1)\e^x \\
&=(2+2x-1)\e^x\\
&=(2x+1)\e^x\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Une fonction du second degré $f$ a pour forme canonique valable pour tout réel $x$ : $f(x)=3(x+2)^2+5$.
Concernant son discriminant :

a. on peut dire qu’il est nul
b. on peut dire qu’il est strictement positif
c. on peut dire qu’il est strictement négatif
d. on ne peut rien dire sur son signe

$\quad$

Correction Question 1

Pour tout réel $x$ on a donc $f(x)\pg 5$.
Donc l’équation $f(x)=0$ n’admet pas de solution réelle.
Son discriminant est donc strictement négatif.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Un vecteur directeur de la droite d’équation $2x+3y+5=0$ est :

a. $\vec{u}(2;3)$
b. $\vec{u}(-3;2)$
c. $\vec{u}(3;2)$
d. $\vec{u}(-2;3)$

$\quad$

Correction Question 2

Un vecteur directeur d’une droite dont une équation cartésienne est $ax+by+c=0$ est $\vec{u}(-b;a)$.

Un vecteur directeur de la droite d’équation $2x+3y+5=0$ est $\vec{u}(-3;2)$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Dans un repère orthonormé du plan, on considère les points $A(3; -1)$, $B( 4 ; 2)$ et $C (1 ; 1)$.
Le produit scalaire $\vect{AB}.\vect{AC}$ est égal à :

a. $-4$
b. $2$
c. $4$
d. $8$

$\quad$

Correction Question 3

On a $\vec{AB}(1;3)$ et $\vec{AC}(-2;2)$.
Ainsi :
$\begin{align*} \vect{AB}.\vect{AC}&=1\times (-2)+3\times 2 \\
&=-2+6\\
&=4\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $g$ la fonction définie sur l’ensemble des nombres réels par $g(x)=(2x+1)\e^x$.
Pour tout réel $x$, $g'(x)$ est égal à :

a. $2\e^x$
b. $2x\e^x$
c. $(2x+2)\e^x$
d. $(2x+3)\e^x$

$\quad$

Correction Question 4

La fonction $g$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} g'(x)&=2\e^x+(2x+1)\e^x \\
&=(2+2x+1)\e^x \\
&=(2x+3)\e^x\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

Pour tout réel $x$, $\sin(x+\pi)$ est égal à :

a. $\cos x$
b. $\sin x$
c. $-\cos x$
d. $-\sin x$

$\quad$

Correction Question 5

Pour tout réel $x$ on a $\sin(x+\pi)=-\sin x$.

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des affirmations proposées est exacte.
Indiquer pour chaque question sur la copie la lettre  correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Soit $c$ un nombre réel strictement supérieur à $1$. Sur l’ensemble des nombres réels, la fonction polynôme $f$ définie par $f(x)=x^2+2x+c$.

a. change de signe exactement $2$ fois
b. change de signe exactement une fois
c. est toujours positive
d. est toujours négative

$\quad$

Correction Question 1

$c>1$ donc $1-c<0$

Le discriminant du polynôme du second degré est :
$\begin{align*} \Delta&=2^2-4\times 1\times c\\
&=4(1-c)\\
&<0\end{align*}$

Le coefficient principal est $a=1>0$.

Ainsi $f(x)>0$ sur $\R$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Si $x$ est un nombre réel appartenant à l’intervalle $[-\pi ; 0]$ tel que $\cos x =\dfrac{3}{5}$, alors $\sin x$ a pour valeur

a. $\dfrac{4}{5}$
b. $-\dfrac{4}{5}$
c. $-\dfrac{2}{5}$
d. On ne peut pas savoir

$\quad$

Correction Question 2

$x$ appartient à l’intervalle $[-\pi ; 0]$ donc $\sin x\pp 0$.
Pour tout réel $x$ on a $\cos^2 x+\sin^2 x=1$
Donc $\dfrac{9}{25}+\sin^2 x=1 \ssi \sin^2x=\dfrac{16}{25}$
Ainsi $\sin x=\dfrac{4}{5}$  ou $\sin x=-\dfrac{4}{5}$
Puisque $\sin x\pp 0$ on a $\sin x=-\dfrac{4}{5}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Le quadrilatère $ABCD$ est un carré. On a :

a. $\vect{AB}.\vect{AD}=0$
b. $\vect{AB}.\vect{AC}=0$
c. $\vect{AB}.\vect{AB}=0$
d. $\vect{AB}.\vect{DC}=0$

$\quad$

Correction Question 3

$ABCD$ est un carré. Les droites $(AB)$ et $(AD)$ sont donc perpendiculaires.
Par conséquent $\vect{AB}.\vect{AD}=0$.

Réponse a

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

La droite d’équation $2x-y+1=0$coupe l’axe des abscisses au point $A$ de coordonnées :

a.  $A(0 ; 1)$
b. $A\left(\dfrac{1}{2};0\right)$
c.  $A(0 ; -1)$
d. $A\left(-\dfrac{1}{2};0\right)$

$\quad$

Correction Question 4

On veut résoudre l’équation $2x-0+1=0 \ssi x=-\dfrac{1}{2}$.

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

Pour tout réel $x$, $\dfrac{\e^x}{\e^{-x}}$ est égal à

a. $-1$
b. $\e^{-2x}$
c. $\left(\e^x\right)^2$
d. $\e^0$

$\quad$

Correction Question 5

Pour tout réel $x$ on a :
$\begin{align*} \dfrac{\e^x}{\e^{-x}}&=\e^{x-(-x)}\\
&=\e^{2x}\\
&=\left(\e^x\right)^2\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point

Question 1

La courbe ci-contre $C_f$ est la représentation graphique, dans un repère orthonormé, d’une fonction $f$. Les droites $d$ et $d’$ sont respectivement les tangentes à la courbe $C_f$ aux points d’abscisses $1$ et $2$.
Les équations réduites de $d$ et $d’$ sont respectivement :
$d : y = 2x-2$ et $d’ : y = -x+ 2$.

Parmi les propositions suivantes, laquelle est juste?

a. $f'(1)=0$
b. $f'(2)=2$
c. $f'(2)=-1$
d. $f'(1)=-2$

$\quad$

Correction Question 1

$f'(1)$ est le coefficient directeur de la droite $d$ et $f'(2)$ est le coefficient directeur de la droite $d’$.
Ainsi $f(1)=2$ et $f'(2)=-1$

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Soit $x\in \left[\dfrac{\pi}{2};\dfrac{3\pi}{2}\right]$ tel que $\sin x=\dfrac{1}{2}$.
Parmi les propositions suivantes, laquelle est juste?

a. $\cos x=-\dfrac{\sqrt{3}}{2}$
b. $x=\dfrac{\pi}{6}$
c. $\cos x=\dfrac{\sqrt{3}}{2}$
d. $x=-\dfrac{7\pi}{6}$

$\quad$

Correction Question 2

$x\in \left[\dfrac{\pi}{2};\dfrac{3\pi}{2}\right]$ ce qui exclut les propositions b. et d.
Cela implique également que $\cos x<0$.

Réponse a

$\quad$

[collapse]

$\quad$

Question 3

Soit $(O, I, J)$ un repère orthonormé du plan.
Soit $A$ et $B$ deux points de coordonnées respectives $(3 ; 4)$ et $(4 ; 0)$.

Parmi les propositions suivantes, laquelle est juste?

a. $\vect{OA}.\vect{OB}=20$
b. $\sin\left(\widehat{AOB}\right)=\dfrac{\sqrt{17}}{5}$
c. $\cos\left(\widehat{AOB}\right)=\dfrac{4}{5}$
d. $\sin\left(\widehat{AOB}\right)=\dfrac{4}{5}$

$\quad$

Correction Question 3

$\widehat{AOB}=\widehat{AOH}$

Dans le triangle $AOH$, rectangle en $H$ on a :
$\begin{align*} \sin \widehat{AOB}&=\dfrac{AH}{OA}\\
&=\dfrac{4}{5}\end{align*}$

Réponse D

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Soit $(O, I, J)$ un repère orthonormé du plan.
Soit $d$ une droite dont une équation cartésienne est : $3x + 2y-10 = 0$.
Une équation cartésienne de la droite $d’$ perpendiculaire à la droite $d$ et passant par le point $A$ de coordonnées $(1 ; 2)$ est :

a. $3x+2y-7=0$
b. $2x+3y-8=0$
c. $2x-3y+4=0$
d. $3x-2y+1=0$

$\quad$

Correction Question 4

Un vecteur directeur de la droite $d$ est $\vec{u}\begin{pmatrix}-2\\3\end{pmatrix}$.
C’est donc un vecteur normal à la droite $d’$. Une équation cartésienne de la droite $d’$ est alors $-2x+3y+c=0$.
Le point $A(1;2)$ appartient à la droite $d’$.
Par conséquent $-2+6+c=0 \ssi c=-4$.
Une équation cartésienne de la droite $d’$ est alors $-2x+3y-4=0$ ou encore $2x-3y+4=0$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 5

Soit $(O, I, J)$ un repère orthonormé du plan.
Soit $A$ et $B$ deux points de coordonnées respectives $(1 ; 2)$ et $(5 ;-2)$.
Une équation cartésienne du cercle $C$ de diamètre $[AB]$ est :

a. $x^2+y^2-8x-2y+7=0$
b. $(x-1)^2+(y-2)^2=32$
c. $x^2+y^2-4x+2y-5=0$
d. $x^2+y^2-6x+1=0$

$\quad$

Correction Question 5

Le diamètre du cercle $C$ est :
$\begin{align*} AB&=\sqrt{(5-1)^2+(-2-2)^2}\\
&=\sqrt{16+16}\\
&=\sqrt{32}\end{align*}$

Le rayon du cercle $C$ est :
$\begin{align*} R&=\dfrac{AB}{2} \\
&=\sqrt{8}\end{align*}$

Le centre du cercle $C$ est le milieu $M$ du segment $[AB]$.
$M$ a donc pour coordonnées $\left(\dfrac{1+5}{2};\dfrac{2+(-2)}{2}\right)$ soit $(3;0)$.

Une équation cartésienne du cercle $C$ est par conséquent :
$\begin{align*} &(x-3)^2+(y-0)^2=8 \\
\ssi~& x^2-6x+9+y^2-8=0\\
\ssi~&x^2-6x+y^2+1=0\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.

Pour chacune des questions, une seule des quatre réponses proposées est correcte.

Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.

Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.

Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Soit la suite arithmétique $\left(u_n\right)$ de premier terme $u_0=2$ et de raison $0,9$.
On a :

a. $u_{50}=47$
b. $u_{50}=100,9$
c. $u_{50}=-47$
d. $u_{50}=-100,9$

$\quad$

Correction Question 1

On a $u_{50}=2+50\times 0,9=47$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Soit la suite géométrique $\left(v_n\right)$ de premier terme $v_0= 2$ et de raison $0,9$.
La somme des $37$ premiers termes de la suite $\left(v_n\right)$ est :

a. $2\times \dfrac{1-0,9^{38}}{1-0,9}\phantom{\dfrac{\dfrac{1}{1}1}{\dfrac{1}{1}}}$
b. $2\times \dfrac{1-0,9^{37}}{1-0,9}\phantom{\dfrac{\dfrac{1}{1}1}{\dfrac{1}{1}}}$
c. $0,9\times \dfrac{1-2^{38}}{1-2}\phantom{\dfrac{\dfrac{1}{1}1}{\dfrac{1}{1}}}$
d. $0,9\times \dfrac{1-2^{38}}{1-2}\phantom{\dfrac{\dfrac{1}{1}1}{\dfrac{1}{1}}}$

$\quad$

Correction Question 2

La somme est égale à : $2\times \dfrac{1-0,9^{37}}{1-0,9}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

Un programme en langage Python qui retourne la somme des entiers de
$1$ à $100$ est :

$\begin{array}{llll}
\textbf{a.}&\begin{array}{l} \textcolor{blue}{\text{def }}\text{Somme():}\\
\hspace{1cm} \text{s=}\textcolor{Mahogany}{0}\\
\hspace{1cm} \textcolor{blue}{\text{while }}\text{s<}\textcolor{Mahogany}{100}\text{:}\\
\hspace{2cm}\text{s= s}\textcolor{Mahogany}{+1}\\
\hspace{1cm}\textcolor{blue}{\text{return}}\text{(s)}\end{array}&\hspace{1cm}\textbf{b.}&\begin{array}{l} \textcolor{blue}{\text{def }}\text{Somme():}\\
\hspace{1cm} \text{s=}\textcolor{Mahogany}{0}\\
\hspace{1cm} \textcolor{blue}{\text{while }}\text{s<}\textcolor{Mahogany}{100}\text{:}\\
\hspace{2cm}\text{s= }\textcolor{Mahogany}{2}\text{*s}\textcolor{Mahogany}{+1}\\
\hspace{1cm}\textcolor{blue}{\text{return}}\text{(s)}\end{array}\\\\\\
\textbf{c.}&\begin{array}{l} \textcolor{blue}{\text{def }}\text{Somme():}\\
\hspace{1cm} \text{s=}\textcolor{Mahogany}{0}\\
\hspace{1cm} \textcolor{blue}{\text{for }}\text{k }\textcolor{blue}{\text{in }}\textcolor{purple}{\text{range}}\text{(}\textcolor{Mahogany}{101}\text{):}\\
\hspace{2cm}\text{s= s+k}\\
\hspace{1cm}\textcolor{blue}{\text{return}}\text{(s)}\end{array}&\hspace{1cm}\textbf{d.}&\begin{array}{l} \textcolor{blue}{\text{def }}\text{Somme():}\\
\hspace{1cm} \text{s=}\textcolor{Mahogany}{0}\\
\hspace{1cm} \textcolor{blue}{\text{for }}\text{k }\textcolor{blue}{\text{in }}\textcolor{purple}{\text{range}}\text{(}\textcolor{Mahogany}{100}\text{):}\\
\hspace{2cm}\text{s= s+k}\\
\hspace{1cm}\textcolor{blue}{\text{return}}\text{(s)}\end{array}
\end{array}$

$\quad$

Correction Question 3

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On a $x\in\left[-\dfrac{\pi}{2};0\right]$ et $\cos x=0,8$, alors :

a. $\sin x=0,6$
b. $\sin x=-0,6$
c. $\sin x=-0,2$
d. $\sin x=0,2$

$\quad$

Correction Question 4

$x\in\left[-\dfrac{\pi}{2};0\right]$ donc $\sin x<0$

Pour tout réel $x$ on a $\cos^2x+\sin^2x=1$
Ainsi :
$0,8^2+\sin^2x=1 \ssi \sin^2x=0,36$
Donc $\sin x=0,6$ ou $\sin x=-0,6$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

Le nombre réel $\dfrac{13\pi}{4}$ est associé au même point du cercle trigonométrique que le réel :

a. $\dfrac{-14\pi}{4}$
b. $\dfrac{-3\pi}{4}$
c. $\dfrac{7\pi}{4}$
d. $\dfrac{19\pi}{4}$

$\quad$

Correction Question 5

$a$ et $b$ sont associé au même point du cercle trigonométrique si, et seulement si, il existe $k\in \Z$ tel que $a-b=2k\pi$.

$\dfrac{13\pi}{4}-\dfrac{-14\pi}{4}=\dfrac{27\pi}{4}$
$\dfrac{13\pi}{4}-\dfrac{-3\pi}{4}=4\pi \checkmark$
$\dfrac{13\pi}{4}-\dfrac{7\pi}{4}=\dfrac{3\pi}{2}$
$\dfrac{13\pi}{4}-\dfrac{19\pi}{4}=-\dfrac{3\pi}{2}$

Réponse b

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions.
Pour chacune des questions, une seule des quatre réponses proposées est correcte.
Les questions sont indépendantes.
Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie.
Aucune justification n’est demandée mais il peut être nécessaire d’effectuer des recherches au brouillon pour aider à déterminer votre réponse.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n’apporte ni ne retire de point.

Question 1

Pour tout réel $x$, $\e^{2x}+\e^{4x}$ est égal à

a. $\e^{6x}$
b. $\e^{2x}\left(1+\e^2\right)$
c. $\e^{3x}\left(\e^x+\e^{-x}\right)$
d. $\e^{8x^2}$

$\quad$

Correction Question 1

Pour tout réel $x$ on a :
$\begin{align*} e^{2x}+\e^{4x}&=\e^{2x}\times 1+\e^{2x}\times \e^{2x}\\
&=\e^{2x}\left(1+\e^{2x}\right)\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 2

Dans le plan muni d’un repère $\Oij$, on considère les vecteurs $\vec{u}(-5;2)$ et $\vec{v}(4;10)$ et la droite $(d)$ d’équation : $5x+2y+3=0$.

a. $\vec{u}$ et $\vec{v}$ sont colinéaires
b. $\vec{u}$ est un vecteur normal à la droite $(d)$
c. $\vec{u}$ et $\vec{v}$ sont orthogonaux
d. $\vec{u}$ est un vecteur directeur de $(d)$

$\quad$

Correction Question 2

$\begin{align*} \vec{u}.\vec{v}&=-5\times 4+2\times 10\\
&=0\end{align*}$

Réponse c

$\quad$

[collapse]

Question 3

La dérivée $f’$ de la fonction $f$ définie sur $\R$ par $f(x)=(2x-1)\e^{-x}$ est :

a. $2x\e^{-x}$
b. $-2x\e^{-x}$
c. $(-2x+3)\e^{-x}$
d. $2\e^{-x}+(2x-1)\e^{-x}$

$\quad$

Correction Question 3

La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=2\e^{-x}+(2x-1)\times \left(-\e^{-x}\right)\\
&=(2-2x+1)\e^{-x}\\
&=(3-2x)\e^{-x}\end{align*}$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Pour tout réel $x$, on a $\sin(\pi+x)=$

a. $-\sin(x)$
b. $\cos(x)$
c. $\sin(x)$
d. $-\cos(x)$

$\quad$

Correction Question 4

Pour tout réel $x$ $\sin(\pi+x)=-\sin(x)$

Réponse a

$\quad$

[collapse]

$\quad$

Question 5

Soit $f$ une fonction définie et dérivable sur $\R$ dont la courbe représentative est donnée ci-dessous.
La tangente à la courbe au point $A$ est la droite $T$.

a. $f'(0)=3$
b. $f'(0)=\dfrac{1}{5}$
c. $f'(0)=5$
d. $f'(0)=-5$

$\quad$

Correction Question 5

$f'(0)$ est le coefficient directeur de la droite $T$.
Cette droite passe par les points de coordonnées $(0;3)$ et $(1;-2)$.
Donc :
$\begin{align*} f'(0)&=\dfrac{-2-3}{1-0}\\
&=-5\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Dans un repère orthonormé, on considère la parabole $P$ d’équation $y=2x^2+4x-11$, de sommet $S$ et d’axe de symétrie la droite $\boldsymbol{D}$ . Quelle est la bonne proposition ?

a. $S(-4;5)$ et $\boldsymbol{D}$ a pour équation $y=5$.
b. $S(-1;-17)$ et $\boldsymbol{D}$ a pour équation $x=-1$.
c. $S(-1;-13)$ et $\boldsymbol{D}$ a pour équation $x=-1$.
d. $S(-1;-13)$ et $\boldsymbol{D}$ a pour équation $y=-1$.

$\quad$

Correction Question 1

L’abscisse du sommet est :
$\begin{align*} x_S&=-\dfrac{b}{2a}\\
&=-\dfrac{4}{4}\\
&=-1\end{align*}$
Son ordonnée est $y_S=f(-1)=-13$.
Une équation de l’axe de symétrie est $x=-1$.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

Une expérience aléatoire met en jeu des événements $A$ et $B$ et leurs événements contraires $\conj{A}$ et $\conj{B}$. L’arbre pondéré ci-dessous traduit certaines données de cette expérience aléatoire.

On a alors :

a. $P(B)=0,5$
b. $P(A\cap B)=0,9$
c. $P_A(B)=0,18$
d. $P_B(A)=\dfrac{9}{13}$

$\quad$

Correction Question 2

$A$ et $\conj{A}$ forment un système complet d’événements fini.
D’après la formule des probabilités totales on a :
$\begin{align*} P(B)&=P(A\cap B)+P\left(\conj{A}\cap B\right)\\
&=0,6\times 0,3+0,4\times 0,2\\
&=0,26\end{align*}$
Ainsi :
$\begin{align*} P_B(A)&=\dfrac{P(A\cap B)}{P(B)}\\
&=\dfrac{0,6\times 0,3}{0,26}\\
&=\dfrac{9}{13}\end{align*}$

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

On considère le nombre réel $a=\dfrac{18\pi}{5}$.
Un des nombres réels suivants a le même point image que le nombre réel $a$ sur le cercle trigonométrique. Lequel ?

a. $\dfrac{3\pi}{5}$
b. $\dfrac{63\pi}{5}$
c. $\dfrac{-12\pi}{5}$
d. $\dfrac{-3\pi}{5}$

$\quad$

Correction Question 3

Deux nombres $a$ et $b$ ont le même point image sur le cercle trigonométrique si, et seulement si, $a-b=2k\pi$ avec $k\in \Z$.

$\dfrac{18\pi}{5}-\dfrac{3\pi}{5}=3\pi$
$\dfrac{18\pi}{5}-\dfrac{63\pi}{5}=-9\pi$
$\dfrac{18\pi}{5}-\dfrac{-12\pi}{5}=6\pi \checkmark$
$\dfrac{18\pi}{5}-\dfrac{-3\pi}{5}=4,2\pi$

Réponse c

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $f$ définie sur $\R$ par $f(x)=x\e^x$.
La fonction dérivée de la fonction $f$ est notée $f’$. On a alors :

a. $f'(x)=\e^x$
b. $f'(x)=(1+x)\e^x$
c. $f'(x)=x\e^x$
d. $f'(x)=2x\e^x$

$\quad$

Correction Question 4

La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
Pour tout réel $x$ on a :
$\begin{align*} f'(x)&=\e^x+x\e^x \\
&=(1+x)\e^x\end{align*}$

Réponse b

$\quad$

[collapse]

$\quad$

Question 5

Parmi les relations suivantes, quelle est celle qui permet de définir une suite géométrique de terme général $u_n$?

a. $u_n=\dfrac{u_{n-1}}{2}$
b. $u_n=u_{n-1}+2$
c. $u_n=2{u_{n-1}}^2$
d. $u_n=2u_{n-1}+10$

$\quad$

Correction Question 5

Il faut obtenir une relation de la forme $u_n=qu_{n-1}$ pour tout $n\in \N^*$

Or $u_n=\dfrac{u_{n-1}}{2} \ssi u_n=\dfrac{1}{2}u_{n-1}$.

Réponse a

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse
choisie. Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1.

a. Si le discriminant d’un polynôme du second degré est strictement positif, alors ce polynôme admet $2$ racines positives.
b. Si le discriminant d’un polynôme du second degré est strictement négatif, alors ce polynôme admet $2$ racines négatives.
c. Si un polynôme du second degré est toujours strictement positif, alors ce
polynôme n’admet pas de racine.
d. Si le discriminant d’un polynôme du second degré est nul, alors ce polynôme admet le nombre $0$ pour racine.

$\quad$

Correction Question 1

Si le discriminant est strictement positif alors le polynôme possède $2$ racines (mais pas nécessairement positives).
Si le discriminant est strictement négatif alors le polynôme n’admet pas de racines réelles.
Si le discriminant est nul alors le polynôme ne possède qu’une seule racine (qui n’est pas nécessairement $0$).

Si un polynôme du second degré est toujours strictement positif, alors ce
polynôme n’admet pas de racine.

Réponse c

$\quad$

[collapse]

$\quad$

Question 2

a. L’équation $\cos x = -\dfrac{1}{2}$ admet $2$ solutions dans
l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$.
b. L’équation $\cos x = -\dfrac{1}{2}$ admet $1$ solutions dans
l’intervalle $[0;\pi[$.
c. L’équation $\sin x = -\dfrac{1}{2}$ admet $1$ solutions dans
l’intervalle $[0;\pi[$.
d. L’équation $\sin x = -\dfrac{1}{2}$ admet $2$ solutions dans
l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$.

$\quad$

Correction Question 2

Sur l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$ on a $\cos x\pg 0$.
Sur l’intervalle $[0;\pi[$ on a $\sin x\pg 0$

$\cos \dfrac{2\pi}{3}=-\dfrac{1}{2}$ et $\dfrac{2\pi}{3}$ appartient à l’intervalle $\left]-\dfrac{\pi}{2};\dfrac{\pi}{2}\right]$.

Réponse b

$\quad$

[collapse]

$\quad$

Question 3

La courbe représentative d’une fonction $f$, définie et dérivable sur l’ensemble des nombres réels, est donnée ci-dessous avec ses tangentes, aux points $A$
et $B$ d’abscisses respectives $2$ et $4$. On note $f’$ la fonction dérivée de $f$.

a. $f(0)=1$
b. $f'(2)=1$
c. $f'(2)=-2$
d. $f'(4)=0,5$

$\quad$

Correction Question 3

$f(0) \approx -3$.
$f'(2)$ est le coefficient directeur de la tangente à la courbe au point $A$. Donc $f'(2)=1$ (graphiquement).
$f'(4)$ est le coefficient directeur de la tangente à la courbe au point $B$. Donc $f'(4)<0$.

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

On considère la fonction $g$ définie sur l’ensemble des nombres réels $\R$ par :
$g(x)=x^3-0,0012x+1$

a. $g$ est strictement croissante sur $\R$.
b. $g$ est croissante sur $\R$.
c. $g$ est constante sur l’intervalle $[-0,02 ; 0,02]$.
d. $g$ est décroissante sur l’intervalle $[-0,02 ; 0,02]$.

$\quad$

Correction Question 4

La fonction $g$ est dérivable sur $\R$ en tant que fonction polynôme.
Pour tout réel $x$ on a $g'(x)=3x^2-0,0012$.
$g'(x)\pp 0 \ssi 3x^2-0,0012\pp 0 \ssi x^2\pp 0,0004 \ssi x\in[-0,02;0,02]$

Réponse d

$\quad$

[collapse]

$\quad$

Question 5

a. L’équation $\left(\e^x\right)^2$ admet deux solutions dans $\R$.
b. L’ensemble de définition de la fonction exponentielle est $]0;+\infty[$.
c. La fonction dérivée de la fonction $x\mapsto \e^{-x}$ est la fonction $x\mapsto \e^{-x}$.
d. L’ensemble de définition de la fonction exponentielle est $\R$.

$\quad$

Correction Question 5

La fonction exponentielle est définie sur $\R$.

Réponse d

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence

 

E3C2 – Spécialité maths – QCM – 2020

QCM

E3C2 – 1ère

Ce QCM comprend 5 questions indépendantes. Pour chacune d’elles, une seule des réponses proposées est exacte.
Indiquer pour chaque question sur la copie la lettre correspondant à la réponse choisie.
Aucune justification n’est demandée.
Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une absence de réponse n’apporte ni ne retire de point.

Question 1

Si $\sin x=\dfrac{1}{3}$ alors

a. $\sin(x+\pi)=-\dfrac{1}{3}$
b. $\sin(x-\pi)=\dfrac{1}{3}$
c. $\cos(x)=\dfrac{2}{3}$
d. $\sin(x+15\pi)=\dfrac{1}{3}$

$\quad$

Correction Question 1

Pour tout réel $x$ on a $\sin(x+\pi)=-\sin(x)$
Donc $\sin(x+\pi)=-\dfrac{1}{3}$

Réponse a

$\quad$

[collapse]

$\quad$

Question 2

Parmi les paraboles ci-dessous laquelle représente une fonction qui n’admet aucune racine ?

$\quad$

Correction Question 2

Seule la courbe d. ne touche ou ne traverse l’axe des abscisses.

Réponse d

$\quad$

[collapse]

$\quad$

Question 3

Soit la fonction $f$ définie sur l’intervalle $]0; +\infty[$ par $f(x)=2x-\dfrac{1}{x}$.
Le coefficient directeur de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est :

a. $1$
b. $3$
c. $-1$
d. $0$

$\quad$

Correction Question 3

La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
Pour tout réel $x>0$, on a $f'(x)=2+\dfrac{1}{x^2}$.
Par conséquent $f'(1)=3$.

Réponse b

$\quad$

[collapse]

$\quad$

$\quad$

Question 4

Dans le plan muni d’un repère orthonormé, l’ensemble des points $M(x;y)$ tels que $x^2-2x+y^2+6y+2=0$ est :

a. une parabole
b. le cercle de centre $\Omega$ de coordonnées $(-1; 3)$ et de
rayon $8$.
c. le cercle de centre $\Omega$ de coordonnées $(1; -3)$ et
de rayon $2\sqrt{2}$.
d. une droite

$\quad$

Correction Question 4

$\begin{align*} &x^2-2x+y^2+6y+2=0 \\
\ssi~& x^2-2x+1-1+y^2+6y+9-9+2=0\\
\ssi~& (x-1)^2+(y+3)^2=8\\
\ssi~& (x-1)^2+\left(y-(-3)\right)^2=\left(2\sqrt{2}\right)^2\end{align*}$

Il s’agit du cercle de centre $\Omega$ de coordonnées $(1; -3)$ et
de rayon $2\sqrt{2}$.

$\quad$

[collapse]

$\quad$

Question 5

La loi de probabilité d’une variable aléatoire $X$ donnant le gain en euros, d’un joueur, à un jeu, est donnée par le tableau suivant :

$$\begin{array}{|c|c|c|c|}
\hline
x_i&-10&6&10\\
\hline
P\left(X=x_i\right)&~~\dfrac{1}{4}~~&~~\dfrac{3}{8}~~&~~\dfrac{3}{8}~~\\
\hline
\end{array}$$
Sur un grand nombre de parties, le gain moyen que peut espérer le joueur est :

a. $3,5$ euros
b. $4$ euros
c. $2$ euros
d. $6$ euros

$\quad$

Correction Question 5

L’espérance mathématiques de la variable aléatoire $X$ est :
$\begin{align*} E(X)&=-10\times \dfrac{1}{4}+6\times \dfrac{3}{8}+10\times \dfrac{3}{8}\\
&=3,5\end{align*}$

Réponse a

$\quad$

[collapse]

$\quad$

Les sujets proviennent de la banque nationale de sujets sous licence