Bac – Métropole – jour 1 (secours) – juin 2024

Métropole – 19 juin 2024

Spécialité maths – Sujet 1 (secours) – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On a $C(4;4;0)$, $F(4;0;4)$, $G(4;4;4)$ et $H(0;4;4)$.
    $\quad$
  2. Le point $I$ a pour coordonnées $\left(\dfrac{4+0}{2};\dfrac{0+0}{2};\dfrac{4+4}{2}\right)$ c’est-à-dire $(2;0;4)$.
    De plus $\vect{IC}\begin{pmatrix} 2\\4\\-4\end{pmatrix}$
    Ainsi, une représentation paramétrique de $(IC)$ est $$\begin{cases}x=2+2t\\y=4t\\z=4-4t\end{cases}~~\text{où } t\in \R$$
    $\quad$
  3. a. $\vect{IC}$ est donc un vecteur normal à $P$.
    Une équation cartésienne de $P$ est de la forme $2x+4y-4z+d=0$.
    $G(4;4;4)$ appartient à ce plan. Donc $8+16-16+d=0\ssi d=8$.
    Une équation cartésienne de $P$ est par conséquent $2x+4y-4z+8=0$ soit $x+2y-2z+4=0$.
    $\quad$
    b. $\dfrac{28}{9}+2\times \dfrac{20}{9}-2\times \dfrac{16}{9}-4=\dfrac{36}{9}-4=0$. Le point de coordonnées $\left(\dfrac{28}{9};\dfrac{20}{9};\dfrac{16}{9}\right)$ appartient au plan $P$.
    Si on prend $t=\dfrac{5}{9}$ dans la représentation paramétrique de $(IC)$ alors $\begin{cases} x=2+\dfrac{10}{9}\\[3mm]y=\dfrac{20}{9}\\[3mm]z=4-\dfrac{20}{9}\end{cases}$ soit $\begin{cases} x=\dfrac{28}{9}\\[3mm] y=\dfrac{20}{9}\\[3mm] z=\dfrac{16}{9}\end{cases}$.
    Le point de coordonnées $\left(\dfrac{28}{9};\dfrac{20}{9};\dfrac{16}{9}\right)$ appartient à la droite $(IC)$.
    Donc $J$ a pour coordonnées $\left(\dfrac{28}{9};\dfrac{20}{9};\dfrac{16}{9}\right)$.
    $\quad$
    $J$ est par conséquent le projeté orthogonal de $C$ sur le plan $P$.
    $\quad$
    c. $0+4-0-4=0$ donc $K(0;2;0)$ appartient au plan $P$.
    $\quad$
    d. On a vu que $K$ appartenait au plan $P$.
    De plus $4+0-0-4=0$ donc $B(4;0;0)$ appartient également au plan $P$.
    Par conséquent $(BK)$ est incluse dans $P$.
    $0+0-0-4=-4\neq 0$ donc $A(0;0;0)$ n’appartient pas au plan $(P)$. Ainsi le plan $(ABC)$ et plan $(P)$ sont sécants ($B$ appartient à $P$ mais pas $A$).
    Enfin, $\vect{AK}\begin{pmatrix}0\\2\\0\end{pmatrix}$ et $\vect{BC}\begin{pmatrix} 0\\4\\0\end{pmatrix}$. Par conséquent $\vect{AK}=\dfrac{1}{2}\vect{BC}$ et $K$ appartient au plan $(ABC)$. On en déduit donc que $(BK)$ est également incluse dans le plan $(ABC)$.
    $(BK)$ appartient aux deux plans sécants $P$ et $(ABC)$. Donc $(BK)$ est l’intersection de ces deux plans.
    $\quad$
  4. a. Le triangle $BCG$ est rectangle en $C$. Son aire est :
    $\begin{align*} \mathcal{B}&=\dfrac{CB\times CG}{2} \\
    &=\dfrac{4\times 4}{2} \\
    &=8\text{ u.a.}\end{align*}$
    La hauteur issue de $K$ de la pyramide $CBKG$ mesure $4$ unités de longueur (même longueur que $[AB]$).
    Ainsi le volume de $CBKG$ est :
    $\begin{align*} V&=\dfrac{1}{3}\times 8\times 4\\
    &=\dfrac{32}{3}\text{ u.v.}\end{align*}$
    $\quad$
    b. On a $\vect{JC}\begin{pmatrix} \dfrac{8}{9}\\[3mm] \dfrac{16}{9}\\[3mm]-\dfrac{16}{9}\end{pmatrix}$.
    Donc
    $\begin{align*} JC&=\sqrt{\left(\dfrac{8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2+\left(-\dfrac{16}{9}\right)^2}\\[3mm]
    &=\sqrt{\dfrac{576}{81}}\\[3mm]
    &=\dfrac{24}{9}\end{align*}$
    On appelle $A_{BKG}$ l’aire du triangle $BKG$.
    $[CJ]$ est la hauteur issue de $C$ de la pyramide $CBKG$ d’après la question 3.b.
    Donc :
    $\begin{align*} V=\dfrac{1}{3}A_{BKG}\times JC&\ssi \dfrac{32}{3}=\dfrac{1}{3}A_{BKG}\times \dfrac{24}{9} \\
    &\ssi A_{BKG}=\dfrac{32\times 9}{24} \\
    &\ssi A_{BKG}=12 \text{ u.a.}\end{align*}$
    $\quad$
  5. $G$ appartient à $P$ par construction et $B$ appartient à $P$ d’après la question 3.d.
    Par conséquent $(BG)$ est incluse dans $P$.
    $\quad$
  6. On a donc $I'(x;0;4)$ où $x\in[0;4]$.
    Par conséquent $\vect{CI’}\begin{pmatrix}x-4\\-4\\4\end{pmatrix}$ et $\vect{BG}\begin{pmatrix}0\\4\\4\end{pmatrix}$.
    Ainsi $\vect{CI’}.\vect{BG}=0-16+16=0$.
    $\vect{CI’}$ et $\vect{BG}$ sont orthogonaux. Or $G$ appartient par construction à $P’$ donc $B$ appartient à $P’$.
    Ainsi $(BG)$ est toujours incluse dans $P’$.
    $\quad$

 

 

Ex 2

Exercice 2

Partie A

  1. On répète $10$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,25$.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,25$.
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(X\pg 4)&=1-P(X<4) \\
    &=1-P(X\pp 3) \\
    &\approx 0,224\end{align*}$
    La probabilité qu’au moins $4$ clients dans l’échantillon passent moins de $12$ minutes à la station est environ égale à $0,224$.
    $\quad$
  3. On a
    $\begin{align*} E(X)&=np \\
    &=10\times 0,25 \\
    &=2,5\end{align*}$
    En moyenne, sur $10$ clients $2,5$ passe moins de $12$ minutes à la station.
    $\quad$

Partie B

  1. On a $S=T_1+T_2+T_3$.
    $\quad$
  2. $S$ possède une espérance et une variance en tant que somme de variables aléatoires possédant une variance.
    a.
     Par linéarité de l’espérance on a :
    $\begin{align*}E(S)&=E\left(T_1+T_2+T_3\right) \\
    &=E\left(T_1\right)+E\left(T_2\right)+E\left(T_3\right) \\
    &=3\times 6\qquad \text{(même espérance)} \\
    &=18\end{align*}$
    Le temps d’attente total moyen est de $18$ minutes.
    $\quad$
    b. Les variables aléatoires $T_1$, $T_2$ et $T_3$ sont indépendantes. Donc :
    $\begin{align*}V(S)&=V\left(T_1+T_2+T_3\right) \\
    &=V\left(T_1\right)+V\left(T_2\right)+V\left(T_3\right) \\
    &=3\times 1\qquad \text{(même variance)} \\
    &=3\end{align*}$
    $\quad$
  3. $S$ possède une variance. On peut donc utiliser l’inégalité de Bienaymé-Tchebychev.
    $\begin{align*} P(14<S<22)&=P\left(-4<S-E(S)<4\right) \\
    &=P\left(\abs{S-E(S)}<4\right) \\
    &=1-P(\abs{S-E(S)}\pg 4) \\
    &\pg 1-\dfrac{V(S)}{4^2} \qquad \text{(inégalité de Bienaymé-Tchebychev)}\\
    &\pg 1-\dfrac{3}{16} \\
    &\pg \dfrac{13}{16} \\
    &\pg 0,812~5\end{align*}$
    La probabilité que le troisième client passe un temps strictement compris entre $14$ et $22$ minutes à la station est supérieure ou égale à $0,81$.
    $\quad$

 

Ex 3

Exercice 3

Partie A : étude d’une fonction.

  1. a. $f$ est dérivable sur $\R$ par hypothèse.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=1-\dfrac{2x}{x^2+1} \\
    &=\dfrac{x^2+1-2x}{x^2+1} \\
    &=\dfrac{(x-1)^2}{x^2+1} \end{align*}$
    $\quad$
    b. Pour tout réel $x$ on a $(x-1)^2\pg 0$ (et ne s’annule qu’en $1$) et $x^2+1>0$ donc $f'(x)\pg 0$ et ne s’annule qu’en $1$.
    La fonction $f$ est donc strictement croissante sur $\R$.
    $\quad$
  2. Pour tout réel $x>0$ on a :
    $\begin{align*} f(x)&=x-\ln\left(x^2+1\right) \\
    &=x-\ln\left(x^2\left(1+\dfrac{1}{x^2}\right)\right) \\
    &=x-\left(\ln\left(x^2\right)+\ln\left(1+\dfrac{1}{x^2}\right)\right) \\
    &=x-2\ln(x)-\ln\left(1+\dfrac{1}{x^2}\right)\end{align*}$
    $\quad$
  3. Pour tout réel $x>0$ on a $f(x)=x\left(1-\dfrac{2\ln(x)}{x}-\dfrac{1}{x}\ln\left(1+\dfrac{1}{x^2}\right)\right)$.
    $\lim\limits_{x\to +\infty}1+\dfrac{1}{x^2}=1$ donc $\lim\limits_{x\to +\infty} \ln\left(1+\dfrac{1}{x^2}\right)=0$
    Par croissances comparées $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$

Partie B : étude d’une suite.

  1. Pour tout entier naturel $n$ on pose $P(n):~u_n\pg 0$.
    Initialisation : $u_0=7\pg 0$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose que $P(n)$ est vraie.
    $u_n\pg 0$
    La fonction $f$ est strictement croissante sur $\R$
    Donc $f\left(u_n\right)\pg f(0)$
    C’est-à-dire $u_{n+1}\pg 0$ et $P(n+1)$ est vraie.
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$, on a $u_n\pg 0$.
    $\quad$
  2. Pour tout entier naturel $n$ on a :
    $\begin{align*} u_{n+1}-u_n&=u_n-\ln\left(u_n^2+2\right)-u_n \\
    &=-\ln\left(u_n^2+2\right) \end{align*}$
    Or $u_n^2+1\pg 1$ ainsi $\ln\left(u_n^2+2\right)\pg 0$.
    Donc $u_{n+1}-u_n\pp 0$
    La suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. La suite $\left(u_n\right)$ est décroissante et minorée par $0$. D’après le théorème de la limite monotone, $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  4. $f$ est continue (car dérivable) sur $\R$ et, pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $f(x)=x$.
    $\begin{align*} f(x)=x&\ssi x-\ln\left(x^2+1\right)=x\\
    &\ssi -\ln\left(x^2+1\right)=0\\
    &\ssi x^2+1=1 \qquad \text{(stricte croissance de la fonction exp)} \\
    &\ssi x^2=0 \\
    &\ssi x=0\end{align*}$
    Par conséquent $\ell=0$.
    $\quad$
  5. a.

    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante, $u_{96}\approx 0,1002~$ et $u_{97}\approx 0,0099$.
    $\text{seuil(0.01)}$ renvoie donc la valeur $97$.
    $\quad$

Partie C : étude d’une intégrale.

  1. La fonction $f$ est strictement croissante sur $[0;+\infty[$.
    De plus $f(0)=0$.
    Par conséquent, pour  tout réel $x>0$ on a $f(x)>f(0)$ soit $f(x)>0$.
    $\quad$
  2. $f$ est une fonction continue et positive sur $[2;4]$.
    Donc $I$ est l’aide du domaine compris entre l’axe des abscisses, la courbe représentative de la fonction $f$ et les droites d’équation $x=2$ et $x=4$.
    $\quad$
  3. Pour tout réel $x\in [2;4]$ on a $0,5x-1\pp f(x)\pp 0,25x+0,25$
    Par croissance de l’intégrale sur $[2;4]$ on obtient :
    $\ds \int_2^4 (0,5x-1)\dx \pp \int_2^4 f(x)\dx \pp \int_2^4 (0,25x+0,25)\dx$
    soit $\left[\dfrac{0,5}{2}x^2-x\right]_2^4 \pp I\pp \left[\dfrac{0,25}{2}x^2+0,25x\right]_2^4$
    donc $0-(-1) \pp I\pp 3-1$
    Finalement $1\pp I\pp 2$.
    $\quad$

Ex 4

Exercice 4

  1. a. On a $\lim\limits_{x\to -\infty} f(x)=5$. La droite d’équation $y=5$ est donc asymptote à la courbe $C_f$.
    De plus $\lim\limits_{x\to +\infty} f(x)=1$. La droite d’équation $y=1$ est donc asymptote à la courbe $C_f$.
    La droite d’équation $y=-2$ n’est, par conséquent, pas asymptote à la courbe $C_f$.
    Affirmation 1 fausse.
    $\quad$
    Remarque : La droite d’équation $x=-2$ est par contre une asymptote à la courbe $C_f$.
    $\quad$
    b. La fonction $f$ est strictement décroissante sur $]-\infty;-2[$ et $\lim\limits_{x\to -\infty} f(x)=5$.
    Par conséquent, pour tout réel $x<-2$ on a $f(x)<5$, c’est-à-dire $f(x)-5<0$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)-5=0^-$ et $\lim\limits_{x\to -\infty} \dfrac{2}{f(x)-5}=-\infty$
    Affirmation 2 fausse.
    $\quad$
  2. a. La fonction $g$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} g'(x)&=\e^{-x}-x\e^{-x} \\
    &=(1-x)\e^{-x}\end{align*}$
    $g’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    $\begin{align*} g\dsec(x)&=-\e^{-x}-(1-x)\e^{-x} \\
    &=(-1-1+x)\e^{-x} \\
    &=(x-2)\e^{-x} \end{align*}$
    La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $g\dsec(x)$ ne dépend que de celui de $(x-2)$.
    Or $x-2=0\ssi x=2$ et $x-2>0\ssi x>2$
    Ainsi $g\dsec(x)$ change de signe en s’annulant en $2$.
    Le point d’abscisse $2$ est donc l’unique point d’inflexion de $C_g$.
    De plus $g(2)=2\e^{-2}=\dfrac{2}{\e^2}$
    La point $A$ est donc l’unique point d’inflexion de la courbe $C_g$.
    Affirmation 3 vraie.
    $\quad$
    b. Méthode 1 : Soit $x<2$ on a
    $\begin{align*} g(x)\pp x&\ssi x\e^{-x}-x\pp 0 \\
    &\ssi x\left(\e^{-x}-1\right) \pp 0 \end{align*}$
    Or $\e^{-x}-1>0\ssi \e^{-x}>1 \ssi -x>0 \ssi x<0$
    Ainsi :
    $\bullet$ si $x\pg 0$ alors $\e^{-x}-1\pp 0$ et donc $x\left(\e^{-x}-1\right) \pp 0$
    $\bullet$ si $x\pp 0$ alors $\e^{-x}-1\pg 0$ et donc $x\left(\e^{-x}-1\right) \pp 0$
    Dans tous les cas $x\e^{-x}-x \pp 0$ et donc $g(x)\pp x$.
    Affirmation 4 vraie.
    $\quad$
    Méthode 2 : la fonction $g$ est concave sur $\R$. Sa courbe représentative est donc située sous ses tangentes, en particulier celle passant par le point de coordonnées $\left(0;g(0)\right)$.
    $g'(0)=1$ et $g(0)=0$.
    Une équation de la tangente à la courbe représentative de $g$ u point de coordonnées $(0;0)$ est donc $y=x$.
    Par conséquent, pour tout réel $x<2$ on a $g(x)\pp x$.
    Affirmation 4 vraie.
    $\quad$
  3. On appelle $h$ la fonction définie sur $]0;+\infty[$ par $h(x)=x\ln(x)$.
    La fonction $h$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a :
    $\begin{align*} h'(x)&=\ln(x)+x\times \dfrac{1}{x} \\
    &=\ln(x)+1\end{align*}$
    Or $\ln(x)+1>0 \ssi \ln(x)>-1\ssi x>\e^{-1}$ (croissance de la fonction exp sur $\R$).
    La fonction $h$ est donc strictement décroissante sur $\left]0;\e^{-1}\right]$ et strictement croissante sur $\left[\e^{-1};+\infty\right[$.
    Par croissances comparées, $\lim\limits_{x\to 0^+} x\ln(x)=0$.
    Ainsi, pour tout réel $x\in \left]0;\e^{-1}\right]$, on a $h(x)<0$ et l’équation $h(x)=1$ n’admet aucune solution sur cet intervalle.
    $\quad$
    La fonction $h$ est continue (car dérivable) et strictement croissante sur $\left[\e^{-1};+\infty\right[$.
    $h\left(\e^{-1}\right)=-\e^{-1}<1$ et $\lim\limits_{x\to +\infty} x\ln(x)=+\infty$.
    Donc $1\in \left]-\e^{-1};+\infty\right[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=1$ admet une unique solution sur $\left[\e^{-1};+\infty\right[$.
    $\quad$
    Par conséquent, l’équation $x\ln(x)=1$ admet une unique solution sur $]0;+\infty[$.
    Affirmation 5 fausse.
    $\quad$

 

Énoncé

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.
La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses seront valorisées

Exercice 1     5 points

On considère un repère orthonormé $\left(A;\vec{i},\vec{j},\vec{k}\right)$ de l’espace dans lequel on place les points $B(4; 0; 0)$, $D(0; 4; 0)$, $E(0; 0; 4)$ et les points $C$, $F$, $G$ et $H$ de sorte que le solide $ABCDEFGH$ soit un cube.

  1. Donner les coordonnées des points $C$, $F$, $G$ et $H$.
    $\quad$
  2. On considère le point $I$ milieu de l’arête $[EF]$.
    Montrer qu’une représentation paramétrique de la droite $(IC)$ est donnée par : $$\begin{cases} x=2+2t\\y=4t\\z=4-4t\end{cases} \quad \text{où } t\in \R$$
    $\quad$
  3. On désigne par $P$ le plan orthogonal à la droite $(IC)$ passant par le point $G$, et par $J$ l’intersection de $P$ avec $(IC)$.
    a. Démontrer qu’une équation cartésienne du plan $P$ est donnée par : $x +2y-2z-4 = 0.$
    $\quad$
    b. Justifier que $J$ a pour coordonnées $\left(\dfrac{28}{9};\dfrac{20}{9};\dfrac{16}{9}\right)$.
    Que représente $J$ par rapport à $C$ ?
    $\quad$
    c. Vérifier que le point $K(0; 2; 0)$ appartient au plan $P$.
    $\quad$
    d. Justifier que $(BK)$ est l’intersection des plans $P$ et $(ABC)$.
    $\quad$
  4. On rappelle que le volume d’une pyramide est donné par la formule $V = \dfrac{B \times h}{3}$, où $B$
    est l’aire d’une base et $h$ la longueur de la hauteur relative à cette base.
    a. Déterminer le volume de la pyramide $CBKG$.
    $\quad$
    b. En déduire que l’aire du triangle $BKG$ est égale à $12$.
    $\quad$
  5. Justifier que la droite $(BG)$ est incluse dans $P$.
    $\quad$
  6. On note $I’$ un point de l’arête $[EF]$, et $P’$ le plan orthogonal à la droite $(I’C)$ passant par $G$.
    Peut-on affirmer que la droite $(BG)$ est incluse dans $P’$?
    $\quad$

$\quad$

 

Exercice 2     4 points

Partie A

Suite à une étude statistique réalisée dans la station-service Carbuplus, on évalue à $0,25$ la probabilité qu’un client venant alimenter son véhicule en carburant passe moins de $12$ minutes dans la station avant de la quitter.
On choisit au hasard et de façon indépendante $10$ clients de la station et on assimile ce choix à un tirage avec remise. On appelle $X$ la variable aléatoire qui à chaque échantillon de $10$ clients associe le nombre de ces clients ayant passé moins de $12$ minutes à la station.

  1. Quelle est la loi de probabilité suivie par la variable aléatoire $X$ ? Préciser ses paramètres.
    $\quad$
  2. Quelle est la probabilité qu’au moins $4$ clients dans un échantillon de $10$ passent moins de $12$ minutes à la station ? On arrondira si besoin le résultat à $10^{-3}$ près.
    $\quad$
  3. Calculer l’espérance $E(X)$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

Partie B

Un client arrive à la station et se dirige vers une pompe. Il constate que deux voitures sont devant lui, la première accédant à la pompe au moment de son arrivée.
On désigne par $T_1$, $T_2$, $T_3$ les variables aléatoires qui modélisent les temps passés en minute par chacun des trois clients, dans leur ordre d’arrivée, pour alimenter son véhicule entre l’instant où la pompe est disponible pour lui et celui où il la libère.

On suppose que $T_1$, $T_2$, $T_3$ sont des variables aléatoires indépendantes de même espérance égale à $6$ et de même variance égale à $1$.

On note $S$ la variable aléatoire correspondant au temps d’attente total passé à la station du troisième client entre son arrivée à la station et son départ de la pompe après avoir alimenté son véhicule.

  1. Exprimer $S$ en fonction de $T_1$, $T_2$ et $T_3$.
    $\quad$
  2. a. Déterminer l’espérance de $S$ et interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
    b. Quelle est la variance du temps d’attente total $S$ de ce troisième client ?
    $\quad$
  3. Montrer que la probabilité que le troisième client passe un temps strictement compris entre $14$ et $22$ minutes à la station est supérieure ou égale à $0,81$.
    $\quad$

$\quad$

Exercice 3     6 points

Partie A : étude d’une fonction

On considère la fonction $f$ définie sur $\R$ par $$f(x)=x-\ln\left(x^2+1\right)$$
où $\ln$ désigne la fonction logarithme népérien.

  1. On admet que $f$ est dérivable sur $\R$ et on note $f’$
    sa fonction dérivée.
    a. Montrer que pour tout nombre réel $x$, on a : $$f'(x)=\dfrac{(x-1)^2}{x^2+1}$$
    $\quad$
    b. En déduire le sens de variation de la fonction $f$ sur $\R$.
    $\quad$
  2. Montrer que pour tout nombre réel $x > 0$, on a :
    $$f(x)=x-2\ln(x)-\ln\left(1+\dfrac{1}{x^2}\right)$$
    $\quad$
  3. Calculer la limite de la fonction $f$ en $+\infty$.
    $\quad$

Partie B : étude d’une suite

On considère la suite $\left(u_n\right)$ définie par : $$\begin{cases} u_0=7\\u_{n+1}=f\left(u_n\right)=u_n-\ln\left(u_n^2+1\right)\text{ pour tout } n\in \N\end{cases}$$

  1. Montrer, en utilisant un raisonnement par récurrence, que pour tout entier naturel $n$ : $u_n > 0$.
    $\quad$
  2. Montrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  3. En déduire la convergence de la suite $\left(u_n\right)$.
    $\quad$
  4. On note $\ell$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $\ell$.
    $\quad$
  5. a. Recopier et compléter le script ci-dessous écrit en langage Python afin qu’il renvoie la plus petite valeur de l’entier $n$ à partir de laquelle $u_n \pp h$, où $h$ est un nombre réel strictement positif.

    b. Déterminer la valeur renvoyée lorsqu’on saisit $\text {seuil(0.01)}$ dans la console Python. Justifier la réponse.
    $\quad$

Partie C : calcul intégral

  1. Étudier le signe de la fonction $f$ sur $[0 ; +\infty[$.
    $\quad$
  2. Interpréter graphiquement l’intégrale : $$I=\int_2^4 f(x)\dx$$
    $\quad$
  3. On admet dans cette question que, pour tout nombre réel $x \in [2 ; 4]$, on a l’encadrement : $$0,5x-1\pp f(x)\pp 0,25x+0,25$$
    En déduire l’encadrement : $$1\pp I\pp 2$$
    $\quad$

$\quad$

Exercice 4     5 points

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

  1. On considère ci-dessous le tableau de variations d’une fonction f définie sur $\R\setminus\acco{-2}$.
    $\quad$

    $\quad$
    a. Affirmation 1 :
    La droite d’équation $y =-2$ est asymptote horizontale à la courbe $C_f$ de la fonction $f$.
    $\quad$
    b. Affirmation 2 :
    $\lim\limits_{x\to -\infty} \dfrac{2}{f(x)-5}=+\infty$.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par $g(x)=x\e^{-x}$.
    a. Affirmation 3 :
    Le point $A\left(2;\dfrac{2}{\e^2}\right)$ est l’unique point d’inflexion de la courbe $C_g$ de la fonction $g$.
    $\quad$
    b. Affirmation 4 :
    Pour tout nombre réel $x$ appartenant à $]-\infty ; 2[$, on a $g(x) \pp x$.
    $\quad$
  3. Affirmation 5 :
    L’équation $x \ln(x) = 1$ admet exactement deux solutions sur l’intervalle $]0 ; +\infty[$.
    $\quad$

$\quad$

Bac – Polynésie – jour 1 – juin 2024

Polynésie – 19 juin 2024

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On a $\vect{OA}\begin{pmatrix}2\\1\\-1\end{pmatrix}$ et $\vect{OC}\begin{pmatrix}5\\0\\-3\end{pmatrix}$
    Ces deux vecteurs ne sont pas colinéaires puisqu’ils n’ont pas la même composante nulle.
    $\vec{n}.\vect{OA}=2+0-2=0$
    $\vec{n}.\vect{OC}=5+0-6=-1\neq 0$
    Donc $\vec{n}$ n’est pas orthogonal à $\vect{OC}$.
    Par conséquent $\vec{n}$ n’est pas normal au plan $(OAC)$.
    Affirmation 1 fausse.
    $\quad$
  2. Si on prend $t=-2$ dans la représentation paramétrique de la droite $\mathcal{D}$ on obtient $\begin{cases} x=5\\y=0\\z=-3\end{cases}$. Le point $C$ appartient donc à $\mathcal{D}$.
    $\vect{AB}\begin{pmatrix}-3\\1\\2\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}3\\-1\\-2\end{pmatrix}$. Par conséquent $\vect{AC}=-\vect{AB}$. Ces deux vecteurs sont colinéaires et les points $A$, $B$ et $C$ sont alignés.
    $C$ appartient à la droite $(AB)$.
    Il ne reste plus qu’à vérifier que la droite $(AB)$ n’est pas confondue avec la droite $\mathcal{D}$.
    Un vecteur directeur de $\mathcal{D}$ est $\vec{u}\begin{pmatrix}-1\\1\\2\end{pmatrix}$. Or $\dfrac{-3}{-1}\neq \dfrac{1}{1}$. Ainsi $\vec{u}$ et $\vect{AB}$ ne sont pas colinéaires.
    Les deux droites sont bien sécantes au point $C$.
    Affirmation 2 vraie.
    $\quad$
  3. Un vecteur directeur de $\mathcal{D}$ est $\vec{u}\begin{pmatrix}-1\\1\\2\end{pmatrix}$ et un vecteur normal à $\mathcal{P}$ est $\vec{n}\begin{pmatrix}1\\5\\-2\end{pmatrix}$.
    $\vec{u}.\vec{n}=-1+5-4=0$ : $\vec{u}$ et $\vec{n}$ sont orthogonaux.
    Par conséquent $\mathcal{D}$ est parallèle à $\mathcal{P}$.
    Affirmation 3 vraie.
    $\quad$
  4. On a $\vect{BC}\begin{pmatrix}6\\-2\\-4\end{pmatrix}$.
    Un vecteur normal au plan d’équation $3x-y-2z-7=0$ est $\vec{q}\begin{pmatrix}3\\-1\\-2\end{pmatrix}$.
    On a donc $\vect{BC}=2\vec{q}$.
    Ainsi $\vect{BC}$ est normal au plan d’équation $3x-y-2z-7=0$.
    Le milieu de $[BC]$ est $M(2;1;-1)$.
    Or $3\times 2-1-2\times (-1)-7=6-1+2-7=0$: donc $M$ appartient au plan d’équation $3x-y-2z-7=0$.
    Affirmation 4 vraie.
    $\quad$

 

 

Ex 2

Exercice 2

Partie A

  1. $(E)$ est de la forme $y’=ay+b$ avec $a=-0,02$ et $b=m$.
    Les fonctions solution de cette équation différentielle sont  es fonctions $f$ définies sur $\R$ par $f(t)=k\e^{at}-\dfrac{b}{a}$.
    Or $-\dfrac{b}{a}=50m$.
    Ainsi l’ensemble des fonctions solution de $(E)$ est $\acco{t\in \R\mapsto k\e^{-0,02t}+50m,~\forall k\in \R}$.
    $\quad$
  2. $\lim\limits_{t\to +\infty} -0,02t=-\infty$ et $\lim\limits_{x\to -\infty} \e^x=0$ donc, pour tout réel $k\in \R$, $\lim\limits_{t\to +\infty} k\e^{-0,02t}=0$.
    Ainsi $\lim\limits_{t\to +\infty} f(t)=50$m.
    Or $\lim\limits_{t\to +\infty} f(t)=30$.
    Par conséquent $50m=30 \ssi m=0,6$.
    $\quad$
  3. Pour tout réel $t$ on a donc $f(t)=k\e^{-0,02t}+30$ et $f(0)=210$.
    Ainsi $k\e^0+30=210\ssi k+30=210\ssi  k=180$.
    Pour tout réel $t$ on a alors $f(t)=180\e^{-0,02t}+30$.
    $\quad$

Partie B

  1. a. Graphiquement, il semblerait que $f(t)<50\ssi t>110$.
    Par conséquent $T\approx 110$.
    $\quad$
    b. On a :
    $\begin{align*} f(t)<50&\ssi 180\e^{-0,02t}+30<50 \\
    &\ssi 180\e^{-0,02t}<20 \\
    &\ssi \e^{-0,02t}<\dfrac{1}{9} \\
    &\ssi -0,02t<\ln\left(\dfrac{1}{9}\right) \qquad \text{croissance de la fonction exp} \\
    &\ssi -0,02t<-\ln(9) \\
    &\ssi t>50\ln(9) \qquad \text{division par un nombre négatif}\end{align*}$.
    Ainsi $T=50\ln(9)$.
    $\quad$
  2. La valeur moyenne de la température sur les $100$ premières secondes est :
    $\begin{align*} m&=\dfrac{1}{100}\int_0^{100} f(t)\dt \\
    &=\dfrac{1}{100}\int_0^{100} \left(180\e^{-0,02t}+30\right)\dt \\
    &=\dfrac{1}{100}\times \left[\dfrac{180}{-0,02}\e^{-0,02t}+30t\right]_0^{100} \\
    &=\dfrac{1}{100}\left(-9~000\e^{-2}+3~000+9~000\right) \\
    &=120-90\e^{-2}\end{align*}$
    $\quad$

 

 

Ex 3

Exercice 3

Partie A

  1. On répète $3$ fois, de façon indépendante, la même expérience de Bernoulli de paramètre $\dfrac{1}{2}$.
    $X$ suit donc la loi binomiale de paramètres $n=3$ et $p=\dfrac{1}{2}$.
    $\quad$
  2. Pour tout $k\in \acco{0;1;2;3}$ on a $P(X=k)=\dbinom{3}{k}\left(\dfrac{1}{2}\right)^k\left(\dfrac{1}{2}\right)^{3-k}=\dbinom{3}{k}\times\dfrac{1}{8}$.
    On obtient ainsi :
    $\begin{array}{|c|c|c|c|}
    \hline
    k&0&1&2&3\\
    \hline
    P(X=k)&\dfrac{1}{8}&\dfrac{3}{8}&\dfrac{3}{8}&\dfrac{1}{8}\\
    \hline
    \end{array}$

Partie B

  1. $A_1$ est vérifié. On relance donc $2$ pièces.
    Il y a $4$ tirages possibles : PilePile ; PileFace ; FacePile et FaceFace. La probabilité que ces deux pièces fournissent Face est égale à $\dfrac{1}{4}$.
    Par conséquent $P_{A_1}(G)=\dfrac{1}{4}$.
    $\quad$
  2. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  3. $\left(A_0,A_1,A_2,A_3\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} p&=P(G)\\
    &=P\left(A_0\cap G\right)+P\left(A_1\cap G\right)+P\left(A_2\cap G\right)+P\left(A_3\cap G\right) \\
    &=P\left(A_0\right)\times P_{A_0}(G)+P\left(A_1\right)\times P_{A_1}(G)+P\left(A_2\right)\times P_{A_2}(G)+P\left(A_3\right)\times P_{A_3}(G) \\
    &=\dfrac{1}{8}\times \dfrac{1}{8}+\dfrac{3}{8}\times \dfrac{1}{4}+\dfrac{3}{8}\times \dfrac{1}{2}+\dfrac{1}{8}\times 1 \\
    &=\dfrac{27}{64}\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_G\left(A_1\right)&=\dfrac{P\left(G\cap A_1\right)}{P(G)}\\ &=\dfrac{P\left(A_1\right)\times P_{A_1}(G)}{P(G)} \\
    &=\dfrac{\dfrac{3}{8}\times \dfrac{1}{4}}{\dfrac{27}{64}} \\
    &=\dfrac{2}{9}\end{align*}$
    La probabilité qu’exactement une pièce soit tombée du côté Face à la première tentative sachant que la partie a été gagnée est égale à $\dfrac{2}{9}$.
    $\quad$
  5. On répète $n$ fois de façon indépendante la même expérience de Bernoulli de paramètre $\dfrac{27}{64}$ et on appelle $Y$ la variable aléatoire qui compte le nombre de fois où la partie est gagnée. $Y$ suit donc la loi binomiale de paramètres $n$ et $p=\dfrac{27}{64}$.
    $\begin{align*} P(Y\pg 1)>0,95 &\ssi 1-P(Y=0)>0,95 \\
    &\ssi P(Y=0)<0,05 \\
    &\ssi \left(1-\dfrac{27}{64}\right)^n<0,05 \\
    &\ssi n\ln\left(\dfrac{37}{64}\right)<\ln(0,05) \qquad \text{croissance de la fonction ln} \\
    &\ssi n>\dfrac{\ln(0,05)}{\ln\left(\dfrac{37}{64}\right)} \end{align*}$
    Or $\dfrac{\ln(0,05)}{\ln\left(\dfrac{37}{64}\right)} \approx 5,5$.
    Il faut donc jouer au moins $6$ fois à ce jeu pour que la probabilité de gagner au moins une partie dépasse $0,95$.
    $\quad$

 

Ex 4

Exercice 4

Partie A

  1. On a :

    $\quad$
  2. $\text{suite(2)}$ renvoie une valeur approchée de $u_2$.
    On a :
    $\begin{align*} u_1&=\dfrac{4}{5-3} \\
    &=\dfrac{4}{2} \\
    &=2\end{align*}$
    et
    $\begin{align*} u_2&=\dfrac{4}{5-2}\\
    &=\dfrac{4}{3}\end{align*}$
    Or $\dfrac{4}{3}\approx 1,333~333~333~333~333~3$.
    $\quad$
  3. Il semblerait que la suite $\left(u_n\right)$ soit décroissante et converge vers $1$.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $]-\infty;5[$ par hypothèse.
    Pour tout réel $x<5$ on a :
    $\begin{align*} f'(x)&=-(-1)\dfrac{4}{(5-x)^2}\\
    &=\dfrac{4}{(5-x)^2}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $]-\infty;5[$.
    $\quad$
  2. Pour tout entier naturel $n$ on pose $P(n):~1\pp u_{n+1}\pp u_n \pp 4$.
    Initialisation : $u_0=3$ et $u_1=2$. Donc $1\pp u_1\pp u_0 \pp 4$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $1\pp u_{n+1} \pp u_n \pp 4$
    La fonction $f$ est croissante sur $]-\infty;5[$. Ainsi :
    $f(1) \pp f\left(u_{n+1}\right) \pp f\left(u_n\right) \pp f(4)$.
    Par conséquent $1\pp u_{n+2} \pp u_{n+1} \pp 4$ et $P(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$ on a $1\pp u_{n+1} \pp u_n \pp 4$.
    $\quad$
  3. a. Soit $x<5$.
    $\begin{align*} f(x)=x&\ssi \dfrac{4}{5-x}=x \\
    &\ssi \dfrac{4}{5-x}-x=0 \\
    &\ssi \dfrac{4-(5-x)x}{5-x}=0 \\
    &\ssi \dfrac{4-5x+x^2}{5-x}=0 \\
    &\ssi 4-5x+x^2=0 \qquad \text{ car }5-x\neq 0\end{align*}$
    $\quad$
    b. $x^2-5x+4=0$ est une équation du second degré.
    Son discriminant est $\Delta=(-5)^2-4\times 1\times 4=9>0$.
    Ses racines sont $\dfrac{5-\sqrt{9}}{2}=1$ et $\dfrac{5+\sqrt{9}}{2}=4$.
    Or $1\in ]-\infty;5[$ et $4\in ]-\infty;5[$.
    Par conséquent les solutions de l’équation $f(x)=x$ sont $1$ et $4$.
    $\quad$
  4. La suite $\left(u_n\right)$ est, d’après la question B.2, décroissante et minorée par $1$. D’après le théorème de la limite monotone, elle converge vers un réel $\ell$.
    $\quad$
    $f$ est continue (car dérivable) sur $]-\infty;5[$ et, pour tout $n\in \N$ on a $u_{n+1}=f\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $f(x)=x$.
    D’après la question précédente $\ell=1$ ou $\ell=4$.
    Or $\left(u_n\right)$ est décroissante et $u_0=3<4$. Par conséquent $\ell=1$.
    $\quad$
  5. Si $u_0=4$ alors $u_1=4$.
    Un rapide raisonnement par récurrence nous permettrait de montrer que, pour tout entier naturel $n$, on a $u_n=4$.
    La suite $\left(u_n\right)$ serait donc constante égale à $4$.
    $\quad$

Énoncé

 

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.
La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses seront valorisées

Exercice 1     4 points

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse.
Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.
Dans cet exercice, les questions sont indépendantes les unes des autres.

Les quatre affirmations se placent dans la situation suivante :
Dans l’espace muni d’un repère orthonormé $\Oijk$, on considère les points : $$A(2 ; 1 ;-1), B(-1 ; 2 ; 1) \text{ et } C(5 ; 0 ;-3)$$
On note $\mathcal{P}$ le plan d’équation cartésienne : $$x+5y-2z+3=0$$
On note $\mathcal{D}$ la droite de représentation paramétrique : $$\begin{cases} x=-t+3\\y=t+2\\z=2t+1\end{cases} \qquad t\in \R$$

Affirmation 1 :
Le vecteur $\vec{n}\begin{pmatrix}1\\0\\2\end{pmatrix}$ est normal au plan $(OAC)$.

$\quad$
Affirmation 2 :
Les droites $\mathcal{D}$ et $(AB)$ sont sécantes au point $C$.

$\quad$
Affirmation 3 :
La droite $\mathcal{D}$ est parallèle au plan $\mathcal{P}$.

$\quad$
Affirmation 4 :
Le plan médiateur du segment $[BC]$, noté $Q$, a pour équation cartésienne : $$3x-y-2z-7 = 0$$
On rappelle que le plan médiateur d’un segment est le plan perpendiculaire à ce segment et passant par son milieu.

$\quad$

$\quad$

Exercice 2     5 points

Une entreprise fabrique des objets en plastique en injectant dans un moule de la matière fondue à $210$ °C. On cherche à modéliser le refroidissement du matériau à l’aide d’une fonction $f$ donnant la température du matériau injecté en fonction du temps $t$.
Le temps est exprimé en seconde et la température est exprimée en degré Celsius.
On admet que la fonction $f$ cherchée est solution d’une équation différentielle de la forme suivante où m est une constante réelle que l’on cherche à déterminer : $$(E)~ :~ y’+0,02y = m$$

Partie A

  1. Justifier l’affichage suivant d’un logiciel de calcul formel :
    $$\begin{array}{|l|l|}
    \hline
    \text{Entrée :}&\text{RésoudreEquationDifférentielle (y′ +0,02y = m)}\\
    \hline
    \text{Sortie :}& \boxed{\to}~ y = k *\exp(−0.02∗t)+50*m\\
    \hline
    \end{array}$$
    $\quad$
  2. La température de l’atelier est de $30$ °C. On admet que la température $f(t)$ tend vers $30$ °C lorsque $t$ tend vers l’infini.
    Démontrer que $m = 0,6$.
    $\quad$
  3. Déterminer l’expression de la fonction $f$ cherchée en tenant compte de la condition initiale f$ (0) = 210$.
    $\quad$

Partie B

On admet ici que la température (exprimée en degré Celsius) du matériau injecté en fonction du temps (exprimé en seconde) est donnée par la fonction dont l’expression et une représentation graphique sont données ci-dessous : $$f(t)=180\e^{-0,02t}+30$$

  1. . L’objet peut être démoulé lorsque sa température devient inférieure à $50$°C.
    a. Par lecture graphique, donner une valeur approchée du nombre $T$ de secondes à attendre avant de démouler l’objet.
    $\quad$
    b. Déterminer par le calcul la valeur exacte de ce temps $T$.
    $\quad$
  2. À l’aide d’une intégrale, calculer la valeur moyenne de la température sur les $100$ premières secondes.
    $\quad$

$\quad$

Exercice 3     5 points

Les probabilités demandées seront exprimées sous forme de fractions irréductibles

Partie A
On lance trois fois de suite une pièce de monnaie bien équilibrée. On note $X$ la variable aléatoire qui compte le nombre de fois, sur les trois lancers, où la pièce est retombée du côté « Face ».

  1. Préciser la nature et les paramètres de la loi de probabilité suivie par $X$.
    $\quad$
  2. Recopier et compléter le tableau suivant donnant la loi de probabilité de $X$.
    $$\begin{array}{|c|c|c|c|c|}
    \hline
    k&0&1&2&3\\
    \hline
    P(X=k)&\phantom{12345}&\phantom{12345}&\phantom{12345}&\phantom{12345}\\
    \hline
    \end{array}$$
    $\quad$

Partie B

Voici les règles d’un jeu où le but est d’obtenir trois pièces du côté « Face » en un ou deux essais :

  • On lance trois pièces équilibrées :
    • Si les trois pièces sont tombées du côté « Face », la partie est gagnée;
    • Sinon, les pièces tombées du côté « Face » sont conservées et on relance celles tombées du côté « Pile ».
  • La partie est gagnée si on obtient trois pièces du côté « Face », sinon elle est perdue.

On considère les évènements suivants :

  • $G$ : « la partie est gagnée ».
    Et pour tout entier $k$ compris entre $0$ et $3$, les évènements :
  • $A_k$ : « $k$ pièces sont tombées du côté « Face » au premier lancer ».
  1. Démontrer que $P_{A_1}(G) = \dfrac{1}{4}$.
    $\quad$
  2. Recopier et compléter l’arbre pondéré ci-dessous :
    $\quad$

    $\quad$
  3. Démontrer que la probabilité $p$ de gagner à ce jeu est $p =\dfrac{27}{64}$
    $\quad$
  4. La partie a été gagnée. Quelle est la probabilité qu’exactement une pièce soit tombée du côté « Face » à la première tentative ?
    $\quad$
  5. Combien de fois faut-il jouer à ce jeu pour que la probabilité de gagner au moins une partie dépasse $0,95$ ?
    $\quad$

$\quad$

Exercice 4     6 points

L’objectif de cet exercice est de conjecturer en partie A puis de démontrer en partie B le comportement d’une suite.
Les deux parties peuvent cependant être traitées de manière indépendante.
On considère la suite $\left(u_n\right)$ définie par $u_0 = 3$ et pour tout $n\in \N$ : $$u_{n+1}=\dfrac{4}{5-u_n}$$

Partie A

  1. Recopier et compléter la fonction Python suivante $\text{suite(n)}$ qui prend comme paramètre le rang $n$ et renvoie la valeur du terme $u_n$.

    $\quad$
  2. L’exécution de $\text{suite(2)}$ renvoie $1.3333333333333333$.
    Effectuer un calcul pour vérifier et expliquer cet affichage.
    $\quad$
  3. À l’aide des affichages ci-dessous, émettre une conjecture sur le sens de variation et une conjecture sur la convergence de la suite $\left(u_n\right)$.
    $$\begin{array}{|l|}
    \hline
    » \text{ suite}(2)\\
    1.3333333333333333\\
    » suite(5)\\
    1.0058479532163742\\
    » \text{ suite}(10)\\
    1.0000057220349845\\
    » \text{ suite}(20)\\
    1.000000000005457\\
    \hline
    \end{array}$$
    $\quad$

 

Partie B

On considère la fonction $f$ définie et dérivable sur l’intervalle $]-\infty ; 5[$ par : $$f(x) =\dfrac{4}{5-x}$$
Ainsi, la suite $\left(u_n\right)$ est définie par $u_0 = 3$ et pour tout $n \in \N$, $u_{n+1} = f \left(u_n\right)$.

  1. Montrer que la fonction $f$ est croissante sur l’intervalle $]-\infty ; 5[$.
    $\quad$
  2. Démontrer par récurrence que pour tout entier naturel $n$ on a : $$1\pp u_{n+1}\pp u_n \pp 4$$
    $\quad$
  3. a. Soit x un réel de l’intervalle $]-\infty ; 5[$.
    Prouver l’équivalence suivante : $$f (x) = x \ssi x^2-5x +4 = 0$$
    $\quad$
    b. Résoudre $f(x) = x$ dans l’intervalle $]-\infty ; 5[$.
    $\quad$
  4. Démontrer que la suite $\left(u_n\right)$ est convergente.
    Déterminer sa limite.
    $\quad$
  5. Le comportement de la suite serait-il identique en  choisissant comme terme initial $u_0 = 4$ au lieu de $u_0 = 3$ ?
    $\quad$

 

 

Bac – Métropole – jour 2 (non utilisé) – juin 2024

Métropole – 20 juin 2024

Spécialité maths – Sujet 2 (non utilisé) – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. a. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(R\cap F)&=P(R)\times P_R(F)\\
    &=0,6\times 0,47 \\
    &=0,282\end{align*}$
    La probabilité que le client interrogé soit un client régulier et qu’il ait acheté la carte de fidélité est égale à $0,282$.
    $\quad$
    c. $\left(R,\conj{R}\right)$ est un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*}P(F)=P(R\cap F)+P\left(\conj{R}\cap F\right) &\ssi 0,38=0,282+P\left(\conj{R}\right)\times P_{\conj{R}}(F) \\
    &\ssi 0,098=0,4\times P_{\conj{R}}(F) \\
    &\ssi  P_{\conj{R}}(F)=0,245\end{align*}$
    La probabilité que le client ait acheté la carte de fidélité sachant que ce n’est pas un client régulier est égale à $0,245$.
    $\quad$
    d. On a  :
    $\begin{align*} P_F(R)&=\dfrac{P(R\cap F)}{P(F)} \\
    &=\dfrac{0,282}{0,38} \\
    &\approx 0,742 \\
    &<0,8\end{align*}$
    L’affirmation est donc fausse.
    $\quad$
  2. a. On répète $20$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,38$.
    $X$ suit donc la loi binomiale de paramètres $n=20$ et $p=0,38$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X\pg 5)&=1-P(X<5) \\
    &=1-P(X\pp 4) \\
    &\approx 0,927\end{align*}$
    La probabilité qu’au moins $5$ clients aient acheté la carte de fidémité dans un échantillon de $20$ est environ égale à $0,927$.
    $\quad$

Partie B

  1. $X_2$ suit la loi binomiale de paramètres $1~000$ et $0,47$. Donc :
    $\begin{align*} E\left(X_2\right)&=1~000\times 0,47 \\
    &=470\end{align*}$
    En moyenne $470$ clients sur les $1~000$ interrogés ont acheté la carte de fidélité.
    $\quad$
  2. $Z$ modélise la somme moyenne, en euros, offerte aux $1~000$ clients interrogés.
    On a, par linéarité de l’espérance :
    $\begin{align*}E(Z)=\dfrac{1}{1~000} E(Y) \\
    &=\dfrac{1}{1~000}\left(E\left(Y_1\right)+E\left(Y_2\right)\right)\\
    &=\dfrac{1}{1~000}\left(30~000+50E\left(X_2\right)\right) \\
    &=\dfrac{1}{1~000}(30~000+23~500) \\
    &=\dfrac{53~500}{1~000} \\
    &=53,5\end{align*}$
    $\quad$
    On a :
    $\begin{align*} V\left(X_2\right)&=1~000\times 0,47\times 0,53 \\
    &=249,1\end{align*}$
    Par conséquent :
    $\begin{align*} V\left(Y_2\right)&=50^2V\left(X_2\right) \\
    &=2~500\times 249,1 \\
    &=622~750\end{align*}$
    $Y_1$ et $Y_2$ sont indépendantes donc :
    $\begin{align*} V(Z)&=\dfrac{1}{1~000^2}V(Y)\\
    &=\dfrac{1}{1~000~000}\left(V\left(Y_1\right)+V\left(Y_2\right)\right) \\
    &=\dfrac{722~750}{1~000~000}\\
    &=0,72~275\end{align*}$
    $\quad$
  3. On a :
    $\begin{align*} P(51,7<Z<55,3)&=P\left(-1,8<Z-E(Z)<1,8\right) \\
    &=P\left(\abs{Z-E(Z)}<1,8\right) \\
    &=1-P\left(\abs{E-E(Z)}\pg 1,8\right) \\
    &\pg 1-\dfrac{V(Z)}{1,8^2} \qquad \text{(inégalité de Bienaymé-Tchebychev)} \end{align*}$
    Or $1-\dfrac{V(Z)}{1,8^2}\approx 0,777>0,75$.
    La probabilité que $Z$ soit strictement compris entre $51,7$ et $55,3$ euros est supérieure à $0,75$.
    $\quad$

Ex 2

Exercice 2

  1. On a $\vect{AB}\begin{pmatrix}6\\-3\\6\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}6\\-6\\0\end{pmatrix}$.
    Ces deux vecteurs ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    D’une part $\vec{n}.\vect{AB}=12-6-6=0$.
    D’autre part $\vec{n}.\vect{AC}=12-12+0=0$.
    Ainsi $\vec{n}$  est orthogonal à deux vecteurs non colinéaires du plan $(ABC)$. C’est donc un vecteur normal au plan $(ABC)$.
    Affirmation 1 vraie.
    $\quad$
  2. Si on prend $t=-1$ dans la représentation paramétrique fournie on obtient le point de coordonnées $(0;4;1)$ c’est-à-dire le point $A$.
    Si on prend $t=2$ dans la représentation paramétrique fournie on obtient le point de coordonnées $(6;1;5)$ c’est-à-dire le point $B$.
    Il s’agit donc bien d’une représentation paramétrique de la droite $(AB)$.
    Affirmation 2 vraie.
    $\quad$
  3. On a $\vect{AB}\begin{pmatrix}6\\-3\\6\end{pmatrix}$ est normal au plan $\mathcal{P}$.
    Un vecteur normal au plan d’équation $2x+2y-z-9=0$ est $\vec{u}\begin{pmatrix}2\\2\\-1\end{pmatrix}$.
    Or $\dfrac{6}{2}=3\neq \dfrac{-3}{2}$.
    Ainsi $\vect{AB}$ et $\vec{u}$ ne sont pas colinéaires.
    Affirmation 3 fausse.
    $\quad$
  4. Un vecteur directeur de $\mathcal{D}$ est $\vec{a}\begin{pmatrix}1\\1\\1\end{pmatrix}$ et un vecteur directeur de $\mathcal{D}’$ est $\vec{b}\begin{pmatrix}2\\-1\\2\end{pmatrix}$
    Or $\dfrac{2}{1}\neq \dfrac{-1}{1}$.
    Ces deux vecteurs ne sont pas colinéaires par conséquent les deux droites ne sont pas parallèles.
    Résolvons le système :
    $\begin{align*} \begin{cases} x=3+t\\y=1+t\\z=2+t\\x=2t’\\y=4-t’\\z=-1+2t’\end{cases}&\ssi \begin{cases} x=3+t\\y=1+t\\z=2+t\\3+t=2t’\\1+t=4-t’\\2+t=-1+2t’\end{cases} \\
    &\ssi \begin{cases} x=3+t\\y=1+t\\z=2+t\\t=2t’-3\\1+2t’-3=4-t’\\2+2t’-3=-1+2t’\end{cases} \\
    &\ssi \begin{cases} x=3+t\\y=1+t\\z=2+t\\t=2t’-3\\3t’=6\\-1=-1\end{cases} \\
    &\ssi \begin{cases} x=4\\y=2\\z=3\\t=1\\t’=2\end{cases} \end{align*}$
    $\mathcal{D}$ et $\mathcal{D}’$ sont sécantes au point de coordonnées $(4;2;3)$.
    Affirmation 4 fausse
    $\quad$

$\quad$

 

Ex 3

Exercice 3

Partie A : étude de la suite $\boldsymbol{\left(u_n\right)}$ dans le cas $\boldsymbol{1<a<2}$.

  1. a.  Soit $n$ un entier naturel.
    $\begin{align*} u_{n+1}-2&={u_n}^2-2u_n+2-2 \\
    &=u_n\left(u_n-2\right)\end{align*}$
    $\quad$
    b. Soit $n$ un entier naturel.
    D’une part :
    $\begin{align*} u_{n+1}-u_n&={u_n}^2-2u_n+2-u_n \\
    &={u_n}^2-3u_n+2\end{align*}$
    D’autre part :
    $\begin{align*} \left(u_n-1\right)\left(u_n-2\right) &={u_n}^2-2u_n-u_n+2 \\
    &={u_n}^2-3u_n+2\end{align*}$
    Donc $u_{n+1}-u_n=\left(u_n-1\right)\left(u_n-2\right)$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $P(n):~u_n<2$.
    Initialisation : $u_0=a<2$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    Or $u_n<2 \ssi u_n-2<0$.
    Par hypothèse, $u_n>1>0$ donc $u_n\left(u_n-2\right)<0$ c’est-à-dire $u_{n+1}-2<0$.
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$, on a $u_n<2$.
    $\quad$
    b. On a $u_n>1\ssi u_n-1>0$ et $u_n<2\ssi u_n-2<0$ donc $\left(u_n-1\right)\left(u_n-2\right)<0\ssi u_{n+1}-u_n<0$.
    La suite $\left(u_n\right)$ est donc décroissante et minorée par $1$. D’après le théorème de la limite monotone elle converge vers un réel $\ell$ appartenant à $[0;1]$.
    Pour tout entier naturel $n$ on a $u_{n+1}=f\left(u_n\right)$ où $f$ est la fonction définie sur $\R$ par $f(x)=x^2-2x+2$. Cette fonction est continue sur $\R$ en tant que fonction polynôme.
    Ainsi $\ell$ est solution de l’équation :
    $\begin{align*} f(x)=x&\ssi x^2-2x+2=x \\
    &\ssi x^2-3x+2=0 \\
    &\ssi (x-1)(x-2)=0\end{align*}$
    Ainsi $\ell$ vaut $1$ ou $2$.
    Or $\left(u_n\right)$ est décroissante et $u_0=a<2$.
    Ainsi $\ell=1$.
    $\quad$

Partie B : étude dans le cas particulier $\boldsymbol{a=2}$.

  1.  $\text{u(2,1)}$ renvoie la valeur de $u_1$ et $\text{u(2,2)}$ renvoie la valeur de $u_2$.
    Or $2^2-2\times 2+2=2$.
    Ainsi les deux appels vont renvoyer la même valeur $2$.
    $\quad$
  2. On peut donc conjecturer que si $a=2$ alors la suite $\left(u_n\right)$ est constante égale à $2$.
    $\quad$

Partie C : étude dans le cas général.

  1.  a. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\ln\left(u_{n+1}-1\right) \\
    &=\ln\left({u_n}^2-2u_n+1\right) \\
    &=\ln\left(\left(u_n-1\right)^2\right) \\
    &=2\ln\left(u_n-1\right) \\
    &=2v_n\end{align*}$
    La suite $\left(u_n\right)$ est donc géométrique de raison $2$ et de premier terme $v_0=\ln(a-1)$.
    $\quad$
    b. Par conséquent, pour tout entier naturel $n$ on a $v_n=\ln(a-1)\times 2^n$.
    La fonction exponentielle est strictement croissante sur $\R$ et $v_n=\ln\left(u_n-1\right)$.
    Par conséquent $u_n-1=\e^{v_n} \ssi u_n=1+\e^{v_n}$.
    Ainsi $u_n=1+\e^{2^n\times \ln(a-1)}$.
    $\quad$
  2. $2>1$ donc $\lim\limits_{n\to +\infty} 2^n=+\infty$.
    $\bullet$ Si $a\in ]1;2[$ alors, d’après la partie A, $\lim\limits_{n\to +\infty} u_n=1$.
    $\bullet$ Si $a=2[$ alors, d’après la partie B, $\lim\limits_{n\to +\infty} u_n=2$.
    $\bullet$ Si $a>2$ alors $a-1>1$ et $\ln(a-1)>0$. Ainsi $\lim\limits_{n\to +\infty} 2^n \times \ln(a-1)=+\infty$. Or $\lim\limits_{x\to +\infty} \e^x=+\infty$. Donc $\lim\limits_{n\to +\infty} u_n=+\infty$.
    $\quad$

Ex 4

Exercice 4

Partie A : étude graphique

  1. a. Graphiquement $f(0)=2$
    $\quad$
    b. $f'(0)$ est égal au coefficient directeur de la droite $T$, droite passant par $M(0;2)$ et $P(2;0)$.
    Ainsi $f'(0)=\dfrac{2-0}{0-2}=-1$.
    $\quad$
  2. Graphiquement, l’équation $f(x)=0$ semble n’avoir qu’une seule solution $-2$.
    $\quad$
  3. La courbe $C_f$ semble posséder un point d’inflexion d’abscisse environ égale à $0$.
    La fonction $f$ n’est donc pas convexe sur $\R$.
    $\quad$
  4. La fonction $f$ semble être négative sur $]-\infty;-2]$ et positive sur $[-2;+\infty[$.
    Ses primitives sont donc décroissantes sur $]-\infty;-2]$ et croissantes sur $[-2;+\infty[$.
    Seule la courbe $2$ semble vérifier ces variations.
    La courbe $2$ peut donc représenter une primitive de la fonction $f$ sur $\R$.
    $\quad$

Partie B : recherche d’une expression algébrique

  1. $f(0)=2\ssi b\e^0=2 \ssi b=2$.
    $\quad$
  2.   $f(-2)=0\ssi (-2a+b)\e^{-2\lambda}=0 \ssi -2a+b=0$ car $\e^t>0$ pour tout $t\in \R$.
    Or $b=2$ ainsi $-2a+2=0\ssi 2(1-a)=0 \ssi a=1$.
    $\quad$
  3. Pour tout réel $x$ on a donc $f(x)=(x+2)\e^{\lambda x}$.
    La fonction $f$ est dérivable sur $\R$ par hypothèse.
    Ainsi, pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\e^{\lambda x}+\lambda(x+2)\e^{\lambda x} \\
    &=(1+\lambda x+2\lambda)\e^{\lambda x} \end{align*}$
    Or $f'(0)=-1$ d’après la partie A.
    Donc $(1+2\lambda)\e^0=-1 \ssi 2\lambda+1=-1 \ssi 2\lambda =-2 \ssi \lambda =-1$.
    Par conséquent, pour tout réel $x$ on a $f(x)=(x+2)\e^{-x}$.
    $\quad$

Partie C : étude algébrique

  1. $\lim\limits_{x\to -\infty} x+2=-\infty$
    $\lim\limits_{x\to -\infty} -x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to -\infty} \e^{-x}=+\infty$.
    Ainsi $\lim\limits_{x\to -\infty} f(x)=-\infty$.
    $\quad$
  2. Pour tout réel $x$ on a $\e^{-x}>0$. Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0\ssi x<-1$.
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
    Pour tout réel $x$ on a $f(x)=x\e^{-x}+2\e^{-x}$.
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$ et, par croissances comparées, $\lim\limits_{x\to +\infty} x\e^{-x}=0$. Ainsi $\lim\limits_{x\to +\infty} f(x)=0$.
    $\quad$
  3. a. La fonction $f’$ est dérivable sur $\R$ par hypothèse.
    Pour tout réel $x$ on a :
    $\begin{align*} f\dsec(x)&=-\e^{-x}-(-x-1)\e^{-x} \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    La fonction exponentielle étant strictement positiver sur $\R$ le signe de $f\dsec(x)$ ne dépend que de celui de $x$.
    Ainsi :
    $\bullet$ pour tout $x<0$ on a $f\dsec(x)<0$ ;
    $\bullet$ pour tout $x>0$ on a $f\dsec(x)>0$ ;
    $\bullet$ $f\dsec(0)=0$.
    La fonction $f$ est donc concave sur $]-\infty;0]$ et convexe sur $[0;+\infty[$.
    $\quad$
    b. D’après la réponse précédente, la courbe $C_g$ possède un unique point d’inflexion de coordonnées $(0;2)$.
    $\quad$
  4. a. On réalise une intégration par parties à l’aides des fonctions $u$ et $v$ de classe $C^1$ sur $[-2;t]$ définies par :
    $$\begin{array}{lll} u(x)=x+2&\phantom{123}&u'(x)=1 \\
    v(x)=-\e^{-x}&&v'(x)=\e^{-x}\end{array}$$
    Par conséquent :
    $\begin {align*}I(t)&=\int_{-2}^t f(x)\dx \\
    &=\Big[-(x+2)\e^{-x}\Big]_{-2}^t-\int_{-2}^t -\e^{-x}\dx \\
    &=-(t+2)\e^{-t}-\Big[\e^{-x}\Big]_{-2}^t \\
    &=(-t-2)\e^{-t}-\left(\e^{-t}-\e^2\right) \\
    &=(-t-2-1)\e^{-t}+\e^2 \\
    &=(-t-3)\e^{-t}+\e^2\end{align*}$
    $\quad$
    b. On a donc, pour tout $t\pg 0$, $I(t)=-t\e^{-t}-3\e^{-t}+\e^2$.
    Or $\lim\limits_{t\to +\infty} 3\e^{-t}=0$ et, par croissances comparées, $\lim\limits_{t\to +\infty} t\e^{-t}=0$. Donc $\lim\limits_{t\to +\infty} I(t)=\e^2$.
    La fonction $f$ est continue sur $\R$ (car dérivable) et positive sur $[-2;+\infty[$.
    Ainsi $I(t)$ est l’aire de la surface comprise entre l’axe des abscisses, la courbe $C_f$ et les droites d’équation $x=-2$ et $x=t$.
    Par conséquent la surface comprise entre l’axe des abscisses, la courbe $C_f$ et à droite de la droite d’équation $x=-2$ est non limitée et son aire est finie (elle vaut $\e^2$).
    $\quad$

Énoncé

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées

Exercice 1     (5 points)

Les parties A et B sont indépendantes.

Partie A

Une société de vente en ligne procède à une étude du niveau de fidélité de ses clients. Elle définit pour cela comme «régulier » un client qui a fait des achats chaque année depuis trois ans. Elle constate que $60\%$ de ses clients sont des clients réguliers, et que parmi eux, $47\%$ ont acheté la carte de fidélité.
Par ailleurs, parmi l’ensemble de tous les clients de la société, $38\%$ ont acheté la carte de fidélité.

On interroge au hasard un client et on considère les événements suivants :

  • $R$ : « le client est un client régulier » ;
  • $F$ « le client a acheté la carte de fidélité ».

Pour un événement $E$ quelconque, on note $\conj{E}$ son événement contraire et $P(E)$ sa probabilité.

  1. a. Reproduire l’arbre ci-dessous et compléter les pointillés.
    $\quad$

    $\quad$
    b. Calculer la probabilité que le client interrogé soit un client régulier et qu’il ait acheté la carte de fidélité.
    $\quad$
    c. Déterminer la probabilité que le client ait acheté la carte de fidélité sachant que ce n’est pas un client régulier.
    $\quad$
    d. Le directeur du service des ventes affirme, que parmi les clients qui ont acheté la carte de fidélité, plus de $80\%$ sont des clients réguliers. Cette affirmation est-elle exacte ?
    $\quad$
  2. On choisit un échantillon de $20$ clients de la société sélectionnés de manières indépendante.
    On suppose que ce choix s’assimile à un tirage avec remise.
    On note $X$ la variable aléatoire qui à chaque échantillon de $20$ clients associe le nombre de clients ayant acheté la carte de fidélité parmi eux. On rappelle que $P(F)=0,38$.
    les valeurs des probabilités demandées seront arrondies à $10^{-3}$ près.
    a. Quelle loi de probabilité suit la variable aléatoire $X$ ? Justifier.
    $\quad$
    b. Déterminer la probabilité qu’au moins $5$ clients aient acheté la carte de fidélité dans un échantillon de $20$.
    $\quad$

Partie B

La société demande à un institut de sondage de faire une enquête sur le profil de ses clients réguliers. L’institut a élaboré un questionnaire en ligne constitué d’un nombre variable de questions.
On choisit au hasard un échantillon de $1~000$ clients réguliers, à qui le questionnaire est proposé. On considère que ces $1~000$ clients répondent.

  • Pour les remercier, la société offre un bon d’achat à chacun des clients de l’échantillon. Le montant de ce bon d’achat, dépend du nombre de questions posées au client.
  • La société souhaite récompenser particulièrement les clients de l’échantillon qui ont acheté une carte de fidélité et, en plus du bon d’achat, offre à chacun d’eux une prime d’un montant de $50$ euros versée sur la carte de fidélité.

On note $Y_1$ la variable aléatoire qui, à chaque échantillon de $1~000$ clients réguliers, associe le total, en euros, des montants du bon d’achat des $1~000$ clients. On admet que son espérance $E\left(Y_1\right)$ est égale à $30~000$ et que sa variance $V\left(Y_1\right)$ est égale à $100~000$.

On note $X_2$ la variable aléatoire qui, à chaque échantillon de $1~000$ clients réguliers, associe le nombre de clients ayant acheté la carte de fidélité parmi eux, et on note $Y_2$ la variable aléatoire qui, à chaque échantillon de $1~000$ clients, associe le total en euros des montants de la prime de fidélité versée.
On admet que $X_2$ suit la loi binomiale de paramètres $1~000$ et $0,47$ et que $Y_2=50X_2$.

  1. Calculer l’espérance $E\left(X_2\right)$ de la variable $X_2$ et interpréter le résultat dans le contexte de l’exercice.
    $\quad$

On note $Y=Y_1+Y_2$ la variable aléatoire égale au total général, en euros, des montants offerts (bon d’achat et prime de fidélité) aux $1~000$ clients. On admet que les variables aléatoires $Y_1$ et $Y_2$ sont indépendantes.

On note $Z$ la variable aléatoire définie par $Z=\dfrac{Y}{1~000}$.

  1. Préciser ce que modélise la variable $Z$ dans le contexte de l’exercice. Vérifier que son espérance $E(Z)$ est égale à $53,5$ et que sa variance $V(Z)$ est égale à $0,722~75$.
    $\quad$
  2. À l’aide de l’inégalité de Bienaymé-Tchebychev, vérifier que la probabilité que $Z$ soit strictement compris entre $51,7$ euros et $55,3$ euros est supérieure à $0,75$.
    $\quad$

$\quad$

Exercice 2     (4 points)

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse ne rapporte aucun point.
Les quatre questions de cet exercice sont indépendantes.

Dans l’espace rapporté à un repère orthonomé $\Oijk$, on considère les points $A(0;4;-1)$, $B(6;1;5)$ et $C(6;-2;-1)$. On admet que les points $A$, $B$ et $C$ ne sont pas alignés.

Affirmation 1 : Le vecteur $\vec{n}\begin{pmatrix} 2\\2\\-1\end{pmatrix}$ est un vecteur  normal au plan $(ABC)$.
$\quad$

Affirmation 2 : Une représentation paramétrique de la droite $(AB)$ est $\begin{cases} x=2+2t\\y=3-t\\z=1+2t\end{cases} ~~$ où $t\in \R$.
$\quad$

Affirmation 3 : Une équation cartésienne du plan $\mathcal{P}$ passant par le point $C$ et orthogonal à la droite $(AB)$ est $2x+2y+z+9=0$.
$\quad$

On considère les droite $\mathcal{D}$ et $\mathcal{D}’$ dont on donne ci-dessous une représentation paramétrique $$\mathcal{D}:~\begin{cases} x=3+t\\y=1+t\\z=2+t\end{cases}~~\text{où } t\in \R\qquad \mathcal{D}’:~\begin{cases} x=2t’\\y=4-t’\\z=-1+2t’\end{cases}~~ \text{où } t’\in \R$$
Affirmation 4 : $\mathcal{D}$ et $\mathcal{D}’$ ne sont pas coplanaires.
$\quad$

$\quad$

Exercice 3     (5 points)

Soit $a$ un nombre réel strictement supérieur à $1$.

On considère la suite $\left(u_n\right)$ définie par $u_0=a$ et, pour tout entier naturel $n$ : $$u_{n+1}={u_n}^2-2u_n+2$$
On admet que pour tout entier naturel $n$, $u_n>1$.

L’objectif de cet exercice est d’étudier la suite $\left(u_n\right)$ pour différentes valeurs du nombre réel $a$.

Partie A : étude de la suite $\boldsymbol{\left(u_n\right)}$ dans le cas $\boldsymbol{1<a<2}$.

  1. a. Montrer que, pour tout entier naturel $n$, on a : $u_{n+1}-2=u_n\left(u_n-2\right)$.
    $\quad$
    b. Montrer que, pour tout entier naturel $n$, on a : $u_{n+1}-u_n=\left(u_n-1\right)\left(u_n-2\right)$.
    $\quad$
  2. Dans cette question, on pourra utiliser les égalités établies dans la question précédente.
    a. En utilisant un raisonnement par récurrence démontrer que, pour tout entier naturel $n$ : $$u_n<2$$
    $\quad$
    b. Montrer que la suite $\left(u_n\right)$ est convergente et déterminer sa limite.
    $\quad$

Partie B : étude dans le cas $\boldsymbol{a=2}$.

  1. On donne ci-dessous la fonction $\text{u}$ écrite en langage Python.

    Déterminer les valeurs renvoyées par le programme lorsque l’on saisit $\text{u(2,1)}$ et $\text{u(2,2)}$ dans la console Python.
    $\quad$
  2. Quelle conjecture peut-on formuler concernant la suite $\left(u_n\right)$ dans le cas où $a=2$ ? On admettra ce résultat sans démonstration.
    $\quad$

Partie C : étude dans le cas général.

  1. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par $v_n=\ln\left(u_n-1\right)$.
    a. Montrer que la suite $\left(v_n\right)$ est une suite géométrique de raison $2$ dont on précisera le premier terme en fonction de $a$.
    $\quad$
    b. En déduire que, pour tout entier naturel $n$, $u_n=1+\e^{2^n\times \ln(a-1)}$.
    $\quad$
  2. Déterminer, suivant les valeurs du réel $a$ strictement supérieur à $1$, la limite de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 4     (5 points)

Soit $f$ une fonction définie et deux fois dérivable sur $\R$. On note $f’$ sa fonction dérivée et $f\dsec$ sa dérivée seconde.
Dans le repère orthonormé ci-dessous ont été représentés :

  • la courbe représentative $C_f$ de la fonction $f$ ;
  • la tangente $T$ à $C_f$ en son point $N(0;2)$ ;
  • le point $M(-2;0)$ appartenant à $C_f$ et $P(2;0)$ appartenant à la tangente $T$.

On précise que la fonction $f$ est strictement positive sur l’intervalle $[0;+\infty[$ et qu’elle est strictement croissante sur l’intervalle $]-\infty;-1]$.

Partie A : étude graphique.

On répondra aux questions suivantes en utilisant le graphique.

  1. a. Donner $f(0)$.
    $\quad$
    b. Déterminer $f'(0)$.
    $\quad$
  2. Résoudre l’équation $f(x)=0$.
    $\quad$
  3. La fonction $f$ est-elle convexe sur $\R$ ? Justifier.
    $\quad$
  4. Parmi les courbes suivantes, indiquer laquelle peut représenter une primitive de $f$ sur $\R$. Justifier.
    $\quad$

    $\quad$

Partie B : recherche d’une expression algébrique.

On admet que la fonction $f$ est de la forme $f(x)=(ax+b)\e^{\lambda x}$ où $a$, $b$ et $\lambda$ sont des constantes réelles. pour répondre aux questions suivantes, on utilisera les résultats de la partie A.

  1. Justifier que $b=2$.
    $\quad$
  2. Justifier que $-2a+b=0$ puis en déduire la valeur de $a$.
    $\quad$
  3. Déterminer une expression algébrique de $f$. Justifier.
    $\quad$

Partie C : étude algébrique.

On admet que la fonction $f$ est définie sur $\R$ par $f(x)=(x+2)\e^{-x}$.

  1. Déterminer la limite de $f$ en $-\infty$.
    $\quad$
  2. On admet que $f'(x)=(-x-1)\e^{-x}$. Dresser le tableau de variations complet de $f$. Justifier.
    $\quad$
  3. a. Étudier la convexité de $f$.
    $\quad$
    b. Préciser les coordonnées des éventuels points d’inflexion de la courbe $C_f$.
    $\quad$
  4. pour tout nombre réel $t\pg 0$, on pose : $$I(t)=\int_{-2}^t f(x)\dx$$
    a. En utilisant une intégration par parties, montrer que $I(t)=(-t-3)\e^{-t}+\e^2$.
    $\quad$
    b. En déduire un exemple de surface non limitée dont l’aire est finie.
    $\quad$

$\quad$

 

Bac – Polynésie – jour 2 – juin 2024

Polynésie – 20 juin 2024

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On a $P(J)=0,6$ et $P_J(S)= \dfrac{8}{9}$.
    Par conséquent :
    $\begin{align*} P(J\cap S)&=P(J)\times P_J(S)\\
    &=0,6\times \dfrac{8}{9} \\
    &=\dfrac{8}{15}\end{align*}$
    La probabilité que la personne choisie ait l’intention de regarder les JOP de Paris 2024 à la télévision et déclare pratiquer une activité sportive régulière est de $\dfrac{8}{15}$.
    $\quad$
  2. a. On a $P(S)=\dfrac{2}{3}$
    $\left(J,\conj{J}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} P(S)=P(J\cap S)+P\left(\conj{J}\cap S\right) &\ssi \dfrac{2}{3}=\dfrac{8}{15}+P\left(\conj{J}\cap S\right) \\
    &\ssi P\left(\conj{J}\cap S\right)=\dfrac{2}{15}\end{align*}$.
    La probabilité que la personne choisie n’ait pas l’intention de regarder les JOP de Paris 2024 à la télévision et déclare pratiquer une activité sportive régulière est égale à $\dfrac{2}{15}$.
    $\quad$
    b. On a :
    $\begin{align*} P\left(\conj{J}\cap S\right)=P\left(\conj{J}\right)\times P_{\conj{J}}(S)&\ssi \dfrac{2}{15}=0,4\times P_{\conj{J}}(S) \\
    &\ssi P_{\conj{J}}(S)=\dfrac{\dfrac{2}{15}}{0,4} \\
    &\ssi P_{\conj{J}}(S)=\dfrac{1}{3} \end{align*}$
    $\quad$
  3. a. On répète $30$ fois de façon indépendante la même expérience de Bernoulli de paramètre $\dfrac{2}{3}$.
    $X$ suit donc la loi binomiale de paramètres $n=30$ et $p=\dfrac{2}{3}$.
    $\quad$
    b. On a ainsi :
    $\begin{align*} P(X=16)&=\dbinom{30}{16}\left(\dfrac{2}{3}\right)^{16}\left(\dfrac{1}{3}\right)^{14} \\
    &\approx 0,046\end{align*}$
    La probabilité qu’exactement $16$ personnes déclarent pratiquer une activité sportive est environ égale à $0,046$.
    $\quad$
    c. $\dfrac{10~000}{380} \approx 26,3$.
    Le budget prévu ne permet d’offrir que $26$ places.
    Or, d’après la calculatrice,
    $\begin{align*} P(X>26)&=1-P(X\pp 26)\\
    &\approx 0,003\end{align*}$.
    La probabilité que ce budget soit insuffisant est environ égale à $0,003$.
    $\quad$

Ex 2

Exercice 2

  1. Nous avons une équation différentielle de la forme $y’=ay+b$ avec $a=-3$ et $b=7$.
    Les solutions de cette équation sont les fonctions $f$ définies sur $\R$ par $f(x)=C\e^{ax}-\dfrac{b}{a}$.
    Donc, ici, $f(x)=C\e^{-3x}+\dfrac{7}{3}$.
    On veut que $f(0)=1\ssi C+\dfrac{7}{3}=1\ssi C=-\dfrac{4}{3}$.
    Ainsi, $f(x)=-\dfrac{4}{3}\e^{-3x}+\dfrac{7}{3}$
    Réponse B
    $\quad$
  2. La fonction $f$ semble continue et positive sur $[1;5]$. $I$ est donc égale à l’aire du domaine compris entre l’axe des abscisses, la courbe représentant la fonction $f$ et les droites d’équation $x=1$ et $x=5$.
    $5$ carreaux sont contenus dans ce domaine et ce domaine est contenu dans un ensemble de $10$ carreaux.
    Donc $5\pp I\pp 10$.
    Réponse C
    $\quad$
  3. On a :
    $\begin{align*} \int_0^2 g'(x)\dx&=\Big[g(x)\Big]_0^2 \\
    &=g(2)-g(0)\\
    &=4\ln(8)-0\\
    &\approx 8,3\end{align*}$
    Réponse B
    $\quad$
  4. Il existe $\dfrac{31}{5}$ groupes différents de $5$ élèves dans une classe de $31$ élèves.
    Réponse D
    $\quad$
  5. Il y a $\dbinom{20}{3}$ groupes différents de $3$ élèves ayant choisi la spécialité SES.
    Il y a $\dbinom{31-20}{5-3}=\dbinom{11}{2}$ façons différentes de choisir les $2$ autres élèves parmi les élèves n’ayant pas choisi la spécialité SES.
    Il y a donc $\dbinom{20}{3}\dbinom{11}{2}$ groupes possibles.
    Réponse A
    $\quad$

 

Ex 3

Exercice 3

  1. a. $u_1=8-\ln(2)\approx 7,31$
    $u_2=8-\ln(2)-\ln\left(\dfrac{8-\ln(2)}{4}\right) \approx 6,70$.
    $\quad$
    b. Cet appel renvoie une valeur approchée de la somme $\ds \sum_{k=0}^{9} u_k=u_0+\ldots+u_{9}$.
    $\quad$
    c. On peut écrire :

    Remarque : On suppose que $k$ est un entier naturel non nul.
    $\quad$
  2. $f$ est dérivable sur $]0;+\infty[$ par hypothèse.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=1-\dfrac{~\dfrac{1}{4}~}{\dfrac{x}{4}} \\
    &=1-\dfrac{1}{x} \\
    &=\dfrac{x-1}{x}\end{align*}$
    Le signe de $f'(x)$ ne dépend que de celui de $x-1$ car $x>0$.
    or $x-1=0\ssi x=1$ et $x-1>0\ssi x>1$.
    La fonction $f$ est donc strictement décroissante sur $]0;1]$ et strictement croissante sur $[1;+\infty[$.
    $\begin{align*}f(1)&=1-\ln\left(\dfrac{1}{4}\right) \\
    &=1+\ln(4)\end{align*}$
    On obtient ainsi le tableau de variations suivant :
    $\quad$

    $\quad$
    Remarque : Si on veut calculer les limites (ce qui n’est pas demandé) :
    $\lim\limits_{x\to 0^+} \dfrac{x}{4}=0^+$ et $\lim\limits_{X\to 0^+} \ln(X)=-\infty$ donc $\lim\limits_{x\to 0^+} f(x)=+\infty$.
    Pour tout réel $x$ on a :
    $\begin{align*} f(x)&=x-\ln(x)+\ln(4) \\
    &=x\left(1-\dfrac{\ln(x)}{x}+\dfrac{\ln(4)}{x}\right) \end{align*}$
    Or $\lim\limits_{x\to +\infty} \dfrac{\ln(4)}{x}=0$ et, par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    Ainsi $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on pose $P(n):~1\pp u_{n+1}\pp u_n$.
    Initialisation : $u_0=8$ et $u_1\approx 7,31$ donc $1\pp u_1\pp u_0$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    On a donc $1\pp u_{n+1}\pp u_n$.
    La fonction $f$ est strictement croissante sur $[1;+\infty[$ donc :
    $f(1) \pp f\left(u_{n+1}\right)\pp f\left(u_n\right)$
    Soit $1<1+\ln(4)\pp u_{n+2} \pp u_{n+1}$ et $P(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$ on a $1\pp u_{n+1} \pp u_n$.
    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante et minorée par $1$. D’après le théorème de la limite monotone, la suite $\left(u_n\right)$ converge vers un réel $\ell \in[1;+\infty[$.
    $\quad$
    c.
    $\begin{align*} f(x)=x&\ssi x-\ln\left(\dfrac{x}{4}\right)=x \\
    &\ssi -\ln\left(\dfrac{x}{4}\right)=0 \\
    &\ssi \dfrac{x}{4}=1 \qquad (\text{stricte croissance de la fonction } \ln )\\
    &\ssi x=4\end{align*}$
    L’unique solution de l’équation $f(x)=x$ est $4$.
    $\quad$
    d. La suite $\left(u_n\right)$ vérifie pour tout entier naturel $n$, $u_{n+1}=f\left(u_n\right)$ où $f$ est une fonction continue (car dérivable) sur $]0;+\infty[$.
    D’après la question 3.b. cette suite converge vers un réel $\ell$.
    Ainsi $\ell$ est solution de l’équation $f(x)=x$.
    D’après la question précédente $\ell=4$.
    $\quad$

 

Ex 4

Exercice 4

  1. On a $\vect{AB}\begin{pmatrix}5\\-1\\-13\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}2\\-2\\-10\end{pmatrix}$
    Or $\dfrac{5}{2}\neq \dfrac{-1}{-2}$.
    Les deux vecteurs ne sont donc pas colinéaires.
    Par conséquent $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
  2. a. D’une part $\vec{n}.\vect{AB}=10+3-13=0$
    D’autre part $\vec{n}.\vect{AC}=4+6-10=0$
    $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(ABC)$. Il est donc normal au plan $\mathcal{P}$.
    $\quad$
    b. Une équation cartésienne de ce plan est donc de la forme $2x-3y+z+d=0$.
    Or $A(-1;-1;17)$ appartient à ce plan.
    Ainsi $-2+3+17+d=0\ssi d=-18$.
    Une équation cartésienne du plan $\mathcal{P}$ est $2x-3y+z-18=0$.
    $\quad$
  3. a. Un vecteur directeur de la droite $d$ est $\vec{u}\begin{pmatrix}3\\1\\4\end{pmatrix}$.
    $\quad$
    b. Les coordonnées du point $E$ sont solution du système :
    $\begin{align*} \begin{cases} 2x-3y+z-18=0\\x=3t+2\\y=t+5\\z=4t+1\end{cases}&\ssi \begin{cases} 2(3t+2)-3(t+5)+(4t+1)-18=0\\x=3t+2\\y=t+5\\z=4t+1\end{cases} \\
    &\ssi \begin{cases} 6t+4-3t-15+4t+1-18=0\\x=3t+2\\y=t+5\\z=4t+1\end{cases} \\
    &\ssi \begin{cases} 7t-28=0\\x=3t+2\\y=t+5\\z=4t+1\end{cases} \\
    &\ssi \begin{cases} t=4\\x=14\\y=9\\z=17\end{cases}\end{align*}$
    Le point $E$ a donc pour coordonnées $(14;9;17)$.
    $\quad$
  4. On a $\vect{FD}\begin{pmatrix}-4\\6\\-2\end{pmatrix}$
    Ainsi :
    $\begin{align*} FD&=\sqrt{(-4)^2+6^2+(-2)^2} \\
    &=\sqrt{16+36+4} \\
    &=\sqrt{56} \\
    &=\sqrt{4\times 14} \\
    &=2\sqrt{14}\end{align*}$
    La distance entre point $D$ et le plan $\mathcal{P}$ vaut $2\sqrt{14}$ centaines de mètres.
    $\quad$
  5. La plus petite distance entre le point $D$ et le plan $\mathcal{P}$ est $FD$.
    Le drone mettra donc $\dfrac{2\sqrt{14}\times 100}{18,6} \approx 40,2$ s pour parcourir cette distance.
    Le nouveau drone ne pourra pas arriver à temps.
    $\quad$

Énoncé

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées

Exercice 1     (4 points)

Un sondage réalisé en France fournit les informations suivantes :

  • $60 \%$ des plus de 15 ans ont l’intention de regarder les jeux Olympiques et Paralympiques (JOP) de Paris 2024 à la télévision;
  • parmi ceux qui ont l’intention de regarder les JOP, $8$ personnes sur $9$ déclarent pratiquer une activité sportive régulière.

On choisit au hasard une personne de plus de 15 ans. On considère les évènements suivants :

  • $J$ : « la personne a l’intention de regarder les JOP Paris 2024 à la télévision »;
  • $S$ : « la personne choisie déclare pratiquer une activité sportive régulière ».

On note $\conj{J}$ et $\conj{S}$ leurs évènements contraires.
Dans les questions 1. et 2., les probabilités seront données sous la forme d’une fraction irréductible

  1. Démontrer que la probabilité que la personne choisie ait l’intention de regarder les JOP de Paris 2024 à la télévision et déclare pratiquer une activité sportive régulière est de $\dfrac{8}{15}$.
    On pourra s’appuyer sur un arbre pondéré.
    $\quad$

Selon ce sondage, deux personnes sur trois parmi les plus de 15 ans déclarent pratiquer une activité sportive régulière.

  1. a. Calculer la probabilité que la personne choisie n’ait pas l’intention de regarder les JOP de Paris 2024 à la télévision et déclare pratiquer une activité sportive régulière.
    $\quad$
    b. En déduire la probabilité de $S$ sachant $\conj{J}$ notée $P_{\conj{J}}(S)$.
    $\quad$

Dans la suite de l’exercice, les résultats seront arrondis au millième.

  1.  Dans le cadre d’une opération de promotion, $30$ personnes de plus de 15 ans sont choisies au hasard.
    On assimile ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire qui donne le nombre de personnes déclarant pratiquer une activité sportive régulière parmi les $30$ personnes.
    a. Déterminer la nature et les paramètres de la loi de probabilité suivie par $X$.
    $\quad$
    b. Calculer la probabilité qu’exactement $16$ personnes déclarent pratiquer une activité sportive régulière parmi les $30$ personnes.
    $\quad$
    c. La fédération française de judo souhaite offrir une place pour la finale de l’épreuve par équipe mixte de judo à l’Arena Champ-de-Mars pour chaque personne déclarant pratiquer une activité sportive régulière parmi ces $30$ personnes.
    Le prix d’une place s’élève à $380$ € et on dispose d’un budget de $10~000$ euros pour cette opération.
    Quelle est la probabilité que ce budget soit insuffisant ?
    $\quad$

$\quad$

Exercice 2     (5 points)

Cet exercice est un questionnaire à choix multiples (QCM) qui comprend cinq questions. Les
cinq questions sont indépendantes. Pour chacune des questions, une seule des quatre réponses est exacte. Le candidat indiquera sur sa copie le numéro de la question suivi de la lettre correspondant à la réponse exacte.
Aucune justification n’est demandée.
Une réponse fausse, une réponse multiple ou une absence de réponse ne rapporte, ni n’enlève
aucun point.

  1. La solution f de l’équation différentielle $y’ =-3y +7$ telle que $f (0) = 1$ est la fonction
    définie sur $\R$ par :
    A. $f(x)=\e^{-3x}$
    B. $f(x)=-\dfrac{4}{3}\e^{-3x}+\dfrac{7}{3}$
    C. $f(x)=\e^{-3x}+\dfrac{7}{3}$
    D. $f(x)=-\dfrac{10}{3}\e^{-3x}-\dfrac{7}{3}$
    $\quad$
  2. La courbe d’une fonction $f$ définie sur $[0 ; +\infty[$ est donnée ci-dessous.
    $\quad$

    $\quad$
    Un encadrement de l’intégrale $I=\ds \int_1^5 f(x)\dx$ est :
    A. $0\pp I\pp 4$
    B. $1\pp I \pp 5$
    C. $5\pp I\pp 10$
    D. $10\pp I\pp 15$
    $\quad$
  3. On considère la fonction $g$ définie sur $\R$ par $g(x) = x^2\ln\left(x^2+4\right)$.
    Alors $\ds \int_0^2 g'(x)\dx$ vaut, à $10^{-1}$ près :
    A. $4,9$
    B. $8,3$
    C. $1,7$
    D. $7,5$
    $\quad$
  4. Une professeure enseigne la spécialité mathématiques dans une classe de $31$ élèves
    de terminale.
    Elle veut former un groupe de $5$ élèves. De combien de façons différentes peut-elle former un tel groupe de $5$ élèves ?
    A. $31^5$
    B. $31\times 30\times 29\times 28\times 27$
    C. $31+30+29+28+17$
    D. $\dbinom{31}{5}$
    $\quad$
  5. La professeure s’intéresse maintenant à l’autre spécialité des $31$ élèves de son groupe :
    $\bullet$ $10$ élèves ont choisi la spécialité physique-chimie;
    $\bullet$ $20$ élèves ont choisi la spécialité SES;
    $\bullet$ $1$ élève a choisi la spécialité LLCE espagnol.
    Elle veut former un groupe de $5$ élèves comportant exactement $3$ élèves ayant choisi
    la spécialité SES. De combien de façons différentes peut-elle former un tel groupe ?
    A. $\dbinom{20}{3}\times \dbinom{11}{2}$
    B. $\dbinom{20}{3}+\dbinom{11}{2}$
    C. $\dbinom{20}{3}$
    D. $20^3\times 11^2$
    $\quad$

$\quad$

Exercice 3     (6 points)

On considère la suite $\left(u_n\right)$ définie par : $$u_0 = 8 \text{ et pour tout entier naturel } n,~ u_{n+1}= u_n-\ln\left(\dfrac{u_n}{4}\right).$$

  1. a. Donner les valeurs arrondies au centième de $u_1$ et $u_2$.
    $\quad$
    b. On considère la fonction $\text{mystere}$ définie ci-dessous en Python. On admet que,
    pour tout réel strictement positif $\text{a}$, $\text{log(a)}$ renvoie la valeur du logarithme népérien de $\text{a}$.

    L’exécution de $\text{mystere(10)}$ renvoie $\text{58.44045206721732}$. Que représente ce résultat ?
    $\quad$
    c. Modifier la fonction précédente afin qu’elle renvoie la moyenne des $k$ premiers
    termes de la suite $\left(u_n\right)$.
    $\quad$
  2. On considère la fonction $f$ définie et dérivable sur $[0 ; +\infty[$ par : $$f(x)=x-\ln\left(\dfrac{x}{4}\right)$$
    On donne ci-dessous une représentation graphique $\mathcal{C}_f$ de la fonction $f$ pour les valeurs de $x$ comprises entre $0$ et $6$.
    $\quad$

    $\quad$
    Étudier les variations de $f$ sur $[0 ; +\infty[$ et dresser son tableau de variations.
    On précisera la valeur exacte du minimum de $f$ sur $[0 ; +\infty[$. Les limites ne sont pas demandées.
    $\quad$

Dans la suite de l’exercice, on remarquera que pour tout entier naturel $n$, $u_{n+1} = f\left(u_n\right)$

  1. a. Démontrer, par récurrence, que pour tout entier naturel $n$, on a : $$1\pp u_{n+1} \pp u_n$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ converge vers une limite réelle.
    On note $\ell$ la valeur de cette limite.
    $\quad$
    c. Résoudre l’équation $f(x) = x$.
    $\quad$
    d. En déduire la valeur de $\ell$.
    $\quad$

$\quad$

Exercice 4     (5 points)

Une commune décide de remplacer le traditionnel feu d’artifice du 14 juillet par un spectacle de drones lumineux.

Pour le pilotage des drones, l’espace est muni d’un repère orthonormé $\Oijk$ dont l’unité est la centaine de mètres.

La position de chaque drone est modélisée par un point et chaque drone est envoyé d’un point de départ $D$ de coordonnées $(2 ; 5 ; 1)$.

On souhaite former avec des drones des figures en les positionnant dans un même plan $\mathcal{P}$.

Trois drones sont positionnés aux points $A(-1;-1; 17)$, $B(4 ;-2 ; 4)$ et $C(1 ;-3 ; 7)$.

  1. Justifier que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$

Dans la suite, on note $\mathcal{P}$ le plan $(ABC)$ et on considère le vecteur $\vec{n}\begin{pmatrix}2\\-3\\1\end{pmatrix}$.

  1. a. Justifier que $\vec{n}$ est normal au plan $(ABC)$.
    $\quad$
    b. Démontrer qu’une équation cartésienne du plan $\mathcal{P}$ est $2x-3y+z-18 = 0$.
    $\quad$
  2. Le pilote des drones décide d’envoyer un quatrième drone en prenant comme trajectoire la droite d dont une représentation paramétrique est donnée par : $$f~:~\begin{cases} x=3t+2\\y=t+5\\z=4t+1\end{cases}~~, \text{avec } t\in \R$$
    a. Déterminer un vecteur directeur de la droite $d$.
    $\quad$
    b. Afin que ce nouveau drone soit également placé dans le plan $\mathcal{P}$, déterminer par le calcul les coordonnées du point $E$, intersection de la droite $d$ avec le plan $\mathcal{P}$.
    $\quad$
  3. Le pilote des drones décide d’envoyer un cinquième drone le long de la droite $\Delta$ qui
    passe par le point $D$ et qui est perpendiculaire au plan $\mathcal{P}$. Ce cinquième drone est placé lui aussi dans le plan $\mathcal{P}$, soit à l’intersection entre la droite $\Delta$ et le plan $\mathcal{P}$. On admet que le point $F(6 ;-1 ; 3)$ correspond à cet emplacement.
    Démontrer que la distance entre le point de départ $D$ et le plan $\mathcal{P}$ vaut $2\sqrt{14}$ centaines de mètres.
    $\quad$
  4. L’organisatrice du spectacle demande au pilote d’envoyer un nouveau drone dans le plan (peu importe sa position dans le plan), toujours à partir du point $D$.
    Sachant qu’il reste $40$ secondes avant le début du spectacle et que le drone vole en trajectoire rectiligne à $18,6$ m.s$^{-1}$, le nouveau drone peut-il arriver à temps ?
    $\quad$

$\quad$

 

Bac – Métropole – jour 1 – juin 2024

Métropole – 19 juin 2024

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $\bullet$ D’après les limites composées $\lim\limits_{x\to +\infty}x\e^{-x}=0$. Donc $\lim\limits_{x\to +\infty}f(x)=0$.
    Par conséquent, l’axe des abscisses est une asymptote horizontale à la courbre $C_f$.
    Affirmation 1 vraie.
    $\quad$
    $\bullet$ La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*}f'(x)&=5\e^{-x}-5x\e^{-x} \\
    &=5(1-x)\e^{-x}\end{align*}$
    Par conséquent :
    $\begin{align*} f'(x)+f(x)&=5\e^{-x}-5x\e^{-x}+5x\e^{-x} \\
    &=5\e^{-x}\end{align*}$
    La fonction $f$ est bien solution de l’équation différentielle $(E)$.
    Affirmation 2 vraie
    $\quad$
  2. $\bullet$ Si on considère les suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$ définies pour tout $n\in\N$ par $u_n=-1$, $w_n=1$ et $v_n=(-1)^n$.
    On a bien $u_n\pp v_n \pp w_n$ ainsi que $\left(u_n\right)$ converge vers $-1$ et $\left(w_n\right)$ converge vers $1$.
    Or $\left(v_n\right)$ n’admet pas de limite.
    Affirmation 3 fausse
    $\quad$
    Remarque : Les deux suites $\left(u_n\right)$ et $\left(w_n\right)$ sont constantes. Il n’était pas précisé dans l’énoncé que les suites devaient être strictement monotones.
    On peut cependant le faire en considérant, pour tout entier naturel $n$, $u_n=-1-\dfrac{1}{n}$ et $w_n=1+\dfrac{1}{n}$.
    $\quad$
    $\bullet$ La suite $\left(u_n\right)$ est croissante donc, pour entier naturel $n$, on a $u_0 \pp u_n$.
    La suite $\left(w_n\right)$ est décroissante donc, pour tout entier naturel $n$, on a $w_n\pp w_0$.
    Or $u_n \pp v_n\pp w_n$ donc $u_0\pp u_n \pp v_n \pp w_n \pp w_0$.
    Affirmation 4 vraie
    $\quad$

Ex 2

Exercice 2

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. On veut calculer
    $\begin{align*} P(S\cap I)&=P(I)P_I(S) \\
    &=0,6\times 0,75 \\
    &=0,45\end{align*}$
    La probabilité que le client ait réalisé son achat sur internet et soit satisfait du service clientèle est égale à $0,45$.
    $\quad$
  3. $(I,M,G)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} P(S)&=P(S\cap I)+P(S\cap M)+P(S\cap G) \\
    &=P(I)P_I(S)+P(M)P_M(S)+P(G)P_G(S) \\
    &=0,6\times 0,75+0,3\times 0,9+0,1\times 0,8 \\
    &=0,8\end{align*}$
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_S(I)&=\dfrac{P(S\cap I)}{P(S)} \\
    &=\dfrac{0,6\times 0,75}{0,8} \\
    &\approx 0,563\end{align*}$
    La probabilité que le client ait effectué son achat sur internet sachant qu’il est satisfait du service clientèle est environ égale à $0,563$.
    $\quad$
  5. a. On réalise de façon indépendante $30$ fois la même expérience de Bernoulli de paramètre $0,8$.
    $X$ suit donc la loi binomiale de paramètres $n=30$ et $p=0,8$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X\pg 25)&=1-P(X\pp 24) \\
    &\approx 0,428\end{align*}$
    La probabilité qu’au moins $25$ clients soient satisfaits est environ égale à $0,428$.
    $\quad$
  6. On appelle $Y$ la variable aléatoire comptant le nombre de clients satisfaits.
    Pour les mêmes raisons qu’à la question précédente, $Y$ suit la loi binomiale de paramètres $n$ et $p=0,8$.
    On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} P(Y\pp n-1) \pg 0,99 &\ssi 1-P(Y=n)\pg 0,99 \\
    &\ssi P(Y=n)\pp 0,01 \\
    &\ssi 0,8^n \pp 0,01 \\
    &\ssi n\ln(0,8) \pp \ln(0,01) \qquad \text{croissance de la fonction }\ln \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,8)} \qquad \text {car }\ln(0,8)<0 \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,8)}\approx 20,64$.
    Il faut donc avoir un échantillon d’au moins $21$ personnes.
    $\quad$
  7. a. On a :
    $\begin{align*} E(T)&=E\left(T_1+T_2\right) \\
    &=E\left(T_1\right)+E\left(T_2\right) \qquad \text{(linéarité de l’espérance)} \\
    &=7\end{align*}$
    $\begin{align*} V(T)&=V\left(T_1+T_2\right) \\
    &=V\left(T_1\right)+V\left(T_2\right) \qquad \text{(indépendance)} \\
    &=3\end{align*}$
    $\quad$
    b. $T$ possède une variance. On peut donc utiliser l’inégalité de Bienaymé-Tchebychev sur cette variable.
    On veut calculer :
    $\begin{align*} P(5\pp T\pp 9)&= P(4< T<10) \qquad (T \text{ est à valeur entière})\\
    &=P\left(-3 <T-E(T)< 3\right) \\
    &=P\left(\abs{T-E(T)} < 3\right) \\
    &\pg 1-P\left(\abs{T-E(T)} \pg 3\right) \\
    &\pg 1-\dfrac{V(T)}{3^2}  \qquad \text{(inégalité de Bienaymé-Tchebychev)}\\
    &\pg 1-\dfrac{3}{9} \\
    &\pg \dfrac{2}{3}\end{align*}$
    $\quad$

Ex 3

Exercice 3

  1. a. On a $\vect{AC}\begin{pmatrix} -5\\-5\\10\end{pmatrix}$ et $\vect{CD}\begin{pmatrix} 0\\0\\-25/2\end{pmatrix}$
    Ces deux vecteurs ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    D’une part $\vect{n_1}.\vect{AC}=-5+5+0=0$
    D’autre part $\vect{n_1}.\vect{CD}=0+0+0=0$
    Ainsi $\vect{n_1}$ est orthogonal à deux vecteurs non colinéaires du plan $(CAD)$.
    Il est donc normal au plan $(CAD)$.
    $\quad$
    b. Une équation cartésienne du plan $(CAD)$ est donc de la forme $x-y+d=0$
    Or $C(0;0;10)$ appartient à ce plan. Donc $0-0+d=0 \ssi d=0$.
    Une équation cartésienne du plan $(CAD)$ est donc $x-y=0$.
    $\quad$
  2. a. Si on prend $t=1$ dans la représentation paramétrique de la droite $\mathcal{D}$ on obtient le point de coordonnées $\left(\dfrac{5}{2};\dfrac{5}{2};0\right)$.
    De plus $\dfrac{5}{2}-\dfrac{5}{2}=0$ : Le point précédent appartient également au plan $(CAD)$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{5}{2};\dfrac{5}{2};0\right)$.
    $\quad$
    b. On a $\vect{BH}\begin{pmatrix}5/2\\-5/2\\0\end{pmatrix}=\dfrac{5}{2}\vect{n_1}$.
    Donc $\vect{BH}$ est normal au plan $(CAD)$.
    Par conséquent $H$ est le projeté orthogonal de $B$ sur le plan $(CAD)$.
    $\quad$
  3. a. $(BH)$ est orthogonal au plan $(CAD)$. Elle est donc en particulier orthogonale à la droite $(AH)$. $H$ appartient à ces deux droites. Elles sont donc perpendiculaires.
    Ainsi $ABH$ est rectangle en $H$.
    $\quad$
    b. On a :
    $\begin{align*} BH&=\sqrt{\left(\dfrac{5}{2}\right)^2+\left(-\dfrac{5}{2}\right)^2} \\
    &=\sqrt{\dfrac{25}{4}+\dfrac{25}{4}} \\
    &=\sqrt{\dfrac{50}{4}} \\
    &=\sqrt{\dfrac{25}{2}}\end{align*}$
    De plus $\vect{AH}\begin{pmatrix}-5/2\\-5/2\\0\end{pmatrix}$
    On a donc également $AH=\sqrt{\dfrac{25}{2}}$.
    Ainsi, l’aire du triangle $ABH$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{BH\times AH}{2} \\
    &=\dfrac{~\dfrac{25}{2}~}{2} \\[3mm]
    &=\dfrac{25}{4}\end{align*}$
    $\quad$
  4. a. On a $\vect{OC}\begin{pmatrix} 0\\0\\10\end{pmatrix}$
    D’une part $\vect{OC}.\vect{BH}=0+0+0=0$
    D’autre part $\vect{OC}.\vect{AH}=0+0+0=0$
    Les vecteurs $\vect{AH}$ et $\vect{BH}$ ne sont pas colinéaires car $\dfrac{~-\dfrac{5}{2}~}{\dfrac{5}{2}} \neq \dfrac{~-\dfrac{5}{2}~}{-\dfrac{5}{2}}$
    Ainsi $\vect{OC}$ est orthogonal à deux vecteurs non colinéaires du plan $(BAH)$.
    On a $\vect{OH}=\dfrac{1}{2}\vect{OA}$ donc $O$ appartient au plan $(BAH)$.
    Par conséquent $(CO)$ est la hauteur du tétraèdre $ABCH$ issue de $C$.
    $\quad$
    b. Le volume de ce tétraèdre est :
    $\begin{align*} V&=\dfrac{1}{3}\mathscr{A}\times OC \\
    &=\dfrac{1}{3}\times \dfrac{25}{4}\times 10 \\
    &=\dfrac{125}{6}\end{align*}$
    $\quad$
  5. On a $AB=5$ et $\vect{BC}\begin{align*} 0\\-5\\10\end{align*}$
    Donc :
    $\begin{align*} BC&=\sqrt{(-5)^2+10^2} \\
    &=\sqrt{125} \\
    &=5\sqrt{5}\end{align*}$
    Par conséquent, l’aire du triangle $ABC$ rectangle en $B$ est :
    $\begin{align*} \mathcal{B}&=\dfrac{AB\times BC}{2} \\
    &=\dfrac{25\sqrt{5}}{2}\end{align*}$
    Ainsi, en appelant $d$ la distance cherchée :
    $\begin{align*} V=\dfrac{125}{6}&\ssi \dfrac{1}{3}\times \mathcal{B}\times d =\dfrac{125}{6} \\
    &\ssi d=\dfrac{125}{6}\times \dfrac{3}{25\sqrt{5}} \\
    &\ssi d=\sqrt{5}\end{align*}$

Ex 4

Exercice 4

Partie A : étude de la fonction $\boldsymbol{f}

  1. a. $\lim\limits_{x\to 0} x-2=-2$ et $\lim\limits_{x\to 0^+}\ln(x)=-\infty$
    Donc $\lim\limits_{x\to 0^+} f(x)=-\infty$
    $\lim\limits_{x\to +\infty} x-2=+\infty$ et $\lim\limits_{x\to +\infty}\ln(x)=+\infty$
    Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
    b. La fonction $f$ est dérivable par hypothèse sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=1+\dfrac{1}{2x} \\
    &=\dfrac{2x+1}{2x}\end{align*}$
    $\quad$
    c. Pour tout réel $x>0$ on a $2x+1>0$ et $2x>0$ donc $f'(x)>0$.
    La fonction $f$ est strictement croissante sur $]0;+\infty[$.
    $\quad$
    d. $f’$ est dérivable sur $]0;+\infty[$ par hypothèse.
    Pour tout réel $x>0$ on a :
    $\begin{align*}f\dsec(x)&=-\dfrac{1}{2x^2} \\
    &<0\end{align*}$
    La fonction $f$ est donc concave sur $]0;+\infty[$.
    $\quad$
  2. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;+\infty[$.
    De plus $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$. Or $0\in ]-\infty;+\infty[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $]0;+\infty[$.
    $\quad$
    $f(1)=1-2=-1<0$ et $f(2)=\dfrac{1}{2}\ln(2)>0$.
    Ainsi $f(1) \pp f(\alpha) \pp f(2)$. La fonction $f$ est strictement croissante sur $]0;+\infty[$ donc $1\pp \alpha \pp 2$.
    Ainsi $\alpha \in [1;2]$.
    $\quad$
    b. La fonction $f$ est strictement croissante sur $]0;+\infty[$ et $f(\alpha)=0$.
    Ainsi :
    $\bullet$ sur $]0;+\alpha[$ on a $f(x)<0$ ;
    $\bullet$ $f(\alpha)=0$ ;
    $\bullet$ sur $]\alpha;+\infty[$ on a $f(x)>0$.
    $\quad$
    c.
    $\begin{align*} f(\alpha)=0&\ssi \alpha-2+\dfrac{1}{2}\ln(\alpha)=0 \\
    &\ssi \dfrac{1}{2}\ln(\alpha)=2-\alpha \\
    &\ssi \ln(\alpha)=2(2-\alpha)\end{align*}$
    $\quad$

Partie B : étude de la fonction $\boldsymbol{g}$

  1. La fonction $g$ est dérivable sur $]0;1]$ par hypothèse.
    Pour tout réel $x\in ]0;1]$ on a :
    $\begin{align*} g'(x)&=-\dfrac{7}{4}x+1-\dfrac{1}{4}\left(2x\ln(x)+x^2\times \dfrac{1}{x}\right) \\
    &=-\dfrac{7}{4}x+1-\dfrac{1}{4}\left(2x\ln(x)+x\right) \\
    &=-\dfrac{7}{4}x+1+\dfrac{1}{2}x\ln(x)-\dfrac{1}{4}x \\
    &=-2x+1-\dfrac{1}{2}x\ln(x) \\
    &=x\left(\dfrac{1}{x}+2-\dfrac{1}{2}\ln(x) \right) \\
    &=x\left(\dfrac{1}{x}+2+\dfrac{1}{2}\ln\left(\dfrac{1}{x}\right) \right) \\
    &=xf\left(\dfrac{1}{x}\right)\end{align*}$
    $\quad$
  2. a. Si $0<x<\dfrac{1}{\alpha}$ alors $\dfrac{1}{x}>\alpha$ et donc, d’après la question A.2.b., $f\left(\dfrac{1}{x}\right)>0$.
    $\quad$
    Autre méthode : pour tout $x\in  \left]0;\dfrac{1}{\alpha}\right[$ on a $0<\alpha<\dfrac{1}{x}$.
    Or, d’après la question A.2.a, la fonction $f$ est strictement croissante sur $]0;+\infty[$.
    Par conséquent $f( \alpha)<f\left(\dfrac{1}{x}\right)$, c’est-à-dire $f\left(\dfrac{1}{x}\right)>0$.
    $\quad$
  3. b. Pour tout réel $x\in ]0;+\infty[$ on a $x>0$ donc $g'(x)$ est du signe de $f\left(\dfrac{1}{x}\right)$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$

    $\quad$

Partie C : un calcul d’aire

  1. a. Pour tout réel $x\in ]0;1]$ on a :
    $\begin{align*} g(x)-\left(-\dfrac{7}{8}x^2+x\right)&=-\dfrac{1}{4}x^2 \ln(x)  \\
    &\pg 0 \quad \text{car } x\in ]0;1]\end{align*}$
    La courbe $C_g$ est donc au-dessus de la parabole $\mathcal{P}$ sur $]0;1]$.
    $\quad$
    b. On réalise une intégration par parties à l’aide des fonctions $u$ et $v$ de classe $C^1$ sur $\left]\dfrac{1}{\alpha};1\right]$ définie par : $$\begin{array}{lll} u(x)=\ln(x)&\phantom{123}&u'(x)=\dfrac{1}{x} \\[3mm]
    v(x)=\dfrac{1}{3}x^3&&v'(x)=x^2\end{array}$$
    $\begin{align*} \int_{1/\alpha}^1 x^2\ln(x)\dx&=\left[\dfrac{1}{3}x^3\ln(x)\right]_{1/\alpha}^1-\dfrac{1}{3} \int_{1/\alpha}^1 x^3\times \dfrac{1}{x} \dx \\
    &=-\dfrac{1}{3\alpha^3}\ln\left(\dfrac{1}{\alpha}\right)-\dfrac{1}{3}\int_{1/\alpha}^1 x^2\dx \\
    &=\dfrac{1}{3\alpha^3}\ln(\alpha)-\dfrac{1}{3}\left[\dfrac{1}{3}x^3\right]_{1/\alpha}^1 \\
    &=\dfrac{1}{3\alpha^3}\times 2(2-\alpha)-\dfrac{1}{9}\left(1-\dfrac{1}{\alpha^3}\right) \\
    &=\dfrac{4}{3\alpha^3}-\dfrac{2}{3\alpha^2}-\dfrac{1}{9}+\dfrac{1}{9\alpha^3} \\
    &=\dfrac{13-6\alpha-\alpha^3}{9\alpha^3}\end{align*}$
    $\quad$
  2. On a donc
    $\begin{align*} \mathcal{A}&=-\dfrac{1}{4}\int_{1/\alpha}^1 x^2\ln(x) \dx \\
    &=-\dfrac{1}{4}\times \dfrac{13-6\alpha-\alpha^3}{9\alpha^3}\end{align*}$

 

Énoncé

 

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.

La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées

Exercice 1     (4 points)

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

  1. On considère la fonction $f$ définie sur $\R$ par : $f(x)=5x\e^{-x}$.
    On note $C_f$ la courbe représentative de $f$ dans un repère orthonormé.
    Affirmation 1 :
    L’axe des abscisses est une asymptote horizontale à la courbe $C_f$.
    $\quad$
    Affirmation 2 : La fonction $f$ est solution sur $\R$ de l’équation différentielle $(E)~:~y’+y=5\e^{-x}$.
    $\quad$
  2. On considère les suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$, telles que, pour tout entier naturel $n$ : $u_n\pp v_n\pp w_n$.
    De plus, la suite $\left(u_n\right)$ converge vers $-1$ et la suite $\left(w_n\right)$ converge vers $1$.
    Affirmation 3 : La suite $\left(v_n\right)$ converge vers un nombre réel $\ell$ appartenant à l’intervalle $[-1; 1]$.
    $\quad$
    On suppose de plus que la suite $\left(u_n\right)$ est croissante et que la suite $\left(w_n\right)$ est décroissante.
    Affirmation 4 : Pour tout entier naturel $n$, on a alors : $u_0\pp v_n\pp w_0$.
    $\quad$

$\quad$

Exercice 2     (5 points)

Une agence de marketing a étudié la satisfaction des clients concernant le service clientèle à l’occasion de l’achat d’un téléviseur. Ces achats ont été réalisés soit sur internet, soit dans une chaîne de magasins d’électroménager, soit dans une enseigne de grandes surfaces.

Les achats sur internet représentent $60 \%$ des ventes, les achats en magasin
d’électroménager $30 \%$ des ventes et ceux en grandes surfaces $10 \%$ des ventes.

Une enquête montre que la proportion des clients satisfaits du service clientèle
est de :

  • $75 \%$ pour les clients sur internet ;
  • $90 \%$ pour les clients en magasin d’électroménager ;
  • $80 \%$ pour les clients en grande surface.

On choisit au hasard un client ayant acheté le modèle de téléviseur concerné.

On définit les événements suivants :

  • $I$ : « le client a effectué son achat sur internet » ;
  • $M$ : « le client a effectué son achat en magasin d’électroménager » ;
  • $G$ : « le client a effectué son achat en grande surface » ;
  • $S$ : « le client est satisfait du service clientèle ».

Si $A$ est un événement quelconque, on notera $\conj{A}$ son événement contraire et $P(A)$ sa probabilité.

  1. Reproduire et compléter l’arbre ci-dessous.
    $\quad$

    $\quad$
  2. Calculer la probabilité que le client ait réalisé son achat sur internet et soit satisfait du service clientèle.
    $\quad$
  3. Démontrer que $P(S) = 0,8$.
    $\quad$
  4. Un client est satisfait du service clientèle. Quelle est la probabilité qu’il ait effectué son achat sur internet ?
    On donnera un résultat arrondi à $10^{-3}$ près.
    $\quad$
  5. Pour réaliser l’étude, l’agence doit contacter chaque jour $30$ clients parmi les acheteurs du téléviseur. On suppose que le nombre de clients est suffisamment important pour assimiler le choix des $30$ clients à un tirage avec remise. On note $X$ la variable aléatoire qui, à chaque échantillon de $30$ clients, associe le nombre de clients satisfaits du service clientèle.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Déterminer la probabilité, arrondie à $10^{-3}$ près, qu’au moins $25$ clients soient satisfaits dans un échantillon de $30$ clients contactés sur une même journée.
    $\quad$
  6. En résolvant une inéquation, déterminer la taille minimale de l’échantillon de clients à contacter pour que la probabilité qu’au moins l’un d’entre eux ne soit pas satisfait soit supérieure à $0,99$.
    $\quad$
  7. Dans les deux questions a. et b. qui suivent, on ne s’intéresse qu’aux seuls
    achats sur internet.
    Lorsqu’une commande de téléviseur est passée par un client, on considère que le temps de livraison du téléviseur est modélisé par une variable aléatoire $T$ égale à la somme de deux variables aléatoires $T_1$ et $T_2$.
    La variable aléatoire $T_1$ modélise le nombre entier de jours pour l’acheminement du téléviseur depuis un entrepôt de stockage vers une plateforme de distribution.
    La variable aléatoire $T_2$ modélise le nombre entier de jours pour l’acheminement du téléviseur depuis cette plateforme jusqu’au domicile du client.
    On admet que les variables aléatoires $T_1$ et $T_2$ sont indépendantes, et on donne :
    $\bullet$ L’espérance $E\left(T_1\right)= 4$ et la variance $V\left(T_1\right) = 2$ ;
    $\bullet$ L’espérance $E\left(T_2\right)= 3$ et la variance $V\left(T_2\right) = 1$ ;
    a. Déterminer l’espérance $E(T)$ et la variance $V(T)$ de la variable aléatoire $T$.
    $\quad$
    b. Un client passe une commande de téléviseur sur internet. Justifier que la probabilité qu’il reçoive son téléviseur entre $5$ et $9$ jours après sa commande est supérieure ou égale à $\dfrac{2}{3}$.
    $\quad$

$\quad$

Exercice 3     (5 points)

L’espace est muni d’un repère orthonormé $\Oijk$.

On considère les points $A(5;5;0)$, $B(0;5;0)$, $C(0;0;10)$ et $D\left(0;0;-\dfrac{5}{2}\right)$.

  1. a. Montrer que $\vect{n_1}\begin{pmatrix}1\\-1\\0\end{pmatrix}$ est un vecteur normal au plan $(CAD)$.
    $\quad$
    b. En déduire que le plan $(CAD)$ a pour équation cartésienne : $x-y=0$.
    $\quad$
  2. On considère la droite $\mathcal{D}$ de représentation paramétrique $\begin{cases} x=\dfrac{5}{2}t\\[3mm] y=5-\dfrac{5}{2}t\\[3mm] z=0\end{cases} \quad$ où $t\in \R$.
    a. On admet que la droite $\mathcal{D}$ et le plan $(CAD)$ sont sécants en un point $H$. Justifier que les coordonnées de $H$ sont $\left(\dfrac{5}{2};\dfrac{5}{2};0\right)$.
    $\quad$
    b. Démontrer que le point $H$ est le projeté orthogonal de $B$ sur le plan $(CAD)$.
    $\quad$
  3. a. Démontrer que le triangle $ABH$ est rectangle en $H$.
    $\quad$
    b. En déduire que l’aire du triangle $ABH$ est égale à $\dfrac{25}{4}$.
    $\quad$
  4. a. Démontrer que $(CO)$ est la hauteur du tétraèdre $ABCH$ issue de $C$.
    $\quad$
    b. En déduire le volume du tétraèdre $ABCH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\mathcal{B}h$ où $\mathcal{B}$ est l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$
  5. On admet que le triangle $ABC$ est rectangle en $B$. Déduire des questions précédentes la distance du point $H$ au plan $(ABC)$.
    $\quad$

$\quad$

Exercice 4     (6 points)

Partie A : étude de la fonction $\boldsymbol{f}$

La fonction $f$ est définie sur l’intervalle $]0; +\infty[$ par : $f(x)=x-2+\dfrac{1}{2}\ln(x)$ , où $\ln$ désigne la fonction logarithme népérien. On admet que la fonction $f$ est deux fois dérivable sur $]0 ; +\infty[$, on note $f’$ sa dérivée et $f\dsec$ sa dérivée seconde.

  1. a. Déterminer, en justifiant, les limites de $f$ en $0$ et en $+\infty$.
    $\quad$
    b. Montrer que pour tout $x$ appartenant à $]0 ; +\infty[$, on a : $f'(x)=\dfrac{2x+1}{2x}$.
    $\quad$
    c. Étudier le sens de variation de $f$ sur $]0 ; +\infty[$.
    $\quad$
    d. Étudier la convexité de $f$ sur $]0 ; +\infty[$.
    $\quad$
  2. a. Montrer que l’équation $f(x) = 0$ admet dans $]0; +\infty[$ une solution unique qu’on notera $\alpha$ et justifier que $\alpha$ appartient à l’intervalle $[1 ; 2]$.
    $\quad$
    b. Déterminer le signe de $f(x)$ pour $x\in ]0 ; +\infty[$.
    $\quad$
    c. Montrer que $\ln(\alpha)=2(2-\alpha)$.
    $\quad$

Partie B : étude de la fonction $\boldsymbol{g}$

La fonction $g$ est définie sur $]0;1]$ par $g(x)=-\dfrac{7}{8}x^2+x-\dfrac{1}{4}x^2\ln(x)$.

On admet que la fonction $g$ est dérivable sur $]0;1]$ et on note $g’$ sa fonction dérivée.

  1. Calculer $g'(x)$ pour $x\in ]0;1]$ puis vérifier que $g'(x)=xf\left(\dfrac{1}{x}\right)$.
    $\quad$
  2. a. Justifier que pour $x$ appartenant à l’intervalle $\left]0;\dfrac{1}{\alpha}\right[$, on a $f\left(\dfrac{1}{x}\right)>0$.
    $\quad$
    b. On admet le tableau de signes suivant :
    $\quad$

    $\quad$
    En déduire le tableau de variations de $g$ sur l’intervalle $]0 ; 1]$.
    Les images et les limites ne sont pas demandées.
    $\quad$

Partie C : un calcul d’aire

On a représenté sur le graphique ci-dessous :

  • La courbe $C_g$ de la fonction $g$ ;
  • La parabole $\mathcal{P}$ d’équation $y=-\dfrac{7}{8}x^2+x$ sur l’intervalle $]0 ; 1]$.

On souhaite calculer l’aire $\mathcal{A}$ du domaine hachuré compris entre les courbes $C_g$ et $\mathcal{P}$, et les droites d’équations $x=\dfrac{1}{\alpha}$ et $x=1$.
On rappelle que $\ln(\alpha)=2(2-\alpha)$.

  1. a. Justifier la position relative des courbes $C_g$ et $\mathcal{P}$ sur l’intervalle $]0;1]$.
    $\quad$
    b. Démontrer l’égalité : $$\int_{1/\alpha}^1 x^2\ln(x)\dx=\dfrac{-\alpha^3-6\alpha+13}{9\alpha^3}$$
    $\quad$
  2. En déduire l’expression en fonction de $\alpha$ de l’aire $\mathcal{A}$.
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Polynésie – sujet 1 – 7 septembre 2023

Polynésie – 7 septembre 2023

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. On peut utiliser l’arbre pondéré suivant :
    $\quad$

    $\quad$
    On a :
    $\begin{align*} P(E\cap C)&=P(E)\times P_E(C) \\&=0,2\times 0,5 \\
    &=0,1\end{align*}$
    La probabilité qu’un client choisi au hasard souhaite acquérir un véhicule à moteur électrique et ait consulté la plate-forme numérique est égale à $0,1$.
    $\quad$
    b. $(E,T)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} P(C)&=P(E\cap C)+P(T\cap C) \\
    &=0,1+P(T)\times P_T(C) \\
    &=0,1+0,8\times 0,375 \\
    &=0,1+0,3\\
    &=0,4\end{align*}$
    $\quad$
    c. On veut calculer :
    $\begin{align*} P_C(E)&=\dfrac{P(C\cap E)}{P(C)} \\
    &=\dfrac{0,1}{0,4} \\
    &=0,25\end{align*}$
    La probabilité qu’un client ayant consulté la plate-forme numérique souhaite acheter un véhicule à moteur électrique est égale à $0,25$.
    $\quad$
  2. a. On répète $17$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,2$.
    Ainsi $X$ suit la loi binomiale de paramètre $n=17$ et $p=0,2$.
    $\quad$
    b. On a :
    $\begin{align*} P(X\pg 3)&=1-P(X\pp 2) \\
    &=1-\left(P(X=0)+P(X=1)+P(X=2)\right) \\
    &=1-\left(0,8^{17}+\dbinom{17}{1}\times 0,2\times 0,8^{16}+\dbinom{17}{2}\times 0,2^2\times 0,8^{15}\right) \\
    &\approx 0,69\end{align*}$
    La probabilité qu’au moins trois des clients souhaitent acheter un véhicule à moteur électrique lors d’une journée est environ égale à $0,69$.
    $\quad$

 

Ex 2

Exercice 2

Partie A

  1. Pour tout réel $x$ on a :
    $\begin{align*} f(x)&=\left(x+\dfrac{1}{2}\right)\e^{-x}+x \\
    &=\e^{-x}\left(x+\dfrac{1}{2}+x\e^x\right)\end{align*}$
    $\lim\limits_{x\to -\infty} \e^{-x}=+\infty$
    $\lim\limits_{x\to -\infty} \left(x+\dfrac{1}{2}\right)=-\infty$
    Par croissances comparées, $\lim\limits_{x\to -\infty} x\e^{x}=0$.
    Par conséquent $\lim\limits_{x\to -\infty} f(x)=-\infty$
    $\quad$
    $f(x)=x\e^{-x}+\dfrac{1}{2}\e^{-x}+x$
    $\lim\limits_{x\to +\infty} \e^{-x}=0$ et, par croissances comparées, $\lim\limits_{x\to +\infty} x\e^{-x}=0$.
    Donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
  2. a. D’après l’énoncé $f$ est deux fois dérivable sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\e^{-x}-\left(x+\dfrac{1}{2}\right)\e^{-x}+1 \\
    &=\left(1-x- \dfrac{1}{2}\right)\e^{-x}+1 \\
    &=\left(\dfrac{1}{2}-x\right)\e^{-x}+1\end{align*}$
    $\begin{align*} f\dsec(x)&=-\e^{-x}- \left(\dfrac{1}{2}-x\right)\e^{-x} \\
    &=\left(-1-\dfrac{1}{2}+x\right)\e^{-x} \\
    &=\left(x-\dfrac{3}{2}\right)\e^{-x}\end{align*}$
    $\quad$
    b. Pour tout réel $x$ on a $\e^{-x}>0$. Le signe de $f\dsec(x)$ ne dépend donc que de celui de $x-\dfrac{3}{2}$.
    Or $x-\dfrac{3}{2}>0\ssi x>\dfrac{3}{2}$.
    La fonction $f’$ est donc strictement décroissante sur $\left]-\infty;\dfrac{3}{2}\right]$ et strictement croissante sur $\left[\dfrac{3}{2};+\infty\right[$.
    $\quad$
    c. $f’$ admet donc un minimum en $\dfrac{3}{2}$.
    Or $f’\left(\dfrac{3}{2}\right)=-\e{-3/2}+1>0$
    Par conséquent, pour tout réel $x$ on a :
    $\begin{align*} f'(x)&\pg f’\left(\dfrac{3}{2}\right) \\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $\R$.
    $\quad$
    d. La fonction $f$ est donc continue (car dérivable) et strictement croissante sur $\R$.
    $\lim\limits_{x\to -\infty} f(x)=-\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$. Or $0\in ]-\infty;+\infty[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution sur $\R$.
    $\quad$
    e. D’après la calculatrice une valeur arrondie à $10^{-3}$ de cette solution est $0,285$.
    $\quad$

Partie B

  1. Graphiquement, il semblerait que la courbe représentative de la fonction $h$ possède un point d’inflexion d’abscisse environ égale à $1.5$.
    $\quad$
  2. Pour tout réel $x$ on a $h\dsec(x)=\left(x-\dfrac{3}{2}\right)\e^{-x}$
    D’après la partie A, $h\dsec(x)>0$ si, et seulement si, $x>\dfrac{3}{2}$.
    De plus, la fonction exponentielle étant strictement positive sur $\R$, on a $h(x)=0$ si, et seulement si, $x-\dfrac{3}{2}=0$ c’est-à-dire si $x=\dfrac{3}{2}$.
    $h\dsec$ s’annule en changeant de signe uniquement en $\dfrac{3}{2}$.
    La courbe représentative de la fonction $h$ possède donc bien un unique point d’inflexion d’abscisse $\dfrac{3}{2}$.
    $\quad$
  3. $A$ et $B$ n’ont pas la même abscisse.
    Une équation de la droite $(AB)$ est donc de la forme $y=mx+p$.
    Le coefficient directeur de la droite $(AB)$ est donc :
    $\begin{align*} m&=\dfrac{-2,5-3,5}{-2-2} \\
    &=\dfrac{3}{2} \end{align*}$
    Une équation de la droite $(AB)$ est donc de la forme $y=\dfrac{3}{2}x+p$.
    $A$ appartient à cette droite donc
    $-2,5=-2\times \dfrac{3}{2}+p\ssi -2,5=-3+b\ssi p=0,5$.
    Une équation de la droite $(AB)$ est donc $y=\dfrac{3}{2}x+\dfrac{1}{2}$.Remarque : On pense à vérifier de tête, au brouillon ou à l’aide de la calculatrice que les coordonnées du point $B$ vérifient bien cette équation.
    $\quad$
  4. $h$ est dérivable sur $\R$ d’après l’énoncé.
    Pour tout réel $x$ on a :
    $\begin{align*} h'(x)&=a\e^{-x}-(ax+b)\e^{-x}+1 \\
    &=(a-ax-b)\e^{-x}+1\end{align*}$
    Ainsi $h'(0)=a-b+1$ et $h(0)=b$
    La droite $(AB)$ est tangente à la courbe représentative de la fonction $h$.
    Donc $h'(0)=\dfrac{3}{2}$ et $h(0)=\dfrac{1}{2}$.
    Par conséquent $b=\dfrac{1}{2}$ et $a-\dfrac{1}{2}+1=\dfrac{3}{2}\ssi a=1$.
    $\quad$

 

 

Ex 3

Exercice 3

  1. On peut étudier le signe de la fonction dérivée de $f$ pour en déduire les variations de $f$ sur $\R$.
    Mais on peut également remarquer que $f$ est une fonction polynôme du second degré dont le coefficient principal est $\dfrac{3}{4}>0$.
    De plus $\dfrac{-(-2)}{2\times \dfrac{3}{4}}=\dfrac{4}{3}$.
    $f$ est donc strictement décroissante sur $\left]-\infty;\dfrac{4}{3}\right]$ et strictement croissante sur $\left[\dfrac{4}{3};+\infty\right[$.
    D’après la limite des termes de plus haut degré :
    $\lim\limits_{x\to -\infty} f(x)=\lim\limits_{x\to -\infty} \dfrac{3}{4}x^2=+\infty$
    $\lim\limits_{x\to +\infty} f(x)=\lim\limits_{x\to +\infty} \dfrac{3}{4}x^2=+\infty$
    $f\left(\dfrac{4}{3}\right)=\dfrac{5}{3}$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  2. La fonction $f$ est strictement croissante sur $\left[\dfrac{4}{3};2\right]$.
    $f\left(\dfrac{4}{3}\right)=\dfrac{5}{3}\pg \dfrac{4}{3}$
    $f(2)=2\pp 2$
    Donc, pour tout $x\in \left[\dfrac{4}{3};2\right]$ on a $f(x)\in \left[\dfrac{4}{3};2\right]$.
    $\quad$
  3. Pour tout réel $x$ on a :
    $\begin{align*} f(x)-x&=\dfrac{3}{4}x^2-3x+3 \\
    &=\dfrac{3}{4}\left(x^2-4x+4\right) \\
    &=\dfrac{3}{4}(x-2)^2\\
    &\pg 0\end{align*}$
    Ainsi, pour tout réel $x$ on a $f(x)\pg x$.
    $\quad$
  4. a. Pour tout $n\in \N$ on pose $P(n):~u_n \pp u_{n+1} \pp 2$.
    Initialisation : $u_1=f\left(u_0\right)$
    Donc, d’après la question 3 on a $u_1\pg u_0$.
    D’près la question 2 on a $u_1 \in \left[\dfrac{4}{3};2\right]$.
    Par conséquent $u_0\pp u_1 \pp 2$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $u_n\pp u_{n+1}\pp 2$.
    La fonction $f$ est croissante sur $\left[\dfrac{4}{3};2\right]$.
    Par conséquent $f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp f(2)$ c’est-à-dire $u_{n+1} \pp u_{n+2} \pp 2$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout $n\in \N$, on a $u_n \pp u_{n+1} \pp 2$.
    $\quad$
    b. La suite $\left(u_n\right)$ est donc croissante et majorée par $2$. Elle est par conséquent convergente.
    $\quad$
    c. La suite $\left(u_n\right)$ converge vers un réel $\ell$ et, pour tout $n\in \N$, on a $u_{n+1}=f\left(u_n\right)$. La fonction $f$ est continue sur $\R$ en tant que fonction polynôme.
    Par conséquent $\ell$ est solution de l’équation :
    $\begin{align*} f(x)=x&\ssi f(x)-x=0 \\
    &\ssi \dfrac{3}{4}(x-2)^2=0 \\
    &\ssi x-2=0 \\
    &\ssi x=2\end{align*}$
    Or $2\in \left[\dfrac{4}{3};2\right]$.
    La suite $\left(u_n\right)$ converge vers $2$.
    $\quad$
  5. $\quad$
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() :} \\
    \quad \text{u = 3}\\
    \quad \text{ n = 0} \\
    \quad \text{while u < 100 :} \\
    \qquad \text{u = 3/4 * u**2 – 2 * u + 3} \\
    \qquad \text{n = n + 1} \\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
  6. Supposons que la suite $\left(u_n\right)$ converge vers un réel $\ell$.
    D’après l’étude faite à la question 4.c on a donc $\ell =2$.
    Pour tout $n\in \N$ on a : $u_n\pp f\left(u_n\right)$ c’est-à-dire $u_n \pp u_{n+1}$.
    La suite $\left(u_n\right)$ est donc croissante.
    Ainsi, pour tout $n\in \N$ on a $u_n\pg u_0 > 2$ et $\lim\limits_{n\to +\infty} u_n=2$. Ce qui est absurde.
    La suite $\left(u_n\right)$ n’est pas convergente.
    $\quad$

Ex 4

Exercice 4

Question 1

On a $\vect{AB}\begin{pmatrix}-12\\6\\0\end{pmatrix}$ et $\vect{BC}\begin{pmatrix}4\\-2\\5\end{pmatrix}$
Tous les vecteurs directeurs de $(d)$ sont orthogonaux à ces deux vecteurs.
Or :
$\vec{u_4}.\vect{AB}=-12+12+0=0$ et $\vec{u_4}.\vect{BC}=4-4+0=0$
Réponse d

$\quad$

Question 2

Un vecteur directeur de $(AB)$ est $\vect{AB}\begin{pmatrix}-12\\6\\0\end{pmatrix}$ ou encore $\vec{u}\begin{pmatrix}-2\\1\\0\end{pmatrix}$.
La seule représentation paramétrique qui permet d’extraire un vecteur colinéaire à $\vec{u}$ est celle de la réponse c. (Les deuxièmes composantes sont nulles dans les cas a et b, et les deux premières composantes sont de même signe dans le cas d).
Réponse c

$\quad$

Question 3

Un vecteur directeur de la droite $(d’)$ est $\vec{v}\begin{pmatrix}-8\\4\\5\end{pmatrix}$.
Or $\vect{v_3}=-\vec{v}$.
Réponse c

$\quad$

Question 4

Prenons $t=-7$ dans la représentation paramétrique de $(d’)$.
On obtient alors : $\begin{cases} x=-6+56 \\y=-28\\z=6-35\end{cases}$ c’est-à-dire les coordonnées du point $M_1$.
Réponse a

$\quad$

Question 5

Un vecteur normal au plan d’équation $x=1$ est $\vec{n}\begin{pmatrix}1\\0\\0\end{pmatrix}$.
Réponse a

$\quad$

 

Énoncé

Sauf mention contraire, toute réponse devra être justifiée.

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.
La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1 (4 points)

Thème : probabilités

Une concession automobile vend des véhicules à moteur électrique et des véhicules à moteur thermique.
Certains clients, avant de se rendre sur le site de la concession, ont consulté la plateforme numérique de la concession. On a ainsi observé que :

  • $20 \%$ des clients sont intéressés par les véhicules à moteur électrique et $80 \%$ préfèrent s’orienter vers l’achat d’un véhicule à moteur thermique ;
  • lorsqu’un client souhaite acheter un véhicule à moteur électrique, la probabilité pour que le client ait consulté la plate-forme numérique est de $0,5$ ;
  • lorsqu’un client souhaite acheter un véhicule à moteur thermique, la probabilité pour que le client ait consulté la plate-forme numérique est de $0,375$.

On considère les événements suivants :

  • $C$ : « un client a consulté la plate-forme numérique » ;
  • $E$ : « un client souhaite acquérir un véhicule à moteur électrique » ;
  • $T$ : « un client souhaite acquérir un véhicule à moteur thermique ».

Les clients font des choix indépendants les uns des autres.

  1. a. Calculer la probabilité qu’un client choisi au hasard souhaite acquérir un véhicule à moteur électrique et ait consulté la plate-forme numérique.
    On pourra utiliser un arbre pondéré.
    $\quad$
    b. Démontrer que $P(C) = 0,4$.
    $\quad$
    c. On suppose qu’un client a consulté la plate-forme numérique.
    Calculer la probabilité que le client souhaite acheter un véhicule à moteur électrique.
    $\quad$
  2. La concession accueille quotidiennement $17$ clients en moyenne.
    On note $X$ la variable aléatoire donnant le nombre de clients souhaitant acquérir un véhicule à moteur électrique.
    a. Préciser la nature et les paramètres de la loi de probabilité suivie par $X$.
    $\quad$
    b. Calculer la probabilité qu’au moins trois des clients souhaitent acheter un véhicule à moteur électrique lors d’une journée. Donner le résultat arrondi à $10^{-2}$ près.
    $\quad$

$\quad$

Exercice 2 (6 points)

Thème : fonctions

Les parties A et B peuvent être traitées indépendamment.

Partie A

On considère la fonction $f$ définie sur $\R$ par $$f(x)=\left(x+\dfrac{1}{2}\right)\e^{-x}+x$$

  1. Déterminer les limites de $f$ en $-\infty$ et en $+\infty$.
    $\quad$
  2. On admet que $f$ est deux fois dérivable sur $\R$.
    a. Démontrer que , pour tout $x\in \R$, $$f\dsec(x)=\left(x-\dfrac{3}{2}\right)\e^{-x}$$
    $\quad$
    b. En déduire les variations et le minimum de la fonction $f’$ sur $\R$.
    $\quad$
    c. Justifier que pour tout $x\in \R$, $f'(x)>0$.
    $\quad$
    d. En déduire que l’équation $f(x)=0$ admet une unique solution sur $\R$.
    $\quad$
    e. Donner une valeur arrondie à $10^{-3}$ de cette solution.
    $\quad$

Partie B

On considère une fonction $h$, définie et dérivable sur $R$, ayant une expression de la forme $h(x) = (ax+b )\e^{-x}+x$, où $a$ et $b$ sont deux réels.
Dans un repère orthonormé ci-après figurent :

  • la courbe représentative de la fonction $h$ ;
  • les points $A$ et $B$ de coordonnées respectives $(-2 ; -2,5)$ et $(2 ; 3,5)$.

  1. Conjecturer, avec la précision permise par le graphique, les abscisses des éventuels points d’inflexion de la courbe représentative de la fonction $h$.
    $\quad$
  2. Sachant que la fonction $h$ admet sur $\R$ une dérivée seconde d’expression
    $$h\dsec(x)=-\dfrac{3}{2}\e^{-x}+x\e^{-x}$$
    valider ou non la conjecture précédente.
    $\quad$
  3. Déterminer une équation de la droite $(AB)$.
    $\quad$
  4. Sachant que la droite $(AB)$ est tangente à la courbe représentative de la fonction $h$ au point d’abscisse $0$, en déduire les valeurs de $a$ et $b$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Thème : suites, algorithmique

On considère la fonction $f$ définie sur $\R$ par $$f(x)=\dfrac{3}{4}x^2-2x+3$$

  1. Dresser le tableau de variations de la fonction $f$ sur $\R$.
    $\quad$
  2. En déduire, que pour tout $x$ appartenant à l’intervalle $\left[\dfrac{4}{3};2\right]$, $f(x)$ appartient à l’intervalle $\left[\dfrac{4}{3};2\right]$.
    $\quad$
  3. Démontrer que pour tout $x$ réel, $x\pp f(x)$.
    Pour cela, on pourra démontrer que pour tout réel $x$ : $$f(x)-x=\dfrac{3}{4}(x-2)^2$$

On considère la suite $\left(u_n\right)$ définie par un réel $u_0$ et pour tout entier naturel $n$ : $$u_{n+1}=f\left(u_n\right)$$
On a donc, pour tout entier naturel $n$, $u_{n+1}=\dfrac{3}{4}{u_n}^2-2u_n+3$.

  1. Étude du cas : $\dfrac{4}{3} \pp u_0 \pp 2$.
    a. Démontrer par récurrence que, pour tout entier naturel $n$,
    $$ u_n\pp u_{n+1} \pp 2$$
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    c. Prouver que la limite de la suite est égale à $2$.
    $\quad$
  2. Étude du cas particulier : $u_0=3$.
    On admet que dans ce cas la suite $\left(u_n\right)$ tend vers $+\infty$.
    Recopier et compléter la fonction « seuil » suivante écrite en Python, afin qu’elle renvoie la plus petite valeur de $n$ telle que $u_n$ soit supérieur ou égal à $100$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() :} \\
    \quad \text{u = 3}\\
    \quad \text{ n = 0} \\
    \quad \text{while … } \hspace{2cm}  \\
    \qquad \text{u = …} \\
    \qquad \text{n = …} \\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
  3. Étude du cas : $u_0>2$.
    À l’aide d’un raisonnement par l’absurde, montrer que $\left(u_n\right)$ n’est pas convergente.
    $\quad$

$\quad$

Exercice 4 (5 points)

Thème : géométrie dans l’espace

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question traitée et la lettre de la réponse choisie. Aucune justification n’est demandée.

L’espace est muni d’un repère orthonormé $\Oijk$ dans lequel on considère :

  • les points $A(6 ; -6 ; 6)$, $B(-6 ; 0 ; 6)$ et $C(-2 ; -2 ; 11)$ ;
  • la droite $(d)$ orthogonale aux deux droites sécantes $(AB)$ et $(BC)$ et passant par le point $A$ ;
  • la droite $(d’)$ de représentation paramétrique : $$\begin{cases} x=-6-8t \\y=4t\\z=6+5t\end{cases} ~~,\text{ avec } t\in \R$$

$\quad$

Question 1

Parmi les vecteurs suivants, lequel est un vecteur directeur de la droite $(d)$ ?

a. $\vect{u_1}\begin{pmatrix} -6\\3\\0\end{pmatrix}$
b. $\vect{u_2}\begin{pmatrix} 1\\2\\6\end{pmatrix}$
c. $\vect{u_3}\begin{pmatrix} 1\\2\\0,2\end{pmatrix}$
d. $\vect{u_4}\begin{pmatrix} 1\\2\\0\end{pmatrix}$

$\quad$

Question 2

Parmi les équations suivantes, laquelle est une représentation paramétrique de la droite $(AB)$ ?

a. $\begin{cases} x=2t-6 \\y=-6\\z=t+6\end{cases} ~~,\text{ avec } t\in \R$
b. $\begin{cases} x=2t-6 \\y=-6\\z=-t-6\end{cases} ~~,\text{ avec } t\in \R$
c. $\begin{cases} x=2t+6 \\y=-t-6\\z=6\end{cases} ~~,\text{ avec } t\in \R$
d. $\begin{cases} x=2t+6 \\y=t-6\\z=6\end{cases} ~~,\text{ avec } t\in \R$

$\quad$

Question 3

Un vecteur directeur de la droite $(d’)$ est :

a. $\vect{v_1}\begin{pmatrix} -6\\0\\6\end{pmatrix}$
b. $\vect{v_2}\begin{pmatrix} -14\\4\\11\end{pmatrix}$
c. $\vect{v_3}\begin{pmatrix} 8\\-4\\-5\end{pmatrix}$
d. $\vect{v_1}\begin{pmatrix} 8\\-4\\5\end{pmatrix}$

$\quad$

Question 4

Lequel des quatre points suivants appartient à la droite $(d’)$ ?

a. $M_1(50;-28;-29)$
b. $M_2(-14;-4;1)$
c. $M_3(2;-4;-1)$
d. $M_4(-3;0;3)$

$\quad$

Question 5

Le plan d’équation $x=1$ a pour vecteur normal :

a. $\vect{n_1}\begin{pmatrix} 1\\0\\0\end{pmatrix}$
b. $\vect{n_2}\begin{pmatrix} 0\\1\\1\end{pmatrix}$
c. $\vect{n_3}\begin{pmatrix} 0\\1\\0\end{pmatrix}$
d. $\vect{n_1}\begin{pmatrix} 1\\0\\1\end{pmatrix}$

$\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole – sujet 1 – 11 septembre 2023

Métropole – 11 septembre 2023

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. Pour tout réel $x$ on a :
    $\begin{align*} f(x)&=x\e^{x^2-3} \\
    &=\dfrac{1}{2}\times 2x\e^{x^2-3} \end{align*}$
    Ainsi $f(x)$ est de la forme $\dfrac{1}{2}u'(x)\e^{u(x)}$ où $u(x)=x^2-3$.
    Une primitive de la fonction $f$ est donc la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2-3}$.
    Réponse d
    $\quad$
  2. Pour tout $n\in \N$ on a
    $\begin{align*} u_{n+1}&=\e^{2(n+1)+1} \\
    &=\e^{2n+2+1} \\
    &=\e^2\e^{2n+1} \\
    &=\e^2u_n\end{align*}$
    $\left(u_n\right)$ est une suite géométrique de raison $\e^2$.
    Réponse c
    $\quad$
  3. On doit écrire $\text{u <= 10000}$.
    Réponse a
    $\quad$
  4. Pour tout $n\in \N$ on a :
    $\begin{align*} v_{n+1}&=u_{n+1}+60 \\
    &=1,2u_n+12+60 \\
    &=1,2u_n+72 \\
    &=1,2\left(u_n+60\right) \\
    &=1,2v_n\end{align*}$
    La suite $\left(v_n\right)$ est géométrique de raison $1,2$.
    Réponse b
    $\quad$

 

Ex 2

Exercice 2

  1. a. On a $\vect{AB}\begin{pmatrix}2\\-1\\3\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}1\\-2\\0\end{pmatrix}$.
    Or $\dfrac{1}{2}\neq \dfrac{0}{3}$. Ces deux vecteurs ne sont pas colinéaires.
    Les points $A$, $B$ et $C$ définissent bien un plan.
    $\quad$
    b. $\vect{CD}\begin{pmatrix} 2\\1\\-1\end{pmatrix}$
    D’une part $\vect{CD}.\vect{AB}=4-1-3=0$.
    D’autre part $\vect{CD}.\vect{AC}=2-2+0=0$.
    $\vect{CD}$ est orthogonal à deux vecteurs non colinéaires du plan $\mathscr{P}$. Il est donc orthogonal à ce plan.
    La droite $(CD)$ est orthogonale au plan $\mathscr{P}$.
    $\quad$
    $C$ est donc le projeté orthogonal du point $D$ sur le plan $\mathscr{P}$.
    $\quad$
    c. Une équation du plan $\mathscr{P}$ est donc de la forme $2x+y-z+d=0$.
    Le point $A$ appartient à ce plan. Ainsi $2+0-(-1)+d=0 \ssi d=-3$.
    Une équation cartésienne du plan $\mathscr{P}$ est $2x+y-z-3=0$.
    $\quad$
  2. a.
    $\begin{align*} CD&=\sqrt{2^2+1^2+(-1)^2} \\
    &=\sqrt{6}\end{align*}$
    $\quad$
    b. $C$ est le projeté orthogonal du point $D$ sur le plan $\mathscr{P}$ c’est donc l’unique point de ce plan situé à la distance $\sqrt{6}$ de $D$.
    Il n’existe donc pas de point $M$ du plan $\mathscr{P}$ différent de $C$ vérifiant $MD=\sqrt{6}$.
    $\quad$
  3. a. Soit $t\in \R$.
    $\begin{align*}2\times 0+(2+t)-(-1+t)+3&=2+t+1-t+3 \\
    &=0\end{align*}$
    Ainsi, le point $M(0:2+t;-1+t)$ appartient au plan $\mathscr{P}$ pour tout $t\in \R$.
    La droite $\Delta$ est incluse dans le plan $\mathscr{P}$.
    $\quad$
    b. On appelle $N$ le point de $\Delta$ associé à la valeur $-2$. Ainsi $N(0;0;-3)$.
    $\vect{ND}\begin{pmatrix}4\\-1\\1\end{pmatrix}$.
    Un vecteur directeur de $\Delta$ est $\vec{u}\begin{pmatrix} 0\\1\\1\end{pmatrix}$.
    Par conséquent $\vec{u}.\vect{ND}=0-1+1=0$.
    La droite $(ND)$ est donc perpendiculaire à la droite $\Delta$ en $N$.
    $N$ est le projeté orthogonal du point $D$ sur la droite $\Delta$.
    $H$ est donc bien le point de $\Delta$ associé à la valeur $t=-2$.
    $\quad$
    c. Ainsi :
    $\begin{align*} HD&=\sqrt{4^2+(-1)^2+1^2} \\
    &=\sqrt{18}\\
    &=3\sqrt{2}\end{align*}$
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. $\left(A,\conj{A}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} p(T)&=p(A)p_A(T)+p\left(\conj{A}\right)p_{\conj{A}}(T)\\
    &=0,97x+0,043(1-x) \\
    &=0,043+0,927x\end{align*}$
    $\quad$
    b. On sait que $p(T)=0,2$.
    Par conséquent :
    $\begin{align*} 0,2=0,043+0,927x&\ssi 0,157=0,927x \\
    &\ssi x=\dfrac{157}{927}\end{align*}$.
    La probabilité que l’individu choisi soit allergique est donc environ égale à $0,169$.
    $\quad$
  3. On calcule :
    $\begin{align*} p_T(A)&=\dfrac{p(A\cap T)}{p(T)} \\
    &=\dfrac{p(A)p_A(T)}{p(T)} \\
    &\approx \dfrac{0,169\times 0,97}{0,2}\\
    &\approx 0,820\end{align*}$
    L’affirmation est donc vraie.
    $\quad$

Partie B

  1. On répète $150$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,08$.
    Ainsi $X$ suit la loi binomiale de paramètres $n=150$ et $p=0,08$.
  2. On veut calculer :
    $\begin{align*} p(X=20)&=\dbinom{150}{20}0,08^{20}\times 0,92^{130} \\
    &\approx 0,008\end{align*}$
    La probabilité que $20$ personnes exactement parmi les $150$ interrogées soient allergiques est environ égale à $0,008$.
    $\quad$
  3. D’après la calculatrice :
    $\begin{align*} p(X\pg 15)&=1-p(X\pp 14) \\
    &\approx 0,220\end{align*}$
    La probabilité qu’au moins $10 \%$ des personnes parmi les $150$ interrogées soient allergiques est environ égale à $0,220$.
    $\quad$

Ex 4

Exercice 4

Partie A

  1. Pour tout réel $x>0$ on a :
    $\begin{align*} g'(x)&=-\dfrac{2}{x^2}+\dfrac{2}{x^3}+\dfrac{1}{x} \\
    &=\dfrac{-2x+2+x^2}{x^3}\end{align*}$
    Or $x^3>0$ sur $]0;+\infty[$.
    Ainsi $g'(x)$ est du signe de $x^2-2x+2$.
    $\quad$
  2. Le discriminant de $x^2-2x+2$ est $\Delta=-4<0$.
    Le signe de ce trinôme est celui de son coefficient principal qui est $1>0$.
    Ainsi, pour tout réel $x>0$, $x^2-2x+2>0$.
    Donc $g'(x)>0$ et la fonction $g$ est strictement croissante sur $]0;+\infty[$.
    $\quad$
  3. La fonction $g$ est continue (car dérivable) et strictement croissante sur $]0;+\infty[$.
    $g(0,5)=\ln(0,5)= -\ln(2)<0$ et $g(1)=1>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution sur l’intervalle $[0,5;1]$.
    $\quad$
  4. La fonction $g$ est strictement croissante sur $]0;+\infty[$ et s’annule en $\alpha$.
    Ainsi, pour tout $x\in ]0;\alpha[$ on a $g(x)<g(\alpha)$ soit $g(x)<0$ et, pour tout $x>\alpha$ on a $g(x)>g(\alpha)$ doit $g(x)>0$.
    $\quad$

Partie B

  1. Pour tout réel $x>0$ on a :
    $\begin{align*} f\dsec(x)&=\e^x\left(\dfrac{1}{x}+\ln(x)\right)+\e^x\left(-\dfrac{1}{x^2}+\dfrac{1}{x}\right) \\
    &=\e^x\left(\dfrac{1}{x}+\ln(x)-\dfrac{1}{x^2}+\dfrac{1}{x}\right) \\
    &=\e^x\left(\dfrac{2}{x}-\dfrac{1}{x^2}+\ln(x)\right)\end{align*}$
    $\quad$
  2. a. On a ainsi, pour tout réel $x>0$, $f\dsec(x)=g(x)\e^x$.
    La fonction exponentielle est strictement positive sur $\R$. $f\dsec(x)$ est donc du signe de $g(x)$.
    On obtient alors le tableau de signes suivant :
    $\quad$

    $\quad$
    b. La fonction $f\dsec$ ne s’annule qu’une fois en changeant de signe en $\alpha$.
    $\mathscr{C}_f$ possède donc une unique point d’inflexion $A$ d’abscisse $\alpha$.
    $\quad$
    c. La fonction $f$ est donc concave sur $]0;+\alpha]$ et convexe sur $[\alpha;+\infty[$.
    $\quad$
  3. a. $\lim\limits_{x\to 0^+} \e^x=1$ et $\lim\limits_{x\to 0^+} \ln(x)=-\infty$
    Par conséquent $\lim\limits_{x\to 0+}f(x)=-\infty$
    $\lim\limits_{x\to +\infty} \e^x=+\infty$ et $\lim\limits_{x\to +\infty} \ln(x)=+\infty$
    Par conséquent $\lim\limits_{x\to v}f(x)=+\infty$
    $\quad$
    b.
    $g(\alpha)=0\ssi \ln(\alpha)=\dfrac{1}{\alpha^2}-\dfrac{2}{\alpha}$
    Ainsi :
    $\begin{align*} f'(\alpha)&=\e^{\alpha}\left(\dfrac{1}{\alpha}+\ln(\alpha)\right) \\
    &=\e^{\alpha}\left(\dfrac{1}{\alpha}+\dfrac{1}{\alpha^2}-\dfrac{2}{\alpha}\right) \\
    &=\e^{\alpha}\left(-\dfrac{1}{\alpha}+\dfrac{1}{\alpha^2}\right) \\
    &=\dfrac{\alpha}{\alpha^2}(-\alpha+1)\end{align*}$
    c. On a $0,5<\alpha<1$ donc $1-\alpha>0$.
    La fonction exponentielle est strictement positive sur $\R$ et $\alpha^2>0$.
    Ainsi $f'(\alpha)>0$.
    La fonction $f’$ admet un minimum en $\alpha$ et $f'(\alpha)>0$.
    Ainsi, pour tout réel $x>0$ on a $f'(x)>0$.
    $\quad$
    d. On en déduit donc le tableau de variations suivant :
    $\quad$
    $\quad$

 

Énoncé

Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu’il aura développée.
La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1     4 points

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $f$ définie sur $\R$ par $f(x)=x\e^{x^2-3}$.
    Une des primitives $F$ de la fonction $f$ sur $\R$ est définie par :
    a. $F(x)=2x\e^{x^2-3}$ ;
    b. $F(x)=\left(2x^2+1\right)\e^{x^2-3}$ ;
    c. $F(x)=\dfrac{1}{2}x\e^{x^2-3}$ ;
    d. $F(x)=\dfrac{1}{2}\e^{x^2-3}$.
    $\quad$
  2. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par : $u_n=\e^{2n+1}$.
    La suite $\left(u_n\right)$ est :
    a. arithmétique de raison $2$ ;
    b. géométrique de raison $\e$ ;
    c. géométrique de raison $\e^2$ ;
    d. convergente vers $\e$.
    $\quad$

Pour les questions 3. et 4., on considère la suite $\left(u_n\right)$ définie sur $\N$ par :
$\hspace{1cm} u_0 = 15$ et pour tout entier naturel $n$ : $u_{n+1} = 1,2u_n + 12$.

  1. La fonction Python suivante, dont la ligne 4 est incomplète, doit renvoyer la plus petite valeur de l’entier $n$ telle que $u_n > 10~000$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil() :}\\
    \quad \text{n=0}\\
    \quad \text{u=15}\\
    \quad \text{while …}\\
    \qquad \text{n=n+1}\\
    \qquad \text{u=1.2*u+12}\\
    \qquad \text{return(n}\\
    \hline
    \end{array}$$
    À la ligne 4, on complète par :
    a. $\text{u <=10 000}$ ;
    b. $\text{u = 10 000}$ ;
    c. $\text{u > 10 000}$ ;
    d. $\text{n <= 10 000}$.
    $\quad$
  2. On considère la suite $\left(v_n\right)$ définie sur $\N$ par : $v_n=u_n+60$. La suite $\left(v_n\right)$ est :
    a. une suite décroissante ;
    b. une suite géométrique de raison $1,2$ ;
    c. une suite arithmétique de raison $60$ ;
    d. une suite ni géométrique ni arithmétique.
    $\quad$

$\quad$

Exercice 2     5 points

L’espace est rapporté à un repère orthonormé $\Oijk$.
On considère les points $A(1 ; 0 ;-1)$, $B(3 ;-1 ; 2)$, $C(2 ;-2 ;-1)$ et $D(4 ;-1 ;-2)$.
On note $\Delta$ la droite de représentation paramétrique $\begin{cases} x=0\\y=2+t\\z=-1+t\end{cases}$, avec $t\in \R$.

  1. a. Montrer que les points $A$, $B$ et $C$ définissent un plan que l’on notera $\mathcal{P}$.
    $\quad$
    b. Montrer que la droite $(CD)$ est orthogonale au plan $\mathcal{P}$. Sur le plan $\mathcal{P}$, que représente le point $C$ par rapport à $D$ ?
    $\quad$
    c. Montrer qu’une équation cartésienne du plan $\mathcal{P}$ est : $2x+y-z-3=0$.
    $\quad$
  2. a. Calculer la distance $CD$.
    $\quad$
    b. Existe-t-il un point $M$ du plan $\mathcal{P}$ différent de $C$ vérifiant $MD=\sqrt{6}$ ? Justifier la réponse.
    $\quad$
  3. a. Montrer que la droite $\Delta$ est incluse dans le plan $\mathcal{P}$.
    $\quad$
    Soit $H$ le projeté orthogonal du point $D$ sur la droite $\Delta$.
    b. Montrer que $H$ est le point de $\Delta$ associé à la valeur $t =-2$ dans la représentation paramétrique de $\Delta$ donnée ci-dessus.
    $\quad$
    c. En déduire la distance du point $D$ à la droite $\Delta$.
    $\quad$

$\quad$

Exercice 3     4 points

Les parties A et B sont indépendantes.
Les probabilités demandées seront données à $10^{-3}$ près.

Pour aider à la détection de certaines allergies, on peut procéder à un test sanguin dont le résultat est soit positif, soit négatif.

Dans une population, ce test donne les résultats suivants :

  • Si un individu est allergique, le test est positif dans $97 \%$ des cas ;
  • Si un individu n’est pas allergique, le test est négatif dans $95,7\%$ des cas.

Par ailleurs, $20 \%$ des individus de la population concernée présentent un test positif.

On choisit au hasard un individu dans la population, et on note :

  • $A$ l’événement « l’individu est allergique » ;
  • $T$ l’événement « l’individu présente un test positif ».

On notera $\conj{A}$ et $\conj{T}$ les événements contraires de $A$ et $T$.

On appelle par ailleurs $x$ la probabilité de l’événement $A$ : $x = p(A)$.

$\quad$

Partie A

  1. Reproduire et compléter l’arbre ci-dessous décrivant la situation, en indiquant sur chaque branche la probabilité correspondante.
    $\quad$

    $\quad$
  2. a. Démontrer l’égalité : $p(T)=0,927x+0,043$.
    $\quad$
    b. En déduire la probabilité que l’individu choisi soit allergique.
    $\quad$
  3. Justifier par un calcul l’affirmation suivante :
    « Si le test d’un individu choisi au hasard est positif, il y a plus de $80\%$ de chances que cet individu soit allergique ».
    $\quad$

Partie B :

On réalise une enquête sur les allergies dans une ville en interrogeant $150$ habitants choisis au hasard, et on admet que ce choix se ramène à des tirages successifs indépendants avec remise.
On sait que la probabilité qu’un habitant choisi au hasard dans cette ville soit allergique est égale à $0,08$.
On note $X$ la variable aléatoire qui à un échantillon de $150$ habitants choisis au hasard associe le nombre de personnes allergiques dans cet échantillon.

  1. Quelle est la loi de probabilité suivie par la variable aléatoire $X$ ? Préciser ses paramètres.
    $\quad$
  2. Déterminer la probabilité que 20 personnes exactement parmi les $150$ interrogées soient allergiques.
    $\quad$
  3. Déterminer la probabilité qu’au moins $10\%$ des personnes parmi les $150$ interrogées soient allergiques.
    $\quad$

$\quad$

Exercice 4     7 points

PARTIE A

On définit sur l’intervalle $]0;+\infty[$ la fonction $g$ par : $g(x)=\dfrac{2}{x}-\dfrac{1}{x^2}+\ln(x)$ où $\ln$ désigne la fonction logarithme népérien.
On admet que la fonction $g$ est dérivable sur $]0; +\infty[$ et on note $g’$ sa fonction dérivée.

  1. Montrer que pour $x>0$, le signe de $g'(x)$ est celui du trinôme du second degré $\left(x^2-2x+2\right)$.
    $\quad$
  2. En déduire que la fonction $g$ est strictement croissante sur $]0; +\infty[$.
    $\quad$
  3. Montrer que l’équation $g(x)=0$ admet une unique solution sur l’intervalle $[0,5 ; 1]$, que l’on notera $\alpha$.
    $\quad$
  4. On donne le tableau de signes de $g$ sur l’intervalle $]0; +\infty[$ :
    $\quad$

    $\quad$
    Justifier ce tableau de signes à l’aide des résultats obtenus aux questions précédentes.
    $\quad$

PARTIE B
On considère la fonction $f$ définie sur l’intervalle $]0; +\infty[$ par : $f(x)=\e^x\ln(x)$.
On note $C_f$ la courbe représentative de $f$ dans un repère orthonormé.

  1. On admet que la fonction $f$ est deux fois dérivable sur $]0; +\infty[$ , on note $f’$ sa fonction dérivée, $f\dsec$ sa fonction dérivée seconde et on admet que :
    pour tout nombre réel $x > 0,~f'(x)=\e^x\left(\dfrac{1}{x}+\ln(x)\right)$
    Démontrer que, pour tout nombre réel $x > 0$, on a : $f\dsec(x)=\e^x\left(\dfrac{2}{x}-\dfrac{1}{x^2}+\ln(x)\right)$.
    $\quad$
  2. On pourra remarquer que pour tout réel $x>0$, $f\dsec(x) = \e^x\times g(x)$, où $g$ désigne la fonction étudiée dans la partie A.
    a. Dresser le tableau de signes de la fonction $f\dsec(x)$ sur $]0; +\infty[$. Justifier.
    $\quad$
    b. Justifier que la courbe $C_f$ admet un unique point d’inflexion $A$.
    $\quad$
    c. Étudier la convexité de la fonction $f$ sur l’intervalle $]0; +\infty[$. Justifier.
    $\quad$
  3. a. Calculer les limites de $f$ aux bornes de son ensemble de définition.
    $\quad$
    b. Montrer que $f'(x)(\alpha) =\dfrac{\e^{\alpha}}{\alpha^2}(1-\alpha)$. On rappelle que $\alpha$ est l’unique solution de l’équation $g(\alpha) = 0$.
    $\quad$
    c. Démontrer que $f'(\alpha)> 0$ et en déduire le signe de $f'(x)$ pour $x$ appartenant à $]0; +\infty[$.
    $\quad$
    d. En déduire le tableau de variations complet de la fonction $f$ sur $]0; +\infty[$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Nouvelle Calédonie – sujet 2 – 29 août 2023

Nouvelle Calédonie – 29 août 2023

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. Les points $F$ et $K$ appartiennent au plan $(EHG)$, ne sont pas confondus et le point $C$ n’appartient pas à ce plan.
    Ainsi $C$, $F$ et $K$ définissent bien un plan.
    $\quad$
  2. a. $K$ est le milieu de $[HG]$ et $HG=1$ donc $KG=0,5$.
    $[GF]$ et $[GC]$ sont des arêtes du cube. Donc $GF=GC=1$.
    $\quad$
    b. Le triangle $FGC$ est rectangle en $G$.
    L’aire du triangle $FGC$ est donc :
    $\begin{align*} A_{FGC}&=\dfrac{GF\times GC}{2} \\
    &=\dfrac{1}{2} \text{u.a.}\end{align*}$
    $\quad$
    c. Le volume du tétraèdre $FGCK$ est
    $\begin{align*} V_{FGCK}&=\dfrac{A_{FGC}\times KG}{3} \\
    &=\dfrac{\dfrac{1}{2}\times \dfrac{1}{2}}{3} \\
    &=\dfrac{1}{12} \text{u.v.}\end{align*}$
    $\quad$
  3. a. On a $C(1;1;0)$, $F(0;1;1)$ et $K(1;0,5;1)$.
    Donc $\vect{CF}\begin{pmatrix}-1\\0\\1\end{pmatrix}$ et $\vect{CK}\begin{pmatrix}0\\-0,5\\1\end{pmatrix}$
    Ces deux vecteurs ne sont pas colinéaires car ils n’ont pas la même composante nulle (ou car, d’après la question 1, ils définissent un plan).
    $\vec{n}.\vect{CF}=-1+0+1=0$ et $\vec{n}.\vect{CK}=0-1+1=0$.
    $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(CFK)$. Il est donc normal à ce plan.
    $\quad$
    b. Une équation cartésienne du plan $(CFK)$ est donc de la forme $x+2y+z+d=0$.
    $C(1;1;0)$ appartient à ce plan. Par conséquent $1+2+0+d=0\ssi d=-3$.
    Une équation cartésienne du plan $(CFK)$ est par conséquent $x+2y+z-3=0$.
    $\quad$
  4. La droite $\Delta$ passe par $G(1;1;1)$ et admet comme vecteur directeur le vecteur $\vec{n}$.
    Une représentation paramétrique de la droite $\Delta$ est donc $\begin{cases} x=1+t\\y=1+2t\\z=1+t\end{cases} \quad (t\in \R)$.
    $\quad$
  5. a. On note $L(x;y;z)$.
    Les coordonnées de $L$ sont solution du système
    $\begin{align*} \begin{cases} x+2y+z-3=0\\x=1+t\\y=1+2t\\z=1+t\end{cases}&\ssi \begin{cases} 1+t+2+4t+1+t-3=0\\x=1+t\\y=1+2t\\z=1+t\end{cases} \\
    &\ssi \begin{cases} 6t+1=0\\x=1+t\\y=1+2t\\z=1+t\end{cases}\\
    &\ssi \begin{cases} t=-\dfrac{1}{6}\\[3mm]x=\dfrac{5}{6}\\[3mm]y=\dfrac{2}{3}\\[3mm]\dfrac{5}{6}\end{cases}\end{align*}$
    Ainsi les coordonnées du point $L$ sont $\left(\dfrac{5}{6};\dfrac{2}{3};\dfrac{5}{6}\right)$.
    $\quad$
    b. On a alors $\vect{LG}\begin{pmatrix}\dfrac{1}{6}\\[3mm]\dfrac{1}{3}\\[3mm]\dfrac{1}{6}\end{pmatrix}$
    Donc :
    $\begin{align*} LG&=\sqrt{\dfrac{1}{6^2}+\dfrac{1}{3^2}+\dfrac{1}{6^2}} \\
    &=\sqrt{\dfrac{1}{6}} \\
    &=\dfrac{\sqrt{6}}{6}\end{align*}$
    $\quad$
  6. On a
    $\begin{align*}V_{FGCK}=\dfrac{1}{12}&\ssi \dfrac{A_{CFK}\times LG}{3}=\dfrac{1}{12} \\
    &\ssi A_{CFK}\times \dfrac{\sqrt{6}}{6}=\dfrac{1}{4} \\
    &\ssi A_{CFK}=\dfrac{\sqrt{6}}{4} \text{u.a.}\end{align*}$.
    L’aire du triangle $CFK$ est donc égale à $\dfrac{\sqrt{6}}{4} $ u.a.

Ex 2

Exercice 2

  1. Pour tout réel $x\pg 0$ on a
    $\begin{align*} f(x)&=x\e^{-x} \\
    &=x\times \dfrac{1}{\e^x} \\
    &=\dfrac{x}{\e^x}\end{align*}$
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\e^x}{x}=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=0$.
    La droite d’équation $y=0$ est par conséquent une asymptote à la courbe $\mathcal{C}_f$ en $+\infty$.
    $\quad$
  2. D’après l’énoncé $f$ est dérivable sur $\R_+$.
    Pour tout réel $x\pg 0$ on a
    $\begin{align*} f'(x)&=\e^{-x}-x\e^{-x} \\
    &=(1-x)\e^{-x}\end{align*}$
    $\quad$
  3. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $1-x$.
    Or $1-x=0 \ssi x=1$ et $1-x>0\ssi x<1$.
    On obtient alors le tableau de variations suivant :
    $\quad$
    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement croissante sur $[0;1]$.
    $f(0)=0$ et $f(1)=\e^{-1}\approx 0,3679$. Donc $\dfrac{367}{1~000}\in \left]0;\e^{-1}\right[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=\dfrac{367}{1~000}$ admet une unique solution sur $]0;1[$.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement décroissante sur $[1;+\infty[$.
    $\lim\limits_{x\to +\infty} f(x)=0$ et $f(1)=\e^{-1}\approx 0,3679$. Donc $\dfrac{367}{1~000}\in \left]0;\e^{-1}\right[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=\dfrac{367}{1~000}$ admet une unique solution sur $]1;+\infty[$.
    $\quad$
    Finalement, l’équation $f(x)=\dfrac{367}{1~000}$ admet exactement deux solutions sur $[0;+\infty[$.
    $\quad$
  5. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $x-2$.
    $x-2=0\ssi x=2$ et $x-2>0\ssi x>2$.
    La fonction $f$ est donc concave sur $[0;2]$ et convexe sur $[2;+\infty[$.
    $\quad$
  6. a. Une équation de la droite $T_a$ est :
    $\begin{align*}y=f'(a)(x-a)+f(a)&\ssi y=(1-a)\e^{-a}(x-a)+a\e^{-a} \\
    &\ssi y=(1-a)\e^{-a}x-a\e^{-a}+a^2\e^{-a}+a\e^{-a} \\
    &\ssi y=(1-a)\e^{-a}x+a^2\e^{-a}\end{align*}$
    $\quad$
    b. L’ordonnée à l’origine de $T_a$  est $a^2\e^{-a}$.
    Donc $g(a)=a^2\e^{-a}$.
    $\quad$
    c. On considère la fonction $g$ définie sur $[0;+\infty[$ par $g(x)=x^2\e^{-x}$.
    La fonction $g$ est dérivable sur $[0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x\pg 0$ on a
    $\begin{align*} g'(x)&=2x\e^{-x}-x^2\e^{-x} \\
    &=x(2-x)\e^{-x} \\
    &=-xf\dsec(x)\end{align*}$
    Ainsi, sur $[0;+\infty[$ $g'(x)$ et $f\dsec(x)$ sont de signes contraires.
    D’après la question 5., $g(a)$ est maximale quand $x=2$ c’est-à-dire quand $A$ est un point d’inflexion de $\mathcal{C}_f$.
    $\quad$

 

Ex 3

Exercice 3

  1. On a
    $\begin{align*} u_1&=\dfrac{-u_0-4}{u_0+3} \\
    &=-\dfrac{4}{3}\end{align*}$
    $\begin{align*} u_2&=\dfrac{-u_1-4}{u_1+3} \\
    &=-\dfrac{8}{5}\end{align*}$
    $\quad$
  2. On peut écrire $$\begin{array}{|l|}
    \hline
    \text{def terme(n):}
    \quad \text{u = 0} \\
    \quad \text{for i in range(n):}\\
    \qquad \text{u = (-u – 4)/(u + 3)}\\
    \quad \text{return(u)}\\
    \hline
    \end{array}$$
    $\quad$
  3. La fonction $f$ est dérivable sur $]-3;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout réel $x>-3$ on a :
    $\begin{align*} f'(x)&=\dfrac{-(x+3)-(-x-4)}{(x+3)^2} \\
    &=\dfrac{-x-3+x+4}{(x+3)^2} \\
    &=\dfrac{1}{(x+3)^2}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur $]-3;+\infty[$.
    $\quad$
  4. Pour tout $n\in \N$ on pose $P(n):~-2<u_{n+1} \pp u_n$.
    Initialisation : $u_0=0$ et $u_1=-\dfrac{4}{3}$ donc $-2<u_1\pp u_0$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    On a $-2<u_{n+1}\pp u_n$.
    La fonction $f$ est strictement croissante sur $]-3;+\infty[$.
    Par conséquent $f(-2)<f\left(u_{n+1}\right)\pp f\left(u_n\right)$
    Donc $-2<u_{n+2}\pp u_{n+1}$ et $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout $n\in \N$, $-2<u_{n+1}\pp u_n$.
    $\quad$
  5. La suite $\left(u_n\right)$ est décroissante et minorée par $-2$.
    Elle converge donc.
    $\quad$
  6. a. On a $v_0=\dfrac{1}{2}$.
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} v_{n+1}-v_n&=\dfrac{1}{u_{n+1}+2}-\dfrac{1}{u_n+2} \\
    &=\dfrac{1}{\dfrac{-u_n-4}{u_n+3}+2}-\dfrac{1}{u_n+2} \\
    &=\dfrac{1}{\dfrac{-u_n-4+2u_n+6}{u_n+3}}-\dfrac{1}{u_n+2} \\
    &=\dfrac{1}{\dfrac{u_n+2}{u_n+3}}-\dfrac{1}{u_n+2} \\
    &=\dfrac{u_n+3}{u_n+2}-\dfrac{1}{u_n+2} \\
    &=\dfrac{u_n+2}{u_n+2}\\
    &=1\end{align*}$
    La suite $\left(v_n\right)$ est donc arithmétique de raison $1$.
    $\quad$
    c. Ainsi, pour tout $n\in \N$, on a $v_n=\dfrac{1}{2}+n$.
    Or $v_n=\dfrac{1}{u_n+2}\ssi u_n+2=\dfrac{1}{v_n} \ssi u_n=\dfrac{1}{0,5+n}-2$.
    $\quad$
    d. $\lim\limits_{n\to +\infty} \dfrac{1}{n+0,5}=0$ donc $\lim\limits_{n\to +\infty} u_n=-2$.
    $\quad$

Ex 4

Exercice 4

  1. On a $P_A(F)=\dfrac{25}{75}$.
    Réponse b
    $\quad$
  2. On a
    $\begin{align*} P(A\cup F)&=\dfrac{75+80}{200} \\
    &=\dfrac{155}{200}  \\
    &=\dfrac{31}{40}\end{align*}$
    Réponse c
    $\quad$
  3. On appelle $B$ l’événement “le bus est en panne” et $T$ l’événement ‘le train est en panne”.
    On veut calculer :
    $\begin{align*}p_1&=P(B\cup T)\\
    &=P(B)+P(T)-P(B\cap T)\\
    &=b+t-P(B)P(T) \qquad \text{(indépendance)}\\
    &=b+t-bt\end{align*}$
    Réponse d
    $\quad$
  4. Albert peut se rendre à son travail si le train et le bus ne sont pas en panne. Donc
    $\begin{align*} p_2&=P\left(\conj{B\cap T}\right) \\
    &=1-P(B\cap T) \\
    &=1-P(B)P(T) \qquad \text{(indépendance)}\\
    &=1-bt\end{align*}$
    Réponse b
    $\quad$
  5. On appelle $X$ la variable aléatoire égale au nombre de FACE.
    On effectue $n$ expériences identiques de Bernoulli de paramètre $x$.
    $X$ suit donc la loi binomiale de paramètre $n$ et $x$.
    Ainsi :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-x)^n\end{align*}$
    Réponse d
    $\quad$

Énoncé

La qualité de rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1     5 points

On considère le cube $ABCDEFGH$ d’arête $1$ représenté ci-dessous.

On note $K$ le milieu du segment $[HG]$.
On se place dans le repère orthonormé $\left(A;\vect{AD},\vect{AB},\vect{AE}\right)$.

  1. Justifier que les points $C$, $F$ et $K$ définissent un plan.
    $\quad$
  2. a. Donner, sans justifier, les longueurs $KG$, $GF$ et $GC$.
    $\quad$
    b. Calculer l’aire du triangle $FGC$.
    $\quad$
    c. Calculer le volume du tétraèdre $FGCK$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par :
    $$V=\dfrac{1}{3}\mathcal{B}\times h$$
    où $\mathcal{B}$ est l’aire d’une base et $h$ la hauteur correspondante.
    $\quad$
  3. a. On note $\vec{n}$ le vecteur de coordonnées $\begin{pmatrix}1\\2\\1\end{pmatrix}$.
    Démontrer que $\vec{n}$ est normal au plan $(CFK)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(CFK)$ est :
    $$x +2y + z-3 = 0$$
    $\quad$
  4. On note $\Delta$ la droite passant par le point $G$ et orthogonale au plan $(CFK)$.
    Démontrer qu’une représentation paramétrique de la droite $\Delta$ est :
    $$\begin{cases}x=1+t\\y=1+2t\\z=1+t\end{cases}\quad (t\in \R)$$
    $\quad$
  5. Soit $L$ le point d’intersection entre la droite $\Delta$ et le plan $(CFK)$.
    a. Déterminer les coordonnées du point $L$.
    $\quad$
    b. En déduire que $LG = \dfrac{\sqrt{6}}{6}$.
    $\quad$
  6. En utilisant la question 2., déterminer la valeur exacte de l’aire du triangle $CFK$.
    $\quad$

$\quad$

Exercice 2     5 points

On considère la fonction $f$ , définie sur $[0 ;+\infty[$ par : $$f(x) = x\e^{-x}$$
On note $\mathcal{C}_f$ sa courbe représentative dans un repère orthonormé du plan.
On admet que $f$ est deux fois dérivable sur $[0 ;+\infty[$.
On note $f’$ sa dérivée et $f\dsec$ sa dérivée seconde.

  1. En remarquant que pour tout x dans $[0 ;+\infty[$, on a $f(x) =\dfrac{x}{\e^x}$ , démontrer que la courbe $\mathcal{C}_f$ possède une asymptote en $+\infty$ dont on donnera une équation.
    $\quad$
  2. Démontrer que pour tout réel $x$ appartenant à $[0 ;+\infty[$ : $$f'(x) = (1-x)\e^{-x}$$
    $\quad$
  3. Dresser le tableau de variations de $f$ sur $[0 ;+\infty[$, sur lequel on fera figurer les valeurs aux bornes ainsi que la valeur exacte de l’extremum.
    $\quad$
  4. Déterminer, sur l’intervalle $[0 ;+\infty[$, le nombre de solutions de l’équation : $$f(x) = \dfrac{367}{1~000}$$
    $\quad$
  5. On admet que pour tout $x$ appartenant à $[0 ;+\infty[$ : $$f\dsec(x) = \e^{-x}(x-2)$$
    Étudier la convexité de la fonction $f$ sur l’intervalle $[0 ;+\infty[$.
    $\quad$
  6. Soit $a$ un réel appartenant à $[0 ;+\infty[$ et $A$ le point de la courbe $\mathcal{C}_f$ d’abscisse $a$.
    On note $T_a$ la tangente à $\mathcal{C}_f$ en $A$.
    On note $H_a$ le point d’intersection de la droite $T_a$ et de l’axe des ordonnées.
    On note $g(a)$ l’ordonnée de $H_a$.
    La situation est représentée sur la figure ci-dessous.
    $\quad$

    $\quad$
    a. Démontrer qu’une équation réduite de la tangente $T_a$ est :
    $$y=\left((1-a)\e^{-a}\right).x+a^2\e^{-a}$$
    $\quad$
    b. En déduire l’expression de $g(a)$.
    $\quad$
    c. Démontrer que $g(a)$ est maximum lorsque $A$ est un point d’inflexion de la courbe $C_f$.
    Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.
    $\quad$

$\quad$

Exercice 3     5 points

On considère la suite $\left(u_n\right)$ telle que $u_0 = 0$ et pour tout entier naturel $n$ : $$u_{n+1} =\dfrac{-u_n-4}{u_n +3}$$
On admet que $u_n$ est défini pour tout entier naturel $n$.

  1. Calculer les valeurs exactes de $u_1$ et $u_2$.
    $\quad$
  2. On considère la fonction terme ci-dessous écrite de manière  incomplète en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def terme(n):}\\
    \quad \text{u = …}\\
    \quad \text{for i in range(n):}\\
    \qquad \text{u = …}\\
    \quad \text{return(u)}\\
    \hline
    \end{array}$$
    On rappelle qu’en langage Python, « $\text{i in range(n)}$ » signifie que $\text{i}$ varie de $\text{0}$ à $\text{n-1}$.
    Recopier et compléter le cadre ci-dessus de sorte que, pour tout entier naturel $n$, l’instruction $\text{terme(n)}$ renvoie la valeur de $u_n$.
    $\quad$
  3. Soit la fonction $f$ définie sur $]-3 ;+\infty[$ par : $$f(x) = \dfrac{-x-4}{x+3}$$
    Ainsi, pour tout entier naturel $n$, on a $u_{n+1} = f\left(u_n\right)$.
    Démontrer que la fonction $f$ est strictement croissante sur $]-3 ;+\infty[$.
    $\quad$
  4. Démontrer par récurrence que pour tout entier naturel $n$ :
    $$−2 < u_{n+1} \pp u_n$$
    $\quad$
  5. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  6. Soit la suite $\left(v_n\right)$ définie pour tout entier naturel $n$ par : $$vn = \dfrac{1}{u_n+2}$$
    a. Donner $v_0$.
    $\quad$
    b. Démontrer que la suite $\left(v_n\right)$ est arithmétique de raison $1$.
    $\quad$
    c. En déduire que pour tout entier naturel $n$ : $$u_n =\dfrac{1}{n+0,5}-2$$
    $\quad$
    d. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 4     5 points

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie.
Aucune justification n’est demandée.
Une réponse fausse, une absence de réponse, ou une réponse multiple, ne rapporte ni n’enlève de point.

L’énoncé ci-dessous est commun aux questions 1. et 2.

Les $200$ adhérents d’un club sont des filles ou des garçons. Ces adhérents pratiquent l’aviron ou le basket selon la répartition figurant dans le tableau ci-dessous.
$$\begin{array}{|c|c|c|c|}
\hline
&\text{Aviron}&\text{Basket}&\text{Total}\\
\hline
\text{Filles}& 25& 80& 105\\
\hline
\text{Garçon}& 50&45&95\\
\hline
\text{Total}& 75& 125& 200\\
\hline
\end{array}$$
On choisit un adhérent au hasard et on considère les évènements suivants :
$F$ : l’adhérent est une fille.  $\qquad A$ : l’adhérent pratique l’aviron.

  1. La probabilité de $F$ sachant $A$ est égale à :
    a. $\dfrac{25}{100_{\phantom{1}}}$
    b. $\dfrac{25}{75_{\phantom{1}}}$
    c. $\dfrac{25}{105_{\phantom{1}}}$
    d. $\dfrac{75}{105_{\phantom{1}}}$
    $\quad$
  2. La probabilité de l’événement $A\cup F$ est égale à :
    a. $\dfrac{9}{10_{\phantom{1}}}$
    b. $\dfrac{1}{8_{\phantom{1}}}$
    c. $\dfrac{31}{40_{\phantom{1}}}$
    d. $\dfrac{5}{36_{\phantom{1}}}$
    $\quad$
    $$\begin{array}{c} \ast\\[-1cm]\ast\ast\end{array}$$

L’énoncé ci-dessous est commun aux questions 3. et 4.

Pour se rendre à son travail, Albert peut utiliser au choix le bus ou le train.

La probabilité que le bus soit en panne est égale à $b$.
La probabilité que le train soit en panne est égale à $t$.
Les pannes de bus et de train surviennent de façon indépendante.

  1. La probabilité $p_1$, que le bus ou le train soient en panne est égale à :
    a. $p_1 = bt$
    b. $p_1 = 1-bt$
    c. $p_1 = b+t$
    d. $p_1 = b + t-bt$
    $\quad$
  2. La probabilité p2 que Albert puisse se rendre à son travail est égale à :
    a. $p_1 = bt$
    b. $p_1 = 1-bt$
    c. $p_1 = b+t$
    d. $p_1 = b + t-bt$
    $\quad$
    $$\begin{array}{c} \ast\\[-1cm]\ast\ast\end{array}$$

 

  1. On considère une pièce de monnaie pour laquelle la probabilité d’obtenir FACE est égale à $x$. On lance la pièce $n$ fois. Les lancers sont indépendants.
    La probabilité $p$ d’obtenir au moins une fois FACE sur les $n$ lancers est égale à :
    a. $p = x^n$
    b. $p = (1- x)^n$
    c. $p = 1-x^n$
    d. $p = 1-(1-x)^n$
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – La Réunion – sujet 2 – 29 mars 2023

La Réunion – 29 mars 2023

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} P(S)=P(S\cap R)+P\left(S\cap \conj{R}\right)&\ssi 0,82=P(R)P_R(S)+P\left(\conj{R}\right)P_{\conj{R}}(S) \\
    &\ssi 0,82=0,2\times 0,9+0,8x \\
    &\ssi 0,64=0,8x \\
    &\ssi x=0,8\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*} P_S(R)&=\dfrac{P(S\cap R)}{P(S)} \\
    &=\dfrac{P(R)P_R(S)}{P(S)} \\
    &=\dfrac{0,2\times 0,9}{0,82} \\
    &=\dfrac{9}{41} \\
    &\approx 0,22\end{align*}$
    La probabilité que le client ait acheté un matelas RESSORTS sachant qu’il a été satisfait de son achat est environ égal à $0,22$.
    $\quad$

Partie B

  1. a. $X$ suit la loi binomiale de paramètres $n=5$ et $p=0,82$.
    $\quad$
    b. La probabilité qu’au plus trois clients soient satisfaits de leur achat est $$P(X\pp 3)\approx 0,222$$
    $\quad$
  2. a. On répète $n$ fois de façon indépendante la même expérience de Bernoulli de paramètre $p=0,82$.
    On appelle $Y$ la variable aléatoire qui donne le nombre de clients satisfaits de leur achat parmi ces $n$ clients.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,82$.
    Ainsi,
    $\begin{align*} p_n&=P(Y=n) \\
    &=0,82^n\end{align*}$
    $\quad$
    b.
    $\begin{align*} p_n<0,01 &\ssi 0,82^n <0,01 \\
    &\ssi n\ln(0,82) < \ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,82)}\qquad \text{(car $\ln(0,82)<0$)}\end{align*} $
    Or $\dfrac{\ln(0,01)}{\ln(0,82)}\approx 23,2$.
    Ainsi $p_n<0,01$ si, et seulement si, $n\pg 24$.
    La probabilité que tous les clients soient satisfaits de leur achat est inférieure à $1\%$ dès qu’il y a au moins $24$ clients.
    $\quad$

Ex 2

Exercice 2

  1. On a
    $\begin{align*} u_1&=\dfrac{6u_0+2}{u_0+5} \\
    &=\dfrac{48+2}{13 }\\
    &=\dfrac{50}{13}\end{align*}$
    $\quad$
  2. a. La fonction $f$ est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas sur cet intervalle.
    Pour tout $x>0$ on a
    $\begin{align*} f'(x)&=\dfrac{6(x+5)-(6x+2)}{(x+5)^2} \\
    &=\dfrac{28}{(x+5)^2}\\
    &>0\end{align*}$
    La fonction $f$ est donc strictement croissante sur l’intervalle $[0;+\infty[$.
    $\quad$
    $f(2)=\dfrac{14}{7}=2$.
    La fonction $f$ étant strictement croissante sur $[0;+\infty[$, pour tout $x>2$ on a $f(x)>f(2)$ soit $f(x)>2$.
    $\quad$
    b. Pour tout $n\in \N$ on a $P(n):~u_n>2$.
    Initialisation : $u_0=8>2$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    Donc $u_n>2$. D’après la question 2.a, $f\left(u_n\right) > 2$ soit $u_{n+1}>2$.
    Par conséquent $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$, $u_n>2$.
    $\quad$
  3. a. Pour tout $n\in \N$ on a $u_{n+1}-u_n=\dfrac{\left(2-u_n\right)\left(u_n+1\right)}{u_n+5}$.
    D’après la question précédente, pour tout $n\in \N$, $u_n>2$.
    Ainsi $2-u_n<0$, $u_n+1>0$ et $u_n+5>0$.
    Donc $u_{n+1}-u_n<0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante et minorée par $2$; elle converge donc .
  4. a. $v_0=\dfrac{8-2}{8+1}=\dfrac{2}{3}$
    $\quad$
    b. Soit $n\in \N$.
    $\begin{align*} v_{n+1}&=\dfrac{u_{n+1}-2}{u_{n+1}+1} \\
    &=\dfrac{\dfrac{6u_n+2}{u_n+5}-2}{\dfrac{6u_n+2}{u_n+5}+1} \\
    &=\dfrac{~\dfrac{6u_n+2-2u_n-10}{u_n+5}~}{\dfrac{6u_n+2+u_n+5}{u_n+5}} \\
    &=\dfrac{4u_n-8}{7u_n+7} \\
    &=\dfrac{4}{7}\times \dfrac{u_n-2}{u_n+1}\\
    &=\dfrac{4}{7}v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $\dfrac{4}{7}$ et de premier terme $v_0=\dfrac{2}{3}$.
    $\quad$
    c. Pour tout $n\in \N$, on a $v_n=\dfrac{2}{3}\left(\dfrac{4}{7}\right)^n$.
    $-1<\dfrac{4}{7}<1$ donc $\lim\limits_{n\to +\infty} v_n=0$.
    $\quad$
    Pour tout $n\in \N$ on a
    $\begin{align*} v_n=\dfrac{u_n-2}{u_n+1}&\ssi v_n\left(u_n+1\right)=u_n-2 \\
    &\ssi u_nv_n+v_n=u_n-2\\
    &\ssi u_nv_n-u_n=-2-v_n\\
    &\ssi u_n\left(v_n-1\right)=-2-v_n \\
    &\ssi u_n=\dfrac{-2-v_n}{v_n-1}\end{align*}$
    Par conséquent $\lim\limits_{n\to +\infty} u_n=\lim\limits_{n\to +\infty}\dfrac{-2-v_n}{v_n-1}=2$.
    $\quad$
  5. On a $u_{13}\approx 2,0014>2,001$ et $u_{14}\approx 2,000~8<2,001$.
    La commande $\texttt{seuil(2.001)}$ renverra donc la valeur $14$.
    Il s’agit du rang à partir duquel tous les termes de la suite prendront des valeurs inférieures ou égales à $2,001$.

Ex 3

Exercice 3

  1. Une représentation paramétrique de la droite $(d)$ est $$\begin{cases} x=1\\y=1+2t\\z=-t\end{cases} \qquad \forall t\in \R$$
    $\quad$
  2. Un vecteur normal au plan $\mathscr{P}$ est $\vec{w}\begin{pmatrix}1\\4\\2\end{pmatrix}$.
    $\vec{u}$ et $\vec{w}$ ne sont pas colinéaires car ils n’ont pas la même composante nulle.
    Ainsi $(d)$ et $\mathscr{P}$ sont sécants.
    $1-4+2+1=4-4=0$ : le point de coordonnées $(1;-1;1)$ appartient au plan $\mathscr{P}$.
    En prenant $t=-1$ dans la représentation paramétrique de $(d)$ on obtient le point de coordonnées $(1;-1;1)$.
    Ainsi la droite $(d)$ et le plan $\mathscr{P}$ sont sécants en un point $B$ de coordonnées $(1;-1;1)$.
    $\quad$
  3. a. $\vect{AC}\begin{pmatrix} 0\\-2\\-1\end{pmatrix}$ et $\vect{AB}\begin{pmatrix} 0\\-2\\1\end{pmatrix}$.
    $\dfrac{-2}{-2}=1$ et $\dfrac{-1}{1}=-1$ donc $\vect{AB}$ et $\vect{AC}$ ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ définissent bien un plan.
    $\quad$
    b. $\vec{n}.\vect{AC}=0+0+0=0$ et $\vec{n}.\vect{AB}=0+0+0$.
    Le vecteur $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    Donc $\vec{n}$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABC)$ est donc de la forme $x+d=0$.
    $A(1;1;0)$ appartient à ce plan. Par conséquent $1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(ABC)$ est $x-1=0$.
    $\quad$
  4. a.
    $\begin{align*} AB&=\sqrt{0^2+(-2)^2+1^2}\\
    &=\sqrt{5}\end{align*}$
    $\begin{align*} AC&=\sqrt{0^2+(-2)^2+(-1)^2}\\
    &=\sqrt{5}\end{align*}$
    Ainsi $AB=AC$ et le triangle $ABC$ est isocèle en $A$.
    $\quad$
    b. $H$ est le milieu de $[BC]$. Il a donc pour coordonnées $\left(\dfrac{1+1}{2};\dfrac{-1-1}{2};\dfrac{1-1}{2}\right)$ soit $(1;-1;0)$.
    Donc $\vect{AH}\begin{pmatrix} 0\\-2\\0\end{pmatrix}$
    Donc :
    $\begin{align*} AH&=\sqrt{0^2+(-2)^1+0} \\
    &=2\end{align*}$
    $\vect{BC}\begin{pmatrix}0\\0\\-2\end{pmatrix}$
    On a donc également $BC=2$.
    Le triangle $ABC$ est isocèle en $A$ donc $[AH]$ est à la fois une médiane, une médiatrice, une hauteur et une bissectrice du triangle.
    L’aire du triangle $ABC$ est :
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times BC}{2} \\
    &=2\text{ u.a.}\end{align*}$
    $\quad$
  5. a. $\vect{BD}\begin{pmatrix} -1\\0\\0\end{pmatrix}$
    Ainsi $\vec{n}=-\vect{BD}$.
    $\vect{BD}$ est donc normal au plan $(ABC)$.
    Par conséquent $(BD)$ est une hauteur de la pyramide $ABCD$.
    $\quad$
    b. $\quad$
    $\begin{align*} BD&=\sqrt{1^2+0^2+0^2}\\
    &=1\end{align*}$
    Par conséquent :
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times BD\\
    &=\dfrac{2}{3} \text{ u.v.}\end{align*}$
    $\quad$

 

Ex 4

Exercice 4

  1. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=2\e^x+2x\e^x \\
    &=2(x+1)\e^x\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(x)$ ne dépend donc que de celui de $x+1$.
    Or $x+1=0\ssi x=-1$ et $x+1>0\ssi x>-1$.
    La fonction $f$ est donc strictement décroissante sur $]-\infty;-1]$ et strictement croissante sur $[-1;+\infty[$.
    De plus $f(-1)=-2\e^{-1} \approx -0,736$.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement décroissante sur $]-\infty;-1]$
    Par croissances comparées $\lim\limits_{x\to -\infty} f(x)=0>-\dfrac{73}{100}$ et $f(-1)<-\dfrac{73}{100}$
    D’après le théorème de la bijection, l’équation $f(x)=-\dfrac{73}{100}$ possède une unique solution sur $]-\infty;-1]$.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement croissante sur $[-1;+\infty[$
    $f(-1)<-\dfrac{73}{100}$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$ (produit de deux fonctions tendant vers $+\infty$).
    D’après le théorème de la bijection, l’équation $f(x)=-\dfrac{73}{100}$ possède une unique solution sur $[-1;+\infty[$.
    $\quad$
    L’équation $f(x)=-\dfrac{73}{100}$ possède donc exactement deux solutions sur $\R$.
    Réponse c
    $\quad$
  2. $\lim\limits_{x\to -\infty} x+1=-\infty$ et $\lim\limits_{x\to -\infty} \e^x=0^+$.
    Par conséquent $\lim\limits_{x\to -\infty} g(x)=-\infty$.
    Réponse a
    $\quad$
  3. La fonction $h$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} h'(x)&=4\e^{2x}+2(4x-16)\e^{2x} \\
    &=(4+8x-32)\e^{2x} \\
    &=(8x-28)\e^{2x} \\
    &=4(2x-7)\e^{2x}\end{align*}$
    La fonction $h’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a :
    $\begin{align*} h\dsec(x)&=4\left(2\e^{2x}+2(2x-7)\e^{2x}\right) \\
    &=8(1+2x-7)\e^{2x} \\
    &=8(2x-6)\e^{2x}\end{align*}$
    $h\dsec(x)>0 \ssi 2x-6>0 \ssi x>3$ et $\dsec(x)=0 \ssi 2x-6=0\ssi x=3$.
    La fonction $h\dsec$ s’annule en changeant de signe en $3$.
    Le point d’abscisse $3$ est donc un point d’inflexion pour la courbe $\mathscr{C}_h$.
    Réponse b
    $\quad$
  4. La fonction $k$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a $k'(x)=\dfrac{3}{x}-1$
    Une équation de $T$ est $y=k'(\e)(x-\e)+k(\e)$.
    Par conséquent $k'(\e)=\dfrac{3-\e}{\e}$ et $k(\e)=3-\e$.
    Une équation de $T$ est donc $y=\dfrac{3-\e}{\e}(x-\e)+3-\e$
    Soit $y=\dfrac{3-\e}{\e}x$
    Réponse b
    $\quad$
  5. $\left(\ln(x)\right)^2+10\ln(x)+21=0 \ssi \begin{cases} X^2+10X+21=0 \\X=\ln(x)\end{cases}$
    Le discriminant de l’équation $X^2+10X+21=0$ est $\Delta=16$.
    Elle possède donc deux solutions $\dfrac{-10-\sqrt{16}}{2}=-7$ et $\dfrac{-10+\sqrt{16}}{2}=-3$.
    $\ln(x)=-7 \ssi x=\e^{-7}$
    $\ln(x)=-3\ssi x=\e^{-3}$.
    Par conséquent $\e^{-7}$ et $\e^{-3}$ sont les solutions de l’équation $\left(\ln(x)\right)^2+10\ln(x)+21=0$.
    Réponse c
    $\quad$

 

Énoncé

La qualité de rédaction, la clarté et la précision des raisonnements seront prises en compte dans l’appréciation de la copie. Les traces de recherche, même incomplètes ou infructueuses, seront valorisées.

Exercice 1     5 points

Un commerçant vend deux types de matelas: matelas RESSORTS et matelas MOUSSE.
On suppose que chaque client achète un seul matelas.

On dispose des informations suivantes :

  • $20\%$ des clients achètent un matelas RESSORTS. Parmi eux, $90\%$ sont satisfaits de leur achat.
  • $82\%$ des clients sont satisfaits de leur achat.

Les deux parties peuvent être traitées de manière indépendante.

Partie A

On choisit au hasard un client et on note les évènements :

  • $R$ : : « le client achète un matelas RESSORTS »,
  • $S$ : « le client est satisfait de son achat ».

On note $x = P_{\conj{R}}(S)$, où $P_{\conj{R}}(S)$ désigne la probabilité de $S$ sachant que $R$ n’est pas réalisé.

  1. Recopier et compléter l’arbre pondéré ci-dessous décrivant la situation.
    $\quad$
    $\quad$
  2. Démontrer que $x = 0,8$.
    $\quad$
  3. On choisit un client satisfait de son achat.
    Quelle est la probabilité qu’il ait acheté un matelas RESSORTS ?
    On arrondira le résultat à $10^{-2}$.

Partie B

  1. On choisit $5$ clients au hasard. On considère la variable aléatoire $X$ qui donne le nombre de clients satisfaits de leur achat parmi ces $5$ clients.
    a. On admet que $X$ suit une loi binomiale. Donner ses paramètres.
    $\quad$
    b. Déterminer la probabilité qu’au plus trois clients soient satisfaits de leur achat.
    On arrondira le résultat à $10^{-3}$.
  2. Soit $n$ un entier naturel non nul.
    On choisit à présent $n$ clients au hasard. Ce choix peut être assimilé à un tirage au sort avec remise.
    a. On note $p_n$ la probabilité que les $n$ clients soient tous satisfaits de leur achat.
    Démontrer que $p_n = 0,82^n$.
    $\quad$
    b. Déterminer les entiers naturels $n$ tels que $p_n < 0,01$.
    Interpréter dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 2     5 points

On considère la suite $\left(u_n\right)$ définie par $u_0 = 8$ et, pour tout entier naturel $n$, $$u_{n +1} = \dfrac{6u_n+2}{u_n +5}$$

  1. Calculer $u_1$.
    $\quad$
  2. Soit $f$ la fonction définie sur l’intervalle $[0;+\infty[$ par : $$f(x) = \dfrac{6x+2 }{x+5}$$
    Ainsi, pour tout entier naturel $n$, on a : $u_{n+1}=f\left(u_n\right)$.
    a. Démontrer que la fonction $f$ est strictement croissante sur l’intervalle $[0;+\infty[$.
    En déduire que pour tout réel $x > 2$, on a $f(x) > 2$.
    $\quad$
    b. Démontrer par récurrence que, pour tout entier naturel $n$, on a $u_n > 2$.
    $\quad$
  3. On admet que, pour tout entier naturel $n$, on a : $$u_{n+1}-u_n = \dfrac{\left(2-u_n\right)\left(u_n+1\right)}{u_n +5}$$
    a. Démontrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  4. On définit la suite $\left(v_n\right)$ pour tout entier naturel par: $$v_n = \dfrac{u_n-2}{u_n+1}$$
    a. Calculer $v_0$.
    $\quad$
    b. Démontrer que $\left(v_n\right)$ est une suite géométrique de raison $\dfrac{4}{7}$.
    $\quad$
    c. Déterminer, en justifiant, la limite de $\left(v_n\right)$.
    En déduire la limite de $\left(u_n\right)$.
    $\quad$
  5. On considère la fonction Python $\text{seuil}$ ci-dessous, où $\text{A}$ est un nombre réel strictement plus grand que $2$.
    $$\begin{array}{|l|}
    \hline
    \text{def seuil (A) :}\\
    \quad \text{n = 0}\\
    \quad \text{u = 8}\\
    \quad \text{while u > A :}\\
    \qquad \text{u = (6*u + 2) / (u + 5)}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    Donner, sans justification, la valeur renvoyée par la commande $\text{seuil (2.001)}$ puis interpréter cette valeur dans le contexte de l’exercice.
    $\quad$

$\quad$

Exercice 3     5 points

On se place dans l’espace rapporté à un repère orthonormé $\Oijk$.
On considère le point $A(1;1;0)$ et le vecteur $\vec{u}\begin{pmatrix}0\\2\\- 1\end{pmatrix}$.
On considère le plan $\mathcal{P}$ d’équation : $x+4y+2z+1 = 0$.

  1. On note $(d)$ la droite passant par A et dirigée par le vecteur $\vec{u}$.
    Déterminer une représentation paramétrique de $(d)$.
    $\quad$
  2. Justifier que la droite $(d)$ et le plan $\mathcal{P}$ sont sécants en un point $B$ dont les coordonnées sont $(1;-1;1)$.
    $\quad$
  3. On considère le point $C(1;-1;-1)$.
    a. Vérifier que les points $A$, $B$ et $C$ définissent bien un plan.
    $\quad$
    b. Montrer que le vecteur  $\vec{n}\begin{pmatrix}1\\0\\0\end{pmatrix}$ est un vecteur normal au plan $(ABC)$.
    $\quad$
    c. Déterminer une équation cartésienne du plan $(ABC)$.
    $\quad$
  4. a. Justifier que le triangle $ABC$ est isocèle en $A$.
    $\quad$
    b. Soit $H$ le milieu du segment $[BC]$.
    Calculer la longueur $AH$ puis l’aire du triangle $ABC$.
    $\quad$
  5. Soit $D$ le point de coordonnées $(0;-1;1)$.
    a. Montrer que la droite $(BD)$ est une hauteur de la pyramide $ABCD$.
    $\quad$
    b. Déduire des questions précédentes le volume de la pyramide $ABCD$.
    $\quad$
    On rappelle que le volume $V$ d’une pyramide est donné par: $$V = \dfrac13 \mathcal{B} \times h$$
    où $\mathcal{B}$ est l’aire d’une base et $h$ la hauteur correspondante.
    $\quad$

$\quad$

Exercice 4     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée. Une réponse fausse, une absence de réponse, ou une réponse multiple, ne rapporte ni n’enlève de point.

  1. On considère la fonction $f$ définie sur $\R$ par $f(x) = 2x\e^x$.
    Le nombre de solutions sur $\R$ de l’équation $f(x) = -\dfrac{73}{100}$ est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. une infinité.
    $\quad$
  2. On considère la fonction $g$ définie sur $\R$ par : $$g(x) = \dfrac{x+ 1}{\e^x}$$
    La limite de la fonction $g$ en $- \infty$ est égale à :
    a. $-\infty$
    b. $+\infty$
    c. $0$
    d. elle n’existe pas.
    $\quad$
  3. On considère la fonction $h$ définie sur $\R$ par: $$h(x) = (4x-16)\e^{2x}$$
    On note $\mathcal{C}_h$ la courbe représentative de $h$ dans un repère orthogonal.
    On peut affirmer que:
    a. $h$ est convexe sur $\R$.
    b. $\mathcal{C}_h$ possède un point d’inflexion en $x = 3$.
    c. $h$ est concave sur $\R$.
    d. $\mathcal{C}_h$ possède un point d’inflexion en $x = 3,5$.
    $\quad$
  4. On considère la fonction $k$ définie sur l’intervalle $]0; +\infty[$ par : $$k(x) = 3 \ln (x)-x$$
    On note $\mathcal{C}$ la courbe représentative de la fonction $k$ dans un repère orthonormé.
    On note $T$ la tangente à la courbe $\mathcal{C}$ au point d’abscisse $x = \e$.
    Une équation de $T$ est:
    a. $y = (3-\e)x$
    b. $y = \left(\dfrac{3-\e}{\e}\right)x$
    c. $y = \left(\dfrac{3}{\e}- 1\right)x + 1$
    d. $y = (\e-1)x + 1$
    $\quad$
  5. On considère l’équation $\left(\ln (x)\right)^2+10\ln(x)+21 = 0$, avec $x \in ]0;+\infty[$.
    Le nombre de solutions de cette équation est égal à :
    a. $0$
    b. $1$
    c. $2$
    d. une infinité.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – La Réunion – sujet 1 – 28 mars 2023

La Réunion – 28 mars 2023

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. On a :
    $\begin{align*} P(A)&=P\left(\left(D_1\cap A\right)\cup\left(\conj{D_1}\cap D_2\cap A\right)\right) \\
    &=P\left(D_1\cap A\right)+P\left(\conj{D_1}\cap D_2\cap A\right) \qquad \text{(incompatibilité)}\\
    &=P\left(D_1\right) P_{D_1}(A)+P\left(\conj{D_1}\right)P_{\conj{D_1}}\left(D_2\right)P_{\conj{D_1}\cap D_2}(A) \\
    &=0,4\times 0,3+0,6\times 0,7\times 0,2 \\
    &=0,204\end{align*}$
    $\quad$
  3. On veut calculer :
    $\begin{align*}P_A\left(D_1\right) &=\dfrac{P\left(A\cap D_1\right)}{P(A)} \\
    &=\dfrac{P\left(D_1\right)P_{D_1}(A)}{P(A)} \\
    &=\dfrac{0,4\times 0,3}{0,204} \\
    &=\dfrac{10}{17} \\
    &\approx 0,588\end{align*}$
    La probabilité que la personne ait décroché au premier appel sachant qu’elle a acheté le produit est environ égale à$0,588$.
    $\quad$

Partie B

  1. a. $X$ suit la loi binomiale de paramètres $n=30$ et $p=0,204$.
    $\quad$
    b. On veut calculer :
    $\begin{align*} P(X=6)&=\dbinom{30}{6}0,204^6\times (1-0,204)^{24} \\
    &\approx 0,179\end{align*}$
    La probabilité qu’exactement $6$ personnes de l’échantillon achètent le produit est environ égale à $0,179$.
    $\quad$
    c. L’espérance de $X$ est :
    $\begin{align*} E(X)&=30\times 0,204 \\
    &=6,12\end{align*}$
    Cela signifie donc, qu’en moyenne, sur un échantillon de $30$ personnes  $6,12$ achètent le produit.
    $\quad$
  2. On effectue $n$ fois de façon indépendante la même expérience de Bernoulli de paramètre $p=0,204$.
    On appelle $Y$ la variable aléatoire qui donne le nombre de personnes de l’échantillon qui achètent le produit.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,204$.
    On veut déterminer le plus petit entier naturel $n$ tel que :
    $\begin{align*} P(Y\pg 1)\pg 0,99 &\ssi 1-P(Y=0)\pg 0,99 \\
    &\ssi P(Y=0) \pp 0,01 \\
    &\ssi (1-0,204)^n \pp 0,01\\
    &\ssi 0,796^n\pp 0,01 \\
    &\ssi n\ln(0,796) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,796)} \qquad \text{(car $\ln(0,796)<0$)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,796)} \approx 20,2$
    Il faut donc l’échantillon contienne au moins $21$ personnes.
    $\quad$

Ex 2

Exercice 2

  1. $\lim\limits_{x\to 0} 3x+1=1$
    Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$
    Par conséquent, $\lim\limits_{x\to 0} f(x)=1$.
    $\quad$
    Pour tout $x>0$ on a $f(x)=x\left(3+\dfrac{1}{x}-2\ln(x)\right)$.
    $\lim\limits_{x\to +\infty} \dfrac{1}{x}=0$ et $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ par conséquent $\lim\limits_{x\to +\infty} 3+\dfrac{1}{x}-2\ln(x)=-\infty$.
    Ainsi $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  2. a. $f$ est derivable sur $\R_+^*$ par hypothèse. Pour tout réel $x>0$ on a :
    $\begin{align*} f'(x)&=3-2\ln(x)-2x\times \dfrac{1}{x} \\
    &=3-2\ln(x)-2 \\
    &=1-2\ln(x)\end{align*}$
    $\quad$
    b. $1-2\ln(x)=0 \ssi \ln(x)=\dfrac{1}{2} \ssi x=\e^{1/2}$
    $1-2\ln(x)>0 \ssi \ln(x)<\dfrac{1}{2} \ssi x<\e^{1/2}$
    On obtient ainsi le tableau de variations suivant :
    $\quad$

    $\begin{align*} m&=f\left(\e^{1/2}\right) \\
    &=3\e^{1/2}+1-2\e^{1/2}\times \dfrac{1}{2} \\
    &=2\e^{1/2}+1\end{align*}$
    $\quad$
  3. a. La fonction $f$ est strictement croissante sur l’intervalle $\left]0;\e^{1/2}\right]$ et $\lim\limits_{x\to 0} f(x)=1$.
    Ainsi, pour tout $x\in \left]0;\e^{1/2}\right]$ on a $f(x)>1$.
    L’équation $f(x)=0$ n’admet donc aucune solution sur cet intervalle.
    $\quad$
    La fonction $f$ est continue et strictement décroissante sur l’intervalle $\left[\e^{1/2};+\infty\right[$.
    $f\left(\e^{1/2}\right)=2\e^{1/2}+1>0$ et $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ admet une unique solution $\alpha$ sur $\left[\e^{1/2};+\infty\right[$.
    $\quad$
    Finalement, l’équation $f(x)=0$ admet une unique solution sur $]0;+\infty[$.
    $\quad$
    b. D’après le tableau de variations de la fonction $f$ et la question précédente :
    $\bullet~f(x)>0$ si $x\in ]0;\alpha[$ ;
    $\bullet~f(\alpha)=0$ ;
    $\bullet~f(x)<0$ si $x\in ]\alpha;+\infty[$.
    $\quad$
  4. $F$ est une primitive de $f$ sur $]0;+\infty[$.
    $f$ est donc la dérivée de $F$ sur cet intervalle.
    Or $f(x)>0$ sur $\left]\e^{1/2};\alpha\right[$.
    La fonction $F$ est donc strictement croissante sur cet intervalle.
    L’affirmation est fausse.
    $\quad$
  5. a. Pour tout réel $x>0$ on a $f\dsec(x)=-\dfrac{2}{x}<0$.
    La fonction $f$ est donc concave sur $]0;+\infty[$.
    La courbe $\mathscr{C}_f$ est donc située sous ses tangentes.
    $\quad$
    b. Une équation de $\mathscr{T}$ est $y=f'(1)(x-1)+f(1)$.
    Or $f'(1)=1$ et $f(1)=4$.
    Une équation de $\mathscr{T}$ est donc $y=x-1+4$ soit $y=x+3$.
    $\quad$
    c. D’après la question 5.a. on a donc en particulier :
    $\begin{align*} f(x)\pp x+3 &\ssi 3x+1-2x\ln(x) \pp x+3 \\
    &\ssi -2x\ln(x) \pp -2x+2 \\
    &\ssi \ln(x)\pg 1-\dfrac{1}{x}\end{align*}$

Continue reading