Bac – Spécialité mathématiques – Polynésie – sujet 2 – mars 2021

Polynésie – mars 2021

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On a
    $\begin{align*} u_1&=0,95\times 10~000+200 \\
    &=9~700\end{align*}$
    $\quad$
    et
    $\begin{align*} u_2&=0,95\times 9~700+200 \\
    &=9~415\end{align*}$
    $\quad$
  2. a. Initialisation : Si $n=0$ alors $u_0=10~000>4~000$.
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : On suppose la propriété vraie au rang $n$.
    $\begin{align*}
    u_{n+1}&=0,95u_n+200 \\
    &>0,95 \times 4~000+200\\
    &>3~800+200\\
    &>4~000\end{align*}$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout $n\in \N$ on a $u_n>4~000$.
    $\quad$
    b. La suite $\left(u_n\right)$ est décroissante et minorée par $4~000$. Elle converge donc.
    $\quad$
  3. a. $v_0=10~000-4~000=6~000$.
    $\quad$
    b. Soit $n\in \N$. $v_n=u_n-4~000 \ssi u_n=v_n+4~000$
    $\begin{align*} v_{n+1}&=u_{n+1}-4~000\\
    &=0,95u_n+200-4~000\\
    &=0,95u_n-3~800 \\
    &=0,95\left(v_n+4~000\right)-3~800\\
    &=0,95v_n+3~800-3~800\\
    &=0,95v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,95$ et de premier terme $v_0=6~000$.
    $\quad$
    c. Pour tout $n\in \N$ on a donc $v_n=6~000\times 0,95^n$.
    Par conséquent :
    $\begin{align*} u_n&=v_n+4~000 \\
    &=6~000\times 0,95^n+4~000\end{align*}$
    $\quad$
    d. $-1<0,95<1$ donc $\lim\limits_{n\to +\infty} 6~000\times 0,95^n=0$
    Par conséquent $\lim\limits_{n\to +\infty} u_n=4~000$.
    $\quad$
  4. La population de cette espèce baisse de $5\%$ chaque année. Il reste donc $95\%$ de la population d’une année sur l’autre.
    $200$ individus sont réintroduit chaque année.
    En 2020, il y avait $10~000$ individus.
    Par conséquent, la population de cette espèce peut être modélisée par la suite $\left(u_n\right)$ étudiée dans les questions précédentes.
    Sur le long terme, il restera $4~000$ individus.
    Or $4~000<\dfrac{10~000}{2}$
    L’affirmation est donc vraie.
    $\quad$

Ex 2

Exercice 2

  1. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. On veut calculer
    $\begin{align*} p(M\cap T)&=p(M)\times p_M(T) \\
    &=0,07\times 0,8\\
    &=0,056\end{align*}$
    La probabilité pour que la personne soit infectée par la maladie et que son test soit positif est $0,056$.
    $\quad$
    b. $M$ et $\conj{M}$ forment un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*}
    p(T)&=p(M\cap T)+p\left(\conj{M}\cap T\right)\\
    &=0,056+0,93\times 0,01 \\
    &=0,0653\end{align*}$
    La probabilité que son test soit positif est de $0,0653$.
    $\quad$
  3. On veut calculer
    $\begin{align*} p_T(M)&=\dfrac{p(T\cap M)}{p(T)} \\
    &=\dfrac{0,056}{0,0653} \\
    &\approx 0,86\end{align*}$
    La probabilité que la personne soit infectée sachant que son test est positif est environ égale à $0,86$.
    $\quad$
  4. a. On effectue $10$ tirages aléatoires, indépendants et identiques.
    À chaque tirage, il n’y a que deux issues  : $T$ et $\conj{T}$.
    La variable aléatoire $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,0653$.
    $\quad$
    b. On a
    $\begin{align*} p(X=2)&=\dbinom{10}{2}0,0653^2 \times (1-0,653)^8 \\
    &\approx 0,11\end{align*}$
    La probabilité pour qu’exactement deux personnes aient un test positif est environ égale à $0,11$.
    $\quad$
  5. On effectue $n$ tirages aléatoires, indépendants et identiques.
    À chaque tirage, il n’y a que deux issues  : $T$ et $\conj{T}$.
    On note $Y$ la variable aléatoire qui comptabilise le nombre d’individus ayant un test positif parmi les $n$ personnes.
    La variable aléatoire $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,0653$.
    On veut
    $\begin{align*} p(Y\pg 1)> 0,99 &\ssi 1-p(Y=0)>0,99 \\
    &\ssi p(Y=0)<0,01 \\
    &\ssi (1-0,0653)^n<0,01 \\
    &\ssi 0,9347^n<0,01 \\
    &\ssi n\ln(0,9347)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,9347)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,9347)} \approx 63,2$.
    Il faut donc tester au minimum $64$ personnes pour que la probabilité qu’au moins une de ces personnes ait un test positif soit supérieure à $99\%$.
    $\quad$

Ex 3

Exercice 3

  1. On a $B(1;0;0)$, $D(0;1;0)$, $E(0;0;1)$, $G(1;1;1)$ et $H(0;1;1)$.
    $\quad$
  2. a. $[EG]$, $[ED]$ et $[GD]$ sont des diagonales de carrés dont les côtés ont la même longueur.
    Par conséquent $EG=ED=GD$.
    Le triangle $EGD$ est donc équilatéral.
    $\quad$
    b. Dans le triangle $EGH$ rectangle en $H$ on applique le théorème de Pythagore.
    $\begin{align*} EG^2&=EH^2+GH^2 \\
    &=1+1\\
    &=2\end{align*}$
    Par conséquent l’aire du triangle $EGD$ est
    $\begin{align*} \mathscr{A}&=\dfrac{\sqrt{3}}{4}EG^2 \\
    &=\dfrac{\sqrt{3}}{4}\times 2\\
    &=\dfrac{\sqrt{3}}{2}\end{align*}$
    $\quad$
  3. On a $\vect{BH}\begin{pmatrix} -1\\1\\1\end{pmatrix}$.
    $\begin{align*} \vect{BM}=\dfrac{1}{3}BH&\ssi \begin{cases} x_M-1=\dfrac{1}{3}\times (-1) \\
    y_M=\dfrac{1}{3}\times 1\\
    z_M=\dfrac{1}{3}\times 1\end{cases} \\
    &\ssi \begin{cases} x_M=\dfrac{2}{3} \\y_M=\dfrac{1}{3}\\z_M=\dfrac{1}{3}\end{cases}\end{align*}$
    Ainsi les coordonnées de $M$ sont bien $\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{1}{3}\right)$.
    $\quad$
  4. a. On a $\vect{EG}\begin{pmatrix}1\\1\\0\end{pmatrix}$ et $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$
    Par conséquent :
    $\begin{align*} \vec{n}.\vect{EG}&=-1+1+0\\
    &=0\end{align*}$
    $\begin{align*} \vec{n}.\vect{ED}&=0+1-1\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(EGD)$.
    Ainsi $\vec{n}$ est normal au plan $(EGD)$.
    $\quad$
    b. Une équation cartésienne du plan $(EGD)$ est de la forme $-x+y+z+d=0$.
    Le point $E$ appartient au plan $(EGD)$ donc
    $0+0+1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(EGD)$ est donc $-x+y+z-1=0$.
    $\quad$
    c. $\vec{n}$ est un vecteur directeur de la droite $\mathcal{D}$.
    Une représentation paramétrique de cette droite est donc :
    $\begin{cases} x=\dfrac{2}{3}-t\\y=\dfrac{1}{3}+t\\z=\dfrac{1}{3}+t\end{cases}\quad, t\in \R$.
    $\quad$
  5. a. Si on prend $t=\dfrac{1}{3}$ dans la représentation paramétrique de la droite $\mathcal{D}$ on obtient les coordonnées $\left(\dfrac{1}{3};\dfrac{2}{3};\dfrac{2}{3}\right)$.
    $-\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{2}{3}-1=0$
    Le point de coordonnées $\left(\dfrac{1}{3};\dfrac{2}{3};\dfrac{2}{3}\right)$ appartient donc au plan $(EGD)$ et à la droite $\mathcal{D}$.
    Il s’agit par conséquent du point $K$.
    $\quad$
    b. On a
    $\begin{align*} MK^2&=\left(-\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^2 \\
    &=\dfrac{1}{3} \end{align*}$
    Le volume de la pyramide $GEDM$ est donc
    $\begin{align*} V&=\dfrac{\mathscr{A}\times MK}{3} \\
    &=\dfrac{\dfrac{\sqrt{3}}{2}\times \dfrac{1}{\sqrt{3}}}{3} \\
    &=\dfrac{1}{6}\end{align*}$
    $\quad$

Ex A

Exercice A

Partie 1

  1. $A(0;2)$ appartient à $\mathcal{C}$ donc $f(0)=2$.
    $f'(0)$ est le coefficient directeur de la droite $(AB)$.
    Donc $f'(0)=\dfrac{0-2}{2-0}=-1$.
    $\quad$
  2. La fonction $f$ semble convexe sur l’intervalle $[0;3]$.
    $\quad$

Partie 2

  1. Les solutions de l’équation $(H)$ sont les fonctions $f$ définies sur $\R$ par $f(x)=k\e^{-x}$ où $k\in \R$.
    $\quad$
  2. Soit $f$ une solution de l’équation $(E)$.
    On a donc $f’=-f+\e^{-x}$ et $g’=-g+\e^{-x}$.
    Ainsi, par différence $(f-g)’=-(f-g)$
    Il existe donc $k\in \R$ tel que, pour tout réel $x$ on ait $(f-g)(x)=k\e^{-x}$ soit $f(x)=g(x)+k\e^{-x}$
    Les solutions de l’équation $(E)$ sont donc les fonctions $f$ définies sur $\R$ par $f(x)=x\e^{-x}+k\e^{-x}$.
    $\quad$
  3. $f(0)=2 \ssi k=2$
    Ainsi $f(x)=(x+2)\e^{-x}$ pour tout réel $x$.
    $\quad$

Partie 3

  1. a. La fonction $f$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f'(x)&=\e^{-x}+(x+2)\times \left(-\e^{-x}\right)\\
    &=(1-x-2)\e^{-x} \\
    &=(-x-1)\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive.
    Le signe de $f'(x)$ ne dépend donc que de celui de $-x-1$.
    Or $-x-1=0 \ssi x=-1$ et $-x-1>0 \ssi -x>1\ssi x<-1$
    On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  2. a. La fonction $f’$ est dérivable sur $\R$ en tant que produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=-\e^{-x}+(-x-1)\left(-\e^{-x}\right) \\
    &=(-1+x+1)\e^{-x} \\
    &=x\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f\dsec(x)$ ne dépend donc que de celui de $x$.
    Ainsi $f\dsec(x)\pg 0 \ssi x\pg 0$.
    La fonction $f$ est donc convexe sur l’intervalle $[0;+\infty[$.
    $\quad$

Ex B

Exercice B

Partie 1 : Étude d’une fonction auxiliaire

  1. a. La fonction $f$ est dérivable sur $[1;4]$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout $x\in [1;4]$ on a
    $\begin{align*} f'(x)&=-30+\dfrac{35}{x} \\
    &=\dfrac{-30x+35}{x} \\
    &=\dfrac{35-30x}{x}\end{align*}$
    $\quad$
    b. $35-30x=0 \ssi 30x=35 \ssi x=\dfrac{7}{6}$
    $35-30x>0 \ssi -30x>-35 \ssi x<\dfrac{7}{6}$
    On obtient le tableau de signes et de variations suivant :
    $\quad$$\quad$
    c. La fonction $f$ est donc strictement croissante sur l’intervalle $\left[1;\dfrac{7}{6}\right]$ et strictement décroissante sur l’intervalle $\left[\dfrac{7}{6};4\right]$.
    $\quad$
  2. Sur l’intervalle $\left[1;\dfrac{7}{6}\right]$ on a $f(x)\pg 20$.
    L’équation $f(x)=0$ ne possède donc pas de solution sur cet intervalle.
    $\quad$
    La fonction $f$ est continue (car dérivable) et strictement décroissante sur l’intervalle $\left[\dfrac{7}{6};4\right]$.
    De plus $f\left(\dfrac{7}{6}\right) \approx 20,4 >0$ et $f(4)\approx -21,5<0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=0$ possède donc une unique solution sur $\left[\dfrac{7}{6};4\right]$.
    $\quad$
    L’équation $f(x)=0$ possède donc une unique solution $\alpha$ sur l’intervalle $[1;4]$.
    D’après la calculatrice $\alpha \approx 2,915$.
    $\quad$
  3. D’après les questions précédentes on a donc le tableau de signes suivant :
    $\quad$

 

Partie 2 : Optimisation

  1. On a $B(2,5) \approx 23,925$
    Lorsque l’entreprise vend $2~500$ litres de jus de fruits son bénéfice est environ égal à $23~925$ euros.
    $\quad$
  2. La fonction $B$ est dérivable sur $[1;4]$ en  tant que somme et produits de fonctions dérivables sur cet intervalle.
    Pour tout réel $x$ on a
    $\begin{align*} B'(x)&=-15\times 2x+15+35\ln(x)+35x\times \dfrac{1}{x} \\
    &=-30x+15+35\ln(x)+35 \\
    &=-30x+50+35\ln(x)\\
    &=f(x)\end{align*}$
    $\quad$
  3. a. D’après la question 1.3. $B$ est donc strictement croissante sur l’intervalle $[1;\alpha]$ et strictement décroissante sur l’intervalle $[\alpha;4]$.
    $\quad$
    b. La fonction $B$ atteint donc son maximum en $\alpha$.
    L’entreprise doit donc vendre environ $2~915$ litres de jus de fruits pour réaliser un bénéfice maximal.
    $\quad$

 

Énoncé

Exercice 1 (5 points)

On considère la suite $\left(u_{n}\right)$ définie par $u_{0}=10~000$ et pour tout entier naturel $n$ :
$$u_{n+1}=0,95 u_{n}+200$$

  1. Calculer $u_{1}$ et vérifier que $u_{2}=9415$.
    $\quad$
  2. a. Démontrer, à l’aide d’un raisonnement par récurrence, que pour tout entier naturel $n$ :
    $$u_{n}>4000$$
    $\quad$
    b. On admet que la suite $\left(u_{n}\right)$ est décroissante. Justifier qu’elle converge.
    $\quad$
  3. Pour tout entier naturel $n$, on considère la suite $\left(v_{n}\right)$ définie par : $v_{n}=u_{n}-4~000$.
    a. Calculer $v_{0}$.
    $\quad$
    b. Démontrer que la suite $\left(v_{n}\right)$ est géométrique de raison égale à $0,95$.
    $\quad$
    c. En déduire que pour tout entier naturel $n$ :
    $$u_{n}=4~000+6~000 \times 0,95^{n} $$
    $\quad$
    d. Quelle est la limite de la suite $\left(u_{n}\right)$ ? Justifier la réponse.
    $\quad$
  4. En 2020, une espèce animale comptait 10000 individus. L’évolution observée les années précédentes conduit à estimer qu’à partir de l’année 2021, cette population baissera de $5 \%$ chaque début d’année.
    Pour ralentir cette baisse, il a été décidé de réintroduire $200$ individus à la fin de chaque année, à partir de 2021.
    Une responsable d’une association soutenant cette stratégie affirme que : « l’espèce ne devrait pas s’éteindre, mais malheureusement, nous n’empêcherons pas une disparition de plus de la moitié de la population ». Que pensez-vous de cette affirmation ? Justifier la réponse.
    $\quad$

$\quad$

Exercice 2 (5 points)

Un test est mis au point pour détecter une maladie dans un pays.
Selon les autorités sanitaires de ce pays, $7 \%$ des habitants sont infectés par cette maladie. Parmi les individus infectés, $20 \%$ sont déclarés négatifs.
Parmi les individus sains, $1 \%$ sont déclarés positifs.
Une personne est choisie au hasard dans la population.
On note :

  • $M$ l’évènement: « la personne est infectée par la maladie » ;
  • $T$ l’évènement : « le test est positif ».
  1. Construire un arbre pondéré modélisant la situation proposée.
    $\quad$
  2. a. Quelle est la probabilité pour que la personne soit infectée par la maladie et que son test soit positif?
    $\quad$
    b. Montrer que la probabilité que son test soit positif est de $0,0653$.
    $\quad$
  3. On sait que le test de la personne choisie est positif.
    Quelle est la probabilité qu’elle soit infectée ?
    On donnera le résultat sous forme approchée à $10^{-2}$ près.
    $\quad$
  4. On choisit dix personnes au hasard dans la population. La taille de la population de ce pays permet d’assimiler ce prélèvement à un tirage avec remise.
    On note $X$ la variable aléatoire qui comptabilise le nombre d’individus ayant un test positif parmi les dix personnes.
    a. Quelle est la loi de probabilité suivie par $X$ ? Préciser ses paramètres.
    $\quad$
    b. Déterminer la probabilité pour qu’exactement deux personnes aient un test positif.
    On donnera le résultat sous forme approchée à $10^{-2}$ près.
    $\quad$
  5. Déterminer le nombre minimum de personnes à tester dans ce pays pour que la probabilité qu’au moins une de ces personnes ait un test positif, soit supérieure à $99 \%$.
    $\quad$

$\quad$

Exercice 3 (5 points)

Dans l’espace, on considère le cube $ABCDEFGH$ d’arête de longueur égale à $1$
On munit l’espace du repère orthonormé $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$. On considère le point $M$ tel que $\vect{BM}=\dfrac{1}{3} \vect{BH}$.

 

  1. Par lecture graphique, donner les coordonnées des points $B$, $D$, $E$, $G$ et $H$.
    $\quad$
  2. a. Quelle est la nature du triangle $EGD$ ? Justifier la réponse.
    $\quad$
    b. On admet que l’aire d’un triangle équilatéral de côté $c$ est égale à $\dfrac{\sqrt{3}}{4} c^{2}$.
    Montrer que l’aire du triangle $EGD$ est égale à $\dfrac{\sqrt{3}}{2}$.
    $\quad$
  3. Démontrer que les coordonnées de M sont $\left(\dfrac{2}{3} ; \dfrac{1}{3} ; \dfrac{1}{3}\right)$.
    $\quad$
  4. a. Justifier que le vecteur $\vec{n}(-1 ; 1 ; 1)$ est normal au plan $(EGD)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(EGD)$ est : $-x+y+z-1=0$.
    $\quad$
    c. Soit $\mathcal{D}$ la droite orthogonale au plan $(EGD)$ et passant par le point $M$.
    Montrer qu’une représentation paramétrique de cette droite est :
    $$\mathcal{D}:\begin{cases} x=\dfrac{2}{3}-t\\y=\dfrac{1}{3}+t\\z=\dfrac{1}{3}+t\end{cases}, \quad t\in \R$$
    $\quad$
  5. Le cube $ABCDEFGH$ est représenté ci-dessus selon une vue qui permet de mieux percevoir la pyramide $GEDM$, en gris sur la figure :

    Le but de cette question est de calculer le volume de la pyramide $GEDM$.
    a. Soit K, le pied de la hauteur de la pyramide $GEDM$ issue du point $M$.
    Démontrer que les coordonnées du point $K$ sont $\left(\dfrac{1}{3} ; \dfrac{2}{3} ; \dfrac{2}{3}\right)$.
    $\quad$
    b. En déduire le volume de la pyramide $GEDM$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule $V=\dfrac{b \times h}{3}$ $b$ désigne l’aire d’une base et $h$ la hauteur associée.
    $\quad$

$\quad$

Exercice au choix du candidat (5 points)

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués dans un encadré.

Exercice A

Principaux domaines abordés :

  • Fonction exponentielle,
  • convexité,
  • dérivation,
  • équations différentielles.

Cet exercice est composé de trois parties indépendantes.
On a représenté ci-dessous, dans un repère orthonormé, une portion de la courbe représentative $\mathcal{C}$ d’une fonction $f$ définie sur $\R$ :

On considère les points $A(0 ; 2)$ et $B(2 ; 0)$.

Partie 1

Sachant que la courbe $\mathcal{C}$ passe par $A$ et que la droite $(AB)$ est la tangente à la courbe $\mathcal{C}$ au point $A$, donner par lecture graphique :

  1. La valeur de $f(0)$ et celle de $f'(0)$.
    $\quad$
  2. Un intervalle sur lequel la fonction $f$ semble convexe.
    $\quad$

Partie 2

On note $(E)$ l’équation différentielle $y’=-y+\e^{-x}$.
On admet que $g: x \mapsto 𝑥x\e^{-x}$ est une solution particulière de $(E)$.

  1. Donner toutes les solutions sur $\R$ de l’équation différentielle $(H) ∶ y’ = -y$.
    $\quad$
  2. En déduire toutes les solutions sur $\R$ de l’équation différentielle $(E)$.
    $\quad$
  3. Sachant que la fonction $f$ est la solution particulière de $(E)$ qui vérifie $f(0) = 2$, déterminer une expression de $f(x)$ en fonction de $x$.
    $\quad$

Partie 3

On admet que pour tout nombre réel $x$, $f(x) = (x + 2) \e^{-𝑥}$.

  1. On rappelle que $f’$ désigne la fonction dérivée de la fonction $f$.
    a. Montrer que pour tout $x\in \R$, $f'(x)=(-x-1)\e^{-x}$.
    $\quad$
    b. Étudier le signe de $f'(x)$ pour tout $x\in \R$ et dresser le tableau des variations de $f$ sur $\R$.
    On ne précisera ni la limite de $f$ en $-\infty$ ni la limite de $f$ en $+\infty$.
    On calculera la valeur exacte de l’extremum de $f$ sur $\R$.
    $\quad$
  2. On rappelle que $d\dsec$ désigne la fonction dérivée seconde de la fonction $f$.
    a. Calculer pour tout $x\in \R$, $f\dsec(x)$.
    $\quad$
    b. Peut-on affirmer que $f$ est convexe sur l’intervalle $[0 ; +\infty[$ ?
    $\quad$

$\quad$

Exercice B

Principaux domaines abordés :

  • Fonction logarithme népérien,
  • dérivation.

Cet exercice est composé de deux parties.
Certains résultats de la première partie seront utilisés dans la deuxième

Partie 1 : Étude d’une fonction auxiliaire

Soit la fonction $f$ définie sur l’intervalle $[1 ; 4]$ par $: f(x)=-30 x+50+35 \ln (x)$.

  1. On rappelle que $f’$ désigne la fonction dérivée de la fonction $f$.
    a. Pour tout nombre réel $x$ de l’intervalle $[1 ; 4]$, montrer que :
    $$f'(x)=\frac{35-30 x}{x}$$
    $\quad$
    b. Dresser le tableau de signe de $f'(x)$ sur l’intervalle $[1 ; 4]$.
    $\quad$
    c. En déduire les variations de $f$ sur ce même intervalle.
    $\quad$
  2. Justifier que l’équation $f(x)=0$ admet une unique solution, notée $\alpha$, sur l’intervalle $[1 ; 4]$ puis donner une valeur approchée de $\alpha$ à $10^{-3}$ près.
    $\quad$
  3. Dresser le tableau de signe de $f(x)$ pour $x \in[1 ; 4]$.
    $\quad$

$\quad$

Partie 2: Optimisation

Une entreprise vend du jus de fruits. Pour $x$ milliers de litres vendus, avec $x$ nombre réel de l’intervalle $[1;4]$, l’analyse des ventes conduit à modéliser le bénéfice $B(x)$ par l’expression donnée en milliers d’euros par :
$$B(x)=-15 x^{2}+15 x+35 x \ln (x) $$

  1. D’après le modèle, calculer le bénéfice réalisé par l’entreprise lorsqu’elle vend $2~500$ litres de jus de fruits.
    On donnera une valeur approchée à l’euro près de ce bénéfice.
    $\quad$
  2. Pour tout 𝑥 de l’intervalle $[1 ; 4]$, montrer que $B'(x)=f(x)$ où $B’$ désigne la fonction dérivée de $B$.
    $\quad$
  3. a. À l’aide des résultats de la partie 1, donner les variations de la fonction $B$ sur l’intervalle $[1 ; 4]$.
    $\quad$
    b. En déduire la quantité de jus de fruits, au litre près, que l’entreprise doit vendre afin de réaliser un bénéfice maximal.
    $\quad$

$\quad$

 

 

 

 

 

Bac – Spécialité mathématiques – sujet 2 – Métropole – Mars 2021

Métropole – Mars 2021

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie I

  1. On a
    $\begin{align*} P(X=0)&=\dbinom{9}{0}0,03^0 \times 0,97^9 \\
    &=0,97^9 \\
    &\approx 0,76\end{align*}$
    Réponse d
    $\quad$
  2. La probabilité qu’exactement deux des neuf adresses soient illisibles pour la machine est :
    $P(X=2)=\dbinom{9}{2}0,03^2 \times 0,97^7$
    Réponse d
    $\quad$
  3. La probabilité qu’au moins une des neuf adresses soit illisible pour la machine est :
    $P(X\pg 1)=1-P(X=0)$
    Réponse d
    $\quad$

Partie II

  1. Si $V_1$ est réalisé alors, parmi les $7$ boules restantes il y a $4$ boules vertes.
    Ainsi $P_{V_1}\left(V_2\right)=\dfrac{4}{7}$
    Réponse b
    $\quad$
  2. $\left(V_1,B_1\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a :
    $\begin{align*}
    P\left(V_2\right)&=P\left(V_1\right)P_{V_1}\left(V_2\right)+P\left(B_1\right)P_{B_1}\left(V_2\right) \\
    &=\dfrac{5}{8}\times \dfrac{4}{7}+\dfrac{3}{8}\times \dfrac{5}{7}\\
    &=\dfrac{5}{8}\end{align*}$
    Réponse a
    $\quad$

Ex 2

Exercice 2

  1. a. $u_1=u_0+v_0=2$
    $v_1=2u_0+v_0=3$
    $\quad$
    b. Pour tout $n\in \N$ on a
    $\begin{align*} v_{n+1}-v_n&=2u_n+v_n-v_n\\
    &=2u_n\\
    &>0\end{align*}$
    La suite $\left(v_n\right)$ est donc strictement croissante.
    Ainsi, pour tout $n\in \N$ on a $v_n\pg v_0$
    Soit $v_n \pg 1$
    $\quad$
    c. Initialisation : Si $n=0$ alors $u_0=1$ et $n+1=1$
    Donc $u_0\pg 0+1$
    La propriété est vraie au rang $0$.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose la propriété vraie au rang $n$.
    On a donc, d’après l’hypothèse de récurrence, $u_n\pg n+1$ et, d’après la question précédente, $v_n\pg 1$
    $\begin{align*} u_{n+1}&=u_n+v_n \\
    &\pg n+1+1\\
    &\pg n+2\end{align*}$
    La propriété est vraie au rang $n+1$.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Pour tout $n\in \N$ on a $u_n\pg n+1$.
    $\quad$
    d. Pour tout $n\in \N$ on a $u_n\pg n+1$ et $\lim\limits_{n\to +\infty} n+1=+\infty$
    D’après le théorème de comparaison, $\lim\limits_{n\to +\infty} u_n=+\infty$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on a $-1\pp (-1)^{n+1} \pp 1$
    Donc $-\dfrac{1}{u_n^2}\pp \dfrac{(-1)^{n+1}}{u_n^2}\pp \dfrac{1}{u_n^2}$
    $\quad$
    b. Or $\lim\limits_{n\to +\infty} u_n=+\infty$ donc $\lim\limits_{n\to +\infty} u_n^2=+\infty$.
    Ainsi $\lim\limits_{n\to +\infty} \dfrac{1}{u_n^2}=0$
    Par conséquent, d’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} \dfrac{(-1)^{n+1}}{u_n^2}=0$.
    $\quad$
    c. Pour tout $n\in \N$ on a $r_n=2+\dfrac{(-1)^{n+1}}{u_n^2}$.
    $\lim\limits_{n\to +\infty} \dfrac{(-1)^{n+1}}{u_n^2}=0$ donc $\lim\limits_{n\to +\infty} r_n^2=2$.
    $\quad$
    $\lim\limits_{x\to 2} \sqrt{x}=\sqrt{2}$ donc $\lim\limits_{n\to +\infty} r_n=\sqrt{2}$.
    $\quad$
    d. Pour tout $n\in \N$ on a
    $\begin{align*} r_{n+1} &=\dfrac{v_{n+1}}{u_{n+1}} \\
    &=\dfrac{2u_n+v_n}{u_n+v_n}\\
    &=\dfrac{u_n\left(2+\dfrac{v_n}{u_n}\right)}{u_n\left(1+\dfrac{v_n}{u_n}\right)}\\
    &=\dfrac{2+r_n}{1+r_n}\end{align*}$
    $\quad$
    e. Cela signifie que le plus petit entier naturel $n$ vérifiant $\abs{r_n-\sqrt{2}}\pp 10^{-4}$ est $5$.
    Ainsi $r_5$ est une approximation de $\sqrt{2}$ à au plus $10^{-4}$ près.
    $\quad$

Ex 3

Exercice 3

  1. a. On a $\vect{AB}\begin{pmatrix}-2\\3\\0\end{pmatrix}$ et $\begin{pmatrix}-2\\0\\1\end{pmatrix}$
    Ces deux vecteurs ne sont clairement pas colinéaires.
    Par conséquent :
    $\vect{AB}.\vec{n}=-6+6+0=0$
    $\vect{AC}.\vec{n}=-6+0+6=0$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    C’est, par conséquent, un vecteur normal à ce plan.
    $\quad$
    b. Une équation cartésienne du plan $(ABC)$ est donc de la forme $3x+2y+6z+d=0$
    Le point $A(2;0;0)$appartient à ce plan.
    Ainsi $6+d=0 \ssi d=-6$
    Une équation cartésienne du plan $(ABC)$ est donc $3x+2y+6z-6=0$.
    $\quad$
  2. a. $\vec{n}$ est un vecteur directeur de $d$.
    Une représentation paramétrique de cette droite est donc $\begin{cases} x=3t\\y=2t\\z=6t\end{cases} \quad t\in \R$.
    $\quad$
    b. La droite $d$ est orthogonal au plan $(ABC)$.
    Il existe donc un point d’intersection de la droite et du plan.
    Vérifions que le point $H$ de coordonnées $\left(\dfrac{18}{49};\dfrac{12}{49};\dfrac{36}{49}\right)$ appartient à la droite $d$ et au plan $(ABC)$.
    Le point de paramètre $t=\dfrac{6}{49}$ de la droite $d$ a pour coordonnées $\left(\dfrac{18}{49};\dfrac{12}{49};\dfrac{36}{49}\right)$. Ainsi $H\in d$.
    $\begin{align*}&3\times \dfrac{18}{49}+2\times \dfrac{12}{49}+6\times \dfrac{36}{49}-6\\
    &=\dfrac{54}{49}+\dfrac{24}{49}+\dfrac{216}{49}-\dfrac{294}{49} \\
    &=\dfrac{294}{49}-\dfrac{294}{49}\\
    &=0\end{align*}$
    Donc $H\in (ABC)$.
    La droite $d$ coupe donc le plan $(ABC)$ au point $H$ de coordonnées $\left(\dfrac{18}{49};\dfrac{12}{49};\dfrac{36}{49}\right)$.
    $\quad$
    c. On a
    $\begin{align*} OH&=\sqrt{\left(\dfrac{18}{49}\right)^2+\left(\dfrac{12}{49}\right)^2+\left(\dfrac{36}{49}\right)^2} \\
    &=\sqrt{\dfrac{324}{49^2}+\dfrac{244}{49^2}+\dfrac{1~296}{49^2}}\\
    &=\sqrt{\dfrac{1~764}{49^2}}\\
    &=\dfrac{42}{49} \\
    &=\dfrac{6}{7}\end{align*}$
    $\quad$
  3. D’une part :
    $\begin{align*} V&=\dfrac{\text{aire}_{OBC}\times OA}{3} \\
    &=\dfrac{\dfrac{1\times 3}{2}\times 2}{3} \\
    &=1\end{align*}$
    D’autre part :$V=\dfrac{\text{aire}_{ABC}\times OH}{3}$
    Par conséquent
    $\begin{align*} \text{aire}_{ABC}\times OH=3&\ssi \text{aire}_{ABC}=\dfrac{3}{OH} \\
    &\ssi \text{aire}_{ABC}=3\times \dfrac{7}{6} \\
    &\ssi \text{aire}_{ABC} =\dfrac{7}{2}\end{align*}$

Ex A

Exercice A

  1. a. On résout l’équation :
    $\begin{align*} f(x)=g(x)&\ssi x^2\e^{-x}=\e^{-x} \\
    &\ssi x^2\e^{-x}-\e^{-x}=0\\
    &\ssi \left(x^2-1\right)\e^{-x}=0\\
    &\ssi (x-1)(x+1)\e^{-x}=0\\
    &=\ssi x=1 \text{ ou } x=-1 \text{ ou } \e^{-x}=0\end{align*}$
    La fonction exponentielle est strictement positive sur $\R$.
    Les solutions de l’équation $f(x)=g(x)$ sont donc $-1$ et $1$.
    De plus $f(1)=\e^{-1}$ et $f(-1)=\e$
    Les points d’intersection de $C_f$ et $C_g$ on pour coordonnées $\left(1;\e^{-1}\right)$ et $(-1;\e)$.
    $\quad$
    b. On a :
    $\begin{align*} f(x)\pp g(x) &\ssi x^2\e^{-x} \pp \e^{-x} \\
    &\ssi \left(x^2-1\right)\e^{-x} \pp 0\\
    &\ssi (x-1)(x+1)\e^{-x} \pp  0 \\
    &\ssi (x-1)(x+1) \pp 0 \text{   car } \e^{-x}>0\\
    &\ssi x\in [-1;1]\end{align*}$
    Ainsi $C_f$ est au-dessous de $C_g$ sur $[-1;1]$ et au-dessus sur $]-\infty;-1]$ et $[1;+\infty[$.
    $\quad$
  2. a. Pour tout réel $x\in[-1;1]$ on a :
    $\begin{align*} d'(x)&=-\e^{-x}-2x\e^{-x}+x^2\e^{-x} \\
    &=\left(x^2-2x-1\right)\e^{-x}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $d'(x)$ ne dépend donc que de celui de $x^2-2x-1$.
    Le discriminant de ce polynôme du second degré est $\Delta=8$.
    Ses racines sont donc :
    $x_1=\dfrac{2-\sqrt{8}}{2}=1-\sqrt{2}$ et $x_2=\dfrac{2+\sqrt{8}}{2}=1+\sqrt{2}$.
    Le coefficient principal de ce polynôme est $a=1>0$.
    Par conséquent $x^2-2x-1<0$ sur $\left]1-\sqrt{2};1+\sqrt{2}\right[$ et $x^2-2x-1>0$ sur $\left]-\infty;1-\sqrt{2}\right[\cup\left]1+\sqrt{2};+\infty\right[$.
    La fonction $d$ est donc strictement croissante sur l’intervalle $\left[-1;1-\sqrt{2}\right]$ et décroissante sur l’intervalle $\left[1-\sqrt{2};1\right]$.
    $\quad$
    c. La fonction $d$ atteint donc sur l’intervalle $[-1;1]$ un maximum en $1-\sqrt{2}$.
    Ainsi $x_0=1-\sqrt{2}$.
    $d\left(1-\sqrt{2}\right)\approx 1,3$.
    Ainsi $M_0N_0  \approx 1,3$.
    $\quad$
  3. Pour tout réel $x$ on a $h'(x)=-\e^{-x}-1<0$.
    La fonction $h$ est donc continue (car dérivable) et strictement décroissante sur $\R$.
    $\lim\limits_{x\to +\infty} \e^{-x}=0$ donc $\lim\limits_{x\to +\infty} h(x)=-\infty$
    Pour tout réel $x$ on a $h(x)=\e^{-x}\left(1-x\e^x-2\e^x\right)$
    Or $\lim\limits_{x\to -\infty} \e^x=0$, $\lim\limits_{x\to -infty} \e^{-x}=+\infty$ et, par croissances comparées $\lim\limits_{x\to -\infty} x\e^x=-\infty$
    Ainsi $\lim\limits_{x\to -\infty} h(x)=-\infty$.
    Or $O\in ]-\infty;+\infty[$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $h(x)=0$ admet une unique solution sur $\R$.
    $\quad$
    $g(x)=x+2 \ssi \e^{-x}=x+2\ssi \e^{-x}-x-2=0\ssi h(x)=0$
    La droite $\Delta$ et la courbe $C_g$ ont donc un unique point d’intersection.
    $\quad$

Ex B

Exercice B

Partie I : Étude d’une fonction auxiliaire

  1. $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} 2x-2=+\infty$ donc $\lim\limits_{x\to +\infty} g(x)=+\infty$
    $\lim\limits_{x\to 0^+} \ln(x)=-\infty$ et $\lim\limits_{x\to 0} 2x-2=2$ donc $\lim\limits_{x\to 0^+} g(x)=-\infty$
    $\quad$
  2. La fonction $g$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a $g'(x)=\dfrac{1}{x}+2$
    Par conséquent $g'(x)>0$ sur $]0;+\infty[$ en tant que somme de termes strictement positifs.
    La fonction $g$ est par conséquent strictement croissante sur $]0;+\infty[$.
    $\quad$
  3. La fonction $g$ est continue (car dérivable) et strictement croissante sur $]0;+\infty[$.
    $\lim\limits_{x\to 0^+} g(x)=-\infty$ et $\lim\limits_{x\to +\infty} g(x)=+\infty$.
    Or $0\in ]-\infty;+\infty[$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ possède une unique solution sur $]0;+\infty[$.
    $\quad$
  4. $g(1)=0+2-2=0$
    Ainsi $\alpha=1$
    La fonction $g$ est strictement croissante sur $]0;+\infty [$ et $g(1)=0$.
    Par conséquent :
    $\bullet~ g(x)<0$ sur $]0;1[$
    $\bullet~ g(1)=0$
    $\bullet~ g(x)>0$ sur $]1;+\infty[$
    $\quad$

Partie II : Étude d’une fonction $\boldsymbol{f}

  1. a. Pour tout réel $x>0$ on a
    $\begin{align*} f'(x)&=\dfrac{1}{x^2}\left(\ln(x)-1\right)+\left(2-\dfrac{1}{x}\right)\times \dfrac{1}{x} \\
    &=\dfrac{\ln(x)-1+\left(2-\dfrac{1}{x}\right)x}{x^2} \\
    &=\dfrac{\ln(x)-1+2x-1}{x^2} \\
    &=\dfrac{g(x)}{x^2}\end{align*}$
    $\quad$
    b. Le signe de $f'(x)$ ne dépend donc que de celui de $g(x)$.
    D’après la question I.4. on a :
    $\quad$
  2. $f(x)=0 \ssi 2-\dfrac{1}{x}=0$ ou $\ln(x)-1=0$
    $\phantom{f(x)=0}\ssi x=\dfrac{1}{2}$ ou $x=\e$
    Les solutions de l’équation $f(x)=0$ sont $\dfrac{1}{2}$ et $\e$.
    $\quad$
    La fonction $f$ est strictement décroissante sur $]0;1]$, strictement croissante sur $[1;+\infty[$ et s’annule uniquement en $\dfrac{1}{2}$ et $\e$.
    De plus $\dfrac{1}{2}<1<\e$
    On obtient alors le tableau de signes suivant :
    $\quad$

Partie III : Étude d’une fonction $\boldsymbol{F}$ admettant pour dérivée la fonction$\boldsymbol{F}$

  1. Pour tout réel $x>0$ on a $F'(x)=f(x)$
    D’après la question précédente :
    $\bullet~ F$ est strictement croissante sur $\left]0;\dfrac{1}{2}\right]$ et sur $[\e;+\infty[$.
    $\bullet~ F$ est strictement décroissante sur $\left[\dfrac{1}{2};\e\right]$.
    $\quad$
  2. $F'(x)=0 \ssi x=\dfrac{1}{2}$ ou $x=\e$.
    Par conséquent les tangentes à $C_F$ aux points d’abscisse $\dfrac{1}{2}$ et $\e$ sont parallèles à l’axe des abscisses.
    $\quad$

Énoncé

Exercice 1     5 points

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

PARTIE I

Dans un centre de traitement du courrier, une machine est équipée d’un lecteur optique automatique de reconnaissance de l’adresse postale. Ce système de lecture permet de reconnaître convenablement $97 \%$ des adresses ; le reste du courrier, que l’on qualifiera d’illisible pour la machine, est orienté vers un employé du centre chargé de lire les adresses.
Cette machine vient d’effectuer la lecture de neuf adresses. On note $X$ la variable aléatoire qui donne le nombre d’adresses illisibles parmi ces neuf adresses.
On admet que $X$ suit la loi binomiale de paramètres $n=9$ et $p=0,03$.

  1. La probabilité qu’aucune des neuf adresses soit illisible est égale, au centième près, à :
    a. $0$
    b. $1$
    c. $0,24$
    d. $0,76$
    $\quad$
  2. La probabilité qu’exactement deux des neuf adresses soient illisibles pour la machine est :
    a. $\dbinom{9}{2} \times 0,97^2 \times 0,03^7\rule{0pt}{25pt}$
    b. $\dbinom{7}{2} \times 0,97^2 \times 0,03^7\rule{0pt}{25pt}$
    c. $\dbinom{9}{2} \times 0,97^7 \times 0,03^2\rule{0pt}{25pt}$
    d. $\dbinom{7}{2} \times 0,97^7 \times 0,03^2\rule{0pt}{25pt}$
    $\quad$
  3. La probabilité qu’au moins une des neuf adresses soit illisible pour la machine est :
    a. $P(X<1)$
    b. $P(X\pp 1)$
    c. $P(X\pg 2)$
    d. $1-P(X=0)$
    $\quad$

PARTIE II

Une urne contient $5$ boules vertes et $3$ boules blanches, indiscernables au toucher.
On tire au hasard successivement et sans remise deux boules de l’urne.
On considère les évènements suivants :

  • $V_1$ : « la première boule tirée est verte » ;
  • $B_1$ : « la première boule tirée est blanche » ;
  • $V_2$ : « la seconde boule tirée est verte » ;
  • $B_2$ : « la seconde boule tirée est blanche ».
  1. La probabilité de $V_2$ sachant que $V_1$ est réalisé, notée $P_{V_1}\left(V_2\right)$, est égale à :
    a. $\dfrac{5}{8}\rule{0pt}{25pt}$
    b. $\dfrac{4}{7}\rule{0pt}{25pt}$
    c. $\dfrac{5}{14}\rule{0pt}{25pt}$
    d. $\dfrac{20}{56}\rule{0pt}{25pt}$
    $\quad$
  2. La probabilité de l’événement $V_2$ est égale à :
    a. $\dfrac{5}{8}\rule{0pt}{25pt}$
    b. $\dfrac{5}{7}\rule{0pt}{25pt}$
    c. $\dfrac{3}{28}\rule{0pt}{25pt}$
    d. $\dfrac{9}{7}\rule{0pt}{25pt}$
    $\quad$

$\quad$

Exercice 2     6 points

On considère les suites $\left(u_n\right)$ et $\left(v_n\right)$ définies pour tout entier naturel $n$ par : $$\begin{cases} u_0=v_0=1\\u_{n+1}=u_n+v_n\\v_{n+1}=2u_n+v_n\end{cases}$$
Dans toute la suite de l’exercice, on admet que les suites $\left(u_n\right)$ et $\left(v_n\right)$ sont strictement positives.

  1. a. Calculer $u_1$ et $v_1$.
    $\quad$
    b. Démontrer que la suite $\left(v_n\right)$ est strictement croissante puis en déduire que, pour tout entier naturel $n$, $v_n\pg 1$.
    $\quad$
  2. On pose, pour tout entier naturel $n$ : $$r_n=\dfrac{v_n}{u_n}$$
    On admet que : $$r_n^2=2+\dfrac{(-1)^{n+1}}{u_n^2}$$
    a. Démontrer que pour tout entier naturel $n$ : $$-\dfrac{1}{u_n^2} \pp \dfrac{(-1)^{n+1}}{u_n^2}\pp \dfrac{1}{u_n^2}$$
    $\quad$
    b. En déduire : $$\lim\limits_{n\to +\infty} \dfrac{(-1)^{n+1}}{u_n^2}$$
    $\quad$
    c. Déterminer la limite de la suite $\left(r_n^2\right)$ et en déduire que $\left(r_n\right)$ converge vers $\sqrt{2}$.
    $\quad$
    d. Démontrer que pour tout entier naturel $n$, $$r_{n+1}=\dfrac{2+r_n}{1+r_n}$$
    $\quad$
    e. On considère le programme suivant écrit en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def seuil():}\\
    \quad n=0\\
    \quad r=1\\
    \quad \text{while abs(r-sqrt(2))}>10**(-4) :\\
    \qquad r=(2+r)/(1+r)\\
    \qquad n=n+1\\
    \quad \text{return }n\\
    \hline
    \end{array}$$
    ($\text{abs}$ désigne la valeur absolue, $\text{sqrt}$ la racine carrée et $10**(-4)$ représente $10^{-4}$)
    La valeur de $n$ renvoyée par ce programme est $5$.
    À quoi correspond-elle ?
    $\quad$

$\quad$

Exercice 3     4 points

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points :
$A$ de coordonnées $(2 ;0 ;0)$, $B$ de coordonnées $(0 ;3 ;0)$ et $C$ de coordonnées $(0 ;0 ;1)$.

L’objectif de cet exercice est de calculer l’aire du triangle $ABC$.

  1. a. Montrer que le vecteur $\vec{n}\begin{pmatrix}3\\2\\6\end{pmatrix}$ est normal au plan $(ABC)$.
    $\quad$
    b. En déduire qu’une équation cartésienne du plan $(ABC)$ est : $3x+2y+6z-6=0$.
    $\quad$
  2. On note $d$ la droite passant par $O$ et orthogonale au plan $(ABC)$.
    a. Déterminer une représentation paramétrique de la droite $d$.
    $\quad$
    b. Montrer que la droite $d$ coupe le plan $(ABC)$ au point $H$ de coordonnées $\left(\dfrac{18}{49};\dfrac{12}{49};\dfrac{36}{49}\right)$.
    $\quad$
    c. Calculer la distance $OH$.
    $\quad$
  3. On rappelle que le volume d’une pyramide est donné par : $V=\dfrac{1}{3}\mathcal{B}h$ , où $\mathcal{B}$ est l’aire d’une base et $h$ est la hauteur de la pyramide correspondant à cette base.
    En calculant de deux façons différentes le volume de la pyramide $OABC$, déterminer l’aire du triangle $ABC$.
    $\quad$

$\quad$

EXERCICE au choix du candidat (5 points)

Le candidat doit traiter un seul des deux exercices A ou B.
Il indique sur sa copie l’exercice choisi : exercice A ou exercice B.
Pour éclairer son choix, les principaux domaines abordés par chaque exercice sont indiqués dans un encadré.

Exercice A

Principaux domaines abordés : Fonction exponentielle ; dérivation.

Le graphique ci-dessous représente, dans un repère orthogonal, les courbes $C_f$ et $C_g$ des fonctions $f$ et $g$ définies sur $\R$ par :
$$f(x)=x^2\e^{-x} \quad \text{ et } \quad g(x)=\e^{-x}$$

La question 3 est indépendante des questions 1 et 2.

  1. a. Déterminer les coordonnées des points d’intersection de $C_f$ et $C_g$.
    $\quad$
    b. Étudier la position relative des courbes $C_f$ et $C_g$.
    $\quad$
  2. Pour tout nombre réel $x$ de l’intervalle $[-1 ;1]$, on considère les points $M$ de coordonnées $\left(x ;f(x)\right)$ et $N$ de coordonnées $\left(x ;g(x)\right)$, et on note $d(x)$ la distance $MN$.
    On admet que : $d(x)=\e^{-x}-x^2\e^{-x}$.
    On admet que la fonction $d$ est dérivable sur l’intervalle $[-1;1]$ et on note $d’$ sa fonction dérivée.
    a. Montrer que $d'(x) =\e^{-x}\left(x^2-2x-1\right)$.
    $\quad$
    b. En déduire les variations de la fonction $d$ sur l’intervalle $[-1 ;1]$.
    $\quad$
    c. Déterminer l’abscisse commune $x_0$ des points $M_0$ et $N_0$ permettant d’obtenir une distance $d\left(x_0\right)$ maximale, et donner une valeur approchée à $0,1$ près de la distance $M_0N_0$.
    $\quad$
  3. Soit $\Delta$ la droite d’équation $y=x+2$.
    On considère la fonction $h$ dérivable sur $\R$ et définie par : $h(x)=\e^{-x}-x-2$.
    En étudiant le nombre de solutions de l’équation $h(x)=0$, déterminer le nombre de points d’intersection de la droite $\Delta$ et de la courbe $C_g$.
    $\quad$

$\quad$

 

Exercice B

Principaux domaines abordés : Fonction logarithme ; dérivation.

Partie I : Étude d’une fonction auxiliaire

Soit $g$ la fonction définie sur $]0;+\infty[$ par $g(x)=\ln(x)+2x-2$.

  1. Déterminer les limites de $g$ en $+\infty$ et $0$.
    $\quad$
  2. Déterminer le sens de variation de la fonction $g$ sur $]0;+\infty[$.
    $\quad$
  3. Démontrer que l’équation $g(x)=0$ admet une unique solution $\alpha$ sur $]0;+\infty[$.
    $\quad$
  4. Calculer $g(1)$ puis déterminer le signe de $g$ sur $]0;+\infty[$.
    $\quad$

Partie II : Étude d’une fonction $\boldsymbol{f}$

On considère la fonction $f$, définie sur $]0;+\infty[$ par : $f(x)=\left(2-\dfrac{1}{x}\right)\left(\ln(x)-1\right)$.

  1. a. On admet que la fonction $f$ est dérivable sur $]0;+\infty[$ et on note $f’$ sa dérivée.
    Démontrer que, pour tout $x$ de $]0;+\infty[$[, on a : $$f'(x)=\dfrac{g(x)}{x^2}$$
    $\quad$
    b. Dresser le tableau de variation de la fonction $f$ sur $]0;+\infty[$. Le calcul des limites n’est pas demandé.
    $\quad$
  2. Résoudre l‘équation $f(x)=0$ sur $]0;+\infty[$ puis dresser le tableau de signes de $f$ sur l’intervalle $]0;+\infty[$.
    $\quad$

Partie III : Étude d’une fonction $\boldsymbol{F}$ admettant pour dérivée la fonction $\boldsymbol{f}$

On admet qu’il existe une fonction $F$ dérivable sur $]0;+\infty[$ dont la dérivée $F’$ est la fonction $f$. Ainsi, on a : $F’=f$.

On note $\mathcal{C}_F$ la courbe représentative de la fonction $F$ dans un repère orthonormé $\Oij$.

On ne cherchera pas à déterminer une expression de $F(x)$.

  1. Étudier les variations de $F$ sur $]0;+\infty[$.
    $\quad$
  2. La courbe représentative $\mathcal{C}_F$ de $F$ admet-elle des tangentes parallèles à l’axe des abscisses ? Justifier la réponse.
    $\quad$

$\quad$