Bac – Spécialité mathématiques – Amérique du Sud – sujet 1 – 26 septembre 2022

Amérique du Sud – 26 septembre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre pondéré suivant :
    $\quad$

    $\quad$
  2. a. On veut calculer :
    $\begin{align*} P(D\cap A)&=P(D)\times P_D(A) \\
    &=0,01\times 0,97 \\
    &=0,009~7\end{align*}$
    La probabilité qu’un danger se présente et que l’alarme s’active est égale à $0,009~7$.
    $\quad$
    b. La probabilité qu’un danger se présente sachant que l’alarme d’active est :
    $\begin{align*} P_A(D)&=\dfrac{P(A\cap D)}{P(A)} \\
    &=\dfrac{0,009~7}{0,014~65} \\
    &\approx 0,662\end{align*}$
    $\quad$
  3. $\left(D,\conj{D}\right)$ est un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} P(A)=P(A\cap D)+P\left(A\cap \conj{D}\right) &\ssi 0,014~65=0,009~7+P\left(\conj{D}\right)\times P_{\conj{D}}(A) \\
    &\ssi 0,99\times P_{\conj{D}}(A)=0,004~95 \\
    &\ssi P_{\conj{D}}(A)=\dfrac{0,004~95}{0,99} \\
    &\ssi P_{\conj{D}}(A)=0,005\end{align*}$
    $\quad$
  4. La probabilité que l’alarme ne fonctionne pas normalement est :
    $\begin{align*} p&=P\left(\left(\conj{A}\cap D\right)\cup\left(A\cap \conj{D}\right)\right) \\
    &=P(\left(\conj{A}\cap D\right)+P\left(A\cap \conj{D}\right) \qquad \text{(incompatibilité)} \\
    &=P(D)\times P_D\left(\conj{A}\right)+P\left(\conj{D}\right))\times P_{\conj{D}}(A) \\
    &=0,01\times 0,03+0,99\times 0,005 \\
    &=0,005~25 \\
    &<0,01\end{align*}$

Partie B

  1. On répète $5$ fois la même expérience de Bernoulli de paramètre $0,005~25$.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,005~25$.
    $\quad$
  2. La probabilité qu’un seul système d’alarme ne fonctionne pas normalement est :
    $\begin{align*} P(X=1)&=\dbinom{5}{1}\times 0,005~25\times (1-0,005~25)^4 \\
    &\approx 0,025~7\end{align*}$
    $\quad$
  3. La probabilité que, dans le lot prélevé, au moins un système d’alarme ne fonctionne pas normalement est :
    $\begin{align*} P(X\pg 1)&=1-P(X=0) \\
    &=1-(1-0,005~2)^5 \\
    &\approx 0,026~0\end{align*}$
    $\quad$

Partie C

On répète $n$ fois la même expérience de Bernoulli de paramètre $0,005~25$. On appelle $Y$ la variable aléatoire qui donne le nombre de systèmes d’alarme ne fonctionnant pas normalement parmi les $n$ systèmes d’alarme prélevés.
$Y$ suit donc la loi binomiale de paramètre $n$ et $p=0,005~25$.

$\begin{align*} P(Y\pg 1)\pg 0,07&\ssi 1-P(Y=0)\pg 0,07 \\
&\ssi P(Y=0)\pp 0,93 \\
&\ssi (1-0,005~25)^n \pp 0,93 \\
&\ssi n\ln(0,994~75) \pp \ln(0,93) \\
&\ssi n\pg \dfrac{\ln(0,93)}{\ln(0,994~75)} \end{align*}$
Or $\dfrac{\ln(0,93)}{\ln(0,994~75)}\approx 13,79$

Il faut donc prélever au moins $14$ systèmes d’alarme pour que la probabilité d’avoir au moins un système d’alarme qui ne fonctionne pas normalement soit supérieur à $0,07$.

$\quad$

 

Ex 2

Exercice 2

  1. a. 
    $\begin{align*} u_1&=\dfrac{1}{5}\times 4^2 \\
    &=\dfrac{16}{5} \end{align*}$
    $\quad$
    $\begin{align*} u_2&=\dfrac{1}{5}\times \left(\dfrac{16}{5}\right)^2 \\
    &=\dfrac{256}{125} \end{align*}$
    $\quad$
    b. On peut écrire :
    $\begin{array}{l}
    \text{def suite_u(p) :}\\
    \quad \text{u = 4} \\
    \quad \text{for i in range(1,p+1) :} \\
    \qquad \text{u = u**2 / 5} \\
    \quad \text{return u}\end{array}$
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $P(n):~~ 0<u_n\pp 4$.
    Initialisation : $u_0=4$ donc $P(0)$ est vraie
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $\begin{align*} 0<u_n\pp 4 &\Rightarrow 0<u_n^2\pp 16 \\
    &\Rightarrow 0<\dfrac{1}{5} u_n^2 \pp \dfrac{16}{5} \\
    &\Rightarrow0<u_{n+1}\pp 4\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : D’après le principe de récurrence, pour tout entier naturel $n$, on a $0<u_n\pp 4$.
    $\quad$
    b. Soit $n \in \N$
    $\begin{align*} u_{n+1}-u_n&=\dfrac{1}{5}u_n^2-u_n \\
    &=\dfrac{u_n}{5}\left(u_n-5\right)\end{align*}$
    Or $u_n>0$ et $u_n-5<0$ car $u_n\pp 4$
    Par conséquent $u_{n+1}-u_n <0$.
    La suite $\left(u_n\right)$ est donc décroissante.
    $\quad$
    c. La suite $\left(u_n\right)$ est décroissante et minorée par $0$.
    Par conséquent la suite $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  3. a. On appelle $f$ la fonction définie sur $\R$ par $f(x)=\dfrac{1}{5}x^2$. Elle est continue sur $\R$ en tant que fonction polynôme.
    La suite $\left(u_n\right)$ est convergente et, pour tout entier naturel $n$, on a $u_{n+1}=f\left(u_n\right)$.
    Par conséquent $\ell$ est solution de l’équation $f(x)=x$.
    Ainsi $\ell =\dfrac{1}{5}\ell^2$.
    $\quad$
    b.
    $\begin{align*} \ell =\dfrac{1}{5}\ell^2 &\ssi 5\ell-\ell^2=0 \\
    &\ssi \ell(5-\ell)=0 \\
    &\ssi \ell=0 \text{ ou } \ell =5 \end{align*}$
    Pour tout $n\in \N$ on a $0<u_n\pp 4$.
    Par conséquent $\ell$ ne peut pas être égale à $5$.
    Ainsi $\ell=0$.
    $\quad$
  4. a. Soit $n\in \N$
    $\begin{align*} v_{n+1}&=\ln\left(u_{n+1}\right) \\
    &=\ln\left(\dfrac{1}{5}u_n^2\right) \\
    &=\ln\left(u_n^2\right)-\ln(5) \\
    &=2\ln\left(u_n\right)-\ln(5) \\
    &=2v_n-\ln(5)\end{align*}$
    $\quad$
    b. Soit $n\in \N$
    $\begin{align*} w_{n+1}&=v_{n+1}-\ln(5) \\
    &=2v_n-\ln(5)-\ln(5) \\
    &=2\left(v_n-\ln(5)\right) \\
    &=2w_n\end{align*}$
    La suite $\left(w_n\right)$ est donc géométrique de raison $2$ et de premier terme
    $\begin{align*} w_0&=v_0-\ln(5)\\
    &=ln(4)-\ln(5) \\
    &=\ln\left(\dfrac{4}{5}\right)\end{align*}$
    $\quad$
    c. Ainsi, pour tout $n\in \N$, $w_n= \ln\left(\dfrac{4}{5}\right)\times 2^n$.
    Donc
    $\begin{align*} v_n&=w_n+\ln(5) \\
    &=\ln(5)+\ln\left(\dfrac{4}{5}\right)\times 2^n \end{align*}$
    $\quad$
  5. $\ln\left(\dfrac{4}{5}\right)<0$ et $1<2$ donc $\lim\limits_{n\to +\infty} \ln\left(\dfrac{4}{5}\right)\times 2^n=-\infty$.
    Par conséquent $\lim\limits_{n\to +\infty} v_n=-\infty$
    Or $v_n=\ln\left(u_n\right)$.
    Donc $\lim\limits_{n\to +\infty} u_n=0^+$
    $\quad$

Ex 3

Exercice 3

Partie A

  1. On a
    $\begin{align*} g(\e)&=1+\e^2\left(1-2\ln(\e)\right) \\
    &=1+\e^2(1-2) \\
    &=1-\e^2 \\
    &\approx -6,39\end{align*}$
    Donc $g(\e)<0$.
    $\quad$
  2. $\lim\limits_{x\to +\infty} 1-2\ln(x)=-\infty$ et $\lim\limits_{x\to +\infty} x^2=+\infty$
    Donc $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
  3. a. Par hypothèse la fonction $g$ est dérivable sur $]0;+\infty[$.
    Ainsi, pour tout $x>0$
    $\begin{align*} g'(x)&=2x\left(1-2\ln(x)\right)+x^2\times \dfrac{-2}{x} \\
    &=2x-4x\ln(x)-2x \\
    &=-4x\ln(x)\end{align*}$
    $\quad$
    b. Pour tout $x>0$ on a $-4x<0$.
    $\ln(x)=0 \ssi x=1$ et $\ln(x)>0 \ssi x>1$.
    Ainsi $g'(x)=0 \ssi x=1$ et $g'(x)<0 \ssi 0<x<1$
    La fonction $g$ est strictement croissante sur $]0;1]$ et strictement décroissante sur $[1;+\infty[$.
    $\quad$
    c. La fonction $g$ est continue (car dérivable) et strictement décroissante sur $[1;+\infty[$.
    $g(1)=2>0$ et $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution $\alpha$ sur l’intervalle $[1;+\infty[$.
    $\quad$
    d. D’après la calculatrice $g(1,89) \approx 0,02>0$ et $g(1,90) \approx -0,02<0$.
    Donc $1,89 <\alpha<1,90$.
    $\quad$
  4. La fonction $g$ est strictement décroissante sur $[1;+\infty[$ et $g(\alpha)=0$.
    Ainsi:
    – pour tout $x\in [1;\alpha[$ on a $g(x)>0$;
    – $g(\alpha)=0$;
    – pour tout $x\in ]\alpha;+\infty[$ on a $g(x)<0$.
    $\quad$

Partie B

  1. Pour tout $x\in [1;\alpha]$ on a $\ln(x)\pg 0$ donc $g\dsec(x)\pp 0$.
    La fonction $g$ est concave sur l’intervalle $[1;\alpha]$.
    $\quad$
  2. a. $g(1)=2$ et $g(\alpha)=0$.
    L’équation réduite de la droite $(AB)$ est donc de la forme $y=ax+b$.
    Or le coefficient directeur de cette droite est
    $\begin{align*} a&=\dfrac{0-2}{\alpha-1} \\
    &=\dfrac{-2}{\alpha-1}\end{align*}$
    $\begin{align*} g(\alpha)=0&\ssi 0=\dfrac{-2}{\alpha-1}\times \alpha+b \\
    &\ssi b=\dfrac{2\alpha}{\alpha-1}\end{align*}$
    Ainsi l’équation réduite de la droite $(AB)$ est $y=\dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$
    b. La fonction $g$ est concave sur $[1;\alpha]$. Ainsi la courbe $\mathscr{C}$ est au-dessus de toutes ses cordes sur cet intervalle, en particulier de la droite $(AB)$.
    Ainsi, pour tout $x\in [1;\alpha]$ on a $g(x)\pg \dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a donc $H(0;3;2)$ et $G(5;3;2)$.
    $\quad$
    b. Ainsi $\vect{HG}\begin{pmatrix}5\\0\\0\end{pmatrix}$
    Par conséquent, une représentation paramétrique de la droite $(GH)$ est $\begin{cases} x=5t\\y=3\\z=2\end{cases}$.
    $\quad$
  2. a. $M$ a donc pour coordonnées $(x;3;2)$ avec $x\in [0;5]$.
    Par conséquent $\vect{HM}\begin{pmatrix}x\\0\\0\end{pmatrix}$
    $\vect{HM}=k\vect{HG}\ssi  x=5k$.
    Donc $M$ a pour coordonnées $(5k;3;2)$.
    $\quad$
    b. $\vect{AM}\begin{pmatrix} 5k\\3\\2\end{pmatrix}$ et $\vect{CM}\begin{pmatrix} 5k-5\\0\\2\end{pmatrix}$
    Donc
    $\begin{align*} \vect{AM}.\vect{CM}&=5k(5k-5)+0+4\\
    &=25k^2-25k+4\end{align*}$
    $\quad$
    c. Le triangle $AMC$ est rectangle en $M$
    si, et seulement si, $\vect{AM}.\vect{CM}=0$
    si, et seulement si, $25k^2-25k+4=0$
    Le discriminant de cette équation du second degré est $\delta=(-25)^2-4\times 4\times 25=225>0$
    Les solutions de cette équation sont donc $k_1=\dfrac{25-\sqrt{225}}{50}=\dfrac{1}{5}$ et $k_2=\dfrac{25+\sqrt{225}}{50}=\dfrac{4}{5}$
    Ainsi, le triangle $AMC$ est rectangle en $M$ est rectangle si, et seulement si, $k=\dfrac{1}{5}$ ou $k=\dfrac{4}{5}$.
    $\quad$
  3. a. On a $A(0;0;0)$, $C(5;3;0)$ et $D(0;3;0)$
    Une équation cartésienne du plan $(ACD)$ est donc $z=0$.
    $\quad$
    b. D’après la question précédente, un vecteur normal au plan $(ACD)$ est $\vec{n}\begin{pmatrix}0\\0\\1\end{pmatrix}$.
    On a $\vect{MK}\begin{pmatrix} 0\\0\\-2\end{pmatrix}$
    Ainsi $\vec{n}$ et $\vect{MK}$ sont colinéaires et $\vect{MK}$ un vecteur normal au plan $(ACD)$.
    De plus, la côte du point $K$ est $0$ donc $K$ appartient au plan $(ACD)$.
    Par conséquent, $K$ est le projeté orthogonal du point $M$ sur le plan $(ACD)$.
    $\quad$
    c. $AD=3$, $DC=5$. Donc l’aire du triangle $ACD$ est $\mathscr{A}=\dfrac{15}{2}$.
    De plus $MK=2$.
    Le volume, en unités de volume, du tétraèdre $MACD$ est donc :
    $\begin{align*} V&=\dfrac{1}{3}\times MK\times \mathscr{A} \\
    &=\dfrac{1}{3}\times 2\times \dfrac{15}{2} \\
    &=5\end{align*}$
    $\quad$
  4. Le point $M$ de coordonnées $(1;3;2)$ correspond au point obtenu à l’aide $k=\dfrac{1}{5}$ à la question 2.a.
    Par conséquent, le triangle $AMC$ est rectangle en $M$.
    $\begin{align*} AM^2&=1+9+4 \\
    &=14\end{align*}$
    Donc $AM=\sqrt{14}$
    $\begin{align*} MC^2&=(-4)^2+0+2 \\
    &=20\end{align*}$
    Donc $MC=\sqrt{20}$
    L’aire du triangle $AMC$ rectangle en $M$ est donc
    $\begin{align*} \mathscr{A}’&=\dfrac{AM\times MC}{2} \\
    &=\dfrac{\sqrt{14\times 20}}{2} \\
    &=\sqrt{70}\end{align*}$
    Le volume du tétraèdre $AMCD$ est
    $\begin{align*} V=5&\ssi \dfrac{1}{3}\times \mathscr{A}’\times DP =5\\
    &\ssi \dfrac{1}{3}\times \sqrt{70}\times DP=5 \\
    &\ssi DP=\dfrac{15}{\sqrt{70}} \end{align*}$
    Par conséquent $DP\approx 1,8$.
    $\quad$

 

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : Probabilités

PARTIE A

Le système d’alarme d’une entreprise fonctionne de telle sorte que, si un danger se présente, l’alarme s’active avec une probabilité de $0,97$.
La probabilité qu’un danger se présente est de $0,01$ et la probabilité que l’alarme s’active est de $0,014~65$.
On note $A$ l’évènement « l’alarme s’active » et $D$ l’événement « un danger se présente ».
On note $\conj{M}$ l’évènement contraire d’un évènement $M$ et $P(M)$ la probabilité de l’évènement $M$.

  1. Représenter la situation par un arbre pondéré qui sera complété au fur et à mesure de l’exercice.
    $\quad$
  2. a. Calculer la probabilité qu’un danger se présente et que l’alarme s’active.
    $\quad$
    b. En déduire la probabilité qu’un danger se présente sachant que l’alarme s’active.
    Arrondir le résultat à $10^{-3}$.
    $\quad$
  3. Montrer que la probabilité que l’alarme s’active sachant qu’aucun danger ne s’est présenté est $0,005$.
    $\quad$
  4. On considère qu’une alarme ne fonctionne pas normalement lorsqu’un danger se présente et qu’elle ne s’active pas ou bien lorsqu’aucun danger ne se présente et qu’elle s’active.
    Montrer que la probabilité que l’alarme ne fonctionne pas normalement est inférieure à $0,01$.
    $\quad$

PARTIE B

Une usine fabrique en grande quantité des systèmes d’alarme. On prélève successivement et au hasard $5$ systèmes d’alarme dans la production de l’usine. Ce prélèvement est assimilé à un tirage avec remise.
On note $S$ l’évènement « l’alarme ne fonctionne pas normalement » et on admet que $P(S) = 0,005~25$.
On considère $X$ la variable aléatoire qui donne le nombre de systèmes d’alarme ne fonctionnant pas normalement parmi les $5$ systèmes d’alarme prélevés.
Les résultats seront arrondis à $10^{-4}$.

  1. Donner la loi de probabilité suivie par la variable aléatoire $X$ et préciser ses paramètres.
    $\quad$
  2. Calculer la probabilité que, dans le lot prélevé, un seul système d’alarme ne fonctionne pas normalement.
    $\quad$
  3. Calculer la probabilité que, dans le lot prélevé, au moins un système d’alarme ne fonctionne pas normalement.
    $\quad$

PARTIE C

Soit $n$ un entier naturel non nul. On prélève successivement et au hasard $n$ systèmes d’alarme.
Ce prélèvement est assimilé à un tirage avec remise.
Déterminer le plus petit entier $n$ tel que la probabilité d’avoir, dans le lot prélevé, au moins un système d’alarme qui ne fonctionne pas normalement soit supérieure à $0,07$.
$\quad$

$\quad$

Exercice 2     7 points
Thème : Suites

Soit $\left(u_n\right)$ la suite définie par $u_0 = 4$ et, pour tout entier naturel $n$, $u_{n+1} =\dfrac{1}{5}u_n^2$.

  1. a. Calculer $u_1$ et $u_2$.
    $\quad$
    b. Recopier et compléter la fonction ci-dessous écrite en langage Python. Cette fonction est nommée suite_u et prend pour paramètre l’entier naturel $p$.
    Elle renvoie la valeur du terme de rang $p$ de la suite $\left(u_n\right)$.
    $$\begin{array}{l}
    \text{def suite_u(p) :}\\
    \quad \text{u= …}\\
    \quad \text{for i in range(1,…) :}\\
    \qquad \text{u =…}\\
    \quad \text{return u}\end{array}$$
    $\quad$
  2. a. Démontrer par récurrence que pour tout entier naturel $n$, $0 < u_n \pp 4$.
    $\quad$
    b. Démontrer que la suite $\left(u_n\right)$ est décroissante.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  3. a. Justifier que la limite $\ell$ de la suite $\left(u_n\right)$ vérifie l’égalité $\ell=\dfrac{1}{5}\ell^2$.
    $\quad$
    b. En déduire la valeur de $\ell$.
    $\quad$
  4. Pour tout entier naturel $n$, on pose $v_n = \ln\left(u_n\right)$ et $w_n = v_n-\ln(5)$.
    a. Montrer que, pour tout entier naturel $n$, $v_{n+1} = 2v_n-\ln(5)$.
    $\quad$
    b. Montrer que la suite $\left(w_n\right)$ est géométrique de raison $2$.
    $\quad$
    c. Pour tout entier naturel $n$, donner l’expression de $w_n$ en fonction de $n$ et montrer que $v_n = \ln\left(\dfrac{4}{5}\right)\times 2^n+\ln(5)$
    $\quad$
  5. Calculer $\lim\limits_{n\to +\infty} v_n$ et retrouver $\lim\limits_{n\to +\infty} u_n$.
    $\quad$

$\quad$

 

 

Exercice 3     7 points
Thème : Fonctions, fonction logarithme

Soit $g$ la fonction définie sur l’intervalle $]0 ; +\infty[$ par $$g(x)=1+x^2\left[1-2\ln(x)\right]$$

La fonction $g$ est dérivable sur l’intervalle $]0 ; +\infty[$ et on note $g’$ sa fonction dérivée.
On appelle $\mathscr{C}$ la courbe représentative de la fonction $g$ dans un repère orthonormé du plan.

PARTIE A

  1. Justifier que $g(\e)$ est strictement négatif.
    $\quad$
  2. Justifier que $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
  3. a. Montrer que, pour tout $x$ appartenant à l’intervalle $]0 ; +\infty[$, $g'(x)=-4x\ln(x)$.
    $\quad$
    b. Étudier le sens de variation de la fonction $g$ sur l’intervalle $]0 ; +\infty[$.
    $\quad$
    c. Montrer que l’équation $g(x) = 0$ admet une unique solution, notée $\alpha$, sur l’intervalle $[1 ; +\infty[$.
    $\quad$
    d. Donner un encadrement de $\alpha$ d’amplitude $10^{-2}$.
    $\quad$
  4. Déduire de ce qui précède le signe de la fonction $g$ sur l’intervalle $[1 ; +\infty[$.
    $\quad$

PARTIE B

  1. On admet que, pour tout $x$ appartenant à l’intervalle $[1 ; \alpha]$, $g\dsec(x)= -4\left[\ln(x)+1\right]$.
    Justifier que la fonction $g$ est concave sur l’intervalle $[1 ; \alpha]$.
    $\quad$
  2. Sur la figure ci-dessous, $A$ et $B$ sont les points de la courbe $\mathscr{C}$ d’abscisses respectives $1$ et $\alpha$.
    $\quad$

    $\quad$
    a. Déterminer l’équation réduite de la droite $(AB)$.
    $\quad$
    b. En déduire que pour tout réel $x$ appartenant à l’intervalle $[1 ; \alpha]$, $g(x)\pg \dfrac{-2}{\alpha-1}x+\dfrac{2\alpha}{\alpha-1}$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : Géométrie dans l’espace

Dans la figure ci-dessous, $ABCDEFGH$ est un parallélépipède rectangle tel que
$AB = 5$, $AD = 3$ et $AE = 2$.
L’espace est muni d’un repère orthonormé d’origine $A$ dans lequel les points $B$, $D$ et $E$ ont respectivement pour coordonnées $(5; 0; 0)$, $(0; 3; 0)$ et $(0; 0; 2)$.

  1. a. Donner, dans le repère considéré, les coordonnées des points $H$ et $G$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(GH)$.
    $\quad$
  2. Soit $M$ un point du segment $[GH]$ tel que $\vect{HM}=k\vect{HG}$ avec $k$ un nombre réel de l’intervalle $[0; 1]$.
    a. Justifier que les coordonnées de $M$ sont $(5k ; 3 ; 2)$.
    $\quad$
    b. En déduire que $\vect{AM}.\vect{CM}=25k^2-25k+4$
    $\quad$
    c. Déterminer les valeurs de $k$ pour lesquelles $AMC$ est un triangle rectangle en $M$.
    $\quad$

Dans toute la suite de l’exercice, on considère que le point $M$ a pour coordonnées $(1; 3; 2)$.
On admet que le triangle $AMC$ est rectangle en $M$ .
On rappelle que le volume d’un tétraèdre est donné par la formule  $\dfrac{1}{3}\times$ Aire de la base $\times h$ où $h$ est la hauteur relative à la base.

  1. On considère le point $K$ de coordonnées $(1; 3; 0)$.
    a. Déterminer une équation cartésienne du plan $(ACD)$.
    $\quad$
    b. Justifier que le point $K$ est le projeté orthogonal du point $M$ sur le plan $(ACD)$.
    $\quad$
    c. En déduire le volume du tétraèdre $MACD$.
    $\quad$
  2. On note $P$ le projeté orthogonal du point $D$ sur le plan $(AMC)$.
    Calculer la distance $DP$ en donner une valeur arrondie à $10^{-1}$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Métropole, Antilles, Guyane – sujet 2 – 9 septembre 2022

Métropole Antilles/Guyane – 9 septembre 2022

Spécialité maths – Sujet 2 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient l’arbre pondéré suivant :
    $\quad$$\quad$
  2. a. $\left(R,\conj{R}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales on a :
    $\begin{align*} p(E)&=p(R)\times p_R(E)+p\left(\conj{R}\right)\times p_{\conj{R}}(E) \\
    &=0,4\alpha+0,7(1-\alpha) \\
    &=0,7-0,3\alpha\end{align*}$
    $\quad$
    b.
    $\begin{align*} p(E)=0,58&\ssi 0,7-0,3\alpha=0,58 \\
    &\ssi -0,12=-0,3\alpha\\
    &\ssi  \alpha=0,4\end{align*}$
    $\quad$
  3. On a
    $\begin{align*}
    p_E\left(\conj{R}\right)&=\dfrac{p\left(E\cap \conj{R}\right)}{p(E)} \\
    &=\dfrac{p\left(\conj{R}\right)\times P_{\conj{R}}(E)}{p(E)} \\
    &=\dfrac{0,7(1-\alpha)}{0,58} \\
    &=\dfrac{0,7\times 0,6}{0,58} \\
    &=\dfrac{21}{29}\\
    &\approx 0,72
    \end{align*}$
    La probabilité que le client ayant loué un vélo électrique ait loué un vélo tout terrain est environ égale à $0,72$.
    $\quad$
  4. On a
    $\begin{align*} p\left(\conj{R}\cap E\right)&=p\left(\conj{R}\right)\times p_{\conj{R}}(E) \\
    &=0,7(1-\alpha)\\
    &=0,7\times 0,6\\
    &=0,42\end{align*}$
    La probabilité que le client loue un vélo tout terrain électrique est égale à $0,42$.
    $\quad$
  5. a. $X(\Omega)=\acco{25,~35,~40,~50}$
    $\begin{align*} p(X=25)&=p\left(R\cap \conj{E}\right) \\
    &= 0,4\times 0,4\\
    &=0,24\end{align*}$
    $\begin{align*} p(X=35)&=p\left(\conj{R}\cap \conj{E}\right) \\
    &= 0,6\times 0,3\\
    &=0,18\end{align*}$
    $\begin{align*} p(X=40)&=p\left(R\cap \conj{E}\right) \\
    &= 0,4\times 0,4\\
    &=0,16\end{align*}$
    $\begin{align*} p(X=50)&=p\left(\conj{R}\cap E\right) \\
    &= 0,6\times 0,7\\
    &=0,42\end{align*}$
    On obtient ainsi le tableau de loi de probabilité de $X$ suivant :
    $\begin{array}{|c|c|c|c|c|}
    \hline
    x&25&35&40&50\\
    \hline
    p(X=x)&0,24&0,18&0,16&0,42\\
    \hline
    \end{array}$
    $\quad$
    b. L’espérance mathématique de $X$ est :
    $\begin{align*} E(X)&=25\times 0,24+35\times 0,18+40\times 0,16+50\times 0,42 \\
    &=39,7\end{align*}$
    En moyenne, une location de vélo coûte $39,70$ euros.
    $\quad$
  6. a. On répète $30$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,58$.
    $Y$ suit donc la loi binomiale de paramètres $n=30$ et $p=0,58$.
    $\quad$
    b.
    $\begin{align*} p(X=20)&=\dbinom{30}{20} 0,58^{20}\times 0,42^{10} \\
    &\approx 0,095\end{align*}$
    La probabilité qu’un échantillon contienne exactement $20$ clients qui
    louent un vélo électrique est environ égale à $0,095$.
    $\quad$
    c. On veut calculer $P(X\pg 15) \approx 0,858$.
    La probabilité qu’un échantillon contienne au moins $15$ clients qui louent un vélo électrique est environ égale à $0,858$.
    $\quad$

Ex 2

Exercice 2

  1. Soit $n\in \N$
    $\begin{align*} b_{n+1}&=a_{n+1}-2 \\
    &=0,5a_n+1-2 \\
    &=0,5a_n-1 \\
    &=0,5\left(a_n-2\right) \\
    &=0,5b_n\end{align*}$
    La suite $\left(b_n\right)$ est donc géométrique de raison $0,5$.
    Réponse b
    $\quad$
  2. On a donc $u_1=5$, $v_1=3$, $u_2=14$ et $v_2=8$.
    Donc $\dfrac{u_2}{v_2}=1,75$
    Réponse c
    $\quad$
  3. La boucle du programme calcule tous les termes $u_n$ et $v_n$ pour $n$ allant de $1$ à $10$.
    Le programme renvoie donc $u_{10}$ et $v_{10}$.
    Réponse d
    $\quad$
  4. La fonction $f’$ semble croissante sur l’intervalle $[-4;0]$.
    Par conséquent la fonction $f$ semble convexe sur cet intervalle.
    Réponse b
    $\quad$
  5. Le coefficient directeur de la droite $(BC)$ est
    $\begin{align*} f\dsec(1)&=\dfrac{y_C-y_B}{x_C-x_B} \\
    &=5\end{align*}$
    Réponse d
    $\quad$
  6. On considère la fonction $F$ définie sur $\R$ par $F(x)=\left(x^2-2x+3\right)\e^x-2$.
    La fonction $F$ est dérivable sur $\R$ en tant que somme et produit de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a
    $\begin{align*} F'(x)&=(2x-2)\e^x+\left(x^2-2x+3\right)\e^x \\
    &=\left(2x-2+x^2-2x+3\right)\e^x \\
    &=\left(x^2+1\right)\e^x\end{align*}$
    Ainsi $F$ est une primitive de la fonction $f$ sur $\R$.
    De plus $F(0)=3-2=1$.
    Réponse b
    $\quad$

Ex 3

Exercice 3

Partie A

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=0$.
    $\quad$
  2. Pour tout réel $x>0$ on a $f(x)=x\left(1-\ln(x)\right)$.
    Or $\lim\limits_{x\to +\infty}\ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} 1-\ln(x)=-\infty$ ainsi $\lim\limits_{x\to +\infty} f(x)=-\infty$.
    $\quad$
  3. a. Pour tout réel $x>0$ on a
    $\begin{align*} f'(x)&=1-\ln(x)-x\times \dfrac{1}{x} \\
    &=1-\ln(x)+1\\
    &=-\ln(x)\end{align*}$
    $\quad$
    b. $f'(x)=0\ssi -\ln(x)=0 \ssi x=1$
    $f'(x)>0 \ssi -\ln(x)>0 \ssi x\in ]0;1[$.
    La fonction $f$ est donc strictement croissante sur $]0;1]$ et strictement décroissante sur $[1;+\infty[$.
    On obtient ainsi le tableau de variations suivant :
    $\quad$

    $\quad$
  4. $f(x)=x\ssi x-x\ln(x)=x \ssi -x\ln(x)=0 \ssi x=1$ (la valeur $0$ n’est pas solution puisque $f$ n’est pas définie en $0$).
    $\quad$

Partie B

  1. Pour tout $n\in \N$ on pose $P(n):~0,5\pp u_n\pp u_{n+1} \pp 1$.
    Initialisation : $u_0=0,5$ et $u_1\approx 0,85$.
    Par conséquent $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose que $P(n)$ est vraie.
    $0,5\pp u_n \pp u_{n+1} \pp 1$.
    La fonction $f$ est croissante sur l’intervalle $[0,5;1]$.
    Par conséquent $f(0,5) \pp f\left(u_n\right) \pp f\left(u_{n+1}\right) \pp p(1)$ c’est-à-dire $u_1\pp u_{n+1} \pp u_{n+2} \pp 1$.
    Or $u_1\approx 0,85$.
    La propriété $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout $n\in \N$, $0,5\pp u_n\pp u_{n+1} \pp 1$.
    $\quad$
  2. a. La suite $\left(u_n\right)$ est croissante et majorée par $1$. Elle converge donc vers un réel $\ell$.
    $\quad$
    b. La fonction $f$ est continue sur $]0;+\infty[$ et, pour tout $n\in \N$, on a $u_{n+1}=f\left(u_n\right)$.
    Par conséquent $\ell$ est solution de l’équation $f(x)=x$.
    D’après la question A.4. l’unique solution de cette équation est $1$.
    Ainsi $\ell=1$.
    $\quad$

Partie C

  1. La fonction $f_k$ est dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur cet intervalle.
    Pour tout réel $x>0$ on a :
    $\begin{align*} f_k'(x)&=k-\ln(x)-x\times \dfrac{1}{x} \\
    &=-\ln(x)+k-1\end{align*}$
    $f_k'(x)>0 \ssi -\ln(x)+k-1>0 \ssi \ln(x)<k-1 \ssi x<\e^{k-1}$
    La fonction $f_k$ est donc strictement croissante sur $\left]0;\e^{k-1}\right]$ et strictement décroissante sur $\left[\e^{k-1};+\infty\right[$.
    La fonction $f_k$ admet par conséquent un maximum en $x_k=\e^{k-1}$.
    $\quad$
  2. Soit $k\in \R$.
    $\begin{align*} y_k=f_k\left(x_k\right)\\
    &=k\e^{k-1}-\e^{k-1}\ln\left(\e^{k-1}\right) \\
    &=k\e^{k-1}-(k-1)\e^{k-1} \\
    &=\e^{k-1}\left(k-(k-1)\right) \\
    &=\e^{k-1}\\
    &=x_k\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. a. Les coordonnées du vecteur $\vec{u}’$ sont $\begin{pmatrix} 0\\1\\1\end{pmatrix}$.
    $\quad$
    b. Les vecteurs $\vec{u}$ et $\vec{u}’$ ne sont pas colinéaires (ils n’ont pas les mêmes coordonnées nulles). Les droites $\mathscr{D}$ et $\mathscr{D}’$ ne sont donc pas parallèles.
    $\quad$
    c. Une représentation paramétrique de la droite $\mathscr{D}$ est $\begin{cases} x=2+k\\y=4+2k\\z=0\end{cases}$.
    $\quad$
  2. $\vec{v}.\vec{u}=2-2+0=0$ et $\vec{v}.\vec{u}’=0-1+1=0$.
    $\vec{v}$ est donc orthogonal aux deux vecteurs, non colinéaires, $\vec{u}$ et $\vec{u}’$.
    $\vec{v}$ est donc un vecteur directeur de la droite perpendiculaire à la fois à $\mathscr{D}$ et $\mathscr{D}’$.
    Ainsi $\vec{v}\begin{pmatrix}2\\-1\\1\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$.
    $\quad$
  3. a. $\vec{n}.\vec{u}=2-2+0=0$ et $\vec{n}.\vec{v}= 4+1-5=0$.
    Ainsi $\vec{n}$ orthogonal à deux vecteurs non colinéaires du plan $\mathscr{P}$.
    $\quad$
    b. Une équation cartésienne du plan $\mathscr{P}$ est donc de la forme $2x-y-5z+d=0$.
    Le point $A(2;4;0)$ appartient au plan $\mathscr{P}$.
    Par conséquent $4-4-0+d=0 \ssi d=0$.
    Une équation cartésienne du plan $\mathscr{P}$ est donc $2x-y-5z=0$.
    $\quad$
    c. $M’$ est un point de $Delta$. Il appartient donc également au plan $\mathscr{P}$ qui contient cette droite.
    $M’$ est un point de $\mathscr{D}’$.
    $M’$ est donc le point d’intersection de la droite $\mathscr{D}’$ avec le plan $\mathscr{P}$.
    $2\times 3-1-5=0$ : le point de coordonnées $(3;1;1)$ appartient donc au plan $\mathscr{P}$.
    En prenant $t=-2$ dans la représentation paramétrique de la droite $\mathscr{D}’$ on obtient le point de coordonnées $(3;1;1)$.
    Ainsi ce point est le point d’intersection de la droite $\mathscr{D}’$ et $\mathscr{P}$.
    Ainsi $M’$ a pour coordonnées $(3;1;1)$.
    $\quad$
  4. a. $\vec{v}$ est un vecteur directeur de $\Delta$ et $M’$ appartient à cette droite.
    Une représentation paramétrique de la droite $\Delta$ est donc $\begin{cases} x= 3+2k’\\y=1-k’\\z=1+k’\end{cases} \qquad k’\in \R$.
    $\quad$
    b. En prenant $k’=-1$ dans la représentation paramétrique de $\Delta$ on obtient le point de coordonnées $(-1;2;0)$.
    En prenant $k=-1$ dans la représentation paramétrique de $\mathscr{D}$ on obtient le point de coordonnées $(-1;2;0)$.
    $M$ est le point d’intersection de ces deux droites. Donc $M$ a pour coordonnées $(1;2;0)$.
    $\quad$
    c. Les coordonnées de $\vect{MM’}$ sont $\begin{pmatrix}2\\-1\\1\end{pmatrix}$.
    Par conséquent
    $\begin{align*} MM’&=\sqrt{2^2+(-1)^2+1^2}\\
    &=\sqrt{4+1+1} \\
    &=\sqrt{6}\end{align*}$.
    $\quad$
  5. a. Un vecteur directeur de la droite $d$ est $\vec{r}\begin{pmatrix} 5\\5\\1\end{pmatrix}$.
    $\vec{n}.\vec{r}=10-5-5=0$. Par conséquent $\vec{n}$ est normal à la droite $d$.
    Ainsi $d$ est parallèle au plan $\mathscr{P}$.
    $\quad$
    b. Les droites $\mathscr{D}$ et $\Delta$ sont perpendiculaires en $M$.
    Le point $A$ appartient à la droite $\mathscr{D}$ et le point $M’$ appartient à la droite $\Delta$.
    Le triangle $AMM’$ est rectangle en $M$.
    Les coordonnées de $\vect{AM}$ sont $\begin{pmatrix} -1\\-2\\0\end{pmatrix}$.
    Par conséquent
    $\begin{align*} AM&=\sqrt{(-1)^2+(-2)^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    Ainsi l’aire du triangle $AMM’$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AM\times MM’}{2} \\
    &=\dfrac{\sqrt{30}}{2}\end{align*}$.
    Le volume du tétraèdre $ANMM’$ est donc $V=\dfrac{\sqrt{30}}{3}\ell$.
    $\quad$
    c. La droite $d$ est parallèle au plan $\mathscr{P}$. La distance d’un point de la droite $d$ à ce plan est donc toujours la même. Ainsi $\ell$ ne dépend pas du point $N$ choisi.
    Par conséquent $AN_1MM’$ et $AN_2MM’$ ont le même volume.
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thème : probabilités

Dans le magasin d’Hugo, les clients peuvent louer deux types de vélos : vélos de route ou bien vélos tout terrain. Chaque type de vélo peut être loué dans sa version électrique ou non.
On choisit un client du magasin au hasard, et on admet que :

  • Si le client loue un vélo de route, la probabilité que ce soit un vélo électrique est de $0,4$ ;
  • Si le client loue un vélo tout terrain, la probabilité que ce soit un vélo électrique est de $0,7$ ;
  • La probabilité que le client loue un vélo électrique est de $0,58$.

On appelle $\alpha$ la probabilité que le client loue un vélo de route, avec $0\pp \alpha\pp 1$.

On considère les événements suivants :

  • $R$ : « le client loue un vélo de route » ;
  • $E$ : « le client loue un vélo électrique » ;
  • $\conj{R}$ et $\conj{E}$ , événements contraires de $R$ et $E$.

On modélise cette situation aléatoire à l’aide de l’arbre reproduit ci-dessous :

Si $F$ désigne un événement quelconque, on notera $p(F)$ la probabilité de $F$.

  1. Recopier cet arbre sur la copie et le compléter.
    $\quad$
  2. a. Montrer que $p(E)=0,7-0,3\alpha$.
    $\quad$
    b. En déduire que : $\alpha = 0,4$.
    $\quad$
  3. On sait que le client a loué un vélo électrique. Déterminer la probabilité qu’il ait loué un vélo tout terrain. On donnera le résultat arrondi au centième.
    $\quad$
  4. Quelle est la probabilité que le client loue un vélo tout terrain électrique ?
    $\quad$
  5. Le prix de la location à la journée d’un vélo de route non électrique est de $25$ euros, celui d’un vélo tout terrain non électrique de $35$ euros. Pour chaque type de vélo, le choix de la version électrique augmente le prix de location à la journée de $15$ euros.
    On appelle $X$ la variable aléatoire modélisant le prix de location d’un vélo à la journée.
    a. Donner la loi de probabilité de $X$. On présentera les résultats sous forme d’un tableau.
    $\quad$
    b. Calculer l’espérance mathématique de $X$ et interpréter ce résultat.
    $\quad$
  6. Lorsqu’on choisit $30$ clients d’Hugo au hasard, on assimile ce choix à un tirage avec remise. On note $Y$ la variable aléatoire associant à un échantillon de $30$ clients choisis au hasard le nombre de clients qui louent un vélo électrique.
    On rappelle que la probabilité de l’événement $E$ est : $p(E) = 0,58$.
    a. Justifier que $Y$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Déterminer la probabilité qu’un échantillon contienne exactement $20$ clients qui louent un vélo électrique. On donnera le résultat arrondi au millième.
    $\quad$
    c. Déterminer la probabilité qu’un échantillon contienne au moins $15$ clients qui louent un vélo électrique. On donnera le résultat arrondi au millième.
    $\quad$

$\quad$

Exercice 2     7 points
Thèmes : suites, fonctions

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère les suites $\left(a_n\right)$ et $\left(b_n\right)$ définie par $a_0=1$ et, pour tout entier naturel $n$, $a_{n+1} = 0,5a_n+1$ et $b_n=a_n-2$.
    On peut affirmer que :
    a. $\left(a_n\right)$ est arithmétique ;
    b. $\left(b_n\right)$ est géométrique ;
    c. $\left(a_n\right)$ est géométrique ;
    d. $\left(b_n\right)$ est arithmétique.
    $\quad$

Dans les questions 2. et 3., on considère les suites $\left(u_n\right)$ et $\left(b_n\right)$ définies par :$$u_0=2,~v_0=1 \text{ et, pour tout entier naturel }n :\begin{cases} u_{n+1}=u_n+3v_n\\v_{n+1}=u_n+v_n\end{cases}$$

  1. On peut affirmer que :
    a. $\begin{cases} u_2=5\\v_2=3\end{cases}$;
    b. $u_2^2-3v_2^2=-2^2$;
    c. $\dfrac{u_2}{v_2}=1,75$;
    d. $5u_1=3v_1$.
    $\quad$
  2. On considère le programme ci-dessous écrit en langage Python :
    $$\begin{array}{|l|}
    \hline
    \text{def valeurs() :}\\
    \quad \text{u = 2}\\
    \quad \text{v = 1}\\
    \quad \text{for k in range(1,11) :}\\
    \qquad \text{c = u}\\
    \qquad \text{u = u+3*v}\\
    \qquad \text{v = c+v}\\
    \quad \text{return (u,v)}\\
    \hline
    \end{array}$$
    Ce programme renvoie :
    a. $u_{11}$ et $v_{11}$;
    b. $u_{10}$ et $v_{11}$;
    c. les valeurs de $u_n$ et $v_n$ pour $n$ allant de $1$ à $10$;
    d. $u_{10}$ et $v_{10}$.
    $\quad$

Pour les questions 4. et 5., on considère une fonction $f$ deux fois dérivable sur l’intervalle $[-4 ; 2]$. On note $f’$ la fonction dérivée de $f$ et $f\dsec$ la dérivée seconde de $f$.
On donne ci-dessous la courbe représentative $\mathcal{C}’$ de la fonction dérivée $f’$ dans un repère du plan. On donne de plus les points $A(-2; 0)$, $B(1; 0)$ et $C(0; 5)$.

  1. La fonction $f$ est :
    a. concave sur $[-2; 1]$;
    b. convexe sur $[-4; 0]$;
    c. convexe sur $[-2; 1]$;
    d. convexe sur $[0; 2]$.
    $\quad$
  2. On admet que la droite $(BC)$ est la tangente à la courbe $\mathcal{C}’$ au point $B$.
    On a :
    a. $f'(1) < 0$;
    b. $f'(1)= 5$;
    c. $f\dsec(1) > 0$;
    d. $f\dsec(1) = -5$.
    $\quad$
  3. Soit $f$ la fonction définie sur $\R$ par $f(x)=\left(x^2+1\right)\e^x$.
    La primitive $F$ de $f$ sur $\R$ telle que $F(0) = 1$ est définie par :
    a. $F(x)=\left(x^2-2x+3\right)\e^x$;
    b. $F(x)=\left(x^2-2x+3\right)\e^x-2$;
    c. $F(x)=\left(\dfrac{1}{3}x^3+x\right)\e^x+1$;
    d. $F(x)=\left(\dfrac{1}{3}x^3+x\right)\e^x$;
    $\quad$

$\quad$

Exercice 3     7 points
Thèmes : fonction logarithme, suites

Les parties B et C sont indépendantes.

On considère la fonction $f$ définie sur $]0; +\infty[$ par $f(x) = x-x\ln(x)$, où $\ln$ désigne la fonction logarithme népérien.

Partie A

  1. Déterminer la limite de $f(x)$ quand $x$ tend vers $0$.
    $\quad$
  2. Déterminer la limite de $f(x)$ quand $x$ tend vers $+\infty$.
    $\quad$
  3. On admet que la fonction $f$ est dérivable sur $]0; +\infty[$ et on note $f’$ sa fonction dérivée.
    a. Démontrer que, pour tout réel $x>0$, on a : $f'(x)=-\ln(x)$.
    $\quad$
    b. En déduire les variations de la fonction $f$ sur $]0; +\infty[$ et dresser son tableau de variation.
    $\quad$
  4. Résoudre l’équation $f(x) = x$ sur $]0; +\infty[$.
    $\quad$

Partie B

Dans cette partie, on pourra utiliser avec profit certains résultats de la partie A.

On considère la suite $\left(u_n\right)$ définie par : $$\begin{cases} u_0=0,5\\\text{pour tout entier naturel }n, u_{n+1}=u_n-u_n\ln\left(u_n\right)\end{cases}$$
Ainsi, pour tout entier naturel $n$, on a : $u_{n+1}=f\left(u_n\right)$.

  1. On rappelle que la fonction $f$ est croissante sur l’intervalle $[0,5; 1]$.
    Démontrer par récurrence que, pour tout entier naturel $n$, on a : $0,5\pp u_n\pp u_{n+1}\pp 1$.
    $\quad$
  2. a. Montrer que la suite $\left(u_n\right)$ est convergente.
    $\quad$
    b. On note $l$ la limite de la suite $\left(u_n\right)$. Déterminer la valeur de $l$.
    $\quad$

Partie C

Pour un nombre réel $k$ quelconque, on considère la fonction $f_k$ définie sur $]0; +\infty[$ par : $$f_k(x)=kx-x\ln(x)$$

  1. Pour tout nombre réel $k$, montrer que $f_k$ admet un maximum $y_k$ atteint en $x_k=\e^{k-1}$.
    $\quad$
  2. Vérifier que, pour tout nombre réel $k$, on a : $x_k=y_k$.
    $\quad$

$\quad$

 

Exercice 4     7 points
Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère :

  • la droite $\mathscr{D}$ passant par le point $A(2; 4; 0)$ et dont un vecteur directeur est $\vec{u}\begin{pmatrix}1\\2\\0\end{pmatrix}$;
  • la droite $\mathscr{D}’$ dont une représentation paramétrique est : $\begin{cases}x=3\\y=3+t\\z=3+t\end{cases} \quad, t\in \R$.
  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u’}$ de la droite $\mathscr{D}’$.
    $\quad$
    b. Montrer que les droites $\mathscr{D}$ et $\mathscr{D}’$ ne sont pas parallèles.
    $\quad$
    c. Déterminer une représentation paramétrique de la droite $\mathscr{D}$.

On admet dans la suite de cet exercice qu’il existe une unique droite $\Delta$ perpendiculaire aux droites $\mathscr{D}$ et $\mathscr{D}’$. Cette droite $\Delta$ coupe chacune des droites $\mathscr{D}$ et $\mathscr{D}’$. On appellera $M$ le point d’intersection de $\Delta$ et $\mathscr{D}$, et $M’$ le point d’intersection de $\Delta$ et $\mathscr{D}’$.

On se propose de déterminer la distance $MM’$ appelée « distance entre les droites $\mathscr{D}$ et $\mathscr{D}’$ ».

  1. Montrer que le vecteur $\vec{v}\begin{pmatrix}2\\-1\\1\end{pmatrix}$ est un vecteur directeur de la droite $\Delta$.
    $\quad$
  2. On note $\mathscr{P}$ le plan contenant les droites $\mathscr{D}$ et $\Delta$, c’est-à-dire le plan passant par le point $A$ et de vecteurs directeurs $\vec{u}$ et $\vec{v}$.
    a. Montrer que le vecteur $\vec{n}\begin{pmatrix}2\\-1\\-5\end{pmatrix}$ est un vecteur normal au plan $\mathscr{P}$.
    $\quad$
    b. En déduire qu’une équation du plan $\mathscr{P}$ est : $2x-y-5z=0$.
    $\quad$
    c. On rappelle que $M’$ est le point d’intersection des droites $\Delta$ et $\mathscr{D}’$. Justifier que $M’$ est également le point d’intersection de $\mathscr{D}’$ et du plan $\mathscr{P}$.
    En déduire que les coordonnées du point $M’$ sont $(3; 1; 1)$.
    $\quad$
  3. a. Déterminer une représentation paramétrique de la droite $\Delta$.
    $\quad$
    b. Justifier que le point $M$ a pour coordonnées $(1; 2; 0)$.
    $\quad$
    c. Calculer la distance $MM’$.
    $\quad$
  4. On considère la droite $d$ de représentation paramétrique $\begin{cases} x=5t\\y=2+5t\\z=1+t\end{cases} \quad$ avec $t\in \R$.
    a. Montrer que la droite $d$ est parallèle au plan $\mathscr{P}$.
    $\quad$
    b. On note $\ell$ la distance d’un point $N$ de la droite $d$ au plan $\mathscr{P}$. Exprimer le volume du tétraèdre $ANMM’$ en fonction de $\ell$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$
    c. Justifier que, si $N_1$ et $N_2$ sont deux points quelconques de la droite $d$, les tétraèdres $AN_1MM’$ et $AN_2MM’$ ont le même volume.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Métropole, Antilles, Guyane – sujet 1 – 8 septembre 2022

Métropole Antilles/Guyane – 8 septembre 2022

Spécialité maths – Sujet 1 – Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. Pour tout réel $x$
    $\begin{align*} g(x)&=\dfrac{2\e^x}{\e^x+1} \\
    &=\dfrac{2\e^x}{\e^x\left(1+\e^{-x}\right) }\\
    &=\dfrac{2}{1+\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$ et $\lim\limits_{x\to +\infty} g(x)=2$.
    La droite d’équation $y=2$ est donc asymptote à la courbe représentative de la fonction $g$ en $+\infty$.
    Réponse b
    $\quad$
  2. La fonction $f\dsec$ semble positive sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Par conséquent $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$.
    Réponse c
    $\quad$
  3. Pour tout $n\in \N$ on a :
    $\begin{align*} v_{n+1}&=u_{n+1}-2 \\
    &=\dfrac{1}{2}u_{n+1}+1-2 \\
    &=\dfrac{1}{2}u_{n+1}-1 \\
    &=\dfrac{1}{2}\left(u_n-2\right)\\
    &=\dfrac{1}{2}v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $\dfrac{1}{2}$.
    Réponse d
    $\quad$
  4. $0<\dfrac{1}{4}<1$ donc $\lim\limits_{n\to +\infty} \left(\dfrac{1}{4}\right)^n=0$. Par conséquent $\lim\limits_{n\to +\infty} 1+\left(\dfrac{1}{4}\right)^n=1$.
    $\begin{align*}\dfrac{n}{n+1}&=\dfrac{n}{n\left(1+\dfrac{1}{n}\right)}\\
    &=\dfrac{1}{1+\dfrac{1}{n}}\end{align*}$
    Or $\lim\limits_{n\to +\infty} \dfrac{1}{n}=0$.
    Par conséquent $\lim\limits_{n\to +\infty} \dfrac{n}{n+1}=1$ et $\lim\limits_{n\to +\infty} 2-\dfrac{n}{n+1}=1$.
    D’après le théorème des gendarmes, $\lim\limits_{n\to +\infty} u_n=1$.
    Réponse b
    $\quad$
  5. On considère la fonction $F$ définie sur $]0;+\infty[$ par $F(x)=\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$.
    La fonction $F$ est dérivable sur $]0;+\infty[$ en tant que produit de fonctions dérivables sur cet intervalle.
    Pour tout $x>0$ on a :
    $\begin{align*} F'(x)&=\dfrac{1}{3}\times 3x^2\left(\ln(x)-\dfrac{1}{3}\right)+\dfrac{1}{3}x^3\times \dfrac{1}{x}\\
    &=x^2\ln(x)-\dfrac{1}{3}x^2+\dfrac{1}{3}x^2 \\
    &=x^2\ln(x)\end{align*}$
    Ainsi $F$ est une primitive de la fonction $f$.
    Réponse a
    $\quad$
  6. Soit $x\in \R$
    $\begin{align*} 2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}&=\dfrac{2\e^{-x}+2+3\e^{-x}-5}{\e^{-x}+1} \\
    &=\dfrac{5\e^{-x}-3}{\e^{-x}+1} \\
    &=\dfrac{\e^{-x}\left(5-3\e^x\right)}{\e^{-x}\left(1+\e^x\right)} \\
    &=\dfrac{5-3\e^x}{1+\e^x}\end{align*}$
    Réponse a
    $\quad$

Ex 2

Exercice 2

  1. a. On a $p\left(\conj{M}\cap \conj{G}\right)=0,06$ et $p\left(\conj{M}\right)=1-0,7$ c’est-à-dire $p\left(\conj{M}\right)=0,3$.
    Or
    $\begin{align*} P_{\conj{M}}\left(\conj{G}\right)&=\dfrac{p\left(\conj{M}\cap \conj{G}\right)}{p\left(\conj{M}\right)} \\
    &=\dfrac{0,06}{0,3} \\
    &=0,2\end{align*}$
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    $\quad$
    c. On veut calculer
    $\begin{align*} p\left(G\cap \conj{M}\right)&=p\left(\conj{M}\right)\times p_{\conj{M}}(G) \\
    &=0,3\times 0,8\\
    &=0,24\end{align*}$
    La probabilité de l’événement « le client visite la grotte et ne visite pas le musée » est égale à $0,24$.
    $\quad$
    d. $\left(M,\conj{M}\right)$ forme un système complet d’événements fini. D’après la formule des probabilités totales :
    $\begin{align*} p(G)&=p(G\cap M)+p\left(\conj{M}\cap G\right) \\
    &=p(M)\times p_M(G)+p\left(\conj{M}\cap G\right) \\
    &=0,7\times 0,6+0,24 \\
    &=0,66\end{align*}$
    $\quad$
  2. On veut calculer
    $\begin{align*} p_G(M)&=\dfrac{p(G\cap M)}{p(G)} \\
    &=\dfrac{0,7\times 0,6}{0,66} \\
    &=\dfrac{7}{11} \\
    &>\dfrac{1}{2}
    \end{align*}$
    L’affirmation est donc exacte.
    $\quad$
  3. a. On a $T(\Omega)=\acco{0,~5,~12,~17}$
    $\begin{align*} p(T=0)&=p\left(\conj{G}\cap \conj{M}\right) \\
    &=0,06\end{align*}$
    $\begin{align*} p(T=5)&=p\left(G\cap \conj{M}\right) \\
    &=0,24\end{align*}$
    $\begin{align*} p(T=12)&=p\left(\conj{G}\cap M\right) \\
    &=0,28\end{align*}$
    $\begin{align*} p(T=17)&=p\left(G\cap M\right) \\
    &=0,42\end{align*}$
    Ainsi
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&5&12&17\\
    \hline
    p(T=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    $\quad$
    b. L’espérance mathématique de $T$ est donc
    $\begin{align*} E(T)&=0\times 0,06+5\times 0,24+12\times 0,28+17\times 0,42 \\
    &=11,7\end{align*}$
    $\quad$
    c. Un client dépense donc en moyenne $11,70$ €.
    On appelle $N$ le nombre moyen de clients par journée.
    $11,7N\pg 700 \ssi x\pg \dfrac{700}{11,7}$
    Or $\dfrac{700}{11,7}\approx 59,83$.
    Il faut donc, en moyenne, au moins $60$ clients par journée pour atteindre cet objectif.
    $\quad$
  4. On appelle $p$ le prix de la visite de la grotte. On appelle $T’$ la variable aléatoire qui modélise la somme dépensée par un client de l’hôtel pour ces visites. On obtient alors la loi de probabilité suivante
    $\begin{array}{|c|c|c|c|c|}
    \hline
    t&0&x&12&12+x\\
    \hline
    p(T’=t)&0,06&0,24&0,28&0,42\\
    \hline
    \end{array}$
    Son espérance est donc
    $\begin{align*} E(T’)&=0,24x+12\times 0,28+0,42(12+x) \\
    &=0,24x+3,36+5,04+0,42x \\
    &=8,4+0,66x\end{align*}$
    $\begin{align*} E(T’)=15&\ssi 8,4+0,66x=15 \\
    &\ssi 0,66x=6,6 \\
    &\ssi x=10\end{align*}$
    Le prix de la visite de la grotte devrait donc être de $10$ euros pour atteindre l’objectif.
    $\quad$
  5. On appelle $X$ la variable aléatoire comptant le nombre de clients ayant visité la grotte. On répète $100$ fois de façon indépendante la même expérience de Bernoulli de paramètre $0,66$.
    $X$ suit donc la loi binomiale de paramètres $n=100$ et $p=0,66$.
    D’après la calculatrice :
    $\begin{align*} P(X\pg 75)&=1-P(X\pp 74) \\
    &\approx 0,034\end{align*}$
    La probabilité qu’au moins les trois quarts des clients de l’hôtel aient visité la grotte est environ égale à $0,034$.
    $\quad$

Ex 3

Exercice 3

Partie A

  1. Par croissances comparées,$\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x}=0$.
    $\quad$
  2. a. Pour tout réel $x\pg 1$ on a :
    $\begin{align*} f'(x)&=\dfrac{\dfrac{1}{x}\times x-\ln(x)}{x^2} \\
    &=\dfrac{1-\ln(x)}{x^2}\end{align*}$
    $\quad$
    b. Pour tout réel $x\pg 1$ on a $x^2\pg 1$
    $1-\ln(x)=0\ssi \ln(x)=1\ssi x=\e$ donc $f'(x)=0 \ssi x=\e$
    $1-\ln(x)>0 \ssi \ln(x)<1 \ssi x<\e$ donc $f'(x)>0 \ssi x\in [1;\e]$
    $1-\ln(x)<0 \ssi \ln(x)>1 \ssi x>\e$ donc $f'(x)>0 \ssi x\in [\e;+\infty[$
    $\quad$
    c. On obtient donc le tableau de variations suivant :
    $\quad$

    $\quad$
  3. a. Soit $k$ un réel, $0\pp k \pp \e^{-1}$. La fonction $f$ est continue et strictement croissante sur $[1;\e]$.
    $f(1)=0\pp k$ et $f(\e)=\e^{-1}\pg k$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=k$ admet une unique solution $\alpha$ sur l’intervalle $[1;\e]$.
    $\quad$
    b. Soit $k$ strictement supérieur à $\dfrac{1}{\e}$.
    Pour tout réel $x\pg 1$ on a $fx)\pp \e^{-1}$.
    Par conséquent l’équation $f(x)=k$ n’admet aucune solution sur $[1;+\infty[$.
    $\quad$

Partie B

  1. La fonction $g$ est dérivable sur $\R$ comme composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $g'(x)=\dfrac{1}{4}\e^{\frac{x}{4}}>0$ car la fonction exponentielle est strictement positive.
    La fonction $g$ est donc strictement croissante sur $\R$.
    $\quad$
  2. Pour tout $n\in \N$ on pose $P(n):~u_n \pp u_{n+1} \pp \e$.
    Initialisation : $u_0=1$ et $u_1=\e^{\frac{1}{4}}\approx 1,28$
    Par conséquent $u_0\pp u_1 \pp \e$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $u_n \pp u_{n+1} \pp \e$. La fonction $g$ est strictement croissante sur $[1;\e]$. Par conséquent :
    $g\left(u_{n+1}\right) \pp g\left(u_{n+1}\right) \pp g(\e)$ soit $u_{n+1} \pp u_{n+2} \pp \e^{-1}\pp \e$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    D’après le principe de récurrence, pour tout entier naturel $n$, on a $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. La suite $\left(u_n\right)$ est croissante et majorée par $\e$.
    Par conséquent $\left(u_n\right)$ converge vers un réel $\ell$.
    $\quad$
  4. $\e^{\frac{x}{4}}=x \ssi \dfrac{x}{4}=\ln(x) \ssi \dfrac{1}{4}=\dfrac{\ln(x)}{x} \ssi f(x)=\dfrac{1}{4}$
    $\quad$
  5. D’après la calculatrice une solution de l’équation $f(x)=\dfrac{1}{4}$ est environ égale à $1,43$ qui appartient bien à $[1;\e]$.
    Ainsi $\ell \approx 1,43$.

Ex 4

Exercice 4

  1. a. $\vect{DE}\begin{pmatrix} 12\\-15\\-6\end{pmatrix}$
    Par conséquent $\dfrac{1}{3}\vect{DE}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$ est un vecteur directeur de $\Delta$.
    Ainsi, une représentation paramétrique de $\Delta$ est $\begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\end{cases} \qquad t\in \R$.
    $\quad$
    b. $\Delta$ et $\Delta’$ sont parallèles. Un vecteur directeur de de $\Delta$ est donc également un vecteur directeur de $\Delta’$.
    Une représentation paramétrique de $\Delta’$ est donc $\begin{cases} x=4t\\y=-5t\\z=-2t\end{cases} \qquad t\in \R$.
    $\quad$
    c. $4t=1,36 \ssi t=0,34$
    De plus $-5\times 0,34=-1,7$ et $-2\times 0,34=-0,68 \neq -0,7$.
    Donc $F$ n’appartient pas à la droite $\Delta’$.
    $\quad$
  2. a. $\vect{AB}\begin{pmatrix}2\\2\\-1\end{pmatrix}$ et $\vect{AC}\begin{pmatrix}2\\0\\4\end{pmatrix}$.
    Ces deux vecteurs ne sont clairement pas colinéaires (aucune coordonnée nulle pour le vecteur $\vect{AB}$). Les points $A$, $B$ et $C$ définissent donc bien un plan.
    $\quad$
    b. On note $\vec{n}\begin{pmatrix}4\\-5\\-2\end{pmatrix}$.
    $\vec{n}.\vect{AB}=8-10+2=0$ et $\vec{n}.\vect{AC}=8+0-8=0$.
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    La droite $\Delta$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Une équation du plan $(ABC)$ est donc de la forme $4x-5y-2z+d=0$.
    Le point $A(-1;-1;3)$ appartient au plan $(ABC)$.
    Par conséquent $-4+5-6+d=0 \ssi d=5$.
    Une équation cartésienne du plan $(ABC)$ est donc $4x-5y-2z+5=0$.
    $\quad$
  3. a. Prenons $t=2$ dans la représentation paramétrique de $\Delta$.
    Le point de coordonnées $(7;-4;5)$ appartient donc à la droite $\Delta$.
    Donc $G(7;-4;4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Les coordonnées du point $H$ sont solution du système
    $\begin{align*} \begin{cases} 4x-5y-2z+5=0\\x=-1+4t\\y=6-5t\\z=8-2t\end{cases}&\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\-4+16t-30+25t-16+4t+5=0\end{cases} \\
    &\ssi \begin{cases} x=-1+4t\\y=6-5t\\z=8-2t\\45t=45\end{cases} \\
    &\ssi \begin{cases} t=1\\x=3\\y=1\\z=6\end{cases} \end{align*}$.
    Le point $H$ a donc pour coordonnées $(3;1;6)$.
    $\quad$
    c. La distance du point $G$ au plan $(ABC)$ est par conséquent $HG$.
    Or $\vect{HG}$ a pour coordonnées $\begin{pmatrix} -4\\5\\2\end{pmatrix}$
    Ainsi
    $\begin{align*} HG&=\sqrt{(-4)^2+5^2+2^2} \\
    &=\sqrt{16+25+4} \\
    &=\sqrt{45} \\
    &=\sqrt{9\times 5}\\
    &=3\sqrt{5}\end{align*}$
    $\quad$
  4. a. $\vect{AB}.\vect{AC}=4+0-4=0$.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b. $AB=\sqrt{9}=3$ et $AC=\sqrt{20}=2\sqrt{5}$
    Le volume du tétraèdre $ABCG$ est donc
    $\begin{align*} V&=\dfrac{\dfrac{AB\times AC}{2}\times HG}{3} \\
    &=\dfrac{3\times \sqrt{5}\times 3\sqrt{5}}{3} \\
    &=15\end{align*}$
    $\quad$

Énoncé

Le sujet propose 4 exercices
Le candidat choisit 3 exercices parmi les 4 exercices et ne doit traiter que ces 3 exercices.

Exercice 1     7 points
Thèmes : fonctions, suites

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $g$ définie sur $\R$ par : $g(x)=\dfrac{2\e^x}{\e^x+1}$.
    La courbe représentative de la fonction $g$ admet pour asymptote en $+\infty$ la droite d’équation :
    a. $x=2$;
    b. $y=2$;
    c. $y=0$
    d. $x=-1$.
    $\quad$
  2. On considère une fonction $f$ définie et deux fois dérivable sur $\R$.
    On appelle $C$ sa représentation graphique.
    $\quad$
    On désigne par $f\dsec$ la dérivée seconde de $f$.
    $\quad$
    On a représenté sur le graphique ci-dessous la courbe de $f\dsec$, notée $C\dsec$.
    $\quad$

    $\quad$
    a. $C$ admet un unique point d’inflexion;
    b. $f$ est convexe sur l’intervalle $[-1;2]$;
    c. $f$ est convexe sur $]-\infty;-1]$ et sur $[2;+\infty[$;
    d. $f$ est convexe sur $\R$.
    $\quad$
  3. On donne la suite $\left(u_n\right)$ définie par : $u_0= 0$ et pour tout entier naturel $n$, $u_{n+1}=\dfrac{1}{2}u_n+1$.
    La suite $\left(v_n\right)$, définie pour tout entier naturel $n$ par $v_n=u_n-2$, est :
    a. arithmétique de raison $-2$;
    b. géométrique de raison $-2$;
    c. arithmétique de raison $1$;
    d. géométrique de raison $\dfrac{1}{2}$.
    $\quad$
  4. On considère une suite $\left(u_n\right)$ telle que, pour tout entier naturel $n$, on a : $$1+\left(\dfrac{1}{4}\right)^n \pp u_n \pp 2-\dfrac{n}{n+1}$$
    On peut affirmer que la suite $\left(u_n\right)$ :
    a. converge vers $2$;
    b. converge vers $1$;
    c. diverge vers $+\infty$;
    d. n’a pas de limite.
    $\quad$
  5. Soit $f$ la fonction définie sur $]0; +\infty[$ par $f(x)=x^2\ln(x)$.
    Une primitive $F$ de $f$ sur $]0; +\infty[$ est définie par :
    a. $F(x) =\dfrac{1}{3}x^3\left(\ln(x)-\dfrac{1}{3}\right)$;
    b. $F(x) = \dfrac{1}{3}x^3\left(\ln(x)-1\right)$;
    c. $F(x) = \dfrac{1}{3}x^2$;
    d. $F(x) = \dfrac{1}{3}x^2\left(\ln(x)-1\right)$.
    $\quad$
  6. Pour tout réel $x$ , l’expression $2+\dfrac{3\e^{-x}-5}{\e^{-x}+1}$ est égale à :
    a. $\dfrac{5-3\e^x}{1+\e^x}$;
    b. $\dfrac{5+3\e^x}{1-\e^x}$;
    c. $\dfrac{5+3\e^x}{1+\e^x}$;
    d. $\dfrac{5-3\e^x}{1-\e^x}$.
    $\quad$

$\quad$

Exercice 2     7 points
Thème : probabilités

Un hôtel situé à proximité d’un site touristique dédié à la préhistoire propose deux visites dans les environs, celle d’un musée et celle d’une grotte.

Une étude a montré que $70\%$ des clients de l’hôtel visitent le musée. De plus, parmi les clients visitant le musée, $60\%$ visitent la grotte.
Cette étude montre aussi que $6\%$ des clients de l’hôtel ne font aucune visite.
On interroge au hasard un client de l’hôtel et on note :

  • $M$ l’événement : « le client visite le musée » ;
  • $G$ l’événement : « le client visite la grotte ».

On note $\conj{M}$ l’événement contraire de $M$, $\conj{G}$ l’événement contraire de $G$, et pour tout événement $E$, on note $p(E)$ la probabilité de $E$.

Ainsi, d’après l’énoncé, on a : $p\left(\conj{M}\cap \conj{G}\right)= 0,06$

  1. a. Vérifier que $p_{\conj{M}}\left(\conj{G}\right) = 0,2$, où $p_{\conj{M}}\left(\conj{G}\right)$ désigne la probabilité que le client interrogé ne visite pas la grotte sachant qu’il ne visite pas le musée.
    $\quad$
    b. L’arbre pondéré ci-dessous modélise la situation. Recopier et
    compléter cet arbre en indiquant sur chaque branche la probabilité
    associée.
    $\quad$
    $\quad$
    c. Quelle est la probabilité de l’événement « le client visite la grotte et ne visite pas le musée » ?
    $\quad$
    d. Montrer que $p(G) = 0,66$.
    $\quad$
  2. Le responsable de l’hôtel affirme que parmi les clients qui visitent la grotte, plus de la moitié visitent également le musée. Cette affirmation est-elle exacte ?
    $\quad$
  3. Les tarifs pour les visites sont les suivants :
    $\bullet$ visite du musée : $12$ euros ;
    $\bullet$ visite de la grotte : $5$ euros.
    On considère la variable aléatoire $T$ qui modélise la somme dépensée par un client de l’hôtel pour ces visites.
    a. Donner la loi de probabilité de $T$. On présentera les résultats sous la forme d’un tableau.
    $\quad$
    b. Calculer l’espérance mathématique de $T$.
    $\quad$
    c. Pour des questions de rentabilité, le responsable de l’hôtel estime que le montant moyen des recettes des visites doit être supérieur à $700$ euros par jour. Déterminer le nombre moyen de clients par journée permettant d’atteindre cet objectif.
    $\quad$
  4. Pour augmenter les recettes, le responsable souhaite que l’espérance de la variable aléatoire modélisant la somme dépensée par un client de l’hôtel pour ces visites passe à $15$ euros, sans modifier le prix de visite du musée qui demeure à $12$ euros. Quel prix faut-il fixer pour la visite de la grotte afin d’atteindre cet objectif ? (On admettra que l’augmentation du
    prix d’entrée de la grotte ne modifie pas la fréquentation des deux sites).
    $\quad$
  5.  On choisit au hasard $100$ clients de l’hôtel, en assimilant ce choix à un tirage avec remise. Quelle est la probabilité qu’au moins les trois quarts de ces clients aient visité la grotte à l’occasion de leur séjour à l’hôtel ? On donnera une valeur du résultat à $10^{-3}$ près.
    $\quad$

$\quad$

Exercice 3     7 points
Thèmes : fonctions logarithme et exponentielle, suites

Les parties A et B sont, dans une large mesure, indépendantes.

Partie A

On considère la fonction $f$ définie sur l’intervalle $[1 ; +\infty[$ par $f(x)=\dfrac{\ln(x)}{x}$, où $\ln$ désigne la fonction logarithme népérien.

  1. Donner la limite de la fonction $f$ en $+\infty$.
    $\quad$
  2. On admet que la fonction $f$ est dérivable sur l’intervalle $[1 ; +\infty[$ et on note $f’$ sa fonction dérivée.
    a. Montrer que, pour tout nombre réel $x\pg 1$, $f'(x)=\dfrac{1-\ln(x)}{x^2}$.
    $\quad$
    b. Justifier le tableau de signes suivant, donnant le signe de $f'(x)$ suivant les valeurs de $x$.
    $\quad$

    $\quad$
    c. Dresser le tableau de variations complet de la fonction $f$.
    $\quad$
  3. Soit $k$ un nombre réel positif ou nul.
    a. Montrer que, si $0\pp k\pp \dfrac{1}{\e}$, l’équation $f(x)=k$ admet une unique solution sur l’intervalle $[1 ;\e]$.
    $\quad$
    b. Si $k>\dfrac{1}{\e}$, l’équation $f(x) = k$ admet-elle des solutions sur l’intervalle $[1 ; +\infty[$ ?
    Justifier.
    $\quad$

Partie B

Soit $g$ la fonction définie sur $\R$ par : $g(x)=\e^{\frac{x}{4}}$.
On considère la suite $\left(u_n\right)$ définie par $u_0 = 1$ et, pour tout entier naturel $n$ : $$u_{n+1}=\e^{\frac{u_n}{4}} \text{  c’est à dire : } u_{n+1}=g\left(u_n\right)$$

  1. Justifier que la fonction $g$ est croissante sur $\R$.
    $\quad$
  2. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n\pp u_{n+1} \pp \e$.
    $\quad$
  3. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

On note $\ell$ la limite de la suite $\left(u_n\right)$, et on admet que $\ell$ est solution de l’équation : $$\e^{\frac{x}{4}}=x$$

  1. En déduire que $\ell$ est solution de l’équation $f(x)=\dfrac{1}{4}$, où $f$ est la fonction étudiée dans la partie A.
    $\quad$
  2. Donner une valeur approchée à $10^{-2}$ près de la limite $\ell$ de la suite $\left(u_n\right)$.
    $\quad$

$\quad$

Exercice 4     7 points
Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$, on considère les points
$A(-1 ; -1 ; 3)$, $B(1 ; 1 ; 2)$, $C(1 ; -1 ; 7)$.
On considère également la droite ∆ passant par les points $D(-1 ; 6 ; 8)$ et $E(11 ; -9 ; 2)$.

  1. a. Vérifier que la droite $\Delta$ admet pour représentation paramétrique :
    $$\begin{cases}x = -1 + 4t\\y = 6-5t\\z = 8-2t\end{cases} \quad \text{avec }t\in \R$$
    $\quad$
    b. Préciser une représentation paramétrique de la droite $\Delta’$ parallèle à $\Delta$ et passant par l’origine $O$ du repère.
    $\quad$
    c. Le point $F(1,36 ; -1,7 ; -0,7)$ appartient-il à la droite $\Delta’$ ?
    $\quad$
  2. a. Montrer que les points $A$, $B$ et $C$ définissent un plan.
    $\quad$
    b. Montrer que la droite $\Delta$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. Montrer qu’une équation cartésienne du plan $(ABC)$ est : $4x-5y-2z+5=0$.
    $\quad$
  3. a. Montrer que le point $G(7; -4; 4)$ appartient à la droite $\Delta$.
    $\quad$
    b. Déterminer les coordonnées du point $H$, projeté orthogonal du point $G$ sur le plan $(ABC)$.
    $\quad$
    c. En déduire que la distance du point $G$ au plan $(ABC)$ est égale à $3\sqrt{5}$.
    $\quad$
  4. a. Montrer que le triangle $ABC$ est rectangle en $A$.
    $\quad$
    b. Calculer le volume $V$ du tétraèdre $ABCG$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ est l’aire d’une base et $h$ la hauteur correspondant à cette base.
    $\quad$

$\quad$

Bac – Spécialité mathématiques – Asie – sujet 2 – 18 mai 2022

Centres étrangers – Asie – 18 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. $\vect{AB}\begin{pmatrix} 5\\1\\0\end{pmatrix}$, $\vect{DC}\begin{pmatrix} 5\\1\\0\end{pmatrix}$ et $\vect{AD}\begin{pmatrix} -1\\5\\-4\end{pmatrix}$.
    $\quad$
    b. $\vect{AB}=\vect{DC}$ donc $ABCD$ est un parallélogramme.
    De plus
    $\begin{align*} \vect{AB}.\vect{AD}&=5\times (-1)+1\times 5+0\times (-4) \\
    &=-5+5+0\\
    &=0\end{align*}$
    $ABCD$ est donc un parallélogramme dont deux côtés consécutifs sont perpendiculaires.
    Par conséquent $ABCD$ est un rectangle.
    $\quad$
    c. On a
    $\begin{align*} AB&=\sqrt{5^2+1^2+0^2} \\
    &=\sqrt{26}\end{align*}$
    et
    $\begin{align*} AD&=\sqrt{(-1)^2+5^2+(-4)^2} \\
    &=\sqrt{42}\end{align*}$
    L’aire du rectangle $ABCD$ est donc
    $\begin{align*} \mathscr{A}&=AB\times AD \\
    &=\sqrt{26}\times \sqrt{42}\\
    &=2\sqrt{273}\end{align*}$
    $\quad$
  2. a. Les vecteurs $\vect{AB}$ et $\vect{AD}$ ne sont pas colinéaires (une des coordonnées de $\vect{AB}$ est nulle tandis que la même coordonnée de $\vect{AD}$ ne l’est pas).
    Ainsi $A$, $B$ et $D$ définissent bien un plan.
    $\quad$
    b. D’une part
    $\begin{align*} \vec{n}.\vect{AB}&=-2\times 5+10\times 1+13\times 0\\
    &=-10+10+0\\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{n}.\vect{AD}&=-2\times (-1)+10\times 5+13\times (-4)\\
    &=2+50-52\\
    &=0\end{align*}$
    Le vecteur $\vec{n}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABD)$.
    $\vec{n}$ est donc normal au plan $(ABD)$.
    $\quad$
    c. Une équation cartésienne du plan $(ABD)$ est donc de la forme $-2x+10y+13z+d=0$.
    Le point $A(-3;1;3)$ appartient à ce plan.
    Par conséquent $6+10+39+d=0\ssi d=-55$
    Une équation cartésienne du plan $(ABD)$ est donc $-2x+10y+13z-55=0$.
    $\quad$
  3. a. Le vecteur $\vec{n}$ est un vecteur directeur de la droite $\Delta$.
    Une représentation paramétrique de la droite $\Delta$ est donc $$\begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\end{cases} \quad t\in \R$$
    $\quad$
    b. Les coordonnées du point $I$ sont solution du système:
    $\begin{align*} \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\-2x+10y+13z-55=0\end{cases}&\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\-2(-3-2t)+10(14+10t)+13(14+13t)-55=0\end{cases} \\
    &\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\6+4t+140+100t+182+169t-55=0\end{cases}\\
    &\ssi \begin{cases} x=-3-2t\\y=14+10t\\z=14+13t\\273t+273=0\end{cases}\\
    &\ssi \begin{cases} t=-1\\x=-1\\y=4\\z=1\end{cases}\end{align*}$
    Le point $I$ a donc pour coordonnées $(-1;4;1)$.
    $\quad$
    c. $\vect{IK}\begin{pmatrix} -2\\10\\13\end{pmatrix}$
    Donc
    $\begin{align*} IK&=\sqrt{(-2)^2+10^2+13^2} \\
    &=\sqrt{273}\end{align*}$
    Ainsi la hauteur de la pyramide $KABCD$ de base $ABCD$ et de sommet $K$ vaut bien $\sqrt{273}$.
    $\quad$
  4. Le volume de la pyramide $KABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times IK \\
    &=\dfrac{1}{3}\times 2\sqrt{273}\times \sqrt{273} \\
    &=182\end{align*}$
    $\quad$

 

 

Ex 2

Exercice 2

Partie A

  1. La courbe $\mathscr{C}_2$ représente une fonction qui semble être strictement positive et strictement décroissante sur $]3;+\infty[$. La courbe de sa fonction dérivée est  strictement située en dessous de l’axe des abscisses ce qui n’est pas le cas de la courbe $\mathscr{C}_1$.
    En revanche la courbe $\mathscr{C}_1$ semble représenter une fonction strictement croissante. La courbe de sa fonction dérivée est donc située strictement au-dessus de l’axe des abscisses.
    Ainsi $f$ est représentée par $\mathscr{C}_1$ et $f’$ par $\mathscr{C}_2$.
    $\quad$
  2. Graphiquement l’équation $f(x)=3$ admet une unique solution qui vaut environ $5,6$.
    $\quad$
  3. Graphiquement la fonction $f$ semble être concave sur $\R$.
    $\quad$

Partie B

  1. On étudie le signe de la fonction $g$ définie sur $]3;+\infty[$ par $g(x)=x^2-x-6$.
    Le discriminant est $\Delta =25>0$.
    Les racines de $x^2-x-6$ sont donc $x_1=\dfrac{1-\sqrt{25}}{2}=-2$ et $x_2=\dfrac{1+\sqrt{25}}{2}=3$.
    Le coefficient principale de $x^2-x-6$ est $a=1>0$.
    Ainsi $g(x)>0$ sur $]3;+\infty[$.
    Par conséquent $\ln\left(x^2-x-6\right)$ est bien définie sur $]3;+\infty[$.
    $\quad$
  2. $\lim\limits_{x\to 3^+} x^2-x-6=0$ et $\lim\limits_{X\to 0^+} \ln(X)=-\infty$ donc $\lim\limits_{x\to 3^+} f(x)=-\infty$.
    $\lim\limits_{x\to +\infty} x^2-x-6=+\infty$ (fonction du second degré dont le coefficient principal est positif) et $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ donc $\lim\limits_{x\to +\infty} f(x)=+\infty$.
    $\quad$
    La droite d’équation $x=3$ est donc asymptote à la courbe représentative de la fonction $f$.
    $\quad$
  3. a. La fonction $f$ est dérivable sur $I$ en tant que composée de fonctions dérivables.
    Pour tout réel $x\in I$ on a $f'(x)=\dfrac{2x-1}{x^2-x-6}$.
    $\quad$
    b. Pour tout réel $x\in I$ on a $x^2-x-6>0$. Ainsi, $f'(x)$ est du signe de $2x-1$.
    $2x-1=0\ssi 2x=1\ssi x=\dfrac{1}{2}$
    $2x-1>0 \ssi 2x>1\ssi x>\dfrac{1}{2}$
    Or $\dfrac{1}{2}<3$. Ainsi, pour tout réel $x\in I$, $f'(x)>0$.
    On obtient donc le tableau de variations suivant :$\quad$
  4. a. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]3;+\infty[$ et donc sur $]5;6[$.
    De plus $f(5)\approx 2,64<3$ et $f(6)\approx 3,18>3$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(x)=3$ admet une unique solution sur l’intervalle $]5;6[$.
    $\quad$
    b. D’après la calculatrice $5,63<\alpha<5,64$.
    $\quad$
  5. a. La fonction $f’$ est dérivable sur $]3;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Ainsi, pour tout réel $x\in I$
    $\begin{align*} f\dsec(x)&=\dfrac{2\left(x^2-x-6\right)-(2x-1)^2}{\left(x^2-x-6\right)^2} \\
    &=\dfrac{2x^2-2x-12-\left(4x^2-4x+1\right)}{\left(x^2-x-6\right)^2} \\
    &=\dfrac{-2x^2+2x-13}{\left(x^2-x-6\right)^2} \end{align*}$
    $\quad$
    b. Un carré étant toujours positif, le signe de $f\dsec(x)$ ne dépend que de celui de $-2x^2+2x-13$.
    Son discriminant est $\Delta=-100<0$
    Le coefficient principal du polynôme du second degré est $a=-2<0$.
    Ainsi, pour tout réel $x\in I$, $-2x^2+2x-13<0$.
    Par conséquent, pour tout réel $x\in I$, $f\dsec(x)<0$ et la fonction $f$ est concave sur $I$.
    $\quad$

Ex 3

Exercice 3

Partie 1

  1. S’il prend le bus de 8 h, il est sûr d’être à l’heure à l’aéroport à temps pour son vol. Donc $P_B(V)=1$.
    $\quad$
  2. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  3. $\left(B,\conj{B}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(V)&=P(B\cap V)+P\left(\conj{B}\cap V\right) \\
    &=P(B)\times P_B(V)+P\left(\conj{B}\right)\times P_{\conj{B}}(V) \\
    &=0,2\times 1+0,8\times 0,5 \\
    &=0,6\end{align*}$
    $\quad$
  4. On veut calculer
    $\begin{align*} P_V(B)&=\dfrac{P(V\cap B)}{P(V)} \\
    &=\dfrac{0,2\times 1}{0,6}\\
    &=\dfrac{1}{3}\end{align*}$
    La probabilité que Julien soit arrivé à l’aéroport en bus sachant qu’il est à l’heure à l’aéroport pour son vol est égale à $\dfrac{1}{3}$.
    $\quad$

Partie 2

  1. On répète, de façon indépendante, $206$ fois la même expérience de Bernoulli. $X$ compte le nombre de passagers se présentant à l’embarquement.
    Donc $X$ suit la loi binomiale de paramètres $n=206$ et $p=0,95$.
    $\quad$
  2. L’espérance mathématique de $X$ est
    $\begin{align*} E(X)&=np\\
    &=206\times 0,95 \\
    &=195,7\end{align*}$
    En moyenne, $195,7$ (soit environ $196$) passagers vont se présenter à l’embarquement.
    $\quad$
  3. On a
    $\begin{align*} P(X=201)&=\dbinom{206}{201} \times 0,95^{201}\times 0,05^5 \\
    &\approx 0,031\end{align*}$
    La probabilité que $201$ passagers se présentent à l’embarquement est environ égale à $0,031$.
    $\quad$
  4. D’après la calculatrice, $P(X\pp 200)\approx 0,948$.
    La probabilité que le nombre de passagers se présentant à l’embarquement soit inférieur à la capacité de l’avion est environ égale à $0,948$.
    $\quad$
  5. a. On a :
    $\begin{align*} P(Y=6)&=1-\left(P(Y=0)+P(Y=1)+\ldots+P(Y=5)\right) \\
    &=0,000~03\end{align*}$
    $\quad$
    b. $206$ billets ont été vendus. La compagnie a donc encaissé $206\times 250=51~500$ euros.
    Pour chaque passager lésé la compagnie doit payer $250+600=850$ euros.
    Il y a $Y$ passagers lésés.
    Ainsi $C=51~500-850Y$.
    $\quad$
    c. La loi de probabilité de $C$ est donc donnée par le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|}
    \hline
    c_i&51~500&50~650&49~800&48~950&48100&47~250&46~400 \\
    \hline
    P\left(C=c_i\right)&0,947~75&0,030~63&0,014~41&0,005~39&0,001~51&0,000~28&0,000~03\\
    \hline
    \end{array}$$
    L’espérance mathématique de $C$ est
    $\begin{align*} E(C)&=51~500\times P(C=51~500)+49~800\times P(C=50~650)+\ldots+46~400\times P(C=46~400) \\
    &=51~429,25\end{align*}$
    $\quad$
    Remarque : On pouvait également procéder autrement :
    Par linéarité de l’espérance on a :
    $\begin{align*} E(C)&=E(51~500-850Y)\\
    &=51~ 500-850E(Y)\end{align*}$
    On calcule maintenant l’espérance de $Y$.
    $\begin{align*} E(Y)&=1\times P(Y=1)+2\times P(Y=2)+\ldots+6\times P(Y=6) \\
    &= 0,083~24\end{align*}$
    Donc
    $\begin{align*} E(C)&=51~500-850\times 0,083~24 \\
    &=51~429,25\end{align*}$
    $\quad$
    d. En vendant $200$ billets le chiffre d’affaires est $200\times 250=50~000$ euros.
    Ainsi le chiffre d’affaires moyen en pratiquant le surbooking est supérieur à celui obtenu en vendant exactement $200$ billets.
    $\quad$

 

Ex 4

Exercice 4

  1. a. On a
    $\begin{align*} p_1&=0,3+0,7p_0^2 \\
    &=0,3+0,7\times 0,3^2 \\
    &=0,363\end{align*}$
    et
    $\begin{align*} p_2&=0,3+0,7p_1^2 \\
    &=0,3+0,7\times 0,363^2 \\
    &=0,392~238~3\end{align*}$
    La probabilité que la bactérie ait au plus une seule descendance est égale à $0,363$ et la probabilité qu’elle ait au plus deux descendance est égale à $0,392~238~3$.
    $\quad$
    b. La probabilité d’obtenir au moins $11$ générations de bactérie est $1-p_{10}\approx 0,572$.
    $\quad$
    c. La suite $\left(p_n\right)$ semble être croissante et converger vers un réel sont la valeur est environ égale à $0,428~5$.
    $\quad$
  2. a. Pour tout entier naturel $n$ on pose $R(n):~0\pp p_n\pp p_{n+1} \pp 0,5$.
    Initialisation : $p_0=0,3$ et $p_1=0,363$ donc $0\pp p_0\pp p_1 \pp 0,5$.
    Par conséquent $R(0)$ est vraie.
    $\quad$Hérédité : Soit $n\in \N$. On suppose $R(n)$ vraie.
    $\begin{align*} 0\pp p_n\pp p_{n+1}\pp 0,5&\Rightarrow 0 \pp p_n^2\pp p_{n+1}^2 \pp 0,25 \\
    &\Rightarrow 0 \pp 0,7p_n^2\pp 0,7p_{n+1}^2 \pp 0,175 \\
    &\Rightarrow 0,3 \pp 0,3+0,7p_n^2\pp 0,3+0,7p_{n+1}^2 \pp 0,475 \end{align*}$
    Par conséquent $0\pp 0,3\pp p_{n+1}\pp p_{n+2} \pp 0,475\pp 0,5$ et $R(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $0\pp p_n\pp p_{n+1} \pp 0,5$.
    $\quad$
    b. La suite $\left(p_n\right)$ est croissante et majorée par $0,5$; elle converge donc vers un réel $L$.
    $\quad$
  3. a. La fonction $f:~x\mapsto 0,3+0,7x^2$ est continue sur $\R$ et, pour tout $n\in \N$, $p_{n+1}=f\left(p_n\right)$.
    Ainsi $L$ est solution de l’équation $x=f(x)$ soit $0,7x^2-x+0,3=0$.
    $\quad$
    b. Le discriminant de $0,7x^2-x+0,3$ est $\Delta =0,16>0$.
    Ce polynôme du second degré admet donc deux racines : $x_1=\dfrac{1-\sqrt{0,16}}{1,4}=\dfrac{3}{7}$ et $x_2=\dfrac{1+\sqrt{0,16}}{1,4}=1$.
    Seule $x_1$ appartient à l’intervalle $[0;0,5]$.
    Donc $L=\dfrac{3}{7}$.
    $\quad$
  4. On obtient la fonction suivante :
    $$\begin{array}{|l|}
    \hline
    \text{def suite(n) :}\\
    \quad \text{p = 0.3}\\
    \quad \text{s= [p]}\\
    \quad \text{for i in range(n – 1):}\\
    \qquad \text{p = 0.3 + 0.7 * p ** 2}\\
    \qquad \text{s.append(p)}\\
    \quad \text{return (s)}\\
    \hline
    \end{array}$$
    $\quad$

 

Énoncé

Exercice 1     7 points

Principaux domaines abordés : Manipulation des vecteurs, des droites et des plans de l’espace. Orthogonalité et distances dans l’espace. Représentations paramétriques et équations cartésiennes.

Dans un repère orthonormé $\Oijk$ de l’espace, on considère les points $$A(-3 ; 1 ; 3),~B(2 ; 2 ; 3),~C(1 ; 7 ; -1),~D(-4 ; 6 ; -1) \text{ et } K(-3 ; 14 ; 14)$$

  1. a. Calculer les coordonnées des vecteurs $\vect{AB}$, $\vect{DC}$ et $\vect{AD}$.
    $\quad$
    b. Montrer que le quadrilatère $ABCD$ est un rectangle.
    $\quad$
    c. Calculer l’aire du rectangle $ABCD$.
    $\quad$
  2. a. Justifier que les points $A$, $B$ et $D$ définissent un plan.
    $\quad$
    b. Montrer que le vecteur $\vec{n}(-2 ; 10 ; 13)$ est un vecteur normal au plan $(ABD)$.
    $\quad$
    c. En déduire une équation cartésienne du plan $(ABD)$.
    $\quad$
  3. a. Donner une représentation paramétrique de la droite $\Delta$ orthogonale au plan $(ABD)$ et qui passe par le point $K$.
    $\quad$
    b. Déterminer les coordonnées du point $I$, projeté orthogonal du point $K$ sur le plan $(ABD)$.
    $\quad$
    c. Montrer que la hauteur de la pyramide $KABCD$ de base $ABCD$ et de sommet $K$ vaut $\sqrt{273}$.
    $\quad$
  4. Calculer le volume $V$ de la pyramide $KABCD$.
    On rappelle que le volume $V$ d’une pyramide est donné par la formule : $$V =\dfrac{1}{3}\times \text{aire de la base} \times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : Étude des fonctions. Fonction logarithme.

Partie A

 

Dans le repère orthonormé ci-dessus, sont tracées les courbes représentatives d’une fonction $f$ et de sa fonction dérivée, notée $f’$
, toutes deux définies sur $]3 ; +\infty[$.

  1. Associer à chaque courbe la fonction qu’elle représente. Justifier.
    $\quad$
  2. Déterminer graphiquement la ou les solutions éventuelles de l’équation $f (x) = 3$.
    $\quad$
  3. Indiquer, par lecture graphique, la convexité de la fonction $f$.
    $\quad$

Partie B

  1. Justifier que la quantité $\ln\left(x^2-x-6\right)$ est bien définie pour les valeurs $x$ de l’intervalle $]3 ; +\infty[$, que l’on nommera $I$ dans la suite.
    $\quad$
  2. On admet que la fonction $f$ de la Partie A est définie par $f(x)=\ln\left(x^2-x-6\right)$ sur $I$.
    Calculer les limites de la fonction $f$ aux deux bornes de l’intervalle $I$.
    En déduire une équation d’une asymptote à la courbe représentative de la fonction $f$ sur $I$.
    $\quad$
  3. a. Calculer $f'(x)$ pour tout $x$ appartenant à $I$.
    $\quad$
    b. Étudier le sens de variation de la fonction $f$ sur $I$.
    Dresser le tableau des variations de la fonction $f$ en y faisant figurer les limites aux bornes de $I$.
    $\quad$
  4. a. Justifier que l’équation $f(x) = 3$ admet une unique solution $\alpha$ sur l’intervalle $]5; 6[.$
    $\quad$
    b. Déterminer, à l’aide de la calculatrice, un encadrement de $\alpha$ à $10^{-2}$ près.
    $\quad$
  5. a. Justifier que $f\dsec(x)=\dfrac{-2x^2+2x-13}{\left(x^2-x-6\right)^2}$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $I$.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés: Probabilités conditionnelles et indépendance. Variables aléatoires.

Les deux parties de cet exercice sont indépendantes

Partie 1
Julien doit prendre l’avion; il a prévu de prendre le bus pour se rendre à l’aéroport.
S’il prend le bus de 8 h, il est sûr d’être à l’aéroport à temps pour son vol.
Par contre, le bus suivant ne lui permettrait pas d’arriver à temps à l’aéroport.
Julien est parti en retard de son appartement et la probabilité qu’il manque son bus est de $0,8$.
S’il manque son bus, il se rend à l’aéroport en prenant une compagnie de voitures privées; il a alors une probabilité de $0,5$ d’être à l’heure à l’aéroport.
On notera :

  • $B$ l’évènement : « Julien réussit à prendre son bus »;
  • $V$ l’évènement : « Julien est à l’heure à l’aéroport pour son vol ».
  1. Donner la valeur de $P_B (V )$.
    $\quad$
  2. Représenter la situation par un arbre pondéré.
    $\quad$
  3. Montrer que $P(V) = 0,6$.
    $\quad$
  4. Si Julien est à l’heure à l’aéroport pour son vol, quelle est la probabilité qu’il soit arrivé à l’aéroport en bus ? Justifier.
    $\quad$

Partie 2

Les compagnies aériennes vendent plus de billets qu’il n’y a de places dans les avions car certains passagers ne se présentent pas à l’embarquement du vol sur lequel ils ont réservé.
On appelle cette pratique le surbooking.
Au vu des statistiques des vols précédents, la compagnie aérienne estime que chaque passager a $5 \%$ de chance de ne pas se présenter à l’embarquement.
Considérons un vol dans un avion de $200$ places pour lequel $206$ billets ont été vendus. On suppose que la présence à l’embarquement de chaque passager est indépendante des autres passagers et on appelle $X$ la variable aléatoire qui compte le nombre de passagers se présentant à l’embarquement.

  1. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
  2. En moyenne, combien de passagers vont-ils se présenter à l’embarquement ?
    $\quad$
  3. Calculer la probabilité que $201$ passagers se présentent à l’embarquement. Le résultat sera arrondi à $10^{-3}$ près.
    $\quad$
  4. Calculer $P(X \pp 200)$, le résultat sera arrondi à $10^{-3}$ près. Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  5. La compagnie aérienne vend chaque billet à $250$ euros.
    Si plus de $200$ passagers se présentent à l’embarquement, la compagnie doit rembourser le billet d’avion et payer une pénalité de $600$ euros à chaque passager lésé.
    On appelle :
    $\bullet~~Y$ la variable aléatoire égale au nombre de passagers qui ne peuvent pas embarquer bien qu’ayant acheté un billet;
    $\bullet~~C$ la variable aléatoire qui totalise le chiffre d’affaire de la compagnie aérienne sur ce vol.
    $\quad$
    On admet que $Y$ suit la loi de probabilité donnée par le tableau suivant :
    $$\begin{array}{|c|c|c|c|c|c|c|c|}
    \hline
    y_i& 0& 1& 2& 3& 4& 5& 6\\
    \hline
    P\left(Y = y_i\right)&0,947~75& 0,030~63 &0,014~41 &0,005 ~39 &0,001~51& 0,000~28&\phantom{0,000~28}\\
    \hline
    \end{array}$$
    a. Compléter la loi de probabilité donnée ci-dessus en calculant $P(Y = 6)$.
    $\quad$
    b. Justifier que : $C = 51500−850Y$.
    $\quad$
    c. Donner la loi de probabilité de la variable aléatoire $C$ sous forme d’un tableau.
    Calculer l’espérance de la variable aléatoire $C$ à l’euro près.
    $\quad$
    d. Comparer le chiffre d’affaires obtenu en vendant exactement $200$ billets et le chiffre d’affaires moyen obtenu en pratiquant le surbooking.
    $\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés: Suites numériques. Algorithmique et programmation.

On s’intéresse au développement d’une bactérie.
Dans cet exercice, on modélise son développement avec les hypothèses suivantes : cette bactérie a une probabilité $0,3$ de mourir sans descendance et une probabilité $0,7$ de se diviser en deux bactéries filles.
Dans le cadre de cette expérience, on admet que les lois de reproduction des bactéries sont les mêmes pour toutes les générations de bactéries qu’elles soient mère ou fille.
Pour tout entier naturel $n$, on appelle $p_n$ la probabilité d’obtenir au plus $n$ descendances pour une bactérie.
On admet que, d’après ce modèle, la suite $\left(p_n\right)$ est définie de la façon suivante :
$p_0 = 0,3$ et, pour tout entier naturel $n$, $$p_{n+1} = 0,3+0,7p_n^2$$

  1. La feuille de calcul ci-dessous donne des valeurs approchées de la suite $\left(p_n\right)$.
    $\quad$
    $\quad$
    a. Déterminer les valeurs exactes de $p_1$ et $p_2$ (masquées dans la feuille de calcul) et interpréter ces valeurs dans le contexte de l’énoncé.
    $\quad$
    b. Quelle est la probabilité, arrondie à $10^{-3}$ près, d’obtenir au moins $11$ générations de bactéries à partir d’une bactérie de ce type ?
    $\quad$
    c. Formuler des conjectures sur les variations et la convergence de la suite $\left(p_n\right)$.
    $\quad$
  2. a. Démontrer par récurrence sur $n$ que, pour tout entier naturel $n$, $0\pp p_n \pp p_{n+1}\pp 0,5$.
    $\quad$
    b. Justifier que la suite $\left(p_n\right)$ est convergente.
    $\quad$
  3. On appelle $L$ la limite de la suite $\left(p_n\right)$.
    a. Justifier que $L$ est solution de l’équation $0,7x
    2- x+0,3 = 0$
    $\quad$
    b. Déterminer alors la limite de la suite $\left(p_n\right)$.
    $\quad$
  4. La fonction suivante, écrite en langage Python, a pour objectif de renvoyer les $n$ premiers termes de la suite $\left(p_n\right)$.
    $$\begin{array}{ll}
    \begin{array}{l} 1\\2\\3\\4\\5\\6\\7\end{array}&\begin{array}{|l|}\hline\text{def suite(n) :}\\
    \quad \text{p = …}\\
    \quad \text{s = [p]}\\
    \quad \text{for i in range (…):}\\
    \quad \text{p = …}\\
    \quad \text{s.append(p)}\\
    \quad \text{return (s)}\\
    \hline
    \end{array}\end{array}$$
    Recopier, sur votre copie, cette fonction en complétant les lignes 2, 4 et 5 de façon à ce que la fonction $\texttt{suite(n)}$ retourne, sous forme de liste, les $n$ premiers termes de la suite.
    $\quad$

$\quad$

 

 

 

Bac – Spécialité mathématiques – Asie – sujet 1 – 17 mai 2022

Centres étrangers – Asie – 17 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. a. Parmi les $5$ jetons, seuls $1$, $3$ et $5$ sont impairs.
    Donc $P_B(G)=\dfrac{3}{5}$.
    $\quad$
    b. On obtient l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. a. $P(B)=\dfrac{4}{12}=\dfrac{1}{3}$.
    $(B,~R)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales :
    $\begin{align*} P(G)&=P(G\cap B)+P(G\cap R)\\
    &=P(B)\times P_B(G)+P(R)\times P_R(G)\\
    &=\dfrac{1}{3}\times \dfrac{3}{5}+\dfrac{2}{3}\times 0,3 \\
    &=0,4\end{align*}$
    $\quad$
    b. On veut calculer
    $\begin{align*} P_G(B)&=\dfrac{P(G\cap B)}{P(G)} \\
    &=\dfrac{\dfrac{1}{3}\times \dfrac{3}{5}}{0,4}\\
    &=\dfrac{1}{2}\end{align*}$
    La probabilité que le joueur ait obtenu une case blanche en lançant la roue sachant qu’il a gagner la partie est égale à $\dfrac{1}{2}$.
    $\quad$
  3. $P(G)=0,4$ et $P_B(G)=0,6$ donc $P(G)\neq P_B(G)$
    Les événements $B$ et $G$ ne sont pas indépendants.
    $\quad$
  4. a. On effectue de façon indépendante $10$ expériences de Bernoulli identiques.
    $X$ est égale au nombre de parties gagnées.
    $X$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,4$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X=3)&=\dbinom{10}{3}0,4^3\times 0,6^7 \\
    &\approx 0,215\end{align*}$
    La probabilité que le joueur gagne exactement trois parties sur les dix parties jouées est environ égale à $0,215$.
    $\quad$
    c. On a
    $\begin{align*} P(X\pg 4)&=1-P(X<4) \\
    &=1-P(X\pp 3) \\
    &\approx 0,618\end{align*}$
    La probabilité de remporter au moins $4$ parties sur les $10$ jouées est environ égale à $0,618$.
    $\quad$
  5. a. On effectue de façon indépendante $n$ expériences de Bernoulli identiques.
    On appelle $Y$ la variable aléatoire égale au nombre de parties gagnées.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,4$.
    $\begin{align*} p_n&=P(Y\pg 1) \\
    &=1-P(Y=0) \\
    &=1-0,6^n \end{align*}$
    $\quad$
    b. $\quad$
    $\begin{align*} p_n\pg 0,99&\ssi 1-0,6^n \pg 0,99 \\
    &\ssi -0,6^n \pg -0,01 \\
    &\ssi 0,6^n \pp 0,01 \\
    &\ssi n\ln(0,6) \pp \ln(0,01) \\
    &\ssi n \pg \dfrac{\ln(0,01)}{\ln(0,6)} \qquad \text{car } \ln(0,6)<0\end{align*}$
    Or $\dfrac{\ln(0,1)}{\ln(0,6)}\approx 9,02$
    Le plus petit entier naturel $n$ pour lequel la probabilité de gagner au moins une partie est supérieur ou égale à $0,99$ est donc $10$.
    $\quad$

 

Ex 2

Exercice 2

Partie A : modèle discret de la quantité médicamenteuse

  1. $\quad$
    $\begin{align*} u_1&=\left(1-\dfrac{1}{10}\right)\times u_0+0,25 \\
    &=0,9\times 1+0,25\\
    &=1,15\end{align*}$
    Au bout d’une demi-heure il y avait donc $1,15$ mg de médicament dans le sang.
    $\quad$
  2. Toutes les $30$ minutes l’organisme élimine $10\%$ de la quantité de médicament présente dans le sang. Il reste donc $90\%$ de la quantité de médicament soit $0,9u_n$.
    Il reçoit une dose supplémentaire de $0,25$ mg de la substance médicamenteuse.
    Donc $u_{n+1}=0,9u_n+0,25$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on pose $P(n):~u_n\pp u_{n+1} <5$.
    Initialisation : $u_0=1$ et $u_1=1,15$ donc $u_0\pp u_1<5$ et $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n$ un entier naturel. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <5 &\ssi 0,9u_n\pp 0,9u_{n+1} < 4,5 \\
    &\ssi 0,9u_n+0,25\pp 0,9u_{n+1}+0,25<4,75\end{align*}$
    Donc $u_{n+1}\pp u_{n+2} <4,75<5$ et $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n \pp u_{n+1} <5$.
    $\quad$
    b. La suite $\left(u_n\right)$ est  croissante et majorée par $5$. Par conséquent elle converge vers un réel $\ell$.
    $\quad$
  4. a. On obtient le script suivant :
    $$\begin{array}{|l|}
    \hline
    \text{def efficace():}\\
    \quad \text{u = 1}\\
    \quad \text{n = 0}\\
    \quad \text{while u < 1.8:}\\
    \qquad \text{u = 0.9 * u + 0.25}\\
    \qquad \text{n = n + 1}\\
    \quad \text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. On a $u_7 \approx 1,78$ et $u_8\approx 1,85$.
    Par conséquent le script renvoie la valeur $8$.
    C’est donc au bout de $4$ heures que le médicament est réellement efficace.
    $\quad$
  5. a. Soit $n\in \N$. $v_n=2,5-u_n$ donc $u_n=2,5-v_n$.
    $\begin{align*} v_{n+1}&=2,5-u_{n+1} \\
    &=2,5-0,9u_n-0,25 \\
    &=-0,9u_n+2,25 \\
    &=-0,9\left(2,5-v_n\right)+2,25 \\
    &=0,9v_n-2,25+2,25 \\
    &=0,9v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,9$ et de premier terme $v_0=1,5$.
    $\quad$
    b. Ainsi, pour tout entier naturel $n$ on a $v_n=1,5\times 0,9^n$.
    Par conséquent :
    $\begin{align*} u_n&=2,5-v_n\\
    &=2,5-1,5\times 0,9^n\end{align*}$
    $\quad$
    c. Pour tout entier naturel $n$ on a $1,5\times 0,9^n>0$ donc $u_n<2,5<3$.
    Le traitement de présente donc aucun risque pour le patient.
    $\quad$

Partie B : modèle continu de la quantité médicamenteuse

  1. $f(3,75)\approx 1,791<1,8$.
    Le médicament n’est donc pas réellement efficace au bout de $3$ h $45$ min.
    $\quad$
  2. $\quad$
    $\begin{align*} f(t)\pg 1,8 &\ssi 2,5-1,5\e^{-0,2t}\pg 1,8 \\
    &\ssi -1,5\e^{-0,2t}\pg -0,7 \\
    &\ssi \e^{-0,2t}\pp \dfrac{7}{15} \\
    &\ssi -0,2t\pp \ln\left(\dfrac{7}{15}\right) \\
    &\ssi t\pg -5\ln\left(\dfrac{7}{15}\right) \end{align*}$
    Le médicament est donc efficace au bout d’environ $3,810~7$ heures soit environ $3$ h $49$ min.
    $\quad$
  3. Selon le modèle de la partie A, le médicament était réellement efficace au bout de $4$ heures.
    Le modèle continu est donc réellement efficace plus rapidement.
    $\quad$

 

Ex 3

Exercice 3

  1. On obtient la figure suivante :
    $\quad$
  2. On a $\vect{RP}\begin{pmatrix}-1\\0\\-2\end{pmatrix}$ et $\vect{RQ}\begin{pmatrix}-1\\2\\0\end{pmatrix}$
    Donc
    $\begin{align*} RP&=\sqrt{(-1)^2+0^2+(-2)^2} \\
    &=\sqrt{5}\end{align*}$
    et
    $\begin{align*} RQ&=\sqrt{(-1)^2+2^2+0^2} \\
    &=\sqrt{5}\end{align*}$
    Donc $RP=RQ$.
    Le triangle $RPQ$ est bien isocèle en $R$.
    $\quad$
  3. Les vecteurs $\vect{RP}$ et $\vect{RQ}$ ne sont clairement pas colinéaires (le coefficient $0$ ne se trouve à la même coordonnée). Les points $P$, $R$ et $Q$ définissent donc un plan.
    $\quad$
  4. a. D’une part
    $\begin{align*} \vec{u}.\vect{PR}&=2\times (-1)+1\times 0+(-1)\times (-2) \\
    &=-2+0+2 \\
    &=0\end{align*}$
    D’autre part
    $\begin{align*} \vec{u}.\vect{PQ}&=2\times (-1)+1\times 2+(-1)\times 0 \\
    &=-2+2+0 \\
    &=0\end{align*}$
    Le vecteur $\vec{u}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(PQR)$.
    $\vec{u}$ est par conséquent un vecteur normal au plan $(PQR)$.
    $\quad$
    b. Ainsi une équation cartésienne du plan $(PQR)$ est de la forme $2x+y-z+d=0$.
    Or $P(0;0;1)$ appartient au plan $(PQR)$.
    Par conséquent $0+0-1+d=0\ssi d=1$.
    Une équation cartésienne du plan $(PQR)$ est $2x+y-z+1=0$.
    $\quad$
    c. Le vecteur $\vec{u}$ est un vecteur directeur de la droite $(d)$.
    Une représentation paramétrique de la droite $(d)$ est donc : $$\begin{cases} x=2t\\y=t\\z=3-t\end{cases} \qquad t\in \R$$
    $\quad$
    d. En prenant $t=\dfrac{1}{3}$ dans la représentation paramétrique de la droite $(d)$ on obtient le point de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$.
    $2\times \dfrac{2}{3}+\dfrac{1}{3}-\dfrac{8}{3}+1=-\dfrac{3}{3}+1=0$ : le point de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$ appartient donc au plan $(PQR)$.
    Le point $L\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$ est par conséquent le projeté orthogonal du point $E$ sur le plan $(PQR)$.
    $\quad$
    e. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]\dfrac{1}{3}\\[3pt]-\dfrac{1}{3}\end{pmatrix}$
    Par conséquent :
    $\begin{align*} EL&=\sqrt{\left(\dfrac{2}{3}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{3}\right)^2} \\
    &=\sqrt{\dfrac{6}{9}} \\
    &=\dfrac{\sqrt{6}}{3}\end{align*}$
    La distance du point $E$ au plan $(PQR)$ est donc égale à $\dfrac{\sqrt{6}}{3}$.
    $\quad$
  5. Le triangle $EQR$ est, par construction, rectangle en $E$. Son aire est donc
    $\begin{align*} \mathscr{A}&=\dfrac{EQ\times ER}{2} \\
    &=\dfrac{2\times 1}{2} \\
    &=1\end{align*}$
    Ainsi, le volume du tétraèdre $EPQR$ est
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times \mathscr{A}\times EP \\
    &=\dfrac{1}{3}\times 1\times 2 \\
    &=\dfrac{2}{3}\end{align*}$$\quad$
  6. On a également $\mathscr{V}=\dfrac{1}{3}\times \mathscr{A}_{PQR}\times EL$ où $\mathscr{A}_{PQR}$ est l’aire du triangle $PQR$
    Ainsi
    $\dfrac{2}{3}=\dfrac{1}{3}\times \mathscr{A}_{PQR}\times \dfrac{\sqrt{6}}{3} \ssi \mathscr{A}_{PQR}=\dfrac{6}{\sqrt{6}}$
    Ainsi l’aire du triangle $PQR$ est égale à $\sqrt{6}$ unités d’aire.
    $\quad$

 

 

Ex 4

Exercice 4

Partie A

  1. Graphiquement $f(1)=3$ et $f'(1)$ est le coefficient directeur de la droite $(AB)$. Par conséquent $f'(1)=1$.
    $\quad$
  2. a. D’après l’énoncé, la fonction $f$ est dérivable sur $\R$.
    Pour tout réel $x$ on a $f'(x)=\dfrac{2ax}{ax^2+1}$.
    $\quad$
    b. $f(1)=3\ssi \ln(a+1)+b=3$.
    $f'(1)=1 \ssi \dfrac{2a}{a+1}=1$
    On résout donc le système
    $\begin{align*} \begin{cases} \ln(a+1)+b=3\\\dfrac{2a}{a+1}=1\end{cases} &\ssi \begin{cases} 2a=a+1 \\b=3-\ln(a+1)\end{cases} \\
    &\ssi \begin{cases} a=1\\b=3-\ln(2)\end{cases}\end{align*}$
    Par conséquent, pour tout réel $x$ on a $f(x)=\ln\left(x^2+1\right)+3-\ln(2)$.
    $\quad$

Partie B

  1. Pour tout réel $x$ on a
    $\begin{align*} f(-x)&=\ln\left((-x)^2+1\right)+3-\ln(2) \\
    &=\ln\left(x^2+1\right)+3-\ln(2) \\
    &=f(x)\end{align*}$
    Par conséquent $f$ est paire.
    $\quad$
  2. $\lim\limits_{x\to +\infty} x^2+1=+\infty$ et $\lim\limits_{X\to +\infty} \ln(X)=+\infty$ par conséquent $\lim\limits_{x\to +\infty} \ln\left(x^2+1\right)=+\infty$
    Ainsi, $\lim\limits_{x\to +\infty} f(x)=+\infty$ et par parité $\lim\limits_{x\to -\infty} f(x)=+\infty$.
    $\quad$
  3. D’après la question A.2. on a, pour tout réel $x$, $f'(x)=\dfrac{2x}{x^2+1}$.
    Pour tout réel $x$, on a $x^2+1>0$.
    Donc $f'(x)$ est du signe de $2x$.
    Par conséquent :
    $\bullet~~f'(x)<0$ sur $]-\infty;0[$;
    $\bullet~~f'(0)=0$;
    $\bullet~~f'(x)>0$ sur $]0;\infty[$.On obtient donc le tableau de variations suivant :
    $\quad$
  4. D’après le tableau de variations, l’équation $f(x)=k$ admet deux solutions si, et seulement si, $k>3-\ln(2)$.
    Remarque : Pour le montrer rigoureusement, il faut utiliser le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires).
    $\quad$
  5. $\quad$
    $\begin{align*} f(x)=3+\ln(2)&\ssi \ln\left(x^2+1\right)+3-\ln(2)=3+\ln(2) \\
    &\ssi \ln\left(x^2+1\right)=2\ln(2)\\
    &\ssi \ln\left(x^2+1\right)=\ln(4) \\
    &\ssi x^2+1=4 \qquad \text{car la fonction $\ln$ est strictement croissante sur $]0;+\infty[$}\\
    &\ssi x^2=3 \\
    &\ssi x=\sqrt{3} \text{ ou } x=-\sqrt{3}\end{align*}$
    L’équation $f(x)=3+\ln(2)$ admet donc deux solutions $-\sqrt{3}$ et $\sqrt{3}$.
    $\quad$

Partie C

  1. Graphiquement $\mathscr{C}_f$ semble avoir deux points d’inflexion d’abscisse $-1$ et $1$.
    $\quad$
  2. Pour tout réel $x$ on a $f'(x)=\dfrac{2x}{x^2+1}$.
    La fonction $f’$ est dérivable sur $\R$ en tant que somme et quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a
    $\begin{align*} f\dsec(x)&=2\times \dfrac{x^2+1-x\times 2x}{\left(x^2+1\right)^2} \\
    &=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}\end{align*}$
    $\quad$
  3. Ainsi $f\dsec(x)\pg 0 \ssi 1-x^2\pg 0 \ssi x\in [-1;1]$.
    Le plus grand intervalle sur lequel la fonction $f$ est convexe est donc $[-1;1]$.
    $\quad$

 

 

Énoncé

Exercice 1     7 points

Principaux domaines abordés : Probabilités conditionnelles et indépendance. Variables aléatoires

Lors d’une kermesse, un organisateur de jeux dispose, d’une part, d’une roue comportant quatre cases blanches et huit cases rouges et, d’autre part, d’un sac contenant cinq jetons portant les numéros $1$, $2$, $3$,  $4$ et $5$.
Le jeu consiste à faire tourner la roue, chaque case ayant la même probabilité d’être obtenue, puis à extraire un ou deux jetons du sac selon la règle suivante :

  •  si la case obtenue par la roue est blanche, alors le joueur extrait un jeton du sac;
  • si la case obtenue par la roue est rouge, alors le joueur extrait successivement et sans remise deux jetons du sac.

Le joueur gagne si le ou les jetons tirés portent tous un numéro impair.

  1. Un joueur fait une partie et on note $B$ l’évènement « la case obtenue est blanche », $R$ l’évènement « la case obtenue est rouge » et $G$ l’évènement « le joueur gagne la partie ».
    a. Donner la valeur de la probabilité conditionnelle $P_B (G)$.
    $\quad$
    b. On admettra que la probabilité de tirer successivement et sans remise deux jetons impairs est égale à $0,3$.
    Recopier et compléter l’arbre de probabilité suivant :
    $\quad$

    $\quad$
  2. a. Montrer que $P(G) = 0,4$.
    $\quad$
    b. Un joueur gagne la partie.
    Quelle est la probabilité qu’il ait obtenu une case blanche en lançant la roue ?
    $\quad$
  3. Les évènements $B$ et $G$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Un même joueur fait dix parties. Les jetons tirés sont remis dans le sac après chaque partie.
    On note $X$ la variable aléatoire égale au nombre de parties gagnées.
    a. Expliquer pourquoi $X$ suit une loi binomiale et préciser ses paramètres.
    $\quad$
    b. Calculer la probabilité, arrondie à $10^{-3}$ près, que le joueur gagne exactement trois parties sur les dix parties jouées.
    $\quad$
    c. Calculer $P(X \pg 4)$ arrondie à $10^{-3}$ près.
    Donner une interprétation du résultat obtenu.
    $\quad$
  5. Un joueur fait $n$ parties et on note $p_n$ la probabilité de l’évènement « le joueur gagne au moins une partie ».
    a. Montrer que $p_n = 1-0,6n$.
    $\quad$
    b. Déterminer la plus petite valeur de l’entier n pour laquelle la probabilité de gagner au moins une partie est supérieure ou égale à $0,99$.
    $\quad$

$\quad$

Exercice 2     7 points

Principaux domaines abordés : Suites numériques. Algorithmique et programmation.

Un médicament est administré à un patient par voie intraveineuse.

Partie A : modèle discret de la quantité médicamenteuse

Après une première injection de $1$ mg de médicament, le patient est placé sous perfusion.
On estime que, toutes les $30$ minutes, l’organisme du patient élimine $10 \%$ de la quantité de médicament présente dans le sang et qu’il reçoit une dose supplémentaire de $0,25$ mg de la substance médicamenteuse.
On étudie l’évolution de la quantité de médicament dans le sang avec le modèle suivant : pour tout entier naturel $n$, on note $u_n$ la quantité, en mg, de médicament dans le sang du patient au bout de $n$ périodes de trente minutes. On a donc $u_0 = 1$.

  1. Calculer la quantité de médicament dans le sang au bout d’une demi-heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, $u_{n+1} = 0,9u_n +0,25$.
    $\quad$
  3. a. Montrer par récurrence sur $n$ que, pour tout entier naturel $n$, $u_n \pp u_{n+1} < 5$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$
  4. On estime que le médicament est réellement efficace lorsque sa quantité dans le sang du patient est supérieure ou égale à $1,8$ mg.
    a. Recopier et compléter le script écrit en langage Python suivant de manière à déterminer au bout de combien de périodes de trente minutes le médicament commence à être réellement efficace.
    $$\begin{array}{|l|}
    \hline
    \text{def efficace():}\\
    \quad\text{u = 1}\\
    \quad\text{n = 0}\\
    \quad\text{while ……:}\\
    \qquad\text{u = ……}\\
    \qquad\text{n = n + 1}\\
    \quad\text{return n}\\
    \hline
    \end{array}$$
    $\quad$
    b. Quelle est la valeur renvoyée par ce script ? Interpréter ce résultat dans le contexte de l’exercice.
    $\quad$
  5. Soit $\left(v_n\right)$ la suite définie, pour tout entier naturel $n$, par $v_n = 2,5-u_n$.
    a. Montrer que $\left(v_n\right)$ est une suite géométrique dont on précisera la raison et le premier terme $v_0$.
    $\quad$
    b. Montrer que, pour tout entier naturel $n$, $u_n = 2,5-1,5×0,9^n$.
    $\quad$
    c. Le médicament devient toxique lorsque sa quantité présente dans le sang du patient dépasse $3$ mg.
    D’après le modèle choisi, le traitement présente-t-il un risque pour le patient ?
    Justifier.
    $\quad$

Partie B : modèle continu de la quantité médicamenteuse

Après une injection initiale de $1$ mg de médicament, le patient est placé sous perfusion.
Le débit de la substance médicamenteuse administrée au patient est de $0,5$ mg par heure.
La quantité de médicament dans le sang du patient, en fonction du temps, est modélisée par la fonction $f$ , définie sur $[0 ; +\infty[$, par $$f (t) = 2,5-1,5\e^{-0,2t}$$
où $t$ désigne la durée de la perfusion exprimée en heure.
On rappelle que ce médicament est réellement efficace lorsque sa quantité dans le sang du patient est supérieure ou égale à $1,8$ mg.

  1. Le médicament est-il réellement efficace au bout de $3$ h $45$ min ?
    $\quad$
  2. Selon ce modèle, déterminer au bout de combien de temps le médicament devient réellement efficace.
    $\quad$
  3. Comparer le résultat obtenu avec celui obtenu à la question 4. b. du modèle discret de la Partie A.
    $\quad$

$\quad$

Exercice 3     7 points

Principaux domaines abordés : Manipulation des vecteurs, des droites et des plans de l’espace. Orthogonalité et distances dans l’espace. Représentations paramétriques et équations cartésiennes.

Le solide $ABCDEFGH$ est un cube. On se place dans le repère orthonormé $\left(A,\vec{i},\vec{j},\vec{k}\right)$ de l’espace dans lequel les coordonnées des points $B$, $D$ et $E$ sont : $$B(3 ; 0 ; 0),~D(0 ; 3 ; 0) \text{ et } E(0 ; 0 ; 3)$$

 

On considère les points $P(0; 0; 1)$, $Q(0; 2; 3)$ et $R(1; 0; 3)$.

  1. Placer les points $P$, $Q$ et $R$ sur la figure en ANNEXE qui sera à rendre avec la copie.
    $\quad$
  2. Montrer que le triangle $PQR$ est isocèle en $R$.
    $\quad$
  3. Justifier que les points $P$, $Q$ et $R$ définissent un plan.
    $\quad$
  4. On s’intéresse à présent à la distance entre le point $E$ et le plan $(PQR)$.
    a. Montrer que le vecteur $\vec{u} (2 ; 1 ; -1)$ est normal au plan $(PQR)$.
    $\quad$
    b. En déduire une équation cartésienne du plan $(PQR)$.
    $\quad$
    c. Déterminer une représentation paramétrique de la droite $(d)$ passant par le point $E$ et orthogonale au plan $(PQR)$.
    $\quad$
    d. Montrer que le point $L\left(\dfrac{2}{3};\dfrac{1}{3};\dfrac{8}{3}\right)$ est le projeté orthogonal du point $E$ sur le plan $(PQR)$.
    $\quad$
    e. Déterminer la distance entre le point $E$ et le plan $(PQR)$.
    $\quad$
  5. En choisissant le triangle $EQR$ comme base, montrer que le volume du tétraèdre $EPQR$ est $\dfrac{2}{3}$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule : $$V =\dfrac{1}{3}\times \text{aire d’une base}\times \text{hauteur correspondante}$$
    $\quad$
  6. Trouver, à l’aide des deux questions précédentes, l’aire du triangle $PQR$.
    $\quad$

ANNEXE

$\quad$

$\quad$

Exercice 4     7 points

Principaux domaines abordés : Étude de fonctions. Fonction logarithme.

Soit $f$ une fonction définie et dérivable sur $\R$. On considère les points $A(1; 3)$ et $B(3; 5)$.
On donne ci-dessous $\mathscr{C}_f$ la courbe représentative de $f$ dans un repère orthogonal du plan, ainsi que la tangente $(AB)$ à la courbe $\mathscr{C}_f$ au point $A$.

Les trois parties de l’exercice peuvent être traitées de manière indépendante.

Partie A

  1. Déterminer graphiquement les valeurs de $f(1)$ et $f'(1)$.
    $\quad$
  2. La fonction $f$ est définie par l’expression $f (x) = \ln\left(ax^2+1\right)+b$, où $a$ et $b$ sont des nombres réels positifs.
    a. Déterminer l’expression de $f'(x)$.
    $\quad$
    b. Déterminer les valeurs de $a$ et $b$ à l’aide des résultats précédents.
    $\quad$

Partie B

On admet que la fonction $f$ est définie sur $\R$ par $$f(x) = \ln\left(x^2+1\right)+3-\ln(2)$$

  1. Montrer que $f$ est une fonction paire.
    $\quad$
  2. Déterminer les limites de $f$ en $+\infty$ et en $-\infty$.
    $\quad$
  3. Déterminer l’expression de $f'(x)$.
    Étudier le sens de variation de la fonction $f$ sur $\R$.
    Dresser le tableau des variations de $f$ en y faisant figurer la valeur exacte du minimum ainsi que les limites de $f$ en $-\infty$ et $+\infty$.
    $\quad$
  4. À l’aide du tableau des variations de $f$ , donner les valeurs du réel $k$ pour lesquelles l’équation $f (x) = k$ admet deux solutions.
    $\quad$
  5. Résoudre l’équation $f (x) = 3+\ln 2$.
    $\quad$

Partie C
On rappelle que la fonction $f$ est définie sur $\R$ par $f(x) = \ln\left(x^2+1\right)+3-\ln(2)$.

  1. Conjecturer, par lecture graphique, les abscisses des éventuels points d’inflexion de la courbe $\mathscr{C}_f$.
    $\quad$
  2. Montrer que, pour tout nombre réel $x$, on a : $f\dsec(x)=\dfrac{2\left(1-x^2\right)}{\left(x^2+1\right)^2}$.
    $\quad$
  3. En déduire le plus grand intervalle sur lequel la fonction $f$ est convexe.
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 19 mai 2022

Centres étrangers – Liban – 19 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. On obtient donc l’arbre pondéré suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(F\cap C)&=P(F)\times P_F(C) \\
    &=0,48\times 0,165 \\
    &=0,079~2\end{align*}$
    La probabilité que la personne choisie soit une femme qui exerce une profession de cadre est égale à $0,079~2$.
    $\quad$
  3. a. $\left(F,\conj{F}\right)$ forme un système complet d’événements fini.
    D’après la formule des probabilités totales on a
    $\begin{align*} P(C)&=P(C\cap F)+P\left(C\cap\conj{F}\right) \\
    &=0,079~2+P\left(\conj{F}\right)\times P_{\conj{F}}(C) \\
    &=0,079~2+0,52\times 0,215 \\
    &=0,191\end{align*}$
    La probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. D’une part $P(C)\times P(F)=0,091~68$
    D’autre part $P(C \cap F)=0,079~2$
    Donc $P(C)\times P(F)\neq P(C\cap F)$.
    Les événements $F$ et $C$ ne sont pas indépendants.
    $\quad$
  4. On a
    $\begin{align*} P_C(F)&=\dfrac{P(C\cap F)}{P(C)} \\
    &=\dfrac{0,079~2}{0,191} \\
    &\approx 0,414~7\end{align*}$.
    La probabilité que la personne choisie soit une femme sachant qu’elle exerce une profession de cadre est environ égale à $0,414~7$.
    $\quad$
  5. a. On répète $15$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de cadres au sein de l’échantillon de $15$ salariés.
    Par conséquent $X$ suit la loi binomiale de paramètres $n=15$ et $p=0,191$.
    $\quad$
    b. On veut calculer
    $\begin{align*} P(X\pp 1)&=P(X=0)+P(X=1) \\
    &=(1-0,191)^{15}+\dbinom{15}{1}0,191\times (1-0,191)^{14} \\
    &\approx 0,189~0\end{align*}$
    La probabilité que l’échantillon contienne au plus $1$ cadre est environ égale à $0,189~0$.
    $\quad$
    c. L’espérance mathématique de la variable aléatoire $X$ est :
    $\begin{align*} E(X)&=np\\
    &=15\times 0,191 \\
    &=2,865\end{align*}$
    $\quad$
  6. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire qui compte le nombre de cadres au sein de l’échantillon de $n$ salariés.
    Par conséquent $Y$ suit la loi binomiale de paramètres $n$ et $p=0,191$.
    $\begin{align*} P(Y\pg 1)\pg 0,99 &\ssi 1-P(Y=0)\pg 0,99 \\
    &\ssi P(X=0)\pp 0,01 \\
    &\ssi 0,809^n \pp 0,01\\
    &\ssi n\ln(0,809) \pp \ln(0,01) \\
    &\ssi n\pg \dfrac{\ln(0,01)}{\ln(0,809)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,809)} \approx 21,7$.
    Il faut donc que l’échantillon contienne au moins $22$ salariés pour la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. a. $[AH]$ et $[ED]$ sont les diagonales du carré $ADHE$.
    Les droites $(AH)$ et $(ED)$ sont par conséquent perpendiculaires.
    $\quad$
    b. $EFGH$ est un carré donc $(EH)$ et $(HG)$ sont perpendiculaires.
    $CDHG$ est un carré donc $(GH)$ et $(DH)$ sont perpendiculaires.
    Ainsi, $(HG)$ est perpendiculaire à deux droites sécantes du plan $(EDH)$.
    Par conséquent, la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. La droite $(ED)$ est incluse dans le plan $(EDH)$. D’après la question précédente, les droites $(GH)$ et $(ED)$ sont orthogonales.
    D’après la question 1.a. les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    La droite $(ED)$ est donc orthogonale à deux droites sécantes (le point $A$ n’appartient pas à la droite $(GH)$) du plan $(AGH)$.
    La droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Dans le repère fourni on a $E(0;0;1)$ et $D(0;1;0)$.
    Par conséquent $\vect{ED}\begin{pmatrix}0\\1\\-1\end{pmatrix}$.
    $\quad$
    $\vect{ED}$ est un vecteur normal au plan $(AGH)$ d’après la question précédente.
    Une équation cartésienne du plan $(AGH)$ est donc de la forme $y-z+d=0$.
    Or $A(0;0;0)$ appartient à ce plan. Ainsi $d=0$.
    Une équation cartésienne du plan $(AGH)$ est $y-z=0$.
    $\quad$
  3. a. On a $\vect{EL}\begin{pmatrix} \dfrac{2}{3}\\[3pt]1\\-1\end{pmatrix}$.
    Une représentation paramétrique de la droite $(EL)$ est $\begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\end{cases} \qquad t\in \R$.
    $\quad$
    b. On résout le système
    $\begin{align*} \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\y-z=0 \end{cases} &\ssi \begin{cases} x=\dfrac{2}{3}+\dfrac{2}{3}t\\[3pt]y=1+t\\z=-t\\ 1+t+t=0\end{cases} \\
    &\ssi \begin{cases}t=-\dfrac{1}{2}\\ x=\dfrac{1}{3}t\\[3pt]y=\dfrac{1}{2}\\[3pt]z=\dfrac{1}{2}\end{cases}\end{align*}$
    Le point d’intersection de la droite $(EL)$ et du plan $(AGH)$ a donc pour coordonnées $\left(\dfrac{1}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    c. $\dfrac{1}{2}-\dfrac{1}{2}=0$ : le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ appartient au plan $(AGH)$.
    $\vect{KL}\begin{pmatrix}0\\-\dfrac{1}{2}\\[3pt]\dfrac{1}{2}\end{pmatrix}$.
    Par conséquent $\vect{KL}=-\dfrac{1}{2}\vect{ED}$.
    Ainsi $\vect{KL}$ est un vecteur normal au plan $(AGH)$.
    Donc $K\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$ est le projeté orthogonal du point $L$ sur le plan $(AGH)$.
    $\quad$
    d. On a
    $\begin{align*} KL&=\sqrt{0^2+\left(-\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^2} \\
    &=\sqrt{\dfrac{1}{2}} \\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$.
    La distance du point $L$ ai plan $(AGH)$ est donc $h=\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. On applique le théorème de Pythagore dans le triangle $AHD$ rectangle en $D$.
    Donc $AH^2=AD^2+HD^2$ ainsi $AH^2=2$ et $AH=\sqrt{2}$
    $(HG)$ est orthogonale au plan $(EDH)$ d’après la question 1.b.
    La droite $(AH)$ est incluse dans le plan $(EDH)$.
    Par conséquent les droites $(AH)$ et $(HG)$ sont perpendiculaires et le triangle $AHG$ est rectangle en $H$.
    L’aire du triangle $AHG$ est donc
    $\begin{align*} \mathscr{A}&=\dfrac{AH\times HG}{2} \\
    &=\dfrac{\sqrt{2}\times 1}{2}\\
    &=\dfrac{\sqrt{2}}{2}\end{align*}$
    Le volume du tétraèdre $LAGH$ est alors
    $\begin{align*} V&=\dfrac{1}{3}\times \mathscr{A}\times h \\
    &=\dfrac{1}{3}\times \dfrac{\sqrt{2}}{2}\times \dfrac{\sqrt{2}}{2} \\
    &=\dfrac{1}{6}\end{align*}$.

Ex 3

Exercice 3

  1. La fonction $g$ est deux fois dérivables sur $\R$ en tant que somme de fonctions deux fois dérivables.
    Pour tout réel $x$ on a $g'(x)=1~000x^{999}+1$ et $g\dsec(x)=999~000x^{998}$
    $998$ est pair donc, pour tout réel $x$ $g\dsec(x)\pg 0$.
    La fonction $g$ est convexe sur $\R$
    Réponse b
    $\quad$
  2. D’après le graphique, $f'(0)=1$.
    Une équation de la droite $T$ est donc de la forme $y=x+b$.
    $T$ est par conséquent parallèle à la droite d’équation $y=x$.
    Réponse a
    $\quad$
  3. Pour tout entier naturel $n$ on a $-1\pp (-1)^n \pp 1$.
    Donc $-\dfrac{-1}{1+n}\pp u_n \pp \dfrac{1}{n+1}$
    Or pour tout entier naturel $n$ on a $-1 \pp -\dfrac{1}{1+n}$ et $\dfrac{1}{1+n}\pp 1$.
    Ainsi $-1\pp u_n \pp 1$.
    Réponse c
    $\quad$
  4. Pour tout entier naturel $n$ on a $v_n\times v_{n+1}<0$.
    Cela signifie donc que deux termes consécutifs de la suite $\left(v_n\right)$ sont toujours de signes contraires.
    Ainsi, tous les termes de rang pair sont du même signe.
    Par conséquent $v_{10}$ est du même signe que $v_0$
    Réponse c
    $\quad$
  5. On a $8=2w_1-4 \ssi 12=2w_1 \ssi w_1=6$
    $6=2w_0-4 \ssi 2w_0=10\ssi w_0=5$.
    Réponse b
    $\quad$
  6. Pour tout entier naturel $n$ on pose $P(n):~a_n>0$
    Initialisation : $a_0=1>0$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $a_n>0$ et $\e^n>0$ donc $\dfrac{\e^n}{\e^n+1}a_n>0$.
    Ainsi $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Donc, pour tout entier naturel $n$, on a $a_n>0$.
    $\quad$
    Soit $n\in \N$
    $\begin{align*} a_{n+1}-a_n&=\dfrac{\e^n}{\e^n+1}a_n-a_n \\
    &=\left(\dfrac{\e^n}{\e^n+1}-1\right)a_n \\
    &=-\dfrac{1}{\e^n+1}a_n\\
    &<0\end{align*}$
    La suite $\left(a_n\right)$ est donc strictement décroissante.
    Réponse b
    $\quad$
    Remarque : Puisqu’il s’agit d’une question d’un QCM, l’utilisation de la calculatrice est à privilégiée ici pour avoir une idée du comportement de la suite.
    $\quad$
  7. On appelle $u_n$ le nombre de cellules à la $n$-ième génération.
    Ainsi, pour tout entier naturel $n$ on a $u_n=2^n$.
    Au bout de $4$ heures il y a environ $4~000$ cellules. Or $u_{11}=2~048$ et $u_{12}=4~096$.
    Il a donc fallu $4$ heures pour obtenir à la $12$-ième génération.
    $\dfrac{4\times 60}{12}=20$.
    Le temps de génération est donc environ égal à $20$ minutes.
    Réponse c
    $\quad$

 

Ex 4

Exercice 4

Partie A

  1. On a $\lim\limits_{x\to 0^+} \e^{-x}=1$ et $\lim\limits_{x\to 0^+} \ln(x)=-\infty$.
    Ainsi $\lim\limits_{x\to 0^+} f(x)=-\infty$.
    $\quad$
  2. Pour tout réel $x\in ]0;1]$ on a
    $\begin{align*} f'(x)&=-\e^{-x}+\dfrac{1}{x} \\
    &=\dfrac{-x\e^{-x}+1}{x} \\
    &=\dfrac{1-x\e^{-x}}{x}\end{align*}$
    $\quad$
  3. La fonction exponentielle est convexe sur $\R$. Sa courbe représentative est donc au-dessus de toutes ses tangentes.
    On a $\e^0=1$. Une équation de la tangente à la courbe au point d’abscisse $0$ est par conséquent $y=x+1$.
    Ainsi, pour tout réel $x\in ]0;1]$, $\e^x\pg x+1>x$ soit $1\pg x\e^{-x}$.
    Donc pour tout réel $x\in ]0;1]$ on a $x\e^x<1$.
    Remarque : On pouvait également déterminer le tableau de variations de la fonction $g$ définie sur $]0;1]$ par $g(x)=x\e^{-x}$.
    $\quad$
    Ainsi sur $]0;1]$, $1-x\e^{-x}>0$
    Par conséquent $f'(x)>0$.
    On obtient alors le tableau de variations suivant :
    $\quad$

    $\quad$
  4. La fonction $f$ est continue (car dérivable) et strictement croissante sur $]0;1]$.
    $\lim\limits_{x\to 0^+} f(x)=-\infty$ et $f(1)=\e^{-1}>0$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires), l’équation $f(x)=0$ admet une unique solution $\ell$ sur $]0;1]$.
    $\quad$

Partie B

  1. a. On a $a_1=\e^{-1}\approx 0,37$ et $b_1=\e^{-1/10}\approx 0,90$.
    $\quad$
    b. On peut écrire
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad \text{a = 1 / 10} \\
    \quad \text{b = 1} \\
    \quad \text{for k in range(0,n):}\\
    \qquad \text{c = exp(-b)}\\
    \qquad \text{b = exp(-a)}\\
    \qquad \text{a = c}\\
    \quad \text{return(a,b)}\\
    \hline
    \end{array}$
    Remarque : On suppose donc que la bibliothèque $\texttt{math}$ a été importée (ou au moins la fonction $\texttt{exp}$) pour que la fonction ne comporte pas d’erreur.
    $\quad$
  2. a. Pour tout $n\in \N$ on pose $P(n):~0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    Initialisation : On a $a_0=0,1$, $a_1 \approx 0,37$, $b_1\approx 0,90$ et $b_0=1$ donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$
    La fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    Par conséquent $\e^{0}>\e^{-a_n}\pg \e^{-a_{n+1}}\pg \e^{-b_{n+1}}\pg \e^{-b_n}\pg \e^{-1}$
    Soit $1>b_{n+1}\pg b_{n+2}\pg a_{n+2}\pg a_{n+1}\pg \e^{-1}>0$.
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Ainsi, pour tout entier naturel $n$ on a $0<a_n\pp a_{n+1}\pp b_{n+1} \pp b_n \pp 1$.
    $\quad$
    b. La suite $\left(a_n\right)$ est croissante et majorée par $1$ : elle converge donc.
    La suite $\left(b_n\right)$ est décroissante et minorée par $0$ : elle converge donc.
    $\quad$
  3. a. On a $A=\e^{-B}$  par conséquent $\ln(A)=-B$ et $B=-\ln(A)$.
    Or $B=\e^{-A}$ donc $-\ln(A)=\e^{-A}$ soit $\e^{-A}+\ln(A)=0$.
    Par conséquent $f(A)=0$.
    $\quad$
    b. D’après la question précédente et la question A.4. $A=\ell$.
    On a $B=\e^{-A}$ donc $A=-\ln(B)$
    Or $A=\e^{-B}$ soit $-\ln(B)=\e^{-B}$ et donc $f(B)=0$.
    On a ainsi également $B=\ell$.
    Donc $A-B=0$.
    Remarque : On dit que les suite $\left(a_n\right)$ et $\left(b_n\right)$ sont adjacentes.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Les résultats seront arrondis si besoin à $10^{-4}$ près.
Une étude statistique réalisée dans une entreprise fournit les informations suivantes :

  • $48 \%$ des salariés sont des femmes. Parmi elles, $16,5 \%$ exercent une profession de cadre ;
  • $52 \%$ des salariés sont des hommes. Parmi eux, $21,5 \%$ exercent une profession de cadre.

On choisit une personne au hasard parmi les salariés.
On considère les événements suivants :

  • $F$ : « la personne choisie est une femme » ;
  • $C$ : « la personne choisie exerce une profession de cadre ».
  1. Représenter la situation par un arbre pondéré.
    $\quad$
  2. Calculer la probabilité que la personne choisie soit une femme qui exerce une profession de cadre.
    $\quad$
  3. a. Démontrer que la probabilité que la personne choisie exerce une profession de cadre est égale à $0,191$.
    $\quad$
    b. Les événements $F$ et $C$ sont-ils indépendants ? Justifier.
    $\quad$
  4. Calculer la probabilité de $F$ sachant $C$, notée $P_C(F)$. Interpréter le résultat dans le contexte de l’exercice.
    $\quad$
  5. On choisit au hasard un échantillon de 15 salariés. Le grand nombre de salariés dans l’entreprise permet d’assimiler ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire donnant le nombre de cadres au sein de l’échantillon de $15$ salariés.
    On rappelle que la probabilité qu’un salarié choisi au hasard soit un cadre est égale à $0,191$.
    a. Justifier que $X$ suit une loi binomiale dont on précisera les paramètres.
    $\quad$
    b. Calculer la probabilité que l’échantillon contienne au plus $1$ cadre.
    $\quad$
    c. Déterminer l’espérance de la variable aléatoire $X$.
    $\quad$
  6. Soit $n$ un entier naturel.
    On considère dans cette question un échantillon de $n$ salariés.
    Quelle doit être la valeur minimale de $n$ pour que la probabilité qu’il y ait au moins un cadre au sein de l’échantillon soit supérieure ou égale à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

On considère le cube $ABCDEFGH$ de côté $1$ représenté ci-dessous.

 

On munit l’espace du repère orthonormé $\left(A;\vect{AB};\vect{AD};\vect{AE}\right)$.

  1. a. Justifier que les droites $(AH)$ et $(ED)$ sont perpendiculaires.
    $\quad$
    b. Justifier que la droite $(GH)$ est orthogonale au plan $(EDH)$.
    $\quad$
    c. En déduire que la droite $(ED)$ est orthogonale au plan $(AGH)$.
    $\quad$
  2. Donner les coordonnées du vecteur $\vect{ED}$.
    Déduire de la question 1.c. qu’une équation cartésienne du plan $(AGH)$ est :
    $$y-z=0$$
    $\quad$
  3. On désigne par $L$ le point de coordonnées $\left(\dfrac{2}{3};1;0\right)$
    a. Déterminer une représentation paramétrique de la droite $(EL)$.
    $\quad$
    b. Déterminer l’intersection de la droite $(EL)$ et du plan $(AGH)$.
    $\quad$
    c. Démontrer que le projeté orthogonal du point $L$ sur le plan $(AGH)$ est le point $K$ de coordonnées $\left(\dfrac{2}{3};\dfrac{1}{2};\dfrac{1}{2}\right)$.
    $\quad$
    d. Montrer que la distance du point $L$ au plan $(AGH)$ est égale à $\dfrac{\sqrt{2}}{2}$.
    $\quad$
    e. Déterminer le volume du tétraèdre $LAGH$.
    On rappelle que le volume $V$ d’un tétraèdre est donné par la formule :
    $$V=\dfrac{1}{3}\times (\text{aire de la base})\times \text{hauteur}$$
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonctions, suites

Cet exercice est un questionnaire à choix multiples.
Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la
réponse choisie. Aucune justification n’est demandée.

  1. . Soit $g$ la fonction définie sur $\R$ par $g(x)=x^{1~000}+x$.
    On peut affirmer que :
    a. la fonction $g$ est concave sur $\R$.
    b. la fonction $g$ est convexe sur $\R$.
    c. la fonction $g$ possède exactement un point d’inflexion.
    d. la fonction $g$ possède exactement deux points d’inflexion.
    $\quad$
  2. On considère une fonction $f$ définie et dérivable sur $\R$. On note $f’$ sa fonction dérivée.
    On note $C$ la courbe représentative de $f$.
    On note $\Gamma$ la courbe représentative de $f’$.
    On a tracé ci-dessous la courbe $\boldsymbol{\Gamma}$ .On note $T$ la tangente à la courbe $\boldsymbol{C}$ au point d’abscisse $0$.
    On peut affirmer que la tangente $T$ est parallèle à la droite d’équation :
    a. $y=x$
    b. $y=0$
    c. $y=1$
    d. $x=0$
    $\quad$
  3. On considère la suite $\left(u_n\right)$ définie pour tout entier naturel $n$ par $u_n=\dfrac{(-1)^n}{n+1}$.
    On peut affirmer que la suite $\left(u_n\right)$ est :
    a. majorée et non minorée.
    b. minorée et non majorée.
    c. bornée.
    d. non majorée et non minorée.
    $\quad$
  4. Soit $k$ un nombre réel non nul.
    Soit $\left(v_n\right)$ une suite définie pour tout entier naturel $n$.
    On suppose que $v_0=k$ et que pour tout $n$, on a $v_n\times v_{n+1}<0$.
    On peut affirmer que $v_{10}$ est :
    a. positif.
    b. négatif.
    c. du signe de $k$.
    d. du signe de $-k$.
    $\quad$
  5. On considère la suite $\left(w_n\right)$ définie pour tout entier naturel $n$ par :
    $$w_{n+1}=2w_n-4\text{ et } w_2=8$$
    On peut affirmer que :
    a. $w_0=0$.
    b. $w_0=5$.
    c. $w_0=10$.
    d. Il n’est pas possible de calculer $w_0$.
    $\quad$
  6. On considère la suite $\left(a_n\right)$ définie pour tout entier naturel $n$ par : $$a_{n+1}=\dfrac{\e^n}{\e^n+1}a_n \text{ et } a_0=1$$
    On peut affirmer que :
    a. la suite $\left(a_n\right)$ est strictement croissante.
    b. la suite $\left(a_n\right)$ est strictement décroissante.
    c. la suite $\left(a_n\right)$ n’est pas monotone.
    d. la suite $\left(a_n\right)$ est constante.
    $\quad$
  7. Une cellule se reproduit en se divisant en deux cellules identiques, qui se
    divisent à leur tour, et ainsi de suite. On appelle temps de génération le temps nécessaire pour qu’une cellule donnée se divise en deux cellules. On a mis en culture $1$ cellule. Au bout de $4$ heures, il y a environ $4~000$ cellules.
    On peut affirmer que le temps de génération est environ égal à :
    a. moins d’une minute.
    b. $12$ minutes.
    c. $20$ minutes.
    d. $1$ heure.
    $\quad$

$\quad$

Exercice 4

Thème : Fonctions, fonction exponentielle, fonction logarithme, suites

Partie A

On considère la fonction $f$ définie pour tout réel $x$ de $]0 ; 1]$ par :$$f(x)=\e^{-x}+\ln(x)$$

  1. Calculer la limite de $f$ en $0$.
    $\quad$
  2. On admet que $f$ est dérivable sur $]0 ; 1]$. On note $f’$ sa fonction dérivée.
    Démontrer que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a :
    $$f'(x)=\dfrac{1-x\e^{-x}}{x}$$
    $\quad$
  3. Justifier que, pour tout réel $x$ appartenant à $]0 ; 1]$, on a $x\e^{-x}<1$.
    En déduire le tableau de variation de $f$ sur $]0 ; 1]$.
    $\quad$
  4. Démontrer qu’il existe un unique réel $\ell$ appartenant à $]0 ; 1]$ tel que $f(\ell)=0$.
    $\quad$

Partie B

  1. On définit deux suites $\left(a_n\right)$ et $\left(b_n\right)$ par :
    $$\begin{cases} a_0=\dfrac{1}{10}\\[3pt]b_0=1\end{cases} \text{ et, pour tout entier naturel }n,~\begin{cases} a_{n+1}=\e^{-b_n}\\[3pt]b_{n+1}=\e^{-a_n}\end{cases}$$
    a. Calculer $a_1$ et $b_1$. On donnera des valeurs approchées à $10^{-2}$ près.
    $\quad$
    b. On considère ci-dessous la fonction termes, écrite en langage Python.
    $\begin{array}{|l|}
    \hline
    \text{def termes(n):}\\
    \quad\text{a = 1/10}\\
    \quad\text{b = 1}\\
    \quad\text{for k in range(0,n):}\\
    \qquad\text{c = …}\\
    \qquad\text{b = …}\\
    \qquad\text{a = c}\\
    \quad\text{return(a,b)}\\
    \hline
    \end{array}$
    Recopier et compléter sans justifier le cadre ci-dessus de telle sorte que la
    fonction termes calcule les termes des suites $\left(a_n\right)$ et $\left(b_n\right)$.
    $\quad$
  2. On rappelle que la fonction $x\mapsto \e^{-x}$ est décroissante sur $\R$.
    a. Démontrer par récurrence que, pour tout entier naturel $n$, on a : $$0<a_n\pp a_{n+1}\pp b_{n+1}\pp b_n\pp 1$$
    $\quad$
    b. En déduire que les suites $\left(a_n\right)$ et $\left(b_n\right)$ sont convergentes.
    $\quad$
  3. On note $A$ la limite de $\left(a_n\right)$ et $B$ la limite de $\left(b_n\right)$.
    On admet que $A$ et $B$ appartiennent à l’intervalle $]0 ; 1]$, et que $A = \e^{-B}$ et $B = \e^{-A}$.
    a. Démontrer que $f(A)=0$.
    $\quad$
    b. Déterminer $A-B$.
    $\quad$

$\quad$

 

Bac – Spécialité mathématiques – Centres étrangers – sujet 2 – 12 mai 2022

Centres étrangers – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. La fonction $f$ est dérivable sur $\R$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x$ on a :
    $\begin{align*} f'(x)&=\dfrac{1\times\e^x-x\e^x}{\left(\e^x\right)^2} \\
    &=\dfrac{(1-x)\e^x}{\e^{2x}} \\
    &=\dfrac{1-x}{\e^x} \\
    &=(1-x)\e^{-x}\end{align*}$
    Réponse C
    $\quad$
  2. La fonction $f\dsec$ semble donc strictement positive sur $]-3;-1[$ et strictement négative sur $]-1;1[$.
    La fonction $f’$ semble donc croissante sur $[-3;-1]$ et strictement décroissante sur $[-1;1]$.
    Ainsi $f’$ admet un maximum en $x=-1$.
    Réponse D
    $\quad$
  3. On considère la fonction $F$ définie sur $\R$ par $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$.
    Elle est dérivable sur $\R$ en tant que produit et composée de fonctions dérivables sur $\R$.
    Pour tout réel $x$
    $\begin{align*} F'(x)&=-\dfrac{1}{2}\left(2x\e^{-x^2}+\left(x^2+1\right)\times (-2x)\e^{-x^2}\right)\\
    &=-\dfrac{1}{2}\left(2x\e^{-x^2}-2x^3\e^{-x^2}-2x\e^{-x^2}\right) \\
    &=-\dfrac{1}{2}\times \left(-2x^3\right) \e^{-x^2}\\
    &=f(x)\end{align*}$
    Réponse C
    $\quad$
  4. Pour tout réel $x$ on a
    $\begin{align*} \dfrac{\e^x+1}{\e^x-1}&=\dfrac{\e^x\left(1+\e^{-x}\right)}{\e^x\left(1-\e^{-x}\right)} \\
    &=\dfrac{1+\e^{-x}}{1-\e^{-x}}\end{align*}$
    Or $\lim\limits_{x\to +\infty} \e^{-x}=0$.
    Donc $\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}=1$.
    Réponse B
    $\quad$
  5. Une primitive de la fonction $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{2x+1}+K$
    $\begin{align*} F(0)=1&\ssi \dfrac{1}{2}\e+K=1 \\
    &\ssi K=1-\dfrac{1}{2}\e\end{align*}$
    Donc, pour tout réel $x$, $F(x)=\dfrac{1}{2}\e^{2x+1}+1-\dfrac{1}{2}\e$.
    Réponse C
    $\quad$
  6. La fonction $f$ semble concave sur $[-2;1]$ et convexe sur $[1;4]$.
    Par conséquent $f\dsec(x)$ est négatif sur $[-2;1]$ et positif sur $[1;4]$ en ne s’annulant qu’en $1$.
    Réponse A
    $\quad$

 

Ex 2

Exercice 2

  1. Par croissances comparées, $\lim\limits_{x\to 0} x\ln(x)=0$ donc $\lim\limits_{x\to 0} f(x)=1$.
    $\quad$
    $\lim\limits_{x\to +\infty} \ln(x)=+\infty$ donc $\lim\limits_{x\to +\infty} x\ln(x)=+\infty$ et $\lim\limits_{x\to +\infty} f(x)=+\infty$
    $\quad$
  2. a. Pour tout réel $x$ strictement positif,
    $\begin{align*} f'(x)&=1\times \ln(x)+x\times \dfrac{1}{x} \\
    &=\ln(x)+1\end{align*}$
    $\quad$
    b. $\ln(x)+1=0 \ssi \ln(x)=-1 \ssi x=\e^{-1}$
    $\ln(x)+1>0\ssi \ln(x)>-1 \ssi x>\e^{-1}$
    On obtient donc le tableau de variations suivant :

    $\quad$
    c. La fonction $f$ est strictement décroissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left]0;\e^{-1}\right]$ on a $0<1-\e^{-1}\pp f(x) <1$.
    $f(1)=1$.
    La fonction $f$ est strictement croissante sur $\left]0;\e^{-1}\right[$
    Donc pour tout $x\in \left[\e^{-1};1\right[$ on a $0<1-\e^{-1}\pp f(x) < 1$.
    Ainsi, pour tout $x\in [0;1]$ on a $0<f(x)<1$.
    $\quad$
  3. a. $f'(1)=1$ et $f(1)=1$
    Une équation de $(T)$ est donc $y=1\times (x-1)+1$ soit $y=x$.
    $\quad$
    b. La fonction $f’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables.
    Pour tout réel $x\in ]0;+\infty[$ on a $f\dsec(x)=\dfrac{1}{x}>0$.
    La fonction $f$ est donc convexe sur $]0;+\infty[$.
    $\quad$
    c. La courbe $C_f$ est donc au-dessus de toutes ses tangentes en particulier au-dessus de $T$.
    Donc, pour tout réel $x$ strictement positif, $f(x)\pg x$.
    $\quad$
  4. a. Pour tout entier naturel $n$ on pose $P(n):~0<u_n<1$.
    Initialisation : $u_0\in ]0;1[$ par définition. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    On a $0<u_n<1$ donc, d’après la question 2.c., $0<f\left(u_n\right)<1$ soit $0<u_{n+1}<1$.
    $P(n+1)$ est donc vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$ on a $0<u_n<1$.
    $\quad$
    b. Soit $n\in \N$
    D’après la question 3.c. on a $f\left(u_n\right)\pg u_n$ soit $u_{n+1}\pg u_n$.
    La suite $\left(u_n\right)$ est donc croissante.
    $\quad$
    c. La suite $\left(un\right)$ est croissante et majorée par $1$. Elle est donc convergente.
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $\vect{AB}\begin{pmatrix}3\\3\\3\end{pmatrix}$, $\vect{AC}\begin{pmatrix}3\\0\\-3\end{pmatrix}$ et $\vect{AD}\begin{pmatrix}-3\\6\\-3\end{pmatrix}$
    $A$, $B$, $C$ et $D$ sont coplanaires si, et seulement si, il existe deux réels $x$ et $y$ tels que :
    $\begin{align*} \vect{AD}=x\vect{AB}+y\vect{AC}&\ssi \begin{cases} 3x+3y&=-3\\3x&=6\\3x-3y&=-3\end{cases} \\
    &\ssi \begin{cases} x+y&=-3\\x&=2\\x-y&=-1\end{cases} \\
    &\ssi \begin{cases} x=2\\y=-5\\y=3\end{cases}\end{align*}$
    Les deux dernières lignes du système sont incompatibles.
    Les points $A$, $B$, $C$ et $D$ ne sont donc pas coplanaires.
    $\quad$
  2. a.
    $\begin{align*} \vect{AB}.\vect{AC}&=3\times 3+3\times 0+3\times (-3) \\
    &=9+0-9\\
    &=0\end{align*}$
    Ces deux vecteurs sont orthogonaux.
    Le triangle $ABC$ est donc rectangle en $A$.
    $\quad$
    b.
    $\begin{align*} \vect{AD}.\vect{AB}&=-3\times 3+6\times 3+(-3)\times 3 \\
    &=-9+18-9 \\
    &=0\end{align*}$
    $\begin{align*} \vect{AD}.\vect{AC}&=-3\times 3+6\times 0+(-3)\times (-3) \\
    &=-9+0+9 \\
    &=0\end{align*}$
    Le vecteur $\vect{AD}$ est donc orthogonal à deux vecteurs non colinéaires (ils sont orthogonaux d’après la question précédente) du plan $(ABC)$.
    La droite $(AD)$ est par conséquent perpendiculaire au plan $(ABC)$.
    $\quad$
    c.
    $\begin{align*} AD&=\sqrt{(-3)^2+6^2+(-3)^2} \\
    &=\sqrt{9+36+9} \\
    &=\sqrt{54}\end{align*}$
    $\begin{align*} AB&=\sqrt{3^2+3^2+3^2} \\
    &=\sqrt{9+9+9} \\
    &=\sqrt{27}\end{align*}$
    $\begin{align*} AC&=\sqrt{3^2+0^2+(-3)^2} \\
    &=\sqrt{9+0+9} \\
    &=\sqrt{18}\end{align*}$
    L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{AB\times AC}{2} \\
    &=\dfrac{\sqrt{27}\times \sqrt{18}}{2}\\
    &=\dfrac{9\sqrt{6}}{2}\end{align*}$
    Par conséquent le volume du tétraèdre $ABCD$ est
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times AD\times \mathscr{A} \\
    &=\dfrac{1}{3}\times \sqrt{54}\times \dfrac{9\sqrt{6}}{2}\\
    &=27\end{align*}$
    $\quad$
  3. a. $\vect{BH}\begin{pmatrix}-1\\-1\\-4\end{pmatrix}$, $\vect{BC}\begin{pmatrix}0\\-3\\-6\end{pmatrix}$ et $\vect{BD}\begin{pmatrix}-6\\3\\-6\end{pmatrix}$
    $\begin{align*} \vect{BH}=\alpha\vect{BC}+\beta\vect{BD}&\ssi \begin{cases} -6\beta&=-1 \\
    -3\alpha+3\beta&=-1\\
    -6\alpha-6\beta&=-4\end{cases} \\
    &\ssi \begin{cases} \beta=\dfrac{1}{6}\\\alpha=\dfrac{1}{2}\end{cases}\end{align*}$
    Par conséquent $\vect{BH}=\dfrac{1}{2}\vect{BC}+\dfrac{1}{6}\vect{BD}$.
    $\quad$
    b. $\vect{AH}\begin{pmatrix}2\\2\\-1\end{pmatrix}$
    $\begin{align*} \vect{AH}.\vect{BC}&=2\times 0+2\times (-3)+(-1)\times (-6) \\
    &=0\end{align*}$
    $\begin{align*} \vect{AH}.\vect{BD}&=2\times (-6)+2\times 3+(-1)\times (-6) \\
    &=0\end{align*}$
    Le vecteur $\vect{AH}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(BCD)$.
    C’est donc un vecteur normal à ce plan.
    D’après la question précédente, $H$ appartient au plan $(BCD)$.
    Donc $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c.
    $\begin{align*} AH&=\sqrt{2^2+2^2+(-1)^2} \\
    &=\sqrt{9} \\
    &=3\end{align*}$
    La distance du point $A$ au plan $(BCD)$ est égale à $3$ unités de longueur.
    $\quad$
  4. On note $\mathscr{A}$ l’aire du triangle $BCD$.
    $\begin{align*} V=\dfrac{1}{3}\mathscr{A}\times h&\ssi 27=\dfrac{1}{3}\mathscr{A}\times 3\\
    &\ssi \mathscr{A}=27\end{align*}$
    $\quad$

Ex 4

Exercice 4

  1. a. On appelle :
    $\bullet ~~N_i$ l’événement « le jeton tiré lors du $i$-ème tirage est noir » ;
    $\bullet ~~B_i$ l’événement « le jeton tiré lors du $i$-ème tirage est blanc ».
    On obtient donc l’arbre pondéré suivant :
    $ \quad$
    $\quad$
    b. La probabilité de perdre $9$ € sur une partie est égale à :
    $\begin{align*} P\left(B_1\cap B_2\right)&=P\left(B_1\right)\times P_{B_1}\left(B_2\right) \\
    &=\dfrac{3}{5}\times \dfrac{3}{5} \\
    &=\dfrac{9}{25}\end{align*}$
    $\quad$
  2. a. À chaque tirage, la probabilité de tirer un jeton noir vaut $\dfrac{N}{N+3}$ et la probabilité de tirer un jeton blanc vaut $\dfrac{3}{N+3}$.
    La probabilité de tirer deux jetons blancs est égale à $\left(\dfrac{3}{N+3}\right)^2$.
    La probabilité de tirer deux jetons noirs est égale à $\left(\dfrac{N}{N+3}\right)^2$.
    Par conséquent la probabilité de tirer deux jetons de couleurs différentes est égale à :
    $\begin{align*} p&=1-\left(\dfrac{3}{N+3}\right)^2-\left(\dfrac{N}{N+3}\right)^2 \\
    &=1-\dfrac{9}{(N+3)^2}-\dfrac{N^2}{(N+3)^2} \\
    &=\dfrac{(N+3)^2-9-N^2}{(N+3)^2} \\
    &=\dfrac{N^2+6N+9-9-N^2}{(N+3)^2} \\
    &=\dfrac{6N}{(N+3)^2}\end{align*}$
    On obtient ainsi la loi de probabilité suivante :
    $\begin{array}{|c|c|c|c|}
    \hline
    x&-9&-1&5\\
    \hline
    P(X=x)&\dfrac{9}{(N+3)^2}&\dfrac{N^2}{(N+3)^2}&\dfrac{6N}{(N+3)^2}\\
    \hline
    \end{array}$
    $\quad$
    b. Le discriminant de $-x^2+30x-81$ est $\Delta=576>0$.
    Les racines de $-x^2+3x-81$ sont donc $x_1=\dfrac{-30-\sqrt{576}}{-2}=27$ et $x_1=\dfrac{-30+\sqrt{576}}{-2}=3$.
    Le coefficient principal du polynôme du second degré est $a=-1<0$.
    Par conséquent l’ensemble solution de $-x^2+3x-81>0$ est $]3;27[$.
    $\quad$
    c. Le jeu est favorable au joueur si, et seulement si, l’espérance de $X$ est strictement positive.
    $\begin{align*} E(X)>0&\ssi -9\times \dfrac{9}{(N+3)^2}-1\times \dfrac{N^2}{(N+3)^2}+5\times \dfrac{6N}{(N+3)^2}>0 \\
    &\ssi -81-N^2+30N>0\end{align*}$
    D’après la question précédente, le jeu est favorable au joueur si, et seulement si, $N$ est un entier naturel compris entre $4$ et $26$, tous les deux inclus.
    $\quad$
    d. On considère la fonction $g$ définie sur $[0;+\infty[$ par $g(x)=\dfrac{-x^2+30x-81}{(x+3)^2}$.
    Elle est dérivable sur $[0;+\infty[$ en tant que quotient de fonctions dérivables dont le dénominateur ne s’annule pas.
    Pour tout réel $x\in[0;+\infty[$ on a
    $\begin{align*} g'(x)&=\dfrac{(-2x+30)(x+3)^2-2(x+3)\left(-x^2+30x-81\right)}{(x+3)^4} \\
    &=\dfrac{(-2x+30)(x+3)-2\left(-x^2+30x-81\right)}{(x+3)^3} \\
    &=\dfrac{-2x^2-6x+30x+90+2x^2-60x+162}{(x+3)^3}\\
    &=\dfrac{-36x+252}{(x+3)^3}\end{align*}$
    $g'(x)$ est donc du signe de $-36x+252$ sur $[0;+\infty[$.
    Or $-36x+252>0\ssi -36x>-252 \ssi x<7$.
    Par conséquent $g$ est strictement croissante sur $[0;7]$ et strictement décroissante sur $[7;+\infty[$.
    Elle atteint donc son maximum pour $x=7$.
    Or $E(X)=g(N)$ et $7\in [4;26]$.
    Le gain moyen est donc maximal s’il y a $7$ jetons noirs.
    $\quad$
  3. $N=7$ donc $P(X=5)=0,42$.
    On répète $10$ fois de façons indépendantes la même expérience de Bernoulli. On appelle $Y$ la variable aléatoire comptant le nombre de joueur ayant gagné $5$ euros.
    $Y$ suit donc la loi binomiale de paramètres $n=10$ et $p=0,42$.
    $\begin{align*} P(Y\pg 1)&=1-P(Y=0) \\
    &=1-(1-0,42)^{10} \\
    &=1-0,58^{10}\\
    &\approx 0,996\end{align*}$
    La probabilité d’avoir au moins un joueur gagnant $5$ euros est environ égale à $0,996$.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction exponentielle

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question en rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. Soit $f$ la fonction définie sur $\R$ par $$f(x)=\dfrac{x}{\e^x}$$
    On suppose que $f$ est dérivable sur $\R$ et on note $f’$ sa fonction dérivée.
    a. $f'(x)=\e^{-x}$
    b. $f'(x)=x\e^{-x}$
    c. $f'(x)=(1-x)\e^{-x}$
    d. $f'(x)=(1+x)\e^{-x}$
    $\quad$
  2. Soit $f $ une fonction deux fois dérivable sur l’intervalle $[-3;1]$. On donne ci-dessous la représentation graphique de sa fonction dérivée seconde $f\dsec$.
    On peut alors affirmer que :
    a. La fonction $f$ est convexe sur l’intervalle $[-1;1]$
    b. La fonction $f$ est concave sur l’intervalle $[-2;0]$
    c. La fonction $f’$ est décroissante sur l’intervalle $[-2;0]$
    d. La fonction $f’$ admet un maximum en $x=-1$
    $\quad$
  3. On considère la fonction $f$ définie sur $\R$ par : $$f(x)=x^3\e^{-x^2}$$
    Une primitive $F$ de la fonction $f$ est définie sur $\R$ par :
    a. $F(x)=-\dfrac{1}{6}\left(x^3+1\right)\e^{-x^2}$
    b. $F(x)=-\dfrac{1}{4}x^4\e^{-x^2}$
    c. $F(x)=-\dfrac{1}{2}\left(x^2+1\right)\e^{-x^2}$
    d. $F(x)=x^2\left(3-2x^2\right)\e^{-x^2}$
    $\quad$
  4. Que vaut  $$\lim\limits_{x\to +\infty} \dfrac{\e^x+1}{\e^x-1}$$
    a $-1$
    b. $1$
    c. $+\infty$
    d. N’existe pas
    $\quad$
  5. On considère la fonction $f$ définie sur $\R$ par $f(x)=\e^{2x+1}$.
    La seule primitive de $F$ sur $\R$ de la fonction $f$ telle que $F(0)=1$ est la fonction :
    a. $x\mapsto 2\e^{2x+1}-2\e+1$
    b. $x\mapsto \e^{2x+1}-\e$
    c. $x\mapsto \dfrac{1}{2}\e^{2x+1}-\dfrac{1}{2}\e+1$
    d. $x\mapsto \e^{x^2+x}$
    $\quad$
  6. Dans un repère, on a tracé ci-dessous la courbe représentative d’une fonction $f$ définie et deux fois dérivable sur $[-2;4]$.
    Parmi les courbes suivantes, laquelle représente la fonction $f\dsec$, dérivée seconde de $f$?
    a.
    b.
    c. d. $\quad$

$\quad$

Exercice 2     7 points

Thème : Fonction logarithme et suite

Soit $f$ la fonction définie sur l’intervalle $]0;+\infty[$ par $$f(x)=x\ln(x)+1$$

On note $C_f$ sa courbe représentative dans un repère du plan.

  1. Déterminer la limite de la fonction $f$ en $0$ ainsi que sa limite en $+\infty$.
    $\quad$
  2. a. On admet que $f$ est dérivable sur $]0;+\infty[$ et on notera $f’$ sa fonction dérivée.
    Montrer que pour tout réel $x$ strictement positif : $$f'(x)=1+\ln(x)$$
    $\quad$
    b. En déduire le tableau de variation de la fonction $f$ sur $]0;+\infty[$.
    On y fera figurer la valeur exacte de l’extremum de $f$ sur $]0;+\infty[$ et les limites.
    $\quad$
    c. Justifier que pour tout $x\in ]0;1[$, $f(x)\in ]0;1[$.
    $\quad$
  3. a. Déterminer une équation de la tangente $(T)$ à la courbe $C_f$ au point d’abscisse $1$.
    $\quad$
    b. Étudier la convexité de la fonction $f$ sur $]0;+\infty[$.
    $\quad$
    c. En déduire que pour tout réel $x$ strictement positif $$f(x)\pg x$$
    $\quad$
  4. On définit la suite $\left(u_n\right)$ par son premier terme $u_0$ élément de l’intervalle $]0;1[$ et pour tout entier naturel $n$ : $$u_{n+1}=f\left(u_n\right)$$
    a. Démontrer par récurrence que pour tout entier naturel $n$, on a $0<u_n<1$.
    $\quad$
    b. Déduire de la question 3c la croissance de la suite $\left(u_n\right)$.
    $\quad$
    c. En déduire que la suite $\left(u_n\right)$ est convergente.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Géométrie dans l’espace

L’espace est muni d’un repère orthonormé $Oijk$.

On considère les points $A(3;-2;2)$, $B(6;1;5)$, $C(6;-2;-1)$ et $D(0;4;-1)$.

On rappelle que le volume d’un tétraèdre est donné par la formule : $$V=\dfrac{1}{3}\mathscr{A}\times h$$
où $\mathscr{A}$ est l’aire de la base et $h$ la hauteur correspondante.

  1. Démontrer que les points $A$, $B$, $C$ et $D$ ne sont pas coplanaires.
    $\quad$
  2. a. Montrer que le triangle $ABC$ est rectangle.
    $\quad$
    b. Montrer que la droite $(AD)$ est perpendiculaire au plan $(ABC)$.
    $\quad$
    c. En déduire le volume du tétraèdre $ABCD$.
    $\quad$
  3. On considère le point $H(5;0;1)$.
    a. Montrer qu’il existe des réels $\alpha$ et $\beta$ tels que $\vect{BH}=\alpha \vect{BC}+\beta\vect{BD}$.
    $\quad$
    b. Démontrer que $H$ est le projeté orthogonal du point $A$ sur le plan $(BCD)$.
    $\quad$
    c. En déduire la distance du point $A$ au plan $(BCD)$.
    $\quad$
  4. Déduire des questions précédentes l’aire du triangle $BCD$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Une urne contient des jetons blancs et noirs tous indiscernables au toucher.

Une partie consiste à prélever au hasard successivement et avec remise deux jetons de cette urne.

On établit la règle de jeu suivante :

  • un joueur perd $9$ euros si les deux jetons tirés sont de couleur blanche;
  • un joueur perd $1$ euro si les deux jetons tirés sont de couleur noire;
  • un joueur gagne $5$ euros si les deux jetons tirés sont de couleurs différentes.
  1. On considère que l’urne contient $2$ jetons noirs et $3$ jetons blancs.
    a. Modéliser la situation à l’aide d’un arbre pondéré.
    $\quad$
    b. Calculer la probabilité de perdre $9$ € sur une partie.
    $\quad$
  2. On considère maintenant que l’urne contient $3$ jetons blancs et au moins deux jetons noirs mais on ne connait pas le nombre exact de jetons noirs. On appellera $N$ le nombre de jetons noirs.
    a. Soit $X$ la variable aléatoire donnant le gain du jeu pour une partie.
    Déterminer la loi de probabilité de cette variable aléatoire.
    $\quad$
    b. Résoudre l’inéquation pour $x$ réel : $$-x^2+30x-81>0$$
    $\quad$
    c. En utilisant le résultat de la question précédente, déterminer le nombre de jetons noirs que l’une doit contenir afin que ce jeu soit favorable au joueur.
    $\quad$
    d. Combien de jetons noirs le joueur doit-il demander afin d’obtenir un gain moyen maximal?
    $\quad$
  3. On observe $10$ joueurs qui tentent leur chance en effectuant une partie de ce jeu, indépendamment les uns des autres. On suppose que $7$ jetons noirs ont été placés dans l’urne (avec $3$ jetons blancs). Quelle est la probabilité d’avoir au moins $1$ joueur gagnant $5$ euros?
    $\quad$

$\quad$

 

 

Bac – Spécialité mathématiques – Métropole – sujet 2 – 12 mai 2022

Métropole – 12 mai 2022

Spécialité maths – Sujet 2- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A

  1. On obtient l’arbre suivant :
    $\quad$
    $\quad$
  2. On veut calculer :
    $\begin{align*} P(M\cap T)&=P(M)\times P_M(T) \\
    &=0,7\times 0,97 \\
    &=0,679\end{align*}$
    La probabilité que le coyote soit malade et que son test soit positif est égale à $0,679$.
    $\quad$
  3. $\left(M,\conj{M}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales :
    $\begin{align*} P(T)&=P(M\cap T)+P\left(\conj{M}\cap T\right)
    &=0,679+P\left(\conj{M}\right)\times P_{\conj{M}}(T)\\
    &=0,679+0,3\times 0,05 \\
    &=0,694\end{align*}$
    La probabilité de $T$ est égale à $0,694$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_T(M)&=\dfrac{P(T\cap M)}{P(T)} \\
    &=\dfrac{0,679}{0,694} \\
    &\approx 0,978\end{align*}$
    La valeur prédictive positive du test est environ égale à $0,978$.
    $\quad$
  5. a. La valeur prédictive négative du test est la probabilité que le coyote ne soit pas malade sachant que son test est négatif.
    On veut calculer :
    $\begin{align*} P_{\conj{T}}\left(\conj{M}\right))&=\dfrac{P\left(\conj{T}\cap \conj{M}\right)}{P\left(\conj{T}\right)} \\
    &=\dfrac{0,3\times 0,95}{1-0,694} \\
    &\approx 0,931 \end{align*}$
    La valeur prédictive négative du test est environ égale à $0,931$.
    $\quad$
    b. La valeur prédictive positive du test est donc supérieure à la valeur prédictive négative du test.
    Il est donc plus probable que le coyote soit malade quand le test est positif qu’il ne soit pas malade quand le test est négatif.
    $\quad$

Partie B

  1. a. On répète $5$ fois de façon indépendante la même expérience de Bernoulli. $X$ compte le nombre de coyote ayant un test positif.
    $X$ suit donc la loi binomiale de paramètres $n=5$ et $p=0,694$.
    $\quad$
    b.
    $\begin{align*} P(X=1)&=\dbinom{5}{1}\times 0,694^1 \times (1-0,694)^{5-1} \\
    &\approx 0,03\end{align*}$.
    La probabilité que dans cet échantillon de cinq coyote capturés au hasard, un seul ait un test positif est environ égale à $0,03$.
    $\quad$
    c.
    $\begin{align*} P(X\pg 4)&=P(X=4)+P(X=5) \\
    &=\dbinom{5}{4}\times 0,694^4 \times (1-0,694)^{1}+\dbinom{5}{5}\times 0,694^5 \\
    &\approx 0,516\\
    &>0,5\end{align*}$
    L’affirmation est donc vraie.
    $\quad$
  2. On répète $n$ fois de façon indépendante la même expérience de Bernoulli. La variable aléatoire $Y$ compte le nombre de coyote ayant un test positif.
    $Y$ suit donc la loi binomiale de paramètres $n$ et $p=0,694$.
    $\begin{align*} P(Y\pg 1)>0,99&\ssi 1-P(Y=0)>0,99 \\
    &\ssi P(Y=0)<0,01 \\
    &\ssi (1-0,694)^n<0,01 \\
    &\ssi 0,306^n <0,01 \\
    &\ssi n\ln(0,306)<\ln(0,01) \\
    &\ssi n>\dfrac{\ln(0,01)}{\ln(0,306)} \end{align*}$
    Or $\dfrac{\ln(0,01)}{\ln(0,306)} \approx 3,89$
    Il faut donc capturer au moins $4$ coyotes pour que la probabilité qu’au moins l’un d’entre eux présente un test positif soit supérieur à $0,99$.
    $\quad$

 

Ex 2

Exercice 2

  1. La fonction $f’$ semble donc strictement positive sur $\left]-\infty;-\dfrac{1}{2}\right[$ et strictement négative sur $\left]-\dfrac{1}{2};+\infty\right[$.
    $f$ présente donc un maximum en $-\dfrac{1}{2}$.
    Réponse B
    $\quad$
  2. La fonction $f’$ semble strictement croissante sur $\left]-\infty;-\dfrac{3}{2}\right]$ et strictement décroissante sur $\left[-\dfrac{3}{2};+\infty\right[$.
    Par conséquent $f$ est convexe sur $\left]-\infty;-\dfrac{3}{2}\right]$.
    Réponse A
    $\quad$
  3. La fonction $f’$ semble strictement croissante sur $\left]-\infty;-\dfrac{3}{2}\right]$ et strictement décroissante sur $\left[-\dfrac{3}{2};+\infty\right[$.
    Par conséquent $f\dsec(x)>0$ sur $\left]-\infty;-\dfrac{3}{2}\right[$, $f\dsec{x)}<0$ sur $\left[-\dfrac{3}{2};+\infty\right[$ et $f\dsec(x)\left(-\dfrac{3}{2}\right)=0$.
    Réponse C
    $\quad$
  4. Si la suite $\left(v_n\right)$ est croissante alors, pour tout entier naturel $n$, on a :
    $u_0\pp v_0 \pp v_1 \pp \ldots \pp v_n$.
    Ainsi, la suite $\left(v_n\right)$ est minorée par $u_0$.
    Réponse B
    $\quad$
  5. Pour tout entier naturel $n$ non nul on a $u_n\pp u_{n+1}$ : la suite $\left(u_n\right)$ est donc croissante.
    Pour tout entier naturel non nul on a $\dfrac{1}{n}\pp 1$.
    Donc, pour tout entier naturel $n$ non nul on a $u_n\pp u_{n+1} \pp \dfrac{1}{n}\pp 1$.
    La suite $\left(u_n\right)$ est donc croissante et majorée par $1$.
    Par conséquent elle converge.
    Réponse B
    $\quad$
  6. Pour tout entier naturel $n$ on a $n<u_n<n+1$ donc $n+1<u_{n+1}<n+2$
    Par conséquent $n<u_n<n+1<u_{n+1}$.
    La suite $\left(u_n\right)$ est croissante.
    Réponse B
    $\quad$

 

 

 

Ex 3

Exercice 3

  1. $E$ a pour coordonnées $(0;0;1)$.
    $F$ a pour coordonnées $(1;0;1)$.
    $G$ a pour coordonnées $(1;1;1)$.
    $K$ a pour coordonnées $\left(1;\dfrac{1}{2};0\right)$.
    $\quad$
  2. $\vect{EG}\begin{pmatrix}1\\1\\0\end{pmatrix}$ donc
    $\begin{align*} \vect{EG}.\vec{n}&=1\times 2+1\times (-2)+0\times 1\\
    &=0\end{align*}$
    $\vect{EK}\begin{pmatrix}1\\\dfrac{1}{2}\\-1\end{pmatrix}$ donc
    $\begin{align*} \vect{EG}.\vec{n}&=1\times 2+\dfrac{1}{2}\times (-2)+(-1)\times 1\\
    &=0\end{align*}$
    Les vecteurs $\vect{EG}$ et $\vect{EK}$ ne sont pas colinéaires car une coordonnées de $\vect{EG}$ est nulle et ce n’est pas le cas pour $\vect{EK}$.
    Ainsi $\vec{n}$ est orthogonal à deux vecteurs non colinéaires du plan $(EGK)$.
    $\vec{n}\begin{pmatrix} 2\\-2\\1\end{pmatrix}$  est orthogonal au plan $(EGK)$.
    $\quad$
  3. Une équation cartésienne du plan $(EGK)$ est donc de la forme : $2x-2y+z+d=0$
    Or $E(0;0;1)$ appartient à ce plan.
    Donc $0-0+1+d=0 \ssi d=-1$.
    Une équation cartésienne du plan $(EGK)$ est $2x-2y+z-1=0$.
    $\quad$
  4. $\vec{n}$ est un vecteur directeur de cette droite.
    Ainsi une représentation paramétrique de $(d)$ est $\begin{cases} x=1+2t\\y=-2t\\z=1+t\end{cases} \quad ,t\in \R$
    $\quad$
  5. $2\times \dfrac{5}{9}-2\times \dfrac{4}{9}+\dfrac{7}{9}-1=\dfrac{9}{9}-1=0$ : le point de coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$ appartient au plan $(EGK)$.
    Prenons $t=-\dfrac{2}{9}$ dans la représentation paramétrique de $(d)$.
    On obtient $x=\dfrac{5}{9}$, $y=\dfrac{4}{9}$ et $z=\dfrac{7}{9}$.
    Le point de coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$ appartient à la droite $(d)$.
    Donc $L$ a pour coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$.
    $\quad$
  6. $\vect{LF}\begin{pmatrix} \dfrac{4}{9}\\-\dfrac{4}{9}\\\dfrac{2}{9} \end{pmatrix}$
    $\begin{align*} LF&=\sqrt{\left(\dfrac{4}{9}\right)^2+\left(-\dfrac{4}{9}\right)^2+\left(\dfrac{2}{9}\right)^2} \\
    &=\sqrt{\dfrac{16}{81}+\dfrac{16}{81}+\dfrac{4}{81}}\\
    &=\sqrt{\dfrac{36}{81}}\\
    &=\dfrac{6}{9} \\
    &=\dfrac{2}{3}\end{align*}$
    $\quad$
  7. Le triangle $EFG$ est rectangle en $F$.
    Son aire est donc :
    $\begin{align*} \mathscr{A}&=\dfrac{EF\times FG}{2}\\
    &=\dfrac{1\times 1}{2}\\
    &=\dfrac{1}{2}\end{align*}$
    $\quad$
    Le volume du tétraèdre $EFGK$ est donc :
    $\begin{align*} \mathscr{V}&=\dfrac{1}{3}\times BF\times \mathscr{A}  \qquad (*)\\
    &=\dfrac{1}{3} \times 1 \times \dfrac{1}{2} \\
    &=\dfrac{1}{6}\end{align*}$
    $(*)$ : la hauteur du tétraèdre issue de $K$ a une longueur égale à $BF$.
    $\quad$
  8. On appelle $\mathscr{B}$ l’aire du triangle $EGK$.
    On a donc également
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times LF\times \mathscr{B} &\ssi \dfrac{1}{6}=\dfrac{1}{3}\times \dfrac{2}{3}\times \mathscr{B}\\
    &\ssi \dfrac{1}{6}=\dfrac{2}{9}\times \mathscr{B} \\
    &\ssi \mathscr{B}=\dfrac{3}{4}\end{align*}$
    $\quad$
  9. En appliquant le théorème des milieux (ou la réciproque du théorème de Thalès suivi du théorème de Thalès) on montre que les longueurs des côtés du triangle $PMN$ sont égales à la moitié des longueurs des côtés du triangle $EGK$.
    Le triangle $PMN$ est donc une réduction du triangle $EGK$ de rapport $\dfrac{1}{2}$.
    Ainsi l’aire du triangle $PMN$ est
    $\begin{align*} \mathscr{B}’&=\left(\dfrac{1}{2}\right)^2\times \mathscr{B} \\
    &=\dfrac{1}{4}\times \dfrac{3}{4} \\
    &=\dfrac{3}{16}\end{align*}$
    Le volume du tetraèdre $FPMN$ est donc :
    $\begin{align*} \mathscr{V}’&=\dfrac{1}{3}\times LF\times \mathscr{B}’ \\
    &=\dfrac{1}{3}\times \dfrac{2}{3}\times \dfrac{3}{16} \\
    &=\dfrac{1}{24}\end{align*}$
    Remarque 1: Le triangle $PMN$ est inclus dans le plan $(EGK)$. La hauteur du tétraèdre $FPMN$ est donc la même que celle du tétraèdre $EFGK$.
    Remarque 2 : La rédaction du théorème des milieux est un peu rapide ici. Il faudrait, en toute rigueur, proposer une démarche plus détaillée mais je ne suis pas certain que ce soit réellement un attendu du sujet.
    $\quad$

Ex 4

Exercice 4

Partie A : études de deux fonctions

  1. a. D’après la limite des termes de plus haut degré $\lim\limits_{x\to +\infty} -x^2+13,7x=\lim\limits_{x\to +\infty} -x^2=-\infty$ donc $\lim\limits_{x\to +\infty} -f(x)=-\infty$
    $\quad$
    b. $f$ est une fonction polynôme du second degré dont le coefficient principal est $a=-0,06<0$.
    Elle atteint donc son maximum en $-\dfrac{b}{2a}=\dfrac{13,7}{2}=6,85$.
    La fonction $f$ est donc strictement croissante sur $[0;6,85]$ et strictement décroissante sur $[6,85;+\infty[$.
    $\quad$
    c.
    $\begin{align*} f(x)=0&\ssi 0,06\left(-x^2+13,7x\right)=0 \\
    &\ssi -x^2+13,7x=0 \\
    &\ssi x(-x+13,7)=0 \\
    &\ssi x=0 \text{ ou } -x+13,7=0\\
    &\ssi x=0 \text{ ou } x=13,7\end{align*}$
    Les solutions de l’équation $f(x)=0$ sont donc $0$ et $13,7$.
    $\quad$
  2. a. $\lim\limits_{x\to +\infty} 0,2x=+\infty$ et $\lim\limits_{X\to +\infty} \e^X=+\infty$ donc $\lim\limits_{x\to +\infty} \e^{0,2x}=+\infty$
    $\lim\limits_{x\to +\infty} -0,15x+2,2=-\infty$
    Donc par produit $\lim\limits_{x\to +\infty} g(x)=-\infty$.
    $\quad$
    b. Pour tout réel $x\in [0;+\infty[$
    $\begin{align*} g'(x)&=-0,15\e^{0,2x}+(-0,15x+2,2)\times 0,2\e^{0,2x} \\
    &=(-0,15-0,03x+0,44)\e^{0,2x} \\
    &=(-0,03x+0,29)\e^{0,2x}\end{align*}$
    $\quad$
    c. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $g'(x)$ ne dépend donc que de celui de $-0,03x+0,29$.
    $-0,03x+0,29=0 \ssi x=\dfrac{29}{3}$
    $-0,03x+0,29>0 \ssi -0,03x>-0,29 \ssi x<\dfrac{29}{3}$
    On obtient donc le tableau de variations suivant :
    $\quad$
    où $\alpha \approx 2,98$.
    $\quad$
    d. La fonction $g$ est strictement croissante sur $\left[0;\dfrac{29}{3}\right]$ et $g(0)=0$.
    L’équation $g(x)=0$ n’admet donc pas de solution non nulle sur cet intervalle.
    $\quad$
    La fonction $f$ est dérivable donc continue et strictement décroissante sur $\left[\dfrac{29}{3};+\infty\right[$.
    De plus $g\left(\dfrac{29}{3}\right)>0$ et $\lim\limits_{x\to +\infty} g(x)=-\infty$
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $g(x)=0$ admet une unique solution sur $\left[\dfrac{29}{3};+\infty\right[$.
    $\quad$
    L’équation $g(x)=0$ admet donc une unique solution non nulle sur $[0;+\infty[$ dont une valeur approchée est, d’après la calculatrice, $13,72$.
    $\quad$

Partie B : trajectoires d’une balle de golf

  1. a. On a $f(6,85)\approx 2,815$
    La hauteur maximale atteinte par la balle est donc environ égale à $28,15$ yards.
    $\quad$
    b. Pour tout réel $x$ strictement positif on a $f'(x)=0,06(-2x+13,7)$
    Donc $f'(0)=0,06\times 13,7=0,822$.
    $\quad$
    c. $f'(0)$ est le coefficient directeur de la tangente à la courbe $C_f$ au point d’abscisse $0$.
    Ainsi $\tan(d)=0,822$. Donc $d\approx 39,4$°.
    L’angle de décollage de la balle est donc environ égal à $39,4$°.
    $\quad$
    d. La courbe $C_f$ est symétrique par rapport à la droite d’équation $y=6,85$. Donc les angles de décollage et d’atterrissage de la balle sont égaux.
    $\quad$
  2. a. $g$ atteint son maximum pour $x=\dfrac{29}{3}$ et $\alpha \approx 2,98$.
    La hauteur maximale de balle est donc environ égale à $29,8$ yards.
    $\quad$
    b. On a $g'(0)=0,29$ donc $\tan(d)=0,29$ et $d\approx 16,2$°.
    L’angle de décollage de la balle est donc environ égal à $16,2$°.
    $\quad$
    c. On a $g'(13,7)\approx -1,87$ donc $\tan(a)\approx 1,87$ et $a\approx 62$°
    L’angle d’atterrissage de la balle est donc environ égal à $62$°.
    $\quad$

Partie C

Aucun des deux modèles ne semble estimer correctement les angles de décollage.

Le second modèle semble mieux estimer la hauteur maximale.

Le second modèle semble mieux estimer l’angle d’atterrissage.

Les deux modèle estiment correctement la distance au point de chute.

Le second modèle semble par conséquent le plus adapté pour décrire la frappe de la balle par un joueur professionnel.

$\quad$

 

Énoncé

Exercice 1     7 points

Thème : probabilités

Le coyote est un animal sauvage proche du loup, qui vit en Amérique du Nord.
Dans l’état d’Oklahoma, aux États-Unis, $70 \%$ des coyotes sont touchés par une maladie appelée ehrlichiose.

Il existe un test aidant à la détection de cette maladie. Lorsque ce test est appliqué à un coyote, son résultat est soit positif, soit négatif, et on sait que:

  • Si le coyote est malade, le test est positif dans $97 \%$ des cas.
  • Si le coyote n’est pas malade, le test est négatif dans $95\%$ des cas.

Partie A

Des vétérinaires capturent un coyote d’Oklahoma au hasard et lui font subir un test pour l’ehrlichiose.
On considère les événements suivants :

  • $M$ : « le coyote est malade » ;
  • $T$ : « le test du coyote est positif ».

On note $\conj{M}$ et $\conj{T}$ respectivement les événements contraires de $M$ et $T$.

  1. Recopier et compléter l’arbre pondéré ci-dessous qui modélise la situation.
    $\quad$
  2. Déterminer la probabilité que le coyote soit malade et que son test soit positif.
    $\quad$
  3. Démontrer que la probabilité de $T$ est égale à $0,694$.
    $\quad$
  4. On appelle « valeur prédictive positive du test » la probabilité que le coyote soit effectivement malade sachant que son test est positif.
    Calculer la valeur prédictive positive du test. On arrondira le résultat au millième.
    $\quad$
  5. a. Par analogie avec la question précédente, proposer une définition de la « valeur prédictive négative du test », et calculer cette valeur en arrondissant au millième.
    $\quad$
    b. Comparer les valeurs prédictives positive et négative du test, et interpréter.
    $\quad$

Partie B

On rappelle que la probabilité qu’un coyote capturé au hasard présente un test positif est de $0,694$.

  1. Lorsqu’on capture au hasard cinq coyotes, on assimile ce choix à un tirage avec remise.
    On note $X$ la variable aléatoire qui à un échantillon de cinq coyotes capturés au hasard associe le nombre de coyotes dans cet échantillon ayant un test positif.
    a. Quelle est la loi de probabilité suivie par $X$ ? Justifier et préciser ses paramètres.
    $\quad$
    b. Calculer la probabilité que dans un échantillon de cinq coyotes capturés au hasard, un seul ait un test positif. On arrondira le résultat au centième.
    $\quad$
    c. Un vétérinaire affirme qu’il y a plus d’une chance sur deux qu’au moins quatre coyotes sur cinq aient un test positif : cette affirmation est-elle vraie ? Justifier la réponse.
    $\quad$
  2. Pour tester des médicaments, les vétérinaires ont besoin de disposer d’un coyote présentant un test positif. Combien doivent-ils capturer de coyotes pour que la probabilité qu’au moins l’un d’entre eux présente un test positif soit supérieure à $0,99$ ?
    $\quad$

$\quad$

Exercice 2     7 points

Thèmes : fonctions numériques et suites

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

Pour les questions 1 à 3 ci-dessous, on considère une fonction $f$ définie et deux fois dérivable sur $\R$.
La courbe de sa fonction dérivée $f’$ est donnée ci-dessous.
On admet que $f’$ admet un maximum en $-\dfrac{3}{2}$ et que sa courbe coupe l’axe des abscisses au point de coordonnées $\left(-\dfrac{1}{2};0\right)$.

Question 1 :
a.
La fonction $f$ admet un maximum en $-\dfrac{3}{2}$;
b. La fonction $f$ admet un maximum en $-\dfrac{1}{2}$;
c. La fonction $f$ admet un minimum en $-\dfrac{1}{2}$;
d. Au point d’abscisse $-1$, la courbe de la fonction $f$ admet une tangente horizontale.
$\quad$

Question 2 :
a.
La fonction $f$ est convexe sur $\left]-\infty;-\dfrac{3}{2}\right[$;
b. La fonction $f$ est convexe sur $\left]-\infty;-\dfrac{1}{2}\right[$;
c. La courbe $C_f$ représentant la fonction $f$ n’admet pas de point d’inflexion;
d. La fonction $f$ est concave sur $\left]-\infty;-\dfrac{1}{2}\right[$.
$\quad$

Question 3 :
La dérivée seconde $f\dsec$ de la fonction $f$ vérifie :
a. $f\dsec(x)\pg 0$ pour $x\in \left]-\infty;-\dfrac{1}{2}\right[$;
b. $f\dsec(x)\pg 0$ pour $x\in [-2;-1]$;
c. $f\dsec\left(-\dfrac{3}{2}\right)=0$;
d. $f\dsec(-3)=0$.
$\quad$

Question 4 : On considère trois suites $\left(u_n\right)$, $\left(v_n\right)$ et $\left(w_n\right)$.
On sait que, pour tout entier naturel $n$, on a $u_n \pp v_n \pp w_n$ et de plus : $\lim\limits_{n\to +\infty} u_n=1$ et $\lim\limits_{n\to +\infty} w_n=3$.
On peut alors affirmer que :
a. La suite $\left(v_n\right)$ converge;
b. Si la suite $\left(u_n\right)$ est croissante alors la suite $\left(v_n\right)$ est minorée par $u_0$;
c. $1\pp v_0\pp 3$;
d. La suite $\left(v_n\right)$ diverge.
$\quad$

Question 5 :
On considère une suite $\left(u_n\right)$ telle que, pour tout entier naturel $n$ non nul : $u_n \pp u_{n+1} \pp \dfrac{1}{n}$.
On peut alors affirmer que :
a. La suite $\left(u_n\right)$ diverge;
b. La suite $\left(u_n\right)$ converge;
c. $\lim\limits_{n\to +\infty} u_n=0$;
d. $\lim\limits_{n\to +\infty} u_n=1$;
$\quad$

Question 6 :
On considère $\left(u_n\right)$ une suite réelle telle que pour tout entier naturel $n$, on a $n<u_n<n+1$.
On peut affirmer que :
a. Il existe un entier naturel $N$ tel que $u_N$ est un entier;
b. La suite $\left(u_n\right)$ est croissante;
c. La suite $\left(u_n\right)$ est convergente;
d. La suite $\left(u_n\right)$ n’a pas de limite.
$\quad$

$\quad$

Exercice 3     7 points

Thème : géométrie dans l’espace

On considère un cube $ABCDEFGH$ et on appelle $K$ le milieu su segment $[BC]$.
On se place dans le repère $\left(A;\vect{AB},\vect{AD},\vect{AE}\right)$ et on considère le tétraèdre $EFGK$.

On rappelle que le volume d’un tétraèdre est donné par : $$V=\dfrac{1}{3}\times \mathscr{B}\times h$$
où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.

  1. Préciser les coordonnées des points $E$, $F$, $G$ et $K$.
    $\quad$
  2. Montrer que le vecteur $\vec{n}\begin{pmatrix}2\\-2\\1\end{pmatrix}$ est orthogonal au plan $(EGK)$.
    $\quad$
  3. Démontrer que le plan $(EGK)$ admet pour équation cartésienne : $2x-2y+z-1=0$.
    $\quad$
  4. Déterminer une représentation paramétrique de la droite $(d)$ orthogonale au plan $(EGK)$ passant par $F$.
    $\quad$
  5. Montrer que le projeté orthogonal $L$ de $F$ sur le plan $(EGK)$ a pour coordonnées $\left(\dfrac{5}{9};\dfrac{4}{9};\dfrac{7}{9}\right)$.
    $\quad$
  6. Justifier que la longueur $LF$ est égale à $\dfrac{2}{3}$.
    $\quad$
  7. Calculer l’aire du triangle $EFG$. En déduire que le volume du tétraèdre $EFGK$ est égal à $\dfrac{1}{6}$.
    $\quad$
  8. Déduire des questions précédentes l’aire du triangle $EGK$.
    $\quad$
  9. On considère les points $P$ milieu du segment $[EG]$, $M$ milieu du segment $[EK]$ et $N$ milieu du segment $[GK]$. Déterminer le volume du tétraèdre $FPMN$.
    $\quad$

$\quad$

Exercice 4     7 points

Thèmes : fonctions numériques, fonction exponentielle

Partie A : étude de deux fonctions

On considère les deux fonctions $f$ et $g$ définies sur l’intervalle $[0;+\infty[$ par : $$f(x)=0,06\left(-x^2+13,7x\right) \text{ et } g(x)=(-0,15x+2,2)\e^{0,2x}-2,2.$$
On admet que les fonctions $f$ et $g$ sont dérivables et on note $f’$ et $g’$ leurs fonctions dérivées respectives.

  1. On donne le tableau de variations complet de la fonction $f$ sur l’intervalle $[0;+\infty[$.
    a. Justifier la limite de $f$ en $+\infty$.
    $\quad$
    b. Justifier les variations de la fonction $f$.
    $\quad$
    c. Résoudre l’équation $f(x)=0$.
    $\quad$
  2. a. Déterminer la limite de $g$ en $+\infty$.
    $\quad$
    b. Démontrer que, pour tout réel $x$ appartenant à $[0;+\infty[$ on a : $g'(x)=(-0,03x+0,29)\e^{0,2x}$.
    $\quad$
    c. Étudier les variations de la fonction ? et dresser son tableau de variations sur $[0;+\infty[$.
    Préciser une valeur approchée à $10^{-2}$ près du maximum de $g$.
    $\quad$
    d. Montrer que l’équation $g(x)=0$ admet une unique solution non nulle et déterminer, à $10^{-2}$ près, une valeur approchée de cette solution.
    $\quad$

Partie B : trajectoires d’une balle de golf

Pour frapper la balle, un joueur de golf utilise un instrument appelé « club » de golf.
On souhaite exploiter les fonctions $f$ et $g$ étudiées en Partie A pour modéliser de deux façons différentes la trajectoire d’une balle de golf. On suppose que le terrain est parfaitement plat.

On admettra ici que $13,7$ est la valeur qui annule la fonction $f$ et une approximation de la valeur qui annule la fonction $g$.
On donne ci-dessous les représentations graphiques de  $f$ et $g$ sur l’intervalle $[0; 13,7]$.

Pour $x$ représentant la distance horizontale parcourue par la balle en dizaine de yards après la frappe, (avec $0\pp x\pp 13,7$), $f(x)$ (ou $g(x)$ selon le modèle) représente la hauteur correspondante de la balle par rapport au sol, en dizaine de yards ($1$ yard correspond à environ $0,914$ mètre).

On appelle « angle de décollage » de la balle, l’angle entre l’axe des abscisses et la tangente à la courbe ($C_f$ ou $C_g$ selon le modèle) en son point d’abscisse $0$. Une mesure de l’angle de décollage de la balle est un nombre réel $d$ tel que $\tan(d)$ est égal au coefficient directeur de cette tangente.
De même, on appelle « angle d’atterrissage » de la balle, l’angle entre l’axe des abscisses et la tangente à la courbe ($C_f$ ou $C_g$ selon le modèle) en son point d’abscisse $13,7$. Une mesure de l’angle d’atterrissage de la balle est un nombre réel $a$ tel que $\tan(a)$ est égal à l’opposé du coefficient directeur de cette tangente.
Tous les angles sont mesurés en degré.

  1. Première modélisation : on rappelle qu’ici, l’unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $f(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    a. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    $\quad$
    b. Vérifier que $f'(0) = 0,822$.
    $\quad$
    c. Donner une mesure en degré de l’angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    $\quad$
    d. Quelle propriété graphique de la courbe $C_f$ permet de justifier que les angles de décollage et d’atterrissage de la balle sont égaux ?
    $\quad$
  2. Seconde modélisation : on rappelle qu’ici, l’unité étant la dizaine de yards, $x$ représente la distance horizontale parcourue par la balle après la frappe et $g(x)$ la hauteur correspondante de la balle.
    Selon ce modèle :
    a. Quelle est la hauteur maximale, en yard, atteinte par la balle au cours de sa trajectoire ?
    On précise que $g'(0) = 0,29$ et $g'(13,7)\approx −1,87$.
    $\quad$
    b. Donner une mesure en degré de l’angle de décollage de la balle, arrondie au dixième. (On pourra éventuellement utiliser le tableau ci-dessous).
    $\quad$
    c. Justifier que $62$ est une valeur approchée, arrondie à l’unité près, d’une mesure en degré de l’angle d’atterrissage de la balle.
    $\quad$

Tableau : extrait d’une feuille de calcul donnant une mesure en degré d’un angle quand on connait sa tangente :

$\quad$

Partie C : interrogation des modèles

À partir d’un grand nombre d’observations des performances de joueurs professionnels, on a obtenu les résultats moyens suivants :

$\begin{array}{|c|c|c|c|}
\hline
\text{Angle de décollage en}&\text{Hauteur maximale en}&\text{Angle d’atterrissage en}&\text{Distance horizontale}\\
\text{degré}&\text{yard}&\text{degré}&\text{en yard au point de}\\
&&&\text{chute}\\
\hline
\boldsymbol{24}&\boldsymbol{32}&\boldsymbol{52}&\boldsymbol{137}\\
\hline
\end{array}$

Quel modèle, parmi les deux étudiés précédemment, semble le plus adapté pour décrire la frappe de la balle par un joueur professionnel? La réponse sera justifiée.

Bac – Spécialité mathématiques – Centres étrangers – sujet 1 – 11 mai 2022

Centres étrangers – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

  1. $\quad$
    $\begin{align*} f(x)=2~022 &\ssi \ln\left(1+x^2\right)=2~022\\
    &\ssi 1+x^2=\e^{2~022} \\
    &\ssi x^2=\e^{2~022}-1 \end{align*}$
    Or $\e^{2~022}-1>0$
    Les solutions de l’équation $x^2=\e^{2~022}-1$ sont donc $\sqrt{\e^{2~022}-1}$ et $-\sqrt{\e^{2~022}-1}$.
    Réponse C
    $\quad$
  2. La fonction $g$ dérivable sur $]0;+\infty[$ en tant que somme et produit de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g'(x)&=\ln(x)+x\times \dfrac{1}{x}-2x \\
    &=\ln(x)+1-2x\end{align*}$
    La fonction $g’$ est dérivable sur $]0;+\infty[$ en tant que somme de fonctions dérivables sur $]0;+\infty[$.
    Pour tout réel $x>0$ on a
    $\begin{align*} g\dsec(x)&=\dfrac{1}{x}-2 \\
    &=\dfrac{1-2x}{x}\end{align*}$
    Sur $]0;+\infty[$, $g\dsec(x)$ ne dépend que du signe de $1-2x$.
    Or $1-2x>0\ssi -2x>-1 \ssi x<\dfrac{1}{2}$ et $1-2x=0 \ssi x=\dfrac{1}{2}$.
    Ainsi $g\dsec(x)$ s’annule en changeant de signes qu’une seule fois pour $x=\dfrac{1}{2}$.
    La courbe $C_g$ admet donc exactement un point d’inflexion sur $]0;+\infty[$.
    Réponse C
    $\quad$
  3. Pour tout réel $x\in ]-1;1[$ on a $f(x)=-\dfrac{1}{2}\times \dfrac{-2x}{1-x^2}$
    On reconnaît une dérivée de la forme $\dfrac{u’}{u}$ dont une primitive est $\ln(u)$ avec $u(x)=1-x^2$.
    Une primitive de $f$ est donc la fonction $g$ définie sur $]-1;1[$ par $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$.
    Réponse A
    $\quad$
  4. La fonction $\ln$ est définie sur $]0;+\infty[$.
    $-x^2-x+6$ a pour discriminant $\Delta = 25>0$.
    Les solutions de l’équation $-x^2-x+6=0$ sont $x_1=2$ et $x_2=-3$.
    Le coefficient principal est $a=-1<0$.
    Ainsi $-x^2-x+6>0$ sur $]-3;2[$.
    Réponse A
    $\quad$
  5. La fonction $f$ est dérivable sur $]0,5;+\infty[$ en tant que somme et composée de fonctions dérivables.
    Pour tout réel $x\in ]0,5;+\infty[$ on a $f'(x)=-2x-4+\dfrac{6}{2x-1}$
    Par conséquent $f'(1)=4$ et $f(1)=-3$.
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est $y=4(x-1)-3$ soit $y=4x-7$.
    Réponse A
    $\quad$
    Remarque : On pouvait se contenter de calculer $f'(1)$ car tous les coefficients directeurs fournis sont différents les uns des autres. Le reste du calcul permet de vérifier que l’ordonnée à l’origine est bien égale à ce qui est proposé.
     $\quad$
  6. $x+3>0\ssi x>-3$ et $x+1>0\ssi x>-1$.
    L’inégalité n’est donc définie que sur $]-1;+\infty[$.
    $\begin{align*} \ln(x+3)<2\ln(x+1)&\Rightarrow \ln(x+3) <\ln\left((x+1)^2\right) \\
    &\Rightarrow x+3<(x+1)^2 \\
    &\Rightarrow x+3<x^2+2x+1\\
    &\Rightarrow x^2+x-2>0\end{align*}$
    Le discriminant est $\Delta=9>0$.
    Les solutions de $x^2+x-2=0$ sont donc $-2$ et $1$.
    Le coefficient principal est $a=1>0$ donc $x^2+x-2>0$ sur $]-\infty;-2[\cup]1;+\infty[$.
    Ainsi
    $\begin{align*} \mathscr{S}&=]-1;+\infty[ \cap \left(]-\infty;-2[\cup]1;+\infty[\right) \\
    &=]1;+\infty[\end{align*}$
    Réponse B
    $\quad$

Ex 2

Exercice 2

  1. Calcul d’un angle
    a.
    On a $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    $\dfrac{-3}{-2}=1,5$ et $\dfrac{-1}{2}=-0,5$. Or $1,5\neq -0,5$.
    Les deux vecteurs ne sont pas colinéaires.
    Par conséquent $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b.
    $\begin{align*} AB&=\sqrt{(-2)^2+2^2+(-2)^2} \\
    &=\sqrt{12} \\
    &=2\sqrt{3}\end{align*}$
    $\begin{align*} AC&=\sqrt{(-3)^2+(-1)^2+(-1)^2} \\
    &=\sqrt{11}\end{align*}$
    $\quad$
    c.
    $\begin{align*} \vect{AB}.\vect{AC}&=-2\times (-3)+2\times (-1)+(-2)\times (-1) \\
    &=6\end{align*}$
    $\quad$
    $\begin{align*} \vect{AB}.\vect{AC}=AB\times AC\times \cos\left(\widehat{BAC}\right) &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{\vect{AB}.\vect{AC}}{AB\times AC} \\
    &\ssi \cos\left(\widehat{BAC}\right)=\dfrac{6}{2\sqrt{3}\times \sqrt{11}} \\
    &=\dfrac{3}{\sqrt{33}}\end{align*}$
    Par conséquent $\widehat{BAC}\approx 58,5$°
    $\quad$
  2. Calcul d’une aire
    a.
    $\vect{AB}$ est donc un vecteur normal au plan $P$
    Une équation de $P$ est donc de la forme $-2x+2y-2z+d=0$.
    $C(-1;-1;2)$ appartient à $P$. Donc $2-2-4+d=0 \ssi d=4$.
    Une équation cartésienne de $P$ est $-2x+2y-2z+4=0$ ou encore $-x+y-z+2=0$.
    $\quad$
    b. Une représentation paramétrique de la droite $(AB)$ est $\begin{cases} x=2-2t\\y=2t\\z=3-2t\end{cases}$.
    $\quad$
    c.
    $\begin{align*}\begin{cases} x=2-2t\\y=2t\\z=3-2t\\-x+y-z+2=0\end{cases} &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-(2-2t)+2t-(3-2t)+2=0\end{cases} \\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\-2+2t+2t-3+2t+2=0\end{cases}\\
    &\ssi \begin{cases} x=2-2t\\y=2t\\z=3-2t\\6t =3\end{cases}\\
    &\ssi \begin{cases} x=\dfrac{1}{2}\\x=1\\y=1\\z=2\end{cases}\end{align*}$
    Le point $E$ a donc pour coordonnées $(1;1;2)$.
    $\quad$
    d. L’aire du triangle $ABC$ est
    $\begin{align*} \mathscr{A}&=\dfrac{1}{2}\times AB\times AC\times \sin\left(\widehat{ABC}\right) \\
    &=\dfrac{1}{2}\times 2\sqrt{3}\times \sqrt{11}\times \sin\left(\widehat{ABC}\right) \\
    &=\sqrt{33}\times \sin\left(\widehat{ABC}\right)\\
    &=2\sqrt{6}\\
    &\approx 4,899\end{align*}$
    $\quad$
    Remarque : Pour calculer la valeur exacte de $\sin\left(\widehat{ABC}\right)$ on peut utiliser la propriété suivante : pour tout réel $x$, $\sin^2x+\cos^2 x=1$, connaissant la valeur de $\cos\left(\widehat{ABC}\right)=\dfrac{3}{\sqrt{33}}$
    On a donc $\sin^2\left(\widehat{ABC}\right)+\dfrac{9}{33}=1$ soit $\sin^2\left(\widehat{ABC}\right)=\dfrac{8}{11}$.
    Or $\sin\left(\widehat{ABC}\right)>0$ (sinon l’aire est négative!) donc $\sin\left(\widehat{ABC}\right)=\dfrac{2\sqrt{2}}{\sqrt{11}}$
    $\quad$
  3. Calcul d’un volume
    a.
    $\vect{AF}(-1;-1;0)$ or $\vect{AB}(-2;2;-2)$ et $\vect{AC}(-3;-1;-1)$.
    Par conséquent (après résolution d’un système éventuellement) $\vect{AF}=-\dfrac{1}{4}\vect{AB}+\dfrac{1}{2}\vect{AC}$.
    Ainsi, les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. $\vect{FD}(2;-2;-4)$.
    $\begin{align*} \vect{FD}.\vect{AB}&=2\times (-2)-2\times 2-4\times (-2) \\
    &=0\end{align*}$
    $\begin{align*} \vect{FD}.\vect{AC}&=2\times (-3)-2\times (-1)-4\times (-1) \\
    &=0\end{align*}$
    Le vecteur $\vect{FD}$ est donc orthogonal à deux vecteurs non colinéaires du plan $(ABC)$.
    $(FD)$ est orthogonale au plan $(ABC)$.
    c.
    $\begin{align*} FD&=\sqrt{2^2+(-2)^2+(-4)^2} \\
    &=\sqrt{24}\end{align*}$
    Le volume de $ABCD$ est
    $\begin{align*} V&=\dfrac{1}{3}\times FD\times \mathscr{A} \\
    &=8\end{align*}$
    $\quad$

 

Ex 3

Exercice 3

Partie A

  1. $\lim\limits_{x\to -\infty} \e^x=0$ et $\lim\limits_{x\to -\infty} -x=+\infty$ donc $\lim\limits_{x\to -\infty} h(x)=+\infty$
    Pour tout réel $x$, $h(x)=\e^x\left(1-\dfrac{x}{\e^x}\right)$. $\lim\limits_{x\to +\infty} \e^x=+\infty$ et par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{x}{\e^x}=0$.
    Donc $\lim\limits_{x\to +\infty} h(x)=+\infty$
    $\quad$
  2. La fonction $h$ est dérivable sur $\R$ en tant que somme de fonctions dérivables sur $\R$.
    Pour tout réel $x$ on a $h'(x)=\e^x-1$.
    Or $\e^x-1=0 \ssi x=0$ et $\e^x-1>0 \ssi x>0$.
    La fonction $h$ est donc strictement décroissante sur $]-\infty;0]$ et strictement croissante sur $[0;+\infty[$.
    On obtient alors le tableau de variations suivant :$\quad$
  3. La fonction $h$ est strictement croissante sur $[0;+\infty[$.
    Donc, pour tous réels $a$ et $b$ tels que $0\pp a\pp b$ on a $h(a)\pp h(b)$ c’est-à-dire $h(a)-h(b) \pp 0$.
    $\quad$

Partie B

  1. La fonction $f$ est dérivable sur $\R$ en tant que fonction exponentielle.
    Pour tout réel $x$ on a $f'(x)=\e^x$.
    $f(0)=1$ et $f'(0)=1$.
    Une équation de $T$ est donc $y=x+1$.
    $\quad$
  2. $\lim\limits_{n\to +\infty } \dfrac{1}{n}=0$ et $\lim\limits_{x\to 0} \e^x=1$ donc $\lim\limits_{n\to +\infty} u_n=0$.
    $\quad$
  3. a. Soit $n$ un entier naturel non nul.
    $\begin{align*} u_{n+1}-u_n&=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-1-\left(\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1\right) \\
    &=\exp\left(\dfrac{1}{n+1}\right)-\dfrac{1}{n+1}-\exp\left(\dfrac{1}{n}\right)+\dfrac{1}{n} \\
    &=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\end{align*}$
    $\quad$
    b. Pour tout entier naturel $n$ non nul on a $\dfrac{1}{n+1}<\dfrac{1}{n}$.
    Donc d’après la question A.3. $h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)\pp 0$.
    Donc $u_{n+1}-u_n\pp 0$ et la suite $\left(u_n\right)$ est décroissante.
    $\quad$
  4. D’après le tableau de valeurs $u_n<10^{-2}$ à partir de $n=8$.
    C’est donc à partir de $n=8$ que l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

Ex 4

Exercice 4

  1. On obtient le tableau suivant :
    $\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&0,05&0,15&0,2\\
    \hline
    \conj{B}&0,05&0,75&0,8 \\
    \hline
    \text{Total}&0,1&0,9&1\\
    \hline
    \end{array}$
    $\quad$
  2. a. On veut calculer
    $\begin{align*} P(A\cup B)&=1-P\left(\conj{A}\cap \conj{B}\right) \\
    &=1-0,75 \\
    &=0,25\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour au moins un des deux traitements est donc égale à $0,25$.
    $\quad$
    b. On veut calculer $P(A\cap B)=0,05$.
    La probabilité qu’une paire de verres présente un défaut pour les deux traitements est donc égale à $0,05$.
    $\quad$
    c. $P(A)\times P(B)=0,02$ et $P(A\cap B)=0,05$.
    Donc $P(A)P(B)\neq P(A\cap B)$
    Les événements $A$ et $B$ ne sont pas indépendants.
    $\quad$
  3. On veut calculer
    $\begin{align*} P\left(A\cap \conj{B}\right)+P\left(B\cap \conj{A}\right) &=0,15+0,05 \\
    &=0,2\end{align*}$
    La probabilité qu’une paire de verres présente un défaut pour un seul des deux traitements est donc égale à $0,2$.
    $\quad$
  4. On veut calculer :
    $\begin{align*} P_A(B)&=\dfrac{P(A\cap B)}{P(A)} \\
    &=\dfrac{0,05}{0,1} \\
    &=0,5\end{align*}$
    La probabilité qu’une paire de verres présente un défaut de traitement T2 sachant qu’elle présente un défaut de traitement T1 est égale à $0,5$.
    $\quad$

Partie B

  1. On répète indépendamment $50$ fois la même expérience de Bernoulli. $X$ compte le nombre de paires de verres qui présentent le défaut pour le traitement T1.
    Donc $X$ suit la loi binomiale de paramètres $n=50$ et $p=0,1$.
    $\quad$
  2. On veut calculer
    $\begin{align*} P(X=10)&=\dbinom{50}{10}\times 0,1^{10} \times (1-0,1)^{50-10} \\
    &\approx 0,015\end{align*}$
    La probabilité qu’exactement $10$ paires de verres présentent ce défaut dans l’échantillon est environ égale à $0,015$.
    $\quad$
  3. L’espérance de $X$ est $E(X)=50\times 0,1=5$.
    Ainsi, en moyenne, on peut trouver $5$ paires de verres ayant ce défaut dans un échantillon de $50$ paires.
    $\quad$

 

Énoncé

Exercice 1     7 points

Thème : Fonction logarithme

Cet exercice est un questionnaire d choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Les six questions sont indépendantes.

Une réponse incorrecte, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n’est demandée.

  1. On considère la fonction $f$ définie pour tout réel $x$ par $f(x)=\ln\left(1+x^2\right)$.
    Sur $\R$, l’équation $f(x)=2~022$
    a. n’admet aucune solution.
    b. admet exactement une solution.
    c. admet exactement deux solutions.
    d. admet une infinité de solutions.
    $\quad$
  2. Soit la fonction $g$ définie pour tout réel $x$ strictement positif par : $$g(x) = x \ln(x)− x^2$$
    On note $\mathscr{C}_g$ sa courbe représentative dans un repère du plan.
    a. La fonction $g$ est convexe sur $]0 ; +\infty[$.
    b. La fonction $g$ est concave sur $]0 ; +\infty[$.
    c. La courbe $\mathscr{C}_g$ admet exactement un point
    d’inflexion sur $]0 ; +\infty[$.
    d. La courbe $\mathscr{C}_g$ admet exactement deux
    points d’inflexion sur $]0 ; +\infty[$.
    $\quad$
  3. On considère la fonction $f$ définie sur $]-1;1[$ par $$f(x)=\dfrac{x}{1-x^2}$$
    Une primitive de la fonction $f$ est la fonction $g$ définie sur l’intervalle $]-1;1[$ par :
    a. $g(x)=-\dfrac{1}{2}\ln\left(1-x^2\right)$
    b. $g(x)=\dfrac{1+x^2}{\left(1-x^2\right)^2}$
    c. $g(x)=\dfrac{x^2}{2\left(x-\dfrac{x^3}{3}\right)}$
    d. $g(x)=\dfrac{x^2}{2}\ln\left(1-x^2\right)$
    $\quad$
  4. La fonction $x\mapsto \ln\left(-x^2-x+6\right)$ est définie sur
    a. $]-3;2[$
    b. $]-\infty;6[$
    c. $]0;+\infty[$
    d. $]2;+\infty[$
    $\quad$
  5. On considère la fonction $f$ définie sur $]0,5;+\infty[$ par $$f(x)=x^2-4x+3\ln(2x-1)$$
    Une équation de la tangente à la courbe représentative de $f$ au point d’abscisse $1$ est :
    a. $y=4x-7$
    b. $y=2x-4$
    c. $y=-3(x-1)+4$
    d. $y=2x-1$
    $\quad$
  6. L’ensemble $\mathscr{S}$ des solutions dans $\R$ de l’inéquation $\ln(x+3)<2\ln(x+1)$ est :
    a. $\mathscr{S}=]-\infty;-2[\cup]1;+\infty[$
    b. $\mathscr{S}=]1;+\infty[$
    c. $\mathscr{S}=\emptyset$
    d. $\mathscr{S}=]-1;1[$
    $\quad$

$\quad$

Exercice 2     7 points

Thème : Géométrie dans l’espace

Dans l’espace, rapporté à un repère orthonormé $\Oijk$, on considère les points : $$A(2;0;3),~B(0;2;1),~C(-1;-1;2) \text{ et } D(3;-3;-1)$$

  1. Calcul d’un angle.
    a.
     Calculer les coordonnées des vecteurs $\vect{AB}$ et
    $\vect{AC}$ et en déduire que les points $A$, $B$ et $C$ ne sont pas alignés.
    $\quad$
    b. Calculer les longueurs $AB$ et $AC$.
    $\quad$
    c. À l’aide du produit scalaire $\vect{AB}.\vect{AC}$, déterminer la valeur du cosinus de l’angle $\widehat{BAC}$ puis donner une valeur approchée de la mesure de l’angle $\widehat{BAC}$ au dixième de degré.
    $\quad$
  2. Calcul d’une aire.
    a.
    Déterminer une équation du plan $P$ passant par le point $C$ et perpendiculaire à la droite $(AB)$.
    $\quad$
    b. Donner une représentation paramétrique de la droite $(AB)$.
    $\quad$
    c. En déduire les coordonnées du projeté orthogonal $E$ du point $C$ sur la droite $(AB)$, c’est-à-dire du point d’intersection de la droite $(AB)$ et du plan $P$.
    $\quad$
    d. Calculer l’aire du triangle $ABC$.
    $\quad$
  3. Calcul d’un volume.
    a.
    Soit le point $F(1 ; −1 ; 3)$. Montrer que les points $A$, $B$, $C$ et $F$ sont coplanaires.
    $\quad$
    b. Vérifier que la droite $(FD)$ est orthogonale au plan $(ABC)$.
    $\quad$
    c. Sachant que le volume d’un tétraèdre est égal au tiers de l’aire de sa base multiplié par sa hauteur, calculer le volume du tétraèdre $ABCD$.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : Fonction exponentielle et suite

Partie A :

Soit $h$ la fonction définie sur $\R$ par $$h(x)=\e^x-x$$

  1. Déterminer les limites de $h$ en $-\infty$ et $+\infty$.
    $\quad$
  2. Étudier les variations de $h$ et dresser son tableau de variation.
    $\quad$
  3. En déduire que :
    si $a$ et $b$ sont deux réels tels que $0\pp a\pp b$ alors $h(a)-h(b)\pp 0$.
    $\quad$

Partie B :

Soit $f$ la fonction définie sur $\R$ par $$f(x)=\e^x$$

On note $C_f$ sa courbe représentative dans un repère $\Oij$.

  1. Déterminer une équation de la tangente $T$ à $C_f$ au point d’abscisse $0$.

Dans la suite de l’exercice on s’intéresse à l’écart entre $T$ et $C_f$ au voisinage de $0$. Cet écart est défini comme la différence des ordonnées des points de $T$ et $C_f$ de même abscisse.

On s’intéresse aux points d’abscisse $\dfrac{1}{n}$, avec $n$ entier naturel non nul.

On considère alors la suite $\left(u_n\right)$ définie pour tout entier naturel non nul $n$ par : $$u_n=\exp\left(\dfrac{1}{n}\right)-\dfrac{1}{n}-1$$

  1. Déterminer la limite de la suite $\left(u_n\right)$.
    $\quad$
  2. a. Démontrer que, pour tout entier naturel non nul $n$, $$u_{n+1}-u_n=h\left(\dfrac{1}{n+1}\right)-h\left(\dfrac{1}{n}\right)$$
    où $h$ est la fonction définie à la partie A.
    $\quad$
    b. En déduire le sens de variation de la suite $\left(u_n\right)$.
    $\quad$
  3. Le tableau ci-dessous donne des valeurs approchées à $10^{-9}$ des premiers termes de la suite $\left(u_n\right)$.
    $$\begin{array}{|c|c|}
    \hline
    n &u_n \\ \hline
    1 &0,718281828\\ \hline
    2& 0,148721271\\ \hline
    3& 0,062279092 \\ \hline
    4& 0,034025417\\ \hline
    5& 0,021402758\\ \hline
    6& 0,014693746\\ \hline
    7& 0,010707852\\ \hline
    8& 0,008148453\\ \hline
    9& 0,006407958\\ \hline
    10& 0,005170918\\ \hline
    \end{array}$$
    Donner la plus petite valeur de l’entier naturel $n$ pour laquelle l’écart entre $T$ et $C_f$ semble être inférieur à $10^{-2}$.
    $\quad$

$\quad$

Exercice 4     7 points

Thème : Probabilités

Les parties A et B peuvent être traitées de façon indépendante.

Au cours de la fabrication d’une paire de lunettes, la paire de verres doit subir deux traitements notés T1 et T2.

Partie A

On prélève au hasard une paire de verres dans la production.

On désigne par $A$ l’évènement : « la paire de verres présente un défaut pour le traitement T1 ».

On désigne par $B$ l’évènement : « la paire de verres présente un défaut pour le traitement T2 ».

On note respectivement $\conj{A}$ et $\conj{B}$ les évènements contraires de $A$ et $B$.

Une étude a montré que :

  •  la probabilité qu’une paire de verres présente un défaut pour le traitement T1 notée $P(A)$ est égale à $0,1$.
  • la probabilité qu’une paire de verres présente un défaut pour le traitement T2 notée $P(B)$ est égale à $0,2$.
  • la probabilité qu’une paire de verres ne présente aucun des deux défauts est $0,75$.
  1. Recopier et compléter le tableau suivant avec les probabilités correspondantes $$\begin{array}{|c|c|c|c|}
    \hline
    &A&\conj{A}&\text{Total} \\
    \hline
    B&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \conj{B}&\phantom{123}&\phantom{123}&\phantom{123}\\
    \hline
    \text{Total}&\phantom{123}&\phantom{123}&1\\
    \hline
    \end{array}$$
    $\quad$
  2. a. Déterminer, en justifiant la réponse, la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour au moins un des deux traitements T1 ou T2.
    $\quad$
    b. Donner la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente deux défauts, un pour chaque traitement T1 et T2.
    $\quad$
    c. Les évènements A et B sont-ils indépendants ? Justifier la réponse.
    $\quad$
  3. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour un seul des deux traitements.
    $\quad$
  4. Calculer la probabilité qu’une paire de verres, prélevée au hasard dans la production, présente un défaut pour le traitement T2, sachant que cette paire de verres présente un défaut pour le traitement T1.
    $\quad$

Partie B

On prélève, au hasard, un échantillon de $50$ paires de verres dans la production. On suppose que la production est suffisamment importante pour assimiler ce prélèvement à un tirage avec remise. On note $X$ la variable aléatoire qui, à chaque échantillon de ce type, associe le nombre de paires de verres qui présentent le défaut pour le traitement T1.

  1. Justifier que la variable aléatoire $X$ suit une loi binomiale et préciser les paramètres de cette loi.
    $\quad$
  2. Donner l’expression permettant de calculer la probabilité d’avoir, dans un tel échantillon, exactement $10$ paires de verres qui présentent ce défaut.
    Effectuer ce calcul et arrondir le résultat à $10^{-3}$.
    $\quad$
  3. En moyenne, combien de paires de verres ayant ce défaut peut-on trouver dans un échantillon de $50$ paires ?
    $\quad$

 

Bac – Spécialité mathématiques – Métropole – sujet 1 – 11 mai 2022

Métropole – 11 mai 2022

Spécialité maths – Sujet 1- Correction

L’énoncé de ce sujet de bac est disponible ici.

Ex 1

Exercice 1

Partie A : Étude du premier protocole

  1. a. Pour tout $t\in[0;10]$ on a
    $\begin{align*} f'(t)&=3\e^{-0,5t+1}+3t\times (-0,5)\e^{-0,5t+1} \\
    &=3(-0,5t+1)\e^{-0,5t+1}\end{align*}$
    $\quad$
    b. La fonction exponentielle est strictement positive sur $\R$.
    Le signe de $f'(t)$ ne dépend donc que de celui de $-0,5t+1$.
    Or $-0,5t+1=0 \ssi -0,5t=-1 \ssi t=2$
    et $-0,5t+1>0 \ssi -0,5t>-1 \ssi t<2$
    On obtient donc le tableau de variations suivant :$\quad$
    c. D’après le tableau de variations, la fonction $f$ atteint son maximum pour $t=2$ et celui-ci vaut $f(2)=6$.
    La quantité de médicament présente dans le sang est donc maximale au bout de $2$ h et elle vaut alors $6$ mg.
    $\quad$
  2. a. La fonction $f$ est continue et strictement croissante sur $[0;2]$.
    De plus, $f(0)=0<5$ et $f(2)=6>5$.
    D’après le théorème de la bijection (ou corollaire du théorème des valeurs intermédiaires) l’équation $f(t)=5$ admet une unique solution $\alpha$ sur $[0;2]$.
    D’après la calculatrice $\alpha \approx 1,02$.
    $\quad$
    b. $\beta-\alpha \approx 2,44$. Le médicament est donc efficace environ $2,44$ heures soit $2$ heures et $26$ minutes.
    $\quad$

Partie B : Étude du deuxième protocole

  1. La quantité de médicament baisse de $30\%$ au bout d’une heure. Il en reste donc $70\%$ soit $0,7u_0=1,4$.
    On réinjecte $1,8$ mg
    Donc $u_1=1,4+1,8=3,2$.
    Après l’injection de la première heure, il y a donc $3,2$ mg de médicament dans le sang.
    $\quad$
  2. La quantité de médicament baisse de $30\%$ en une heure. Il est donc $70\%$ soit $0,7u_n$.
    On réinjecte $1,8$ mg.
    Donc, pour tout $n\in \N$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Pour tout entier naturel $n$ on note $P(n):~u_b \pp u_{n+1} <6$.
    Initialisation : $u_0=2$ et $u_1=3,2$. Donc $u_0\pp u_1<6$. Donc $P(0)$ est vraie.
    $\quad$
    Hérédité : Soit $n\in \N$. On suppose $P(n)$ vraie.
    $\begin{align*} u_n\pp u_{n+1} <6 &\ssi 0,7u_n \pp 0,7u_{n+1} < 4,2 \\
    &\ssi 0,7u_n+1,8 \pp 0,7u_{n+1}+1,8<6 \\
    &\ssi u_{n+1} \pp u_{n+2}<6\end{align*}$
    Donc $P(n+1)$ est vraie.
    $\quad$
    Conclusion : La propriété est vraie au rang $0$ et est héréditaire.
    Par conséquent, pour tout entier naturel $n$, $u_n\pp u_{n+1} <6$.
    $\quad$
    b. La suite $\left(u_n\right)$ est croissante et majorée par $6$. Elle converge donc vers un réel $\ell$.
    $\quad$
    c. On considère la fonction $g$ définie sur $\R$ par $g(x)=0,7x+1,8$.
    La fonction $f$ est continue sur $\R$ en tant que fonction affine et, pour tout $n\in \N$ on a $u_{n+1}=g\left(u_n\right)$.
    Ainsi $\ell$ est solution de l’équation $g(x)=x$
    $\begin{align*} 0,7x+1,8=x&\ssi 0,3x=1,8 \\
    &\ssi x=6\end{align*}$
    Donc $\ell=6$.
    Sur le long terme, le patient aura $6$ mg de médicament dans le sang.
    $\quad$
  4. a. Pour tout $n\in \N$
    $\begin{align*} v_{n+1}&=6-u_{n+1} \\
    &=6-0,7u_n-1,8 \\
    &=4,2-0,7u_n \\
    &=0,7\left(6-u_n\right)\\
    &=0,7v_n\end{align*}$
    La suite $\left(v_n\right)$ est donc géométrique de raison $0,7$ et de premier terme $v_0=6-u_0=4$.
    $\quad$
    b. On a donc, pour tout $n\in \N$, $v_n=4\times 0,7^n$.
    Par conséquent $u_n=6-v_n=6-4\times 0,7^n$.
    $\quad$
    c. $\quad$
    $\begin{align*} u_n\pg 5,5&\ssi 6-4\times 0,7^n \pg 5,5 \\
    &\ssi -4\times 0,7^n \pg 0,5 \\
    &\ssi 0,7^n \pp 0,125 \\
    &\ssi n\ln(0,7) \pp \ln(0,125) \\
    &\ssi n \pg \dfrac{\ln(0,125)}{\ln(0,7)} \qquad \text{car } \ln(0,7)<0\end{align*}$
    Or $\dfrac{\ln(0,125)}{\ln(0,7)}\approx 5,8$. Par conséquent $n\pg 6$.
    Il faudra donc réaliser $7$ injections (l’injection initiale plus les $6$ autres).
    $\quad$

 

Ex 2

Exercice 2

  1. a. On a $\vec{u}(2;-1;2)$.
    $\quad$
    b. Si $t=-1$ alors $x=-1$, $y=3$ et $z=0$ donc $B(-1;3;0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. $\vect{AB}(0;2;-3)$.
    Donc
    $\begin{align*} \vect{AB}.\vec{u}&=0\times 2+2\times (-1)+2\times (-3) \\
    &=-8\end{align*}$
    $\quad$
  2. a. $\vec{u}$ est donc un vecteur normal au plan $\mathscr{P}$.
    Une équation cartésienne de ce plan est par conséquent de la forme : $2x-y+2z+d=0$.
    Or $A(-1;1;3)$ appartient à $\mathscr{P}$.
    Donc $-2-1+6+d=0\ssi d=-3$.
    Une équation cartésienne de $\mathscr{P}$ est $2x-y+2z-3=0$.
    $\quad$
    b. $2\times \dfrac{7}{9}-\dfrac{19}{9}+2\times \dfrac{16}{9}-3=\dfrac{27}{9}-3=0$ : le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{P}$.
    $1+2t=\dfrac{7}{9}\ssi 2t=\dfrac{-2}{9}\ssi t=\dfrac{-1}{9}$.
    En prenant $t=-\dfrac{1}{9}$ dans l’équation de $\mathscr{D}$ on obtient $\begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}$ donc le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$ appartient à $\mathscr{D}$.
    Par conséquent $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    le point de coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$
    c. $\vect{AH}\left(\dfrac{16}{9};\dfrac{10}{9};-\dfrac{11}{9}\right)$
    Donc
    $\begin{align*} AH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{10}{9}\right)^2+\left(\dfrac{-11}{9}\right)^2} \\
    &=\dfrac{\sqrt{477}}{9} \\
    &=\dfrac{\sqrt{53}}{3}\end{align*}$
    $\quad$
  3. a. $(HB)$ est orthogonale au plan $\mathscr{P}$. Par conséquent $\vect{HB}$ et $\vec{u}$ sont colinéaires.
    Il existe donc un réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b.
    $\begin{align*} \vect{AB}.\vec{u}&=\left(\vect{AH}+\vect{HB}\right).\vec{u} \\
    &= \vect{AH}.\vec{u}+ \vect{HB}.\vec{u} \\
    &=0+k\vec{u}.\vec{u} \\
    &=k\left\|\vec{u}\right\|^2\end{align*}$
    Ainsi $k=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. On a $\left\|\vec{u}\right\|^2=2^2+(-1)^2+2^2=9$.
    Ainsi $k=-\dfrac{8}{9}$
    $\quad$
    Soit $H(x;y;z)$
    $\vect{HB}(-1-x;3-x;-z)$.
    $\begin{align*} \vect{HB}=-\dfrac{8}{9}\vec{u}&\ssi \begin{cases} 1-x=-\dfrac{8}{9}\times 2\\3-y=-\dfrac{8}{9}\times (-1)\\-z=-\dfrac{8}{9}\times 2\end{cases} \\
    &\ssi \begin{cases} x=\dfrac{7}{9}\\y=\dfrac{19}{9}\\z=\dfrac{16}{9}\end{cases}\end{align*}$
    On retrouve donc les coordonnées du point $H$ trouvées à la question 2.b.
    $\quad$
  4. $\vect{BH}\left(\dfrac{16}{9};\dfrac{-8}{9};\dfrac{16}{9}\right)$
    Donc
    $\begin{align*} BH&=\sqrt{\left(\dfrac{16}{9}\right)^2+\left(\dfrac{-8}{9}\right)^2+\left(\dfrac{16}{9}\right)^2} \\
    &=\dfrac{8}{3}\end{align*}$
    On appelle $\mathscr{B}$ l’aire du triangle $ACH$.
    $\begin{align*} \mathscr{V}=\dfrac{1}{3}\times BH\times \mathscr{B} &\ssi \dfrac{8}{9}&=\dfrac{1}{3}\times \dfrac{8}{3}\times \mathscr{B} \\
    &\ssi \mathscr{B}=1\end{align*}$
    L’aire du triangle $ACH$ vaut $1$ unité d’aire.
    $\quad$

 

 

Ex 3

Exercice 3

  1. a. D’après l’énoncé $P(S)=0,25$.
    $\quad$
    b. On obtient l’arbre suivant :
    $\quad$
    $\quad$
    c. On a
    $\begin{align*} P(F\cap S)&=P(F)\times P_F(S) \\
    &=0,52\times 0,4\\
    &=0,208\end{align*}$
    La probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On veut calculer
    $\begin{align*} P_F(S)&=\dfrac{P(S\cap F)}{P(S)} \\
    &=\dfrac{0,208}{0,25} \\
    &=0,832\end{align*}$
    La probabilité que la personne interrogée soit une femme sachant qu’elle a suivi le stage est égale à $0,832$.
    $\quad$
    e. $\left(F,\conj{F}\right)$ forme un système complet d’événements finis.
    D’après la formule des probabilités totales
    $\begin{align*} P(S)=P(S\cap F)+P\left(S\cap \conj{F}\right) &\ssi P\left(S\cap \conj{F}\right)=P(S)-P(S\cap F)\\
    &\ssi P\left(S\cap \conj{F}\right)=0,042\end{align*}$
    Par conséquent
    $\begin{align*} P_F(S)&=\dfrac{P\left(S\cap \conj{F}\right)}{P\left(\conj{F}\right)} \\
    &=\dfrac{0,042}{0,48} \\
    &=0,0875 \\
    &<0,1\end{align*}$
    $\quad$
  2. a. On répète indépendamment $20$ fois  la même expérience de Bernoulli. $X$ compte le nombre de salariés ayant suivi le stage.
    Donc $X$ suit la loi binomiale de paramètres $n=20$ et $p=0,25$.
    $\quad$
    b.
    $\begin{align*} P(X=5)&=\dbinom{10}{5}\times 0,25^5\times (1-0,25)^{10-5} \\
    &\approx 0,202\end{align*}$
    La probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage est environ égale à $0,202$.
    $\quad$
    c. Ce programme calcule $P(X\pp k)$.
    D’après la calculatrice $P(X\pp 5) \approx 0,617$.
    Le programme renvoie donc $0,617$.
    $\quad$
    d. On veut calculer :
    $\begin{align*} P(X\pg 6)&=1-P(X<6) \\
    &=1-P(X\pp 5) \\
    &\approx 0,383\end{align*}$
    $\quad$
  3. $1,05\times 0,25+1,02\times 0,75=1,0275$.
    Le pourcentage moyen d’augmentation des salaires de cette entreprise est donc de $2,75\%$.
    $\quad$

Ex 4

Exercice 4

  1. D’après la limite des termes de plus haut degré
    $\begin{align*} \lim\limits_{x\to +\infty} f(x)&=\lim\limits_{x\to +\infty} \dfrac{-2x^2}{x^2} \\
    &=-2\end{align*}$
    La droite d’équation $y=-2$ est donc asymptote à la courbe représentative de la fonction $f$.
    Réponse C
    $\quad$
  2. Une primitive de $f$ est la fonction $F$ définie sur $\R$ par $F(x)=\dfrac{1}{2}\e^{x^2}+K$
    $F(0)=1 \ssi \dfrac{1}{2}+K=1 \ssi K=\dfrac{1}{2}$
    Réponse D
    $\quad$
  3. $f’$ semble être strictement croissante sur $]-\infty;4[$ et strictement décroissante sur $[4;+\infty[$.
    Donc $f$ est convexe sur $]-\infty;4]$ et concave sur $[4;+\infty[$.
    Réponse C
    $\quad$
  4. La fonction exponentielle est strictement positive sur $\R$. Par conséquent, pour tout réel $x$, $f(x)>0$ sur $\R$. $f$ est la dérivée de chacune de ses primitives.
    Réponse A
    $\quad$
  5. Pour tout réel $x$, $f(x)=\dfrac{2\ln(x)}{3x^2}\times \dfrac{1}{1+\dfrac{1}{3x^2}}$.
    Par croissances comparées, $\lim\limits_{x\to +\infty} \dfrac{\ln(x)}{x^2}=0$
    De plus $\lim\limits_{x\to +\infty}  \dfrac{1}{1+\dfrac{1}{3x^2}}=1$
    Par conséquent $\lim\limits_{x\to +\infty}f(x)=0$.
    Réponse D
    $\quad$
  6. L’équation peut s’écrire $\left(\e^x\right)^2+\e^x-12=0 \ssi \begin{cases} X=\e^x\\X^2+X-12=0\end{cases}$
    $X^2+X-12=0$ a pour discriminant $\Delta=49>0$
    Ses racines sont donc $X_1=-4$ et $X_2=3$.
    Or $\e^x=-4$ n’admet pas de solution et $\e^x=3$ admet une unique solution $x=\ln(3)$.
    Réponse C
    $\quad$

 

Énoncé

Exercice 1     7 points

Thèmes : fonction exponentielle, suites

Dans le cadre d’un essai clinique, on envisage deux protocoles de traitement d’une maladie.
L’objectif de cet exercice est d’étudier, pour ces deux protocoles, l’évolution de la quantité de médicament présente dans le sang d’un patient en fonction du temps.

Les parties A et B sont indépendantes.

Partie A : Étude du premier protocole

Le premier protocole consiste à faire absorber un médicament, sous forme de comprimé, au patient.
On modélise la quantité de médicament présente dans le sang du patient, exprimée en mg, par la fonction $f$ définie sur l’intervalle $[0; 10]$ par $f(t)=3t\e^{-0,5t+1}$, où $t$ désigne le temps, exprimé en heure, écoulé depuis la prise du comprimé.

  1. a. On admet que la fonction $f$ est dérivable sur l’intervalle $[0; 10]$ et on note $f’$ sa fonction dérivée.
    Montrer que, pour tout nombre réel $t$ de $[0; 10]$, on a : $f'(t)=3(-0,5t+1)\e^{-0,5t+1}$.
    $\quad$
    b. En déduire le tableau de variations de la fonction $f$ sur l’intervalle $[0; 10]$.
    $\quad$
    c. Selon cette modélisation, au bout de combien de temps la quantité de médicament présente dans le sang du patient sera-t-elle maximale ? Quelle est alors cette quantité maximale ?
    $\quad$
  2. a. Montrer que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[0; 2]$, notée $\alpha$, dont
    on donnera une valeur approchée à $10^{-2}$ près.
    $\quad$
    On admet que l’équation $f(t) = 5$ admet une unique solution sur l’intervalle $[2; 10]$, notée $\beta$, et qu’une
    valeur approchée de $\beta$ à $10^{-2}$ près est $3,46$.
    $\quad$
    b. On considère que ce traitement est efficace lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5$ mg.
    Déterminer, à la minute près, la durée d’efficacité du  médicament dans le cas de ce protocole.
    $\quad$

Partie B : Étude du deuxième protocole

Le deuxième protocole consiste à injecter initialement au patient, par piqûre intraveineuse, une dose de $2$ mg de médicament puis à réinjecter toutes les heures une dose de $1,8$ mg.

On suppose que le médicament se diffuse instantanément dans le sang et qu’il est ensuite progressivement éliminé.

On estime que lorsqu’une heure s’est écoulée après une injection, la quantité de médicament dans le sang a diminué de $30 \%$ par rapport à la quantité présente immédiatement après cette injection.

On modélise cette situation à l’aide de la suite $\left(u_n\right)$ où, pour tout entier naturel $n$, $u_n$ désigne la quantité de médicament, exprimée en mg, présente dans le sang du patient immédiatement après l’injection de la $n$-ème heure. On a donc $u_0=2$.

  1. Calculer, selon cette modélisation, la quantité $u_1$ de médicament (en mg) présente dans le sang du patient immédiatement après l’injection de la première heure.
    $\quad$
  2. Justifier que, pour tout entier naturel $n$, on a $u_{n+1}=0,7u_n+1,8$.
    $\quad$
  3. a. Montrer par récurrence que, pour tout entier naturel $n$, on a : $u_n \pp u_{n+1} <6$.
    $\quad$
    b. En déduire que la suite $\left(u_n\right)$ est convergente. On note $\ell$ sa limite.
    $\quad$
    c. Déterminer la valeur de $\ell$. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
  4. On considère la suite $\left(v_n\right)$ définie, pour tout entier naturel $n$, par $v_n=6-u_n$.
    a. Montrer que la suite $\left(v_bn\right)$ est une suite géométrique de raison $0,7$ dont on précisera le premier terme.
    $\quad$
    b. Déterminer l’expression de $v_n$ en fonction de $n$, puis de $u_n$ en fonction de $n$.
    $\quad$
    c. Avec ce protocole, on arrête les injections lorsque la quantité de médicament présente dans le sang du patient est supérieure ou égale à $5,5$ mg.
    Déterminer, en détaillant les calculs, le nombre d’injections réalisées en appliquant ce protocole.
    $\quad$

$\quad$

Exercice 2     7 points

Thème : géométrie dans l’espace

Dans l’espace rapporté à un repère orthonormé $\Oijk$ on considère :

  • Le point $A$ de coordonnées $(-1;1;3)$;
  • La droite $\mathscr{D}$ dont une représentation paramétrique est : $\begin{cases} x=1+2t\\y=2-t\\z=2+2t\end{cases} \quad ,t\in \R$.

On admet que le point $A$ n’appartient pas à la droite $\mathscr{D}$.

  1. a. Donner les coordonnées d’un vecteur directeur $\vec{u}$ de la droite $\mathscr{D}$.
    $\quad$
    b. Montrer que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$.
    $\quad$
    c. Calculer le produit scalaire $\vect{AB}.\vec{u}$.
    $\quad$
  2. On note $\mathscr{P}$ le plan passant par le point $A$ et orthogonal à la droite $\mathscr{D}$, et on appelle $H$ le point d’intersection du plan $\mathscr{P}$ et de la droite $\mathscr{D}$. Ainsi, $H$ est le projeté orthogonal de $A$ sur la droite $\mathscr{D}$.
    a. Montrer que le plan $\mathscr{P}$ admet pour équation cartésienne : $2x-y+2z-3=0$.
    $\quad$
    b. En déduire que le point $H$ a pour coordonnées $\left(\dfrac{7}{9};\dfrac{19}{9};\dfrac{16}{9}\right)$.
    $\quad$
    c. Calculer la longueur $AH$. On donnera une valeur exacte.
    $\quad$
  3. Dans cette question, on se propose de retrouver les coordonnées du point $H$, projeté orthogonal du point $A$ sur la droite $\mathscr{D}$, par une autre méthode.On rappelle que le point $B(-1; 3; 0)$ appartient à la droite $\mathscr{D}$ et que le vecteur $\vec{u}$ est un vecteur directeur de la droite $\mathscr{D}$.
    a. Justifier qu’il existe un nombre réel $k$ tel que $\vect{HB}=k\vec{u}$.
    $\quad$
    b. Montrer que $k=\dfrac{\vect{AB}.\vec{u}}{\left\|\vec{u}\right\|^2}$.
    $\quad$
    c. Calculer la valeur du nombre réel $k$ et retrouver les coordonnées du point $H$.
    $\quad$
  4. On considère un point $C$ appartenant au plan $\mathscr{P}$ tel que le volume du tétraèdre $ABCH$ soit égal à $\dfrac{8}{9}$.
    Calculer l’aire du triangle $ACH$.
    On rappelle que le volume d’un tétraèdre est donné par : $V=\dfrac{1}{3}\times \mathscr{B}\times h$ où $\mathscr{B}$ désigne l’aire d’une base et $h$ la hauteur relative à cette base.
    $\quad$

$\quad$

Exercice 3     7 points

Thème : probabilités

Le directeur d’une grande entreprise a proposé à l’ensemble de ses salariés un stage de formation à l’utilisation d’un nouveau logiciel.

Ce stage a été suivi par $25 \%$ des salariés.

  1. Dans cette entreprise, $52 \%$ des salariés sont des femmes, parmi lesquelles $40 \%$ ont suivi le stage.
    On interroge au hasard un salarié de l’entreprise et on considère les événements :
    $\bullet$ $F$ : « le salarié interrogé est une femme »,
    $\bullet$ $S$ : « le salarié interrogé a suivi le stage ».
    $\conj{F}$ et $\conj{S}$ désignent les événements contraires des événements $F$ et $S$.
    a. Donner la probabilité de l’événement $S$.
    $\quad$
    b. Recopier et compléter les pointillés de l’arbre pondéré ci-dessous sur les quatre branches indiquées.$\quad$
    c. Démontrer que la probabilité que la personne interrogée soit une femme ayant suivi le stage est égale à $0,208$.
    $\quad$
    d. On sait que la personne interrogée a suivi le stage. Quelle est la probabilité que ce soit une femme ?
    $\quad$
    e. Le directeur affirme que, parmi les hommes salariés de l’entreprise, moins de $10 \%$ ont suivi le stage.
    Justifier l’affirmation du directeur.
    $\quad$
  2. On note $X$ la variable aléatoire qui à un échantillon de $20$ salariés de cette entreprise choisis au hasard associe le nombre de salariés de cet échantillon ayant suivi le stage. On suppose que l’effectif des salariés de l’entreprise est suffisamment important pour assimiler ce choix à un tirage avec remise.
    a. Déterminer, en justifiant, la loi de probabilité suivie par la variable aléatoire $X$.
    $\quad$
    b. Déterminer, à $10^{-3}$ près, la probabilité que $5$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
    c. Le programme ci-dessous, écrit en langage Python, utilise la fonction $\texttt{binomiale(i,n,p)}$ créée pour l’occasion qui renvoie la valeur de la probabilité $P(X=i)$ dans le cas où la variable aléatoire $X$ suit une loi binomiale de paramètres $n$ et $p$.
    $\begin{array}{|l|}
    \hline
    \textbf{def proba}\text{(k):}\\
    \quad \text{P = 0}\\
    \quad \text{for i in range(0 , k + 1):}\\
    \qquad \text{P = P + binomiale(i,20,0.25)}\\
    \quad \textbf{return P}\\
    \hline
    \end{array}$
    Déterminer, à $10^{-3}$ près, la valeur renvoyée par ce programme lorsque l’on saisit $\texttt{proba(5)}$ dans la console Python. Interpréter cette valeur dans le contexte de l’exercice.
    $\quad$
    d. Déterminer, à $10^{-3}$ près, la probabilité qu’au  moins $6$ salariés dans un échantillon de $20$ aient suivi le stage.
    $\quad$
  3. Cette question est indépendante des questions 1 et 2.
    Pour inciter les salariés à suivre le stage, l’entreprise avait décidé d’augmenter les salaires des salariés ayant suivi le stage de $5\%$, contre $2\%$ d’augmentation pour les salariés n’ayant pas suivi le stage.
    Quel est le pourcentage moyen d’augmentation des salaires de cette entreprise dans ces conditions ?
    $\quad$

$\quad$

Exercice 4     7 points

Thème : fonctions numériques

Cet exercice est un questionnaire à choix multiple.
Pour chaque question, une seule des quatre réponses proposées est exacte. Le candidat indiquera sur sa copie le numéro de la question et la réponse choisie. Aucune justification n’est  demandée.
Une réponse fausse, une réponse multiple ou l’absence de réponse à une question ne rapporte ni n’enlève de point.
Les six questions sont indépendantes.

  1. La courbe représentative de la fonction $f$ définie sur $\R$ par $f(x)=\dfrac{-2x^2+3x-1}{x^2+1}$ admet pour asymptote la droite d’équation :
    a. $x=-2$;
    b. $y=-1$;
    c. $y=-2$;
    d. $y=0$.
    $\quad$
  2. Soit $f$ la fonction définie sur $\R$ par $f(x)=x\e^{x^2}$.
    La primitive $F$ de $f$ sur $\R$ qui vérifie $F(0)=1$ est définie par :
    a. $F(x)=\dfrac{x^2}{2}\e^{x^2}$;
    b. $F(x)=\dfrac{1}{2}\e^{x^2}$;
    c. $F(x)=\left(1+2x^2\right)\e^{x^2}$;
    d. $F(x)=\dfrac{1}{2}\e^{x^2}+\dfrac{1}{2}$.
    $\quad$
  3. On donne ci-dessous la représentation graphique $\mathscr{C}_{f’}$ de la fonction dérivée $f’$ d’une fonction $f$ définie sur ℝ.
    On peut affirmer que la fonction $f$ est :
    a. concave sur $]0; +\infty[$ ;
    b. convexe sur $]0; +\infty[$ ;
    c. convexe sur $[0; 2]$ ;
    d. convexe sur $[2; +\infty[$.
    $\quad$
  4. Parmi les primitives de la fonction $f$ définie sur $\R$ par $f(x)=3\e^{-x^2}+2$:
    a. toutes sont croissantes sur $\R$ ;
    b. toutes sont décroissantes sur $\R$ ;
    c. certaines sont croissantes sur $\R$ et d’autres décroissantes sur $\R$ ;
    d. toutes sont croissantes sur $]−\infty; 0]$ et décroissantes sur $[0; +\infty[$.
    $\quad$
  5. La limite en $+\infty$ de la fonction $f$ définie sur l’intervalle $]0;+\infty[$ par $f(x)=\dfrac{2\ln(x)}{3x^2+1}$ est égale à :
    a. $\dfrac{2}{3}$ ;
    b. $+\infty$ ;
    c. $-\infty$ ;
    d. $0$.
    $\quad$
  6. L’équation $\e^{2x}+\e^x-12=0$ admet dans $\R$ :
    a. trois solutions ;
    b. deux solutions ;
    c. une seule solution ;
    d. aucune solution.
    $\quad$