TES/TL – Exercices – AP – Lois de probabilité à densité

Lois de probabilité à densité (AP)

Exercice 1

On donne la représentation de la fonction densité de probabilité $f$ définie sur l’intervalle $[0;2,5]$.
$X$ suit une loi de probabilité continue de densité $f$.

Déterminer graphiquement :

  1. $P(X<0,5)$
    $\quad$
  2. $P(X=1,5)$
    $\quad$
  3. $P(0,5 \pp X \pp 1,5)$
    $\quad$
  4. $P(X>2)$
    $\quad$
  5. $P(X \pg 1,5)$
    $\quad$
  6. $P(X>1)$
    $\quad$
  7. $P(X>2,5)$
    $\quad
Correction Exercice 1

  1. On veut calculer l’aire d’un triangle rectangle isocèle de côté $0,5$.
    Donc $P(X<0,5)=\dfrac{0,5\times 0,5}{2}=0,125$
    $\quad$
  2. Quand $X$ suit une loi de probabilité à densité alors, pour tout réel $a$ on a $P(X=a)=0$.
    Ainsi $P(X=1,5)=0$
    $\quad$
  3. Il s’agit de calculer l’aire d’un rectangle dont les côtés mesurent respectivement $1$ et $0,5$.
    Ainsi $P(0,5\pp X\pp 1,5)=1\times 0,5=0,5$.
    $\quad$
  4. On veut calculer l’aire d’un triangle rectangle isocèle de côté $0,5$.
    Donc $P(X>2)=\dfrac{0,5\times 0,5}{2}=0,125$
    $\quad$
  5. On veut calculer l’aire d’un trapèze rectangle.
    On utilise la formule :
    $\mathscr{A}_{\text{trapèze}}=\dfrac{(\text{petite base $+$ grande base})\times\text{hauteur}}{2}$.
    Ainsi $P(X\pg 1,5)=\dfrac{(1+0,5)\times 0,5}{2}=0,375$
    $\quad$
  6. On utilise la même formule qu’à la question précédente.
    $P(X>1)=\dfrac{(1,5+1)\times 0,5}{2}=0,625$
    $\quad$
  7. La fonction de densité n’est définie que sur l’intervalle $[0;2,5]$.
    Par conséquent $P(X\pg 2,5)=0$.
    $\quad

[collapse]

$\quad$

Exercice 2

$X$ suit une loi de probabilité à densité sur l’intervalle $[3;7]$. On a $P(X<4)=0,1$ et $P(X>6)=0,3$.
Calculer :

  1. $P(4<X<6)$
    $\quad$
  2. $P(X<6)$
    $\quad$
  3. $P(X>4)$
    $\quad$
  4. $P(X<1)$
    $\quad$
  5. $P(X\pg 3)$
    $\quad$
  6. $P(X=3)$
    $\quad$
Correction Exercice 2

  1. $P(4<X<6)=1-\left(P(X<4)+P(X>6)\right)=1-(0,1+0,3)=0,6$
    $\quad$
  2. $P(X<6)=P(X\pp 0,6)=1-P(X>0,6)=1-0,3=0,7$
    $\quad$
  3. $P(X>4)=P(X\pg 4)=1-P(X<4)=1-0,1=0,9$
    $\quad$
  4. $X$ suit une loi de probabilité à densité sur l’intervalle $[3;7]$ et $1<3$.
    Donc $P(X<1)=0$.
    $\quad$
  5. $X$ suit une loi de probabilité à densité sur l’intervalle $[3;7]$.
    Donc $P(X\pg 3)=1$.
    $\quad$
  6. Quand $X$ suit une loi de probabilité à densité alors, pour tout réel $a$ on a $P(X=a)=0$.
    Ainsi $P(X=3)=0$
    $\quad$

[collapse]

$\quad$

Exercice 3

Soit $f$ une fonction définie sur l’intervalle $[0;1]$ telle que $f(x)=-x^2+\dfrac{8}{3}x$.

  1. Montrer que $f$ est une fonction densité de probabilité sur l’intervalle $[0;1]$.
    $\quad$
  2. $X$ est la variable aléatoire qui suit la loi de probabilité continue de densité $f$.
    a. Calculer $P(X\pp 0,5)$.
    $\quad$
    b. Calculer $P(0,2<X<0,5)$.
    $\quad$
Correction Exercice 3

  1. La fonction $f$ est continue sur l’intervalle $[0;1]$ en tant que fonction polynôme.
    On a $f(x)=-x\left(x-\dfrac{8}{3}\right)$.
    Les deux racines de ce polynômes du second degré sont donc $0$ et $\dfrac{8}{3}>1$.
    Le coefficient principal de ce polynôme est $a=-1<0$.
    Ainsi $f(x)$ est positif entre ses racines et $f(x)\pg 0$ sur l’intervalle $[0;1]$.
    $\begin{align*}\int_0^1 f(x)\dx&=\int_0^1\left(-x^2+\dfrac{8}{3}x\right)\dx\\
    &=\left[-\dfrac{x^3}{3}+\dfrac{8}{6}x^2\right]_0^1\\
    &=-\dfrac{1}{3}+\dfrac{8}{6}\\
    &=-\dfrac{1}{3}+\dfrac{4}{3}\\
    &=\dfrac{3}{3}\\
    &=1\end{align*}$
    La fonction $f$ est donc une fonction densité de probabilité sur $[0;1]$.
    $\quad$
  2. a. On a :
    $\begin{align*} P(X\pp 0,5)&=\int_0^{0,5}f(x)\dx \\
    &=\left[-\dfrac{x^3}{3}+\dfrac{8}{6}x^2\right]_0^{0,5}\\
    &=-\dfrac{0,5^3}{3}+\dfrac{4}{3}\times 0,5^2\\
    &=\dfrac{7}{24}\end{align*}$
    $\quad$
    b. On a :
    $\begin{align*}P(0,2<X<0,5)&=\int_{0,2}^{0,5}f(x)\dx\\
    &=\left[-\dfrac{x^3}{3}+\dfrac{8}{6}x^2\right]_{0,2}^{0,5}\\
    &=-\dfrac{0,5^3}{3}+\dfrac{4}{3}\times 0,5^2-\left(-\dfrac{0,2^3}{3}+\dfrac{4}{3}\times 0,2^2\right)\\
    &=\dfrac{7}{24}-\dfrac{7}{600}\\
    &=0,28\end{align*}$
    $\quad$

[collapse]

$\quad$

Exercice 4

$X$ suit une loi uniforme sur l’intervalle $[3;18]$.

  1. Tracer la courbe représentant sa fonction de densité.
    $\quad$
  2. Donner l’expression de la fonction densité.
    $\quad$
  3. Calculer les probabilités suivantes :
    a. $P(X<6)$
    $\quad$
    b. $P(4<X<9)$
    $\quad$
    c. $P(X \pg 15)$
    $\quad$
    d. $P(X>0)$
    $\quad$
    e. $P(X>20)$
    $\quad$
    f. $P(X=12)$
    $\quad$
  4. Calculer l’espérance de $X$.
    $\quad$
Correction Exercice 4

  1. On obtient la représentation graphique suivante :
    $\quad$
  2. La fonction de densité est définie par $f(x)=\dfrac{1}{18-3}=\dfrac{1}{15}$ sur l’intervalle $[3;18]$.
    $\quad$
  3. a. $P(X<6)=\dfrac{6-3}{18-3}=\dfrac{3}{15}=0,2$
    $\quad$
    b. $P(4<X<9)=\dfrac{9-4}{18-3}=\dfrac{5}{15}=\dfrac{1}{3}$
    $\quad$
    c. $P(X\pg 15)=P(15\pp X\pp 18)=\dfrac{18-15}{18-3}=\dfrac{3}{15}=0,2$
    $\quad$
    d. $P(X>0)=P(X\pg 3)=P(3\pp X\pp 18)=1$
    $\quad$
    e. $P(X>20)=0$ puisque $X$ suit une loi uniforme sur l’intervalle $[3;18]$ et que $18<20$.
    $\quad$
    f. Quand $X$ suit une loi de probabilité à densité alors, pour tout réel $a$ on a $P(X=a)=0$.
    Ainsi $P(X=12)=0$
    $\quad$
  4. L’espérance de $X$ est $E(X)=\dfrac{3+18}{2}=10,5$.
    $\quad$

[collapse]