TES/TL – Exercices – AP – Lois normales

Lois normales (AP)

Exercice 1

  1. On a représenté ci-dessous les graphiques de deux lois normales. Déterminer leur espérance.

    $\quad$
  2. Le graphique ci-dessous donne la loi normale $\mathscr{N}\left(0;2^2\right)$.

    On a représenté ci-dessous dans le désordre trois lois normales : $\mathscr{N}\left(2,5;1,5^2\right)$ ; $\mathscr{N}\left(2,5;2,5^2\right)$ et $\mathscr{N}\left(2,5;2^2\right)$.
    Associer à chaque courbe sa loi.

    $\quad$
Correction Exercice 1

  1. Loi 1 : La droite d’équation $x=0$ est un axe de symétrie pour la courbe. Son espérance est donc $\mu_1=0$.
    Loi 2 : La droite d’équation $x=6$ est un axe de symétrie pour la courbe. Son espérance est donc $\mu_2=6$.
    $\quad$
  2. Plus $\sigma$ est grand, plus la courbe représentant la fonction de densité est “évasée”.
    Par conséquent  :
    – la loi 1 correspond à $\mathscr{N}\left(2,5;2^2\right)$;
    – la loi 2 correspond à $\mathscr{N}\left(2,5;1,5^2\right)$;
    – la loi 3 correspond à $\mathscr{N}\left(2,5;2,5^2\right)$.
    $\quad$

[collapse]

$\quad$

Exercice 2

Soit $X$ une variable aléatoire qui suit une loi normale $\mathscr{N}\left(25;9\right)$.

  1. Calculer $P(20<X<25)$ (arrondir au millième).
    $\quad$
  2. En déduire $P(X<20)$ et $P(X>30)$.
    $\quad$
Correction Exercice 2

On a $\sigma^2=9$ donc $\sigma=3$.

  1. À l’aide de la calculatrice on obtient $P(20<X<25) \approx 0,452$.
    $\quad$
  2. $P(X<20)=0,5-P(20<X<25) \approx 0,048$
    $\begin{align*} P(X>30)&=0,5-P(25<X<30)\\
    &=0,5-P(20<X<25) \\
    &\approx 0,048\end{align*}$
    $\quad$

[collapse]

$\quad$

$\quad$

Exercice 3

Soit $X$ une variable aléatoire qui suit une loi normale d’espérance $\mu=50$ et d’écart-type $\sigma$. On donne $P(X<45)=0,2$. On arrondira les résultats au millième.

  1. Déterminer $P(45<X<55)$.
    $\quad$
  2. Déterminer la valeur de $\sigma$.
    $\quad$
Correction Exercice 3

  1. On sait que $\mu=50$ donc :
    $P(X<45)=P(X<50-5)=P(X>50+5)=P(X>55)$.
    Par conséquent :
    $P(45<X<55)=1-\left(P(X<45)+P(X>55)\right)=0,6$.
    $\quad$
  2. La variable aléatoire $Y=\dfrac{X-50}{\sigma}$ suit la loi normale centrée réduite.
    On a donc :
    $\begin{align*} P(45<X<55)=0,6&\ssi P(-5<X-50<5)=0,6\\
    &\ssi P\left(-\dfrac{5}{\sigma}<\dfrac{X-50}{\sigma}<\dfrac{5}{\sigma}\right)=0,6 \\
    &\ssi P\left(-\dfrac{5}{\sigma}<Y<\dfrac{5}{\sigma}\right)=0,6 \\
    &\ssi 2P\left(P(Y<\dfrac{5}{\sigma}\right)-1=0,6 \\
    &\ssi 2P\left(P(Y<\dfrac{5}{\sigma}\right)=1,6 \\
    &\ssi P\left(P(Y<\dfrac{5}{\sigma}\right)=0,8\end{align*}$
    À l’aide de la fonction Inverse loi normale de la calculatrice on trouve $\dfrac{5}{\sigma}\approx 0,842$ soit $\sigma\approx 5,941$.
    $\quad$
    Autre méthode :
    $\begin{align*} P(X<45)=0,2&\ssi P\left(X-50<-5\right)=0,2\\
    &\ssi P\left(\dfrac{X-50}{\sigma}<-\dfrac{5}{\sigma}\right)=0,2\\
    &\ssi P\left(Y<-\dfrac{5}{\sigma}\right)=0,2\end{align*}$
    À l’aide de la fonction Inverse loi normale de la calculatrice on trouve $-\dfrac{5}{\sigma}\approx -0,842$ soit $\sigma\approx 5,941$.
    $\quad$

[collapse]

$\quad$

Exercice 4

Un lot de Kiwis a été calibré. On considère que la variable aléatoire $M$ qui, à chaque Kiwis pris au hasard, associe sa masse en grammes suit une loi normale $\mathscr{N}\left(90;3^2\right)$.
On prélève un kiwi au hasard.

  1. Quelle est la probabilité que sa masse soit comprise entre $81$ g et $99$ g?
    $\quad$
  2. Quelle est la probabilité que sa masse soit inférieure à $87$ g?
    $\quad$
Correction Exercice 4

On a $\sigma^2=3^2$ donc $\sigma=3$.

  1. D’après la calculatrice $P(81<M<99)\approx 0,997$
    On peut également remarquer que :
    $P(81<M<99)= P(\mu-3\sigma<M<\mu+3\sigma)\approx 0,997$
    $\quad$
  2. On a :
    $\begin{align*} P(M<87)&=0,5-P(87<M<90) \\
    &\approx 0,159\end{align*}$
    $\quad$

[collapse]

$\quad$

Exercice 5

Une entreprise produit des sachets de lait en poudre de $500$ g. Selon le réglage de la machine les sachets ont une masse $M$ qui varie autour de $500$ g. On considère que la variable aléatoire $M$ qui, à chaque sachet pris au hasard, associe sa masse en grammes suit une loi normale $\mathscr{N}\left(500;4\right)$.
On règle la balance de telle sorte qu’elle conserve tous les sachets dont la masse appartient à l’intervalle $500-\alpha<M<500+\alpha$ où $\alpha$ un réel strictement positif.

  1. Quelle valeur donner à $\alpha$ au centigramme près pour que $95\%$ des sachets soient conservés.
    $\quad$
  2. Quel pourcentage de sachet aura une masse $M$ inférieure à $495$ g?
    $\quad$

Pour améliorer la qualité de la production l’entreprise décide de régler la machine de façon à ce que moins de $1\%$ des sachets ait une masse inférieure à $500$ g. On considère que la variable aléatoire $M$ qui, à chaque sachet pris au hasard, associe sa masse en grammes suit alors une loi normale $\mathscr{N}(\mu,4)$.

  1. Déterminer $\mu$ pour atteindre l’objectif annoncé. (arrondir au centième).
    $\quad$
Correction Exercice 5

On a $\sigma^2=4$ donc $\sigma=2$.

  1. La variable aléatoire $X=\dfrac{M-500}{2}$ suit la loi normale centrée réduite.
    $\begin{align*} P(500-\alpha<M<500+\alpha)=0,95&\ssi P(-\alpha<M-500<\alpha)=0,95 \\
    &\ssi P\left(-\dfrac{\alpha}{2}<\dfrac{M-500}{2}<\dfrac{\alpha}{2}\right)=0,95\\
    &\ssi P\left(-\dfrac{\alpha}{2}<X<\dfrac{\alpha}{2}\right)=0,95\\
    &\ssi 2P\left(X<\dfrac{\alpha}{2}\right)-1=0,95\\
    &\ssi 2P\left(X<\dfrac{\alpha}{2}\right)=1,95 \\
    &\ssi P\left(X<\dfrac{\alpha}{2}\right)=0,975\end{align*}$
    À l’aide de la fonction Inverse loi normale de la calculatrice on trouve $\dfrac{\alpha}{2}\approx 1,96$ soit $\alpha\approx 3,92$.
    $\quad$
  2. $P(M<495)=0,5-P(495<M<500)\approx 0,006$.
    Ainsi environ $0,6\%$ des sachets auront une masse inférieure à $495$ g.
    $\quad$
  3. La variable aléatoire $X=\dfrac{M-\mu}{2}$ suit la loi normale centrée réduite.
    On veut que :
    $\begin{align*} P(M<500)<0,01 &\ssi P(M-\mu<500-\mu)<0,01 \\
    &\ssi P\left(\dfrac{M-\mu}{2}<\dfrac{500-\mu}{2}\right)<0,01\\
    &\ssi P\left(X<\dfrac{500-\mu}{2}\right)<0,01 \end{align*}$
    À l’aide de la fonction Inverse loi normale de la calculatrice on trouve $\dfrac{500-\mu}{2}\approx -2,326$ soit $500-\mu\approx -4,653$ et donc $\mu \approx 504,65$.
    $\quad$

[collapse]